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I. BASIS MATRICES AND DETAILS OF THE MODEL

In this section, we summarize the basis matrices that appear in both the normal-state Hamiltonian HN (k) and in

the superconducting pairing matrix ∆̂. We also present details of the model Hamiltonian. In terms of the standard
spin-3/2 matrices

Jx =
1

2


0

√
3 0 0√

3 0 2 0

0 2 0
√
3

0 0
√
3 0

 , (S1)

Jy =
i

2


0 −

√
3 0 0√

3 0 −2 0

0 2 0 −
√
3

0 0
√
3 0

 , (S2)

Jz =
1

2

3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

 , (S3)

the basis matrices are given by [1–3]

h0 = 1, (S4)

h1 =
JyJz + JzJy√

3
, (S5)

h2 =
JzJx + JxJz√

3
, (S6)

h3 =
JxJy + JyJx√

3
, (S7)

h4 =
J2
x − J2

y√
3

, (S8)

h5 =
2J2

z − J2
x − J2

y

3
, (S9)

which are orthonormalized so that Tr hmhn = 4δmn. The matrices h1 to h5 transform under point-group operations
like the basis functions yz, zx, xy, x2 − y2, and 3z2 − r2. h1 to h3 are irreducible tensor operators belonging to the
irrep T2g, while h4 and h5 are irreducible tensor operators belonging to Eg.

The normal-state Hamiltonian can be expanded as

HN (k) =

5∑
n=0

cn(k)hn. (S10)

Under point-group operations, the functions cn(k) must transform in the same way as the hn so that the full Hamil-
tonian transforms trivially. The cn(k) must also respect the periodicity of the reciprocal lattice. We assume a
face-centered-cubic lattic, which is appropriate for example for an effective model of a pyrochlore [4] and for Heusler
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compounds if antisymmetric spin-orbit coupling is negligible [5]. The functions cn(k) are chosen as

c0(k) = (−4t1 − 5t2)(cos kx cos ky + cos ky cos kz + cos kz cos kx)− µ, (S11)

c1(k) = 4
√
3 t3 sin ky sin kz, (S12)

c2(k) = 4
√
3 t3 sin kz sin kx, (S13)

c3(k) = 4
√
3 t3 sin kx sin ky, (S14)

c4(k) = −2
√
3 t2(cos ky cos kz − cos kz cos ky), (S15)

c5(k) = 2t2(cos ky cos kz + cos kz cos kx − 2 cos kx cos ky). (S16)

Including higher-order trigonometric functions, corresponding to longer-range hopping in real space, would not affect
the qualitative results. For the numerical calculations, we set t1 = −0.918 eV, t2 = −0.760 eV, t3 = −0.253 eV,
and µ = −0.88 eV. These values originally come from a tight-binding fit to density-functional results for the band
structure of the half-Heusler compound YPtBi, neglecting the inversion-symmetry-breaking antisymmetric spin-orbit
coupling, see Ref. [5].

II. ANALYTICAL EXPRESSIONS

In the following, we present the secular equations for the eigenenergies of the BdG Hamiltonian. We also give useful
closed expressions for the coefficients of these equations and for derivatives of eigenenergies with respect to the pairing
amplitudes.

A. Closed form of eigenenergies

The eigenvalues of the BdG Hamiltonian

H(k) =

(
HN (k) ∆̂

∆̂† −HT
N (−k)

)
(S17)

can be obtained in analytical form. The secular equation for eigenvalues E of H is of order eight but the presence of
both inversion symmetry and charge-conjugation symmetry guarantees that the solutions come in pairs of opposite
sign. This allows us to reduce the secular equation to two quartic equations

E4 + pE2 ± qE + r = 0. (S18)

It is sufficient to solve one of them since the solutions of the other one are simply the negative of the solutions of the
first. We consider the first one,

E4 + pE2 + qE + r = 0. (S19)

Since the equation is of depressed form (there is no E3 term) the solutions satisfy E1 + E2 + E3 + E4 = 0. To give
the analytical expressions for the coefficients p, q, and r, we define the five-component vectors

c⃗ ≡ (c1, c2, c3, c4, c5), (S20)

∆⃗1 ≡ (∆1
1,∆

1
2,∆

1
3,∆

1
4,∆

1
5), (S21)

