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Noncentrosymmetric superconductors can support flat bands of zero-energy surface states in part of their
surface Brillouin zone. This requires that they obey time-reversal symmetry and have a sufficiently strong
triplet-to-singlet-pairing ratio to exhibit nodal lines in the bulk. These bands are protected by a winding number
that relies on chiral symmetry, which is realized as the product of time-reversal and particle-hole symmetry.
We reveal a way to stabilize a flat band in the entire surface Brillouin zone, while the bulk dispersion is fully
gapped. This idea could lead to a robust platform for quantum computation and represents an alternative route
to strongly correlated flat bands in two dimensions, besides twisted bilayer graphene. The necessary ingredient
is an additional spin-rotation symmetry that forces the direction of the spin-orbit-coupling vector not to depend
on the momentum component normal to the surface. We define a winding number that leads to flat zero-energy
surface bands due to bulk-boundary correspondence. We discuss under which conditions this winding number
is nonzero in the entire surface Brillouin zone and verify the occurrence of zero-energy surface states by exact
numerical diagonalization of the Bogoliubov–de Gennes Hamiltonian for a slab. In addition, we consider how
a weak breaking of the additional symmetry affects the surface band, employing first-order perturbation theory
and a quasiclassical approximation. We find that the surface states and the bulk gap persist for weak breaking of
the additional symmetry but that the band does not remain perfectly flat. The broadening of the band strongly
depends on the deviation of the spin-orbit-coupling vector from its unperturbed direction as well as on the
spin-orbit-coupling strength and the triplet-pairing amplitude.

DOI: 10.1103/PhysRevB.109.104521

I. INTRODUCTION

Noncentrosymmetric superconductors with time-reversal
symmetry (TRS) have recently attracted a lot of attention.
For sufficiently strong spin-triplet contribution to the super-
conducting pairing, these materials posses nodal lines in their
bulk dispersion, which are associated with a winding number.
At their surface, they exhibit zero-energy Majorana states in
the part of the surface Brillouin zone (sBZ) that is enclosed
by the projection of the nodal lines. The resulting zero-energy
flat bands are topologically protected by the winding number
of the bulk nodal lines [1–6]. These flat bands of Majorana
modes are of particular interest in the context of quantum
computation [7–17].

Majorana modes are attractive for quantum computation
on the one hand because qubit states realized by Majorana
modes are topologically protected, which promises high sta-
bility against relaxation and decoherence. On the other hand,
quantum gates can be realized by moving such Majorana
modes around each other, i.e., by braiding their world lines.
There are excellent reviews covering these ideas [8,14]. Flat
Majorana surface bands are intriguing in this context because
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they realize a macroscopic number of localized Majorana
modes. Observation of nontrivial braiding statistics would be a
smoking-gun experiment for Majorana modes but the required
manipulation of individual Majorana modes is likely difficult
[17].

Another interesting aspect is that the flat bands are au-
tomatically in the strong-coupling regime since their kinetic
energy is zero [16,18,19]. A similar situation with flat bands
of Majorana modes within the projection of nodal lines has
also been discussed in the context of inversion-symmetric
superconductors, where the nonzero winding number arises
from an orbital degree of freedom that transforms nontrivially
under time reversal [20]. However, near the boundary of the
flat-band region of the nodal systems, the bulk-state energies
come arbitrarily close to the surface band due to the gap clos-
ing in the bulk, which could hinder the experimental detection
of the flat band and compromise the robustness of quantum-
computation schemes. Importantly, the winding number in
these systems has to vanish in a finite fraction of the sBZ. For
example, due to TRS, the region with a nonzero winding num-
ber never includes the origin. The reason is that every nodal
line has a time-reversed partner. Therefore, if the projection
of one of the nodal lines encloses the origin, the projection of
its time-reversed partner does so as well. The two lines lead
to opposite winding numbers, which compensate each other
in the intersecting region so that the winding number at the
origin is zero. To avoid this problem, one would have to break
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TRS. However, the winding number and therefore the topo-
logical protection of the surface states relies on the presence of
a chiral symmetry, which, in these systems, is realized as the
product of TRS and particle-hole symmetry (PHS). Since the
latter is always present in the Bogoliubov–de Gennes (BdG)
formalism, breaking TRS destroys the topological protection.

