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Stability of Bogoliubov Fermi surfaces within BCS theory
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It has recently been realized that the gap nodes of multiband superconductors that break time-reversal sym-
metry generically take the form of Fermi surfaces of Bogoliubov quasiparticles. However, these Fermi surfaces
lead to a nonzero density of states (DOS) at the Fermi energy, which typically disfavors such superconducting
states. It has thus not been clear whether they can be stable for reasonable pairing interactions or are in practice
preempted by time-reversal-symmetric states with vanishing DOS. In this Letter, we show within BCS theory
applied to a paradigmatic model that the time-reversal-symmetry-breaking states are indeed stabilized over broad
parameter ranges at weak coupling. Moreover, we introduce a fast method that involves solving the inverse BCS
gap equation, does not require iteration, does not suffer from convergence problems, and can handle metastable
solutions.
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Introduction. Recent years have witnessed a surge of inter-
est in multiband superconductors (MSCs). In many complex
superconductors, multiple bands are close to or cross the
Fermi energy [1–11]. The multiband structure arises from
internal degrees of freedom beyond the electron spin, e.g.,
orbital or basis site. These internal degrees of freedom lead
to much richer possibilities for the states of Cooper pairs
and hence to superconducting properties that are qualitatively
different from the single-band case [12–14]. Specifically,
MSCs enable exotic “internally anisotropic” pairing states
[14]—momentum-independent s-wave pairing can have a
nontrivial dependence on lattice symmetries.

Moreover, research has been stimulated by the prediction
that gap nodes in time-reversal-symmetry-breaking (TRSB)
states of MSCs are generically inflated into two-dimensional
Fermi surfaces of Bogoliubov quasiparticles [Bogoliubov
Fermi surfaces (BFSs)] [12–20]. In single-band models or
if interband pairing is neglected, the superconducting gap
typically closes at points or lines in momentum space (point
or line nodes, respectively) or is everywhere nonzero. BFSs
can be viewed as such nodes that are inflated into sur-
faces by a pseudomagnetic field generated by interband
pairing.

The presence of BFSs implies a nonzero DOS at the
Fermi energy, which leads to characteristic signatures in,
e.g., the specific heat, the penetration depth, and the spin-
lattice relaxation rate [21]. MSCs that break time-reversal
symmetry (TRS), and are thus potential test beds for the
physics discussed here, include UPt3 [22,23], UBe13 and
U1−xThxBe13 [24], Sr2RuO4 [25–27], PrOs4Sb12 [28,29],
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iron-based superconductors [30–32], half-Heusler com-
pounds [33], and CeRh2As2 [34]. However, the nonzero DOS
raises fundamental concerns: Can superconductors with BFSs
be energetically stable at all? There are always competing
pairing states that do not break TRS and at most have point or
line nodes. In such states, electronic spectral weight is pushed
away from the Fermi energy compared to superconductors
with BFSs, which is expected to lower the free energy. Prelim-
inary estimates in Ref. [13] and BCS results from Ref. [35],
where the main interest was in the role of spin-orbit coupling,
indicate that BFSs could be stable under realistic conditions.
A recently suggested orbital-antisymmetric spin-triplet pair-
ing state of Sr2RuO4 also features BFSs [10].

In this Letter, we study a prototypical model [13,14,36,37]
of cubic superconductors describing electrons with an effec-
tive angular momentum j = 3/2 within BCS theory [38]. We
restrict ourselves to local pairing. Nonlocal pairing allows for
additional symmetries of pairing states but does not introduce
fundamentally new aspects [18].

The standard approaches to obtain the pairing amplitudes
within BCS theory are to either solve the gap equation self-
consistently or to minimize the free energy. These methods
are computationally expensive since they require iteration,
and they may fail to converge. We adopt a different strategy,
namely to solve the inverse gap equation, which avoids these
problems. We find that TRSB states with BFSs are indeed
favored over broad parameter ranges for not too strong pairing
interactions.