∆⃗2 ≡ (∆2
1,∆

2
2,∆

2
3,∆

2
4,∆

2
5). (S22)

In Eq. (S20), we have suppressed the momentum argument. We further define the Gram matrix of these vectors [6],

M ≡

 c⃗ · c⃗ c⃗ · ∆⃗1 c⃗ · ∆⃗2

∆⃗1 · c⃗ ∆⃗1 · ∆⃗1 ∆⃗1 · ∆⃗2

∆⃗2 · c⃗ ∆⃗2 · ∆⃗1 ∆⃗2 · ∆⃗2

 . (S23)

Being a Gram matrix, M is real and symmetric and also positive semidefinite. The following expressions have been
derived with the help of Mathematica [7], making use of the SO(5) invariance of the eigenenergies under simultaneous
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rotations of the vectors c⃗, ∆⃗1, and ∆⃗2, which follows from the expansion of H(k) into 18 basis matrices and their
commutation relations described in Ref. [8].

The first coefficient p reads as

p = −2

[
5∑

n=0

c2n +

5∑
n=0

(∆1
n)

2 +

5∑
n=0

(∆2
n)

2

]
= −2

[
c20 + (∆1

0)
2 + (∆2

0)
2
]
− 2 Tr M. (S24)

This coefficient is clearly nonzero and negative whenever H is not the null matrix. The characteristic energy scale of
the BdG Hamiltonian is

√
−p/2.

The second coefficient q is more interesting. If q vanishes the quartic equations (S18) become biquadratic and
have the solutions E1, −E1, E2, −E2. Since the two quartic equations become identical all eigenenergies are at least
twofold degenerate. Since they must be twofold degenerate in the presence of inversion symmetry and TRS by the
Kramers theorem these symmetries imply q = 0. The reverse statement does not hold. The coefficient q is given by

q = 8
√
detM = 8

[
(c⃗ · c⃗)(∆⃗1 · ∆⃗1)(∆⃗2 · ∆⃗2)] + 2(c⃗ · ∆⃗1)(∆⃗1 · ∆⃗2)(∆⃗2 · c⃗)− (c⃗ · c⃗)(∆⃗1 · ∆⃗2)2 (S25)

− (∆⃗1 · ∆⃗1)(∆⃗2 · c⃗)2 − (∆⃗2 · ∆⃗2)(c⃗ · ∆⃗1)2
]1/2

.

Nonzero q implies a nonzero Gram matrix M and thus that the three five-component vectors c⃗, ∆⃗1, and ∆⃗2 are

linearly independent. Therefore, twofold degeneracy of the eigenvalues requires c⃗, ∆⃗1, and ∆⃗2 to be coplanar (or
zero). We note that q does not depend on the “singlet” components c0, ∆

1
0, and ∆2

0.
Using the generalized “Minkowski” product

⟨A,B⟩ ≡ A0B0 − A⃗ · B⃗, (S26)

the third coefficient r can be written as

r = ⟨c, c⟩2 + ⟨∆1,∆1⟩2 + ⟨∆2,∆2⟩2 + 4 (⟨c,∆1⟩2 + ⟨∆1,∆2⟩2 + ⟨∆2, c⟩2)
− 2 (⟨c, c⟩⟨∆1,∆1⟩+ ⟨∆1,∆1⟩⟨∆2,∆2⟩+ ⟨∆2,∆2⟩⟨c, c⟩). (S27)

To get insight into the significance of r, we use the Vieta theorem to rewrite the polynomial in Eq. (S19) as

E4 + pE2 + qE + r = (E − E1)(E − E2)(E − E3)(E − E4), (S28)

where Ei are the solutions of the quartic equation. Setting E = 0 we obtain

r = E1E2E3E4. (S29)

Note that detH = E2
1E

2
2E

2
3E

2
4 = r2 is the square of the Pfaffian P (k) of the BdG Hamiltonian unitarily transformed

into antisymmetric form. The Pfaffian determines the Z2 invariant that protects BFSs in centrosymmetric supercon-
ductors [1, 3]. Obviously, nodes of any type, including BFSs, are characterized by zeros of detH and thus by zeros of
the Pfaffian. At BFSs specifically, the Pfaffian generically changes sign as a function of momentum k. We find that
r equals the Pfaffian P (k), up to the sign. However, the overall sign of the Pfaffian is not unitarily invariant and
therefore not physically meaningful [1, 3]. We can thus choose this sign in such a way that r = P (k).
Equation (S27) can be rewritten as

r = (⟨c, c⟩ − ⟨∆1,∆1⟩ − ⟨∆2,∆2⟩)2 + 4
(
⟨c,∆1⟩2 + ⟨∆1,∆2⟩2 + ⟨∆2, c⟩2 − ⟨∆1,∆1⟩⟨∆2,∆2⟩