It would be highly desirable to energetically separate the
flat surface band from the bulk states by having a full bulk gap
and a topologically protected zero-energy flat surface band in
the entire sBZ. Even in the presence of terms that weakly
break the symmetries which protect the zero-energy states,
this could still lead to an approximately flat surface band close
to zero energy within a full bulk gap. One possible route
would be a system without TRS but with a chiral symmetry
arising from a sublattice symmetry, i.e., the system can be
decomposed into two sublattices and there only is hopping
between these sublattices and not within them. However, we
do not concentrate on this idea since beyond-nearest-neighbor
hopping terms destroy the chiral symmetry. Another situation
where the occurrence of flat bands in the full sBZ due to chiral
symmetry has been analyzed are crystalline topological insu-
lators [21]. Here, the protection of the boundary modes arises
from geometric deformations and leads to a finite polarization
of the surface state.

In this paper, we instead present an approach to realize a
similar type of winding number as in the nodal system—but
in the entire sBZ—by introducing an additional symmetry.
Specifically, we require the existence of a spin component that
commutes with the Hamiltonian. This requires the direction
of the spin-orbit-coupling (SOC) vector not to depend on the
momentum component normal to the surface and allows us
to bring the Hamiltonian into block-diagonal form. The most
straightforward possibility is for the SOC vector to point in a
single direction for all momenta. We find that for all point
groups except for the three low-symmetry groups C1, C2,
and Cs, this is the only possibility, if we restrict ourselves to
the lowest-order expansion of the SOC vector. The resulting
spin-up and spin-down blocks no longer obey TRS and PHS
separately, which are both present in the BdG Hamiltonian of
the full system. However, the chiral symmetry persists in the
spin blocks, i.e., there are unitary matrices that anticommute
with the spin-up and spin-down blocks. Hence, the individual
blocks are in symmetry class AIII [4,22–24]. Relying on the
chiral symmetry, we can derive a momentum-dependent wind-
ing number in the sBZ for both the spin-up and the spin-down
block. Each of these winding numbers protects a flat band of
zero-energy surface states, leading to a twofold degenerate flat
surface band in the entire sBZ, while the bulk is fully gapped.

We discuss the conditions under which these winding num-
bers are nonzero and verify our results numerically through
exact diagonalization of the BdG Hamiltonian of a slab.
Moreover, we consider the effects of a weak breaking of the
spin-component symmetry, i.e., an only approximately unidi-
rectional SOC vector. We use a quasiclassical approximation
for the surface states in the direction orthogonal to the surface
and derive the first-order correction to the flat-band energy
within perturbation theory. We compare the results to exact
diagonalization of the BdG Hamiltonian.

The remainder of this paper is organized as follows.
In Sec. II, we introduce a model Hamiltonian, discuss its

symmetries, and derive the winding number. We discuss the
necessary conditions for a nonzero winding number that pro-
tects surface states at zero energy. In Sec. III, we list the
crystallographic point groups which can in principle satisfy all
necessary symmetries. Moreover, we determine the parameter
regime that allows for a nonzero winding number in the entire
sBZ. We demonstrate the occurrence of zero-energy flat bands
for one exemplary system. In Sec. IV, we consider the impli-
cations of an imperfectly unidirectional SOC vector. Finally,
in Sec. V, we summarize our findings and draw conclusions.