Model. We consider an effective spin-3/2 model with point
group Oh [13,14,36,37]. The Hilbert space of internal degrees
of freedom is thus four dimensional. The effective spin 3/2
emerges due to the presence of strong spin-orbit coupling and
provides the natural description of electrons close to a fourfold
�+

8 (F3/2,g) band-touching point. The concept of BFSs is not
limited to j = 3/2 systems; the multiband nature may also
arise due to other internal degrees of freedom [14,18].
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We expand the normal-state Hamiltonian into a basis of
Hermitian 4 × 4 matrices hn as

HN (k) =
5∑

n=0

cn(k)hn. (1)

The functions cn(k) are periodic basis functions of irreducible
representations (irreps) of Oh that transform in the same
way as the corresponding matrices hn so that HN (k) is in-
variant under Oh. The matrices hn can be chosen such that
h1, . . . , h5 anticommute pairwise and h0, the 4 × 4 identity
matrix, commutes with any matrix [18]. The basis matrices
hn and the functions cn(k) are listed in the Supplemental
Material (SM) [39]. The normal-state eigenenergies are ξk± =
c0(k) ±

√
c2

1(k) + · · · + c2
5(k).

Even-parity local pairing allows for six possible pairing
channels, which belong to the one-dimensional irrep A1g, the
two-dimensional irrep Eg, and the three-dimensional irrep
T2g [13,14,37]. After mean-field decoupling, the pairing in-
teraction reads as [13,14,36]

H int
BCS = 1

2

∑
k

5∑
n=0

[
�∗

n cT
−k(hnUT )† ck

+ �n c†
k hnUT c†T

−k

] + N

2

5∑
n=0

|�n|2
Vn

. (2)

Here, N is the number of unit cells, and for attractive pairing
interactions we take Vn > 0. The pairing amplitudes are given
by

�n ≡ �1
n + i�2

n = −Vn

N

∑
k

〈
cT
−k (hnUT )† ck

〉
, (3)

where UT = exp(iJyπ ) is the unitary part of the time-reversal
operator. Neglecting an irrelevant constant, the full BCS
Hamiltonian can then be written as

HBCS = 1

2

∑
k

�
†
kH(k)�k + N

2

5∑
n=0

|�n|2
Vn

(4)

in terms of the Nambu spinor �k = (ck, c†
−k )T and the

Bogoliubov–de Gennes (BdG) Hamiltonian

H(k) =
(

HN (k) �̂

�̂† −HT
N (−k)

)
, (5)

where �̂ = ∑5
n=0 (�1

n + i�2
n) hnUT .

Inverse gap equation. The free energy per unit cell resulting
from HBCS reads as [10,45]

F = −kBT

2N

∑
k

8∑
i=1

ln
(
1 + e−βEk,i

) + 1

2

5∑
n=0

2∑
α=1

(
�α

n

)2

V α
n

,

(6)

where Ek,i are the eigenvalues of the BdG Hamiltonian, i de-
notes the band, and β = 1/kBT is the inverse temperature. Ek,i

can be obtained in closed form, as discussed in the SM [39].
We temporarily allow the interaction strength V α

n to depend
on the index α referring to the real and imaginary parts of the
pairing amplitudes.

Equating the derivative of the free energy with respect to
�α

n to zero, we obtain the BCS gap equation

�α
n = V α

n

2N

∑
k

4∑
i=1

tanh
βEk,i

2

∂Ek,i

∂�α
n

≡ V α
n f α

n (�), (7)

where we have used that the spectrum at fixed k is symmet-
ric. � ≡ (�1

0, . . . ,�
1
5; �2

0, . . . ,�
2
5) ∈ R12 is the vector of all

order parameters. f α
n (�) has to be of at least first order in

�α
n since otherwise the normal-state solution � = 0 would

not exist [39]. Hence, we can write f α
n (�) ≡ �α

n gα
n (�). For

�α
n �= 0, solving Eq. (7) for V α

n yields the inverse gap equation

V α
n = 1

gα
n (�)

. (8)

This equation describes the interaction strength that is nec-
essary to obtain a given �. If gα

n (�) vanishes and V α
n thus

diverges the given � cannot be stabilized by any value of the
interaction. On the other hand, for �α

n = 0, Eq. (7) becomes
tautological (0 = 0) and there is no constraint on V α

n —a state
without pairing in the �α

n channel is compatible with any
value of V α

n (the state might not be the global minimum,
though).