)
. (S30)

We observe that the first term is a complete square. Hence, the Pfaffian r = P (k) can only change sign when both

∆⃗1 and ∆⃗2 have at least one nonzero component.
With the values of p, q, and r at hand, the solutions of the quartic equation can be obtained in closed form using

the Ferrari-Cardano method. However, it turns out to be numerically more robust to obtain them as the eigenvalues
of the companion matrix [6]

C =

0 0 0 −r
1 0 0 −q
0 1 0 −p
0 0 1 0

 .
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B. Derivatives of eigenenergies

The BCS gap equation (8) in the main text, as well as the inverse gap equation (9), contain derivatives of eigenener-
gies with respect to the pairing amplitudes ∆α

n. For high-precision results, it is beneficial to evaluate these derivatives
analytically instead of numerically using a finite-difference formula. Noting that the eigenenergies are solutions of the
quartic equations E4 + pE2 + qE + r = 0, the derivatives ∂Ek,i/∂∆

α
n can be expressed in terms of derivatives of the

coefficients p, q, and r:

∂E

∂∆α
n

=
∂E

∂p

∂p

∂∆α
n

+
∂E

∂q

∂q

∂∆α
n

+
∂E

∂r

∂r

∂∆α
n

, (S31)

where

∂E

∂p
= − E2

4E3 + 2pE + q
, (S32)

∂E

∂q
= − E

4E3 + 2pE + q
, (S33)

∂E

∂r
= − 1

4E3 + 2pE + q
. (S34)

Inserting these equations into Eq. (S31) yields

∂E

∂∆α
n

= − 1

4E3 + 2pE + q

(
E2 ∂p

∂∆α
n

+ E
∂q

∂∆α
n

+
∂r

∂∆α
n

)
. (S35)

The closed expressions for the coefficients p, q, and r derived above allow us to write down the derivatives with
respect to ∆α

n. To start with, Eq. (S24) simply gives

∂p

∂∆α
n

= −4∆α
n. (S36)

If q ̸= 0 we can write

∂q

∂∆α
n

=
1

2q

∂q2

∂∆α
n

. (S37)

Equation (S26) shows that q does not depend on ∆α
0 . Thus, we obtain ∂q2/∂∆α

0 = 0 and

∂q2

∂∆α
n

= 64
∂

∂∆α
n

detM

= 128
{
(c⃗ · c⃗)(∆⃗ᾱ · ∆⃗ᾱ)∆α

n + (c⃗ · ∆⃗ᾱ)(∆⃗1 · ∆⃗2) cn + (c⃗ · ∆⃗1)(c⃗ · ∆⃗2)∆ᾱ
n − (c⃗ · ∆⃗ᾱ)2 ∆α

n

− (c⃗ · c⃗)(∆⃗1 · ∆⃗2)∆ᾱ
n − (c⃗ · ∆⃗α)(∆⃗ᾱ · ∆⃗ᾱ) cn

}
= 128

{[
(c⃗ · ∆⃗ᾱ)(∆⃗1 · ∆⃗2)− (c⃗ · ∆⃗α)(∆⃗ᾱ · ∆⃗ᾱ)

]
cn +

[
(c⃗ · c⃗)(∆⃗ᾱ · ∆⃗ᾱ)− (c⃗ · ∆⃗ᾱ)2

]
∆α

n

+
[
(c⃗ · ∆⃗1)(c⃗ · ∆⃗2)− (c⃗ · c⃗)(∆⃗1 · ∆⃗2)