II. MODEL SYSTEM

We consider a three-dimensional noncentrosymmetric
time-reversal-symmetric single-band superconductor mod-
eled by a Hamiltonian

H = 1

2

∑
k

�
†
kH(k)�k, (1)

with �k = (ck,↑, ck,↓, c†
−k,↑, c†

−k,↓)T , where c†
kσ (ckσ ) is the

creation (annihilation) operator of an electron with wave vec-
tor k and spin σ ∈ {↑,↓}, and the BdG Hamiltonian

H(k) =
(

h(k) �(k)
�†(k) −hT (−k)

)
. (2)

The matrix h(k) is the normal-state Hamiltonian

h(k) = εkσ0 + gk · σ, (3)

where the spin-independent part εk is an even function of
momentum k, while the SOC vector gk is odd in k, and σ

and σ0 represent the vector of Pauli matrices and the 2 × 2
identity matrix, respectively. Due to the breaking of inversion
symmetry in the normal state, the superconducting pairing
matrix �(k) generically contains both a singlet component,
which is even in k, and a triplet component, which is odd in
k, giving

�(k) = (
�s

kσ0 + dk · σ
)

iσy, (4)

where �s
k is the singlet pairing amplitude and dk is the triplet

pairing vector. In the following, we will assume dk ‖ gk as this
state is known to be the most stable in the absence of interband
pairing [2,25]. We thus write dk = �t

klk and gk = λlk with
the triplet pairing amplitude �t

k and the SOC strength λ.
In this paper, we consider pairing that does not break the
lattice symmetry, i.e., that transforms according to the trivial
irreducible representation of the point group. This requires
�s

k and �t
k to have the full symmetry of the normal-state

Hamiltonian. We are interested in superconductors with a
full bulk gap. The simplest fully gapped state is realized for
(s + p)-wave pairing with �s = const and �t = const, which
we will assume for our numerical calculations. However, our
theory applies whenever there is a full bulk gap. Conversely,
if the bulk gap has nodes, the winding number that we will
introduce in Sec. II B is ill defined at the projections of these
nodes into the sBZ.

A. Symmetries

A fully gapped Hamiltonian of the form described above
belongs to the symmetry class DIII of the tenfold-way
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classification [4,6,22–24] as it obeys both TRS T with T 2 =
−1 and PHS C with C2 = +1. Specifically, the BdG formal-
ism enforces C = KUC with UC = σx ⊗ σ0 such that

UCH(−k)T U †
C = −H(k). (5)

TRS can be written as T = KUT with UT = σ0 ⊗ iσy such
that

UTH(−k)T U †
T = +H(k). (6)

The combination of these two antiunitary symmetries gives
the so-called chiral symmetry

U †
S H(k)US = −H(k), (7)

i.e., there is a unitary matrix US = iUT UC = −σx ⊗ σy that
anticommutes with the Hamiltonian. Note that half of the
eigenvalues of US are equal to +1 and the other half to −1.

In addition to TRS, PHS, and chiral symmetry, we require
the crystal structure to belong to a noncentrosymmetric point
group. Every element of the point group represented by a 3 ×
3 orthogonal matrix R leads to a relation [4]

UR̃H(R−1k)U †
R̃

= H(k) (8)

satisfied by the Hamiltonian, where R̃ = R/ det(R) =
det(R)R, i.e., R̃ describes a proper rotation by an angle θ about
an axis denoted by a unit vector n, and UR̃ = diag(uR̃, u∗

R̃
)

with the spinor representation uR̃ = exp[−iθ (n · σ)/2] of R̃.
This leads to the restrictions

lk = R̃ lR−1k, (9)

εk = εR−1k, (10)

�s
k = �s

R−1k. (11)

We will need to fix a surface orientation, which gives one
direction k⊥ in the Brillouin zone that is orthogonal to the
surface and a vector k‖ that parameterizes the two directions
of the sBZ so that each point k in the three-dimensional
Brillouin zone can be identified by some pair (k⊥, k‖).