We first discuss the case without any symmetries. In
this case, the parameter space is spanned by 6 × 2 = 12
independent coupling constants V α

n . In principle, one can
scan the 12-component order parameter � over the rel-
evant ranges and obtain the 12 coupling constants V ≡
(V 1

0 , . . . ,V 1
5 ;V 2

0 , . . . ,V 2
5 ) from Eq. (8). Then the mapping

is inverted to obtain V �→ �. This is generically possible at
least locally since its domain and codomain have the same
dimension. If there are multiple solutions for a V, then the
solution with the minimum free energy is stable.

If s order parameters �α
n vanish, this corresponds to a

(12 − s)-dimensional subspace of the space of �. The inverse
gap equations map this subspace into a codomain of gener-
ically the same dimension 12 − s. The s coupling constants
belonging to the vanishing �α

n are arbitrary. Hence, restricting
any number of order parameters to zero does not reduce the
dimension of the space of allowed coupling constants. Indeed,
in the normal state, all �α

n vanish and all V α
n are unconstrained.

Symmetries reduce the number of independent coupling
constants. Due to the global U(1) symmetry, V α

n does not
depend on α and we thus drop the superscript again. The
presence of cubic symmetry further restricts the number of
independent Vn. For local pairing, the six components of the
pairing matrix �̂ transform according to the three irreps A1g,
T2g, and Eg [14,18,36]. The coupling constants belonging to
the same irrep must be equal. Hence, we can organize them as

A1g : VA ≡ V0, (9)

T2g : VT ≡ V1 = V2 = V3, (10)

Eg : VE ≡ V4 = V5. (11)

Note that the inverse gap equations still generically map the
12-dimensional space of � onto a 12-dimensional image of
couplings V but now only a three-dimensional submanifold is
allowed. Random points � map onto unphysical V with prob-
ability one. We thus need to restrict the values of �. Landau
theory is very helpful to identify likely relations between
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amplitudes �α
n belonging to the same irrep [14,36,46]. For

example, the only fundamentally different patterns of pair-
ing amplitudes expected for the Eg channels are (�4,�5) ∝
(1, 0), (0,1), and (1, i).

For pure-irrep pairing, the �α
n belonging to all but one

irrep vanish. The couplings Vn for all but this single irrep
are then unconstrained. We solve the inverse gap equation for
each of the expected patterns of pairing amplitudes for this
irrep. These are one-to-one mappings and thus easy to invert.
Mixed-irrep pairing states can also be treated: Let there be n�

irreps with nonzero pairing. Free-energy arguments provide
a set of plausible patterns, now depending on n� independent
amplitudes, one for each irrep involved. The inverse gap equa-
tion provides an n�-to-n� mapping from pairing amplitudes to
couplings, which can generically be inverted. The free energy
of the resulting pure-irrep and mixed-irrep solutions has to be
compared to find the stable state.

The main advantages of the inverse gap equation are that
it does not require iteration to reach self-consistency and thus
avoids convergence problems and is much faster. Moreover,
it easily deals with metastable and unstable branches in the
vicinity of first-order phase transitions.

We emphasize that high precision in the integration
over momentum space is essential for reaching the weak-
coupling regime. This is numerically difficult because the
weak-coupling behavior relies on a term proportional to
�2 ln(�/
) in the free (internal) energy at T = 0, which has
to be separated from a �2 contribution. We observe that sum-
ming over a momentum-space mesh becomes forbiddingly
slow for three-dimensional systems. Instead, we have obtained
good results using adaptive integration. Details are discussed
in the SM [39]. The high precision required for the three-
dimensional momentum integration makes iterative methods
prohibitively costly.