]
∆ᾱ

n

}
(S38)

for n ≥ 1, where ᾱ = 2 (1) for α = 1 (2).
Finally, from Eq. (S27), we obtain

∂r

∂∆α
n

= 4sn⟨∆α,∆α⟩∆α
n + 8sn⟨c,∆α⟩ cn + 8sn⟨∆1,∆2⟩∆ᾱ

n − 4sn⟨c, c⟩∆α
n − 4sn⟨∆ᾱ,∆ᾱ⟩∆α

n

= 4sn
[
2⟨c,∆α⟩ cn +

(
⟨∆α,∆α⟩ − ⟨∆ᾱ,∆ᾱ⟩ − ⟨c, c⟩

)
∆α

n + 2⟨∆1,∆2⟩∆ᾱ
n

]
, (S39)

where sn = 1 (−1) for n = 0 (n ≥ 1). This concludes the derivation of the explicit form of the derivatives appearing
in the gap equation. The results show explicitly that all the derivatives are at least of first order in ∆α

n, which has
been used in the derivation of the inverse gap equation in the main text.
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III. WEAK-COUPLING SCALING

In this section, we briefly review the scaling of the pairing amplitude ∆ and the free (internal) energy with the
interaction strength at temperature T = 0. By performing the momentum integration in Eq. (6) in the main text and
expanding up to order ∆2, we obtain the free-energy difference per unit cell as

∆F = Fs − Fn
∼= c1∆

2 ln∆ + c2∆
2 +

1

2

∆2

V
=

(
c1 ln∆ + c2 +

1

2V

)
∆2, (S40)

where c1 and c2 are coefficients and V is the interaction strength, see Eq. (7) in the main text. The last term stems
from the mean-field decoupling in the Cooper channel. The expansion of the momentum sum for small ∆ generates a
leading term proportional to ∆2 ln∆ (the Cooper logarithm), another contribution of order ∆2, and terms of orders
higher than ∆2, which are omitted here. A normalizing factor inside the logarithm has been absorbed into c2.

The saddle point is found by taking

0
!
=

∂∆F

∂∆
∼= c1∆+ 2

(
c1 ln∆ + c2 +

1

2V

)
∆ =

(
c1 + 2c2 +

1

V
+ 2c1 ln∆

)
∆. (S41)

For the nontrivial solution, we find

ln∆ ∼= −1

2
− c2

c1
− 1

2c1V
≡ A− B

V
. (S42)

This is the weak-coupling scaling form of the pairing amplitude used in the main text.
From Eq. (S42), we also obtain the well-known BCS weak-coupling form of the pairing amplitude,

∆ ∼= e−1/2−c2/c1 e−1/2c1V (S43)

and thus

∆2 ∼= e−1−2c2/c1 e−1/c1V . (S44)

Insertion of Eqs. (S42) and (S44) into Eq. (S40) gives the free energy difference at the saddle point,

∆F ∼= −c1
2
e−1−2c2/c1 e−1/c1V . (S45)

We obtain the scaling form

ln(−∆F ) ∼= ln
c1
2

− 1− 2c2
c1

− 1

c1V
≡ A′ − B′

V
. (S46)

The coefficients in Eqs. (S42) and (S46) are related by

A′ = ln
c1
2

− 1− 2c2
c1

= 2A+ ln
c1
2

= 2A− ln 4B, (S47)

B′ =
1

c1
= 2B. (S48)

IV. NUMERICAL SOLUTION OF THE INVERSE GAP EQUATION

In this section, we provide some background for the numerical solution of the inverse gap equation. Both the
free (internal) energy and the inverse gap equation contain integrations over the three-dimensional Brillouin zone.
High precision in these integrations is essential for reaching the weak-coupling regime. Of course, symmetries can be
exploited to restrict the integrals to a part of the Brillouin zone but it remains a three-dimensional integral for any
lattice model.

The integration is particularly demanding with regard to precision because the weak-coupling behavior relies on a
logarithmic term proportional to ∆2 ln(∆/Λ) in the free (internal) energy at T = 0, which has to be separated from
a ∆2 contribution, where both are exponentially small for weak pairing interaction. Here, Λ is a high-energy cutoff
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resulting from the finite band width. The Cooper logarithm ln(∆/Λ) results from integration over the entire Brillouin
zone, as shown by the presence of both the low-energy scale ∆ and the high-energy scale Λ.