We now introduce an additional symmetry for the Hamil-
tonian H(k). This symmetry is the main ingredient that will
enable us to define a winding number and obtain protected
zero-energy surface bands. As the new symmetry, we require
that for each point k‖ in the sBZ, there is a spin component
�nk‖ in some direction nk‖ that commutes with the Hamilto-
nian for all momenta k⊥ in the orthogonal direction, i.e.,[

H(k⊥, k‖), �nk‖

] = 0 ∀k⊥ ∈ [−π, π ), (12)

where �nk‖ is defined as

�nk‖ =
(

nk‖ · σ 0
0 −n−k‖ · σ∗

)
, (13)

with a unit vector nk‖ = (nx
k‖ , ny

k‖ , nz
k‖ )T . While the condition

in Eq. (12) does not impose any additional constraints on εk
and �s

k, it does require the SOC vector to be parallel to the
vector nk‖ , i.e.,

lk = l (k) nk‖ = l (k⊥, k‖) nk‖ ∀k⊥ ∈ [−π, π ), (14)

with a real-valued function l (k). While l (k) is odd in k, nk‖
does not depend on the component k⊥ and is thus even in k⊥.
Hence, l (k⊥, k‖) has to be odd in k⊥. Note that l (k) is not the
norm of l(k). Since nk‖ must now be even, Eq. (13) can be
written as

�nk‖ =
(

nk‖ · σ 0
0 −nk‖ · σ∗

)
. (15)

To ensure uniqueness, we choose the sign of l (k) such that
nz

k‖ � 0.
While the occurrence of Eq. (12) as an exact physical sym-

metry is unlikely as it is not imposed by any point group, the
equation can still be satisfied approximately. We will discuss
in Sec. III for which point groups this can be expected to
occur. In the present section, we assume the exact validity of
Eq. (12). The effects of small deviations from this symmetry
are treated in Sec. IV.

As the matrix �nk‖ has the two eigenvalues ±1 that are both
twofold degenerate the Hamiltonian H(k) can be brought into
block-diagonal form via the transformation

H̃(k) =
(
H↑(k) 0

0 H↓(k)

)
= W� (k‖)H(k)W †

� (k‖), (16)

where W� (k‖) is the matrix that diagonalizes �nk‖ as

W� (k‖)�nk‖W
†
� (k‖) = σz ⊗ σ0. (17)

Note that σ ∈ {↑,↓} in Hσ refers to the spin orientation
relative to the quantization axis nk‖ . Performing the diagonal-
ization and using ||nk‖ ||2 = 1, we obtain

W� (k‖) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

nx
k‖ +iny

k‖√
2−2nz

k‖

√
1−nz

k‖
2 0 0

0 0 − nx
k‖ −iny

k‖√
2nz

k‖ +2

√
nz

k‖ +1

2

− nx
k‖+iny

k‖√
2nz

k‖ +2

√
nz

k‖+1

2 0 0

0 0
nx

k‖−iny
k‖√

2−2nz
k‖

√
1−nz

k‖
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(18)

for nz
k‖ 
= 1, i.e., for a SOC vector which is not parallel to the

z axis. For the special case of nk‖ = ẑ, Eq. (18) is not well
defined and we instead get

W� (k‖) =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠. (19)

This leads to the spin-up and spin-down blocks

Hσ (k)

=
(

εk + σλl (k) σe
iφnk‖

[
�s

k + σ�t
kl (k)

]
σe

−iφnk‖
[
�s

k + σ�t
kl (k)

] −εk − σλl (k)

)
,

(20)
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where σ = ↑ (↓) is understood to have the numerical value
+1 (−1) and we have introduced the phase factor

e
iφnk‖ =

⎧⎪⎨
⎪⎩

nx
k‖+iny

k‖√(
nx

k‖

)2
+
(

ny
k‖

)2
for nz

k‖ 
= 1,

1 for nz
k‖ = 1.

(21)

The blocks Hσ do not have BdG form—in a BdG Hamilto-
nian, the lower right component would have to equal −[ε−k +
σλl (−k)] = −εk + σλl (k) since l (k) is odd. The blocks thus
break PHS. They also break TRS separately since TRS maps
H↑ onto H↓ and vice versa.

Each of the blocks Hσ retains a chiral symmetry, i.e., there
are unitary matrices US,σ (k‖) such that

U †
S,σ (k‖)Hσ (k)US,σ (k‖) = −Hσ (k), (22)

where US,↑(k‖) [US,↓(k‖)] is the upper (lower) diagonal 2 × 2
block of ŨS (k‖) = W� (k‖)USW †

� (k‖), i.e.,

US,σ (k‖) = σ

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
0 ie

iφnk‖

−ie
−iφnk‖ 0

)
for nz

k‖ 
= 1,

(
0 i
−i 0

)
for nz

k‖ = 1.

(23)

Thus each of the two blocks Hσ is in class AIII [4,22–24].

B. Winding number

The well-established way [1,3,4,6] to define a k‖-
dependent one-dimensional winding number is to bring the
Hamiltonian H(k) into block-off-diagonal form via the trans-
formation

WSH(k)W †
S =

(
0 D(k)

D†(k) 0

)
≡ H(k), (24)

where WS diagonalizes US such that

WSUSW †
S = σz ⊗ σ0. (25)

One can now adiabatically deform H(k) into a flat-band
Hamiltonian, which amounts to replacing the diagonal ma-
trix �D(k) in the singular-value decomposition D(k) =
U †

D(k)�D(k)VD(k) by the unit matrix. The resulting off-
diagonal block qD(k) = U †

D(k)VD(k) can be used to define a
winding number

WD(k‖) = 1

2π i

∫
k⊥

dk⊥ Tr[q†
D(k)∂k⊥qD(k)]. (26)

As the matrices U †
D(k) and VD(k) and thus also qD(k) are

unitary, the winding number can be transformed to

WD(k‖) = 1

2π i

∫
k⊥

dk⊥ ∂k⊥[ln det qD(k)]

= 1

2π i

∫
k⊥

dk⊥ ∂k⊥ ( ln |det qD(k)| + i arg[det qD(k)])

= 1

2π

∫
k⊥

dk⊥ ∂k⊥ arg[det qD(k)]. (27)

One can now use

arg[det qD(k)] = arg[det U †
D(k) det VD(k)]

= arg[det U †
D(k) det �D(k) det VD(k)/det �D(k)]

= arg[det D(k)] − arg[det �D(k)]

= arg[det D(k)], (28)

where the contribution of arg[det �D(k)] drops out if all sin-
gular values of D(k) are nonzero. Points k‖ where D(k) has
at least one singular value equal to zero coincide with points
where det D(k) = 0, i.e., gap nodes. At such k‖, the winding
number is ill defined. For all other k‖, we can write

WD(k‖) = 1

2π

∫
k⊥

dk⊥ ∂k⊥ arg[det D(k)], (29)

i.e., the winding number describes how many times the com-
plex function det D(k⊥, k‖) winds around the origin when k⊥
traverses the Brillouin zone once.

We now review the case of noncentrosymmetric supercon-
ductors. For such systems, the winding number WD(k‖) can
only be nonzero if the triplet-to-singlet ratio is sufficiently
large to ensure that nodal lines occur on one of the helicity
Fermi surfaces [4]. The dispersion relations of the positive-
helicity and negative-helicity bands, ξ±(k) = εk ± λ|lk|, are
given by the two eigenvalues of the normal-state Hamilto-
nian h(k). Note that the decomposition into the two helicity
bands is different from the block diagonalization performed
in Sec. II A since l (k) 
= |lk|. We recall that l (k) is odd in k,
whereas |lk| is even.

The gaps on the corresponding two helicity Fermi sur-
faces are �±(k) = �s

k ± �t
k|lk|. In these systems, WD(k‖) is

nonzero for surface momenta k‖ that lie inside the projection
of the nodal lines into the sBZ. As noted in Sec. I, there is
always a region outside of the projection of the nodal lines
that is topologically trivial and does not support zero-energy
surface states. In particular, the winding number at the origin
k‖ = 0 always vanishes.

A system that avoids this problem would therefore have
to break TRS while still preserving chiral symmetry, i.e., the
anticommutation of the Hamiltonian with a unitary matrix of
which half the eigenvalues are +1 and the other half are −1.
The usual BdG Hamiltonian in Eq. (2) cannot satisfy both
conditions because its construction requires it to have PHS.
However, we have shown in Sec. II A that it is possible to
construct models with TRS and PHS that decompose into
blocks Hσ (k) that break both symmetries but retain chiral
symmetry. It remains to show that such models allow for a
nonzero winding number.

To this end, we define a winding number analogous to
WD(k‖) in Eq. (26) for Hσ (k), i.e.,

W⊥,σ (k‖) = 1

2π

∫
k⊥

dk⊥∂k⊥ arg[Dσ (k)], (30)

where

Dσ (k) = −{εk + σλl (k) + i
[
�s

k + σ�t
kl (k)

]}
(31)
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are the off-diagonal entries of the matrices

Hσ (k) =
(

0 Dσ (k)
D∗

σ (k) 0

)

= WS,σ (k‖)Hσ (k)W †
S,σ (k‖) (32)

and

WS,σ (k‖) = 1√
2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

−iσ
(

nx
k‖−iny

k‖

)
√(

nx
k‖

)2
+
(

ny
k‖

)2
1

iσ
(

nx
k‖−iny

k‖

)
√(

nx
k‖

)2
+
(

ny
k‖

)2
1

⎞
⎟⎟⎟⎟⎟⎠ for nz

k‖ 
= 1,

(−iσ 1
iσ 1

)
for nz

k‖ = 1

(33)
diagonalizes US,σ (k‖) such that

WS,σ (k‖)US,σ (k‖)W †
S,σ (k‖) = σz. (34)

We thus have

W⊥,σ (k‖) = 1

2π

∫
k⊥

dk⊥ ∂k⊥

× arg
(
εk + σλl (k) + i

[
�s

k + σ�t
kl (k)

])
.

(35)

We note that due to l (k) being odd in k the winding numbers
of the ↑ and ↓ blocks are related by

W⊥,↑(k‖) = −W⊥,↓(−k‖) (36)

for the case of (s + p)-wave pairing with �s = const and
�t = const, which we have assumed in our calculations.
This result still holds true as long as the admixtures of
higher-moment contributions are sufficiently small and the
quasiparticle energies in the bulk, i.e., the eigenvalues of the
bulk BdG Hamiltonian, do not have nodes. It is therefore
sufficient to consider only one of them, e.g., W⊥,↑(k‖), from
now on.

We now assume a sufficiently weak SOC strength λ and
a dispersion εk⊥,k‖ that is sufficiently flat in the k‖ directions
such that for every k‖ there is exactly one positive and one
negative solution k⊥ for

ξ±
k⊥,k‖ = εk⊥,k‖ ± λ|lk⊥,k‖ | = 0, (37)

This means that the Fermi surface for each helicity ± consists
of a corrugated sheet with k⊥ ∈ (0, π ) and another sheet with
k⊥ ∈ (−π, 0). We denote the perpendicular components of
the k points on the positive-helicity Fermi surface, i.e., the
solutions k⊥ of ξ+

k⊥,k‖ = 0, by k(1)
⊥ > 0 and k(2)

⊥ < 0 and the

solutions for the negative-helicity Fermi surface by k(3)
⊥ > 0

and k(4)
⊥ < 0.

The resulting conditions for nonzero winding numbers in
the entire sBZ read as

sgn
(
�+

k(1)
⊥ ,k‖

)
= −sgn

(
�−

k(4)
⊥ ,k‖

)
, (38)

sgn
(
�+

k(2)
⊥ ,k‖

)
= −sgn

(
�−

k(3)
⊥ ,k‖

)
, (39)

where �±(k) = �s
k ± �t

k|lk|. A detailed derivation is given
in Appendix A. Since �+ is always positive for �s,�t > 0

this means that �− must be negative everywhere on the
negative-helicity Fermi surface, which requires a sufficiently
small singlet-to-triplet ratio �s/�t < min |l (k−

F )|.

III. IDEAL SYSTEM

A. Crystallographic point groups

In this section, we determine for which point groups
one can find parameter regimes where the winding number
W⊥,σ (k‖) in Eq. (35) is nonzero for all momenta k‖ in the
sBZ for some surface orientation. As shown in Sec. II B, this
requires the matrices H(k) and �nk‖ to commute. This is
equivalent to the requirement that a unit vector nk‖ indepen-
dent of k⊥ exists such that the vectors gk⊥,k‖ and dk⊥,k‖ and
hence lk⊥,k‖ are parallel to nk‖ . There is no point group that
guarantees this relation but there are several point groups for
which one can at least fine tune the parameters in such a way
that the symmetry holds. Point groups with inversion symme-
try can be excluded since they are incompatible with a nonzero
SOC vector lk⊥,k‖ . Of the 32 crystallographic point groups, the
21 groups C1, C2, C3, C4, C6, D2, D3, D4, D6, C2v , C3v , C4v , C6v ,
D2d , Cs, C3h, D3h, S4, T , O, and Td are noncentrosymmetric.
T , O, and Td , cannot satisfy the symmetry in Eq. (12), even
approximately. This can be seen from the fact that, for any
surface orientation, Eq. (9) requires the existence of a vector
nk‖ for every point k‖ in the corresponding sBZ such that

nk‖ = αk‖R nR−1k‖ (40)

for some real number αk‖ and every element R of the point
group. However, all the cubic groups contain the four C3 axes
of a regular tetrahedron. For a threefold rotation, Eq. (40) can
only be satisfied if the vector nk‖ is parallel to the axis of
rotation. It would thus have to be parallel to all the four C3

axes at once, which is impossible.
For the other noncentrosymmetric point groups, those in-

cluding a three-, four-, or sixfold rotation axis, i.e., C3, C4, C6,
D3, D4, D6, C3v , C4v , C6v , C3h, and D3h, as well as S4, which
contains a fourfold rotation-reflection axis, and D2d , which
has three orthogonal C2 axes and two mirror planes containing
one of the axes, the same equation leads to the restriction
that the SOC vector must be parallel to the principal axis,
which we will define as the z-axis. For the groups D2 and C2v ,
Eq. (40) would allow for the SOC vector to be parallel to any
of the three coordinate axes x, y, or z. Continuity then forces it
to be unidirectional in the entire sBZ. For the point groups C2,
which contains only one twofold rotation axis z, and Cs, which
contains the mirror plane xy, the SOC vector may either be
parallel to the z-axis or have an arbitrary orientation within the
xy plane. The C1 point group does not imply any restrictions
on the orientation of nk‖ . Hence, only the groups C2, Cs, and
C1 allow for the orientation of the SOC vector to vary as a
function of k‖. In this work, we assume a unidirectional SOC
vector and leave potential effects due to its k‖ for C2, Cs, and
C1 for the future.

To find out which of these point groups are the most
promising to obtain a unidirectional SOC vector and therefore
have a nonzero winding number in the entire sBZ for some
surface orientation, we consider the lowest-order expansion
of the SOC vector. Taking the periodicity of the lattice into
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account, this can be done by writing

lk =
∑
j,k,l

c j,k,l sin[k · ( jg1 + kg2 + lg3)], (41)

with lattice vectors g1, g2, g3 and vector-valued coefficients