Results. In this Letter, we restrict ourselves to zero
temperature. We first discuss Eg pairing states, which
are described by the two-component order parameter
(�4,�5) ≡ � (δx2−y2 , δ3z2−r2 ) ≡ � δ [14]. The pairing matrix
reads as

�̂ = �
(
δx2−y2 h4UT + δ3z2−r2 h5UT

)
, (12)

where the basis matrices h4 and h5 transform as x2 − y2 and
3z2 − r2, respectively, under Oh [39]. As noted above, po-
tentially stable pairing states are the time-reversal-symmetric
states with the patterns δ = (1, 0) and (0,1) and the TRSB
state with δ = (1, i)/

√
2 [14,36].

Figure 1(a) shows the pairing amplitudes � as func-
tions of the coupling strength VE for the three δ. At weak
coupling, �(VE ) shows the expected weak-coupling scaling
ln � ∼ A − B/VE with constants A, B [39]. For large coupling
strength, � exhibits a pronounced S shape, which is char-
acteristic of a first-order phase transition. Correspondingly,
the free-energy differences between superconducting and nor-
mal states, �F ≡ Fs − Fn, exhibit a swallowtail feature as a
function of VE , as shown in Fig. 1(b). A similar self-crossing
of the free energy was observed for superconducting states
with finite-momentum Cooper pairs by Fulde and Ferrell [47],
where the control parameter was an exchange field.

FIG. 1. (a) Pairing amplitudes � as functions of the coupling
strength VE at T = 0 for the Eg pairing states (1,0), (0,1), and (1, i).
At small VE , �(VE ) shows weak-coupling scaling, ln � ∼ A − B/VE .
The dotted curve is a fit of this scaling form to the numerical
results for the (1, i) state at small VE . The inset shows the ratios
of � for the three states to � for the (1, i) state. (b) Free-energy
differences �F = Fs − Fn between the superconducting and normal
states as functions of the coupling strength VE at T = 0. The state
with minimal (most negative) �F is stable. (c) The same on a
logarithmic scale, for the weak-coupling branches. Note that −�F >

0 is plotted. At small VE , we observe the weak-coupling scaling
ln(−�F ) ∼ A′ − B′/VE . The dotted curve shows the weak-coupling
scaling function for �F obtained from the fit in (a). The inset shows
the ratios of �F for the three states to �F for the (1, i) state.
Numerical parameters are given in the SM [39].

L220501-3



ANKITA BHATTACHARYA AND CARSTEN TIMM PHYSICAL REVIEW B 107, L220501 (2023)

In the range of VE with three solutions, the one with the
intermediate value of � and the highest value of the free en-
ergy corresponds to a maximum separating two (meta)stable
states. The S shape thus means that for increasing coupling
strength a second solution with a much larger pairing ampli-
tude � appears, which initially is metastable. This solution
can be attributed to interband pairing: The values of � for this
branch are comparable to the energy difference between the
normal-state bands. Hence, the superconducting pairing can
take advantage of the additional DOS in these bands.

If there were a single Eg pairing state our results would
predict a first-order transition without a change in symmetry
similar to a liquid-gas transition. However, there are three
distinct pairing states controlled by the same VE . For weak
coupling, the TRSB (1, i) state is favored [see the inset in
Fig. 1(c)]. Note that the favored state corresponds to the high-
est value since �F(1,i) < 0. However, at strong coupling, the
(1, i) state becomes strongly disfavored and there is a small
preference for the (0,1) state over the (1,0) state. The (1,0)
state has two crossing line nodes (x2 − y2 symmetry) [37],
which leads to a higher DOS close to the Fermi energy and
is thus energetically unfavorable [46], compared to the (0,1)
state with noncrossing line nodes (3z2 − r2 symmetry).