We find that the common method of summing over a momentum-space mesh becomes forbiddingly slow for three-
dimensional systems if reasonable accuracy is desired. Instead, we have obtained good results using adaptive inte-
gration. We perform the integration using spherical coordinates. The radial integration is performed first, inside the
angular integrals. In order to capture the effect of the superconducting gap close to the normal-state Fermi momen-
tum kF , the radial integration is split into four parts over the intervals [0, kF − k1], [kF − k1, kF ], [kF , kF + k2], and
[kF + k2, kBZ(θ, ϕ)], where kBZ(θ, ϕ) describes the surface of the Brillouin zone in the (θ, ϕ) direction. The widths of
the regions, i.e., the values of k1 and k2, are proportional to the gap ∆ at kF and the constants of proportionality are
determined so as to minimize the numerical noise. The integrals are performed using globally adaptive sampling as
implemented in Mathematica [7] with the accuracy goal set to 18 digits and the maximum number of recursions set to
12 for the first and fourth interval and to 8 for the second and third interval. We also used globally adaptive sampling
for the integration over θ and ϕ with the accuracy goal set to 18 digits and the maximum number of recursions set
to 4.

The main diagnostics for the quality of the numerical integration are the following: The pairing interaction and
the free-energy gain ∆F are smooth functions of the gap ∆—recall that we are solving the inverse gap equation. If
we push the calculations to smaller ∆ than presented here, we observe step-like behavior typical for round-off error.
The results in the range of weak pairing interactions agree with the expected weak-coupling scaling of BCS theory,
see Sec. III. Moreover, the scaling of the gap ∆ and of the free-energy gain ∆F = Fs − Fn are consistent with each
other.

V. T2g PAIRING STATES

In this section, we briefly present results for the T2g pairing states obtained by solving the inverse gap equation. The
results are largely analogous to the Eg case. The T2g states are characterized by a three-component order parameter

(∆1,∆2,∆3) ≡ ∆ δ [3]. Landau analysis predicts that δ = (1, 0, 0), (1, 1, 1)/
√
3, (1, i, 0)/

√
2, and (1, ω, ω2)/

√
3 as

potentially stable [3, 9], where ω = e2πi/3. Similar to Eg pairing, the phase diagram contains a first-order transition
from the TRSB (1, i, 0) state at weak coupling to the time-reversal-symmetric (1, 0, 0) state at strong coupling, as
shown in Fig. S1. Also like for Eg pairing, the pairing amplitude ∆ and the free-energy gain ∆F exhibit weak-coupling
scaling for small pairing strength VT and the numerical method is robust far into the weak-coupling regime. For larger
VT , all states show the S shape for ∆ and swallowtail for ∆F characteristic for a first-order transition.

For T2g pairing, there are two TRSB states. Of these, the chiral (1, i, 0) state is weakly favored over the cyclic
(1, ω, ω2) state at weak coupling, as shown in the inset of Fig. S1(b). Recall that the largest value corresponds to the
stable state since the factor 1/∆F(1,i,0) is negative. This result is surprising in view of the well-known arguments by
Sigrist and Ueda [10]: For infinitesimal coupling, the (1, i, 0) state has a line node on the equator of the normal-state
Fermi surface and two point nodes at the poles [1, 3]. The (1, ω, ω2) state instead has eight point nodes [3]. Hence,
one would expect the DOS close to the Fermi energy to be lower for the latter state. However, the quasiparticle
dispersion close to the point nodes for the (1, ω, ω2) state is rather shallow compared to the (1, i, 0) state for otherwise
identical parameters. Evidently, this destabilizes the (1, ω, ω2) state also in the limit of infinitesimal coupling. The
main insight here is that a TRSB state with a line node can be stabilized over a TRSB state that only has point
nodes.

The TRSB T2g states develop BFSs for increasing VT , which destabilize them relative to the time-reversal-symmetric
(1, 0, 0) and (1, 1, 1) states. Initially, the (1, 0, 0) state is weakly favored, as shown in the main panel of Fig. S1(b). For
larger VT , the free-energy gains of the (1, 0, 0) and (1, 1, 1) states approach each other but (1, 0, 0) seems to remain
favored.

In this context, it is also worth pointing out that the T2g pairing states require a significantly larger interaction
strength than the Eg pairing states to be stabilized. This is clearly seen in Fig. 2 in the main text. Since the pairing
strengths in the T2g and Eg channels become equal in the spherical limit this suggests that the Eg states, in particular
the weak-couping (1, i) state, are favored for systems with small normal-state Fermi surface. A different scenario that
favors Eg pairing over both T2g and conventional A1g pairing has been proposed in Ref. [4] for pyrochlore materials.
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