Figure 1(c) shows the free-energy gain on a logarithmic
scale at weak coupling. The free-energy gain follows the
expected behavior ln(−�F ) ∼ A′ − B′/VE , where the param-
eters are not free but determined by the scaling form of � [39].
We again see that the TRSB state is favored in the weak-
coupling limit. The inset in Fig. 1(c) shows that the energy
separation between the three states is sizable on the relevant
energy scale. We emphasize that the smaller values of � and
�F shown in Fig. 1 would be experimentally out of reach. The
main reason for plotting them here is to test the solution of
the BCS gap equation—the numerical method remains viable
deep into the weak-coupling regime.

The weak-coupling results can be understood following
Ref. [46] since the TRSB (1, i) state has point nodes in the
limit of small VE and thus has a lower DOS close to the Fermi
energy than the (1,0) and (0,1) states, which have line nodes.
With increasing coupling VE , the point nodes are inflated into
BFSs, which have larger DOS and are disfavored. The line
nodes of the time-reversal-symmetric states are not inflated.
Thus, at strong coupling, the TRSB state is destabilized.

We briefly comment on the T2g pairing states. Similar to Eg

pairing, we find a first-order transition from a TRSB state at
weak coupling to the time-reversal-symmetric state at strong
coupling. Details are shown in the SM [39].

So far, we have discussed pairing states that belong to a
single irrep. However, mixed-irrep pairing states are possible
when two pure-irrep states are nearly degenerate. We consider
the mixed-irrep state �

T2g
xy + i�

Eg

x2−y2 , where the subscript de-
scribes the symmetry of the order parameter. This pairing state
has only two point nodes in the limit � → 0 [37] and should
thus be favored over all other mixed-irrep states, which have
line nodes or more point nodes. We compare the free-energy
gain as a function of the couplings VE and VT for this state
to the pure Eg state with δ = (1, i)/

√
2 and the pure T2g state

with δ = (1, i, 0)/
√

2 in the weak-coupling regime in Fig. 2.
As discussed above, the result for the pure Eg state does not

FIG. 2. Free-energy differences �F = Fs − Fn between the su-
perconducting and normal states as functions of the coupling
strengths VE and VT . A pure Eg state, a pure T2g state, and a mixed-
irrep state are compared (see text). Note that −�F > 0 is plotted on
a logarithmic scale so that the largest value corresponds to the stable
state.

depend on the interaction in the T2g channel and vice versa.
We find that the mixed-irrep state is stabilized in a narrow
region of coupling constants. This result is reasonable since
the mixed-irrep state with two (inflated) point nodes is ener-
getically favored over the Eg state with eight point nodes and
the T2g state with two point nodes and one line node [14] if the
couplings are fine tuned close to degeneracy.

Conclusions. We have performed a BCS study of a paradig-
matic centrosymmetric spin-3/2 model to analyze the stability
of TRSB superconducting states with BFSs. At weak cou-
pling, such TRSB states are indeed stable. For increasing
pairing interactions, TRSB states become disfavored com-
pared to time-reversal-symmetric states due to the increasing
DOS at the Fermi energy resulting from the growing BFSs.
This eventually leads to a first-order transition to a time-
reversal-symmetric state at strong coupling. If there were
only a single possible pairing state, our results would pre-
dict a liquid-gas-like first-order transition without a change
in symmetry.

We have proposed an alternative approach to solve the
BCS gap equations. The main idea is to solve the inverse
equations to obtain the coupling strengths as functions of
the pairing amplitudes and to invert the resulting mapping.
If there is only a single coupling and a single amplitude,
this inversion is a trivial interchange of axes but the method
works beyond this case. The inverse gap equation avoids
iterations and the associated convergence problems. It can
also treat metastable and unstable branches as well as the
resulting first-order transitions, which is essential for this
work.

The approach has been derived for general temperatures
and illustrated for the limit T → 0. The application at T > 0
should in fact be numerically more benign since the weak-
coupling scaling is cut off by T . The interesting questions of
the relative stability of states with and without BFSs at T > 0
and the fate of the metastable solutions are left for future work.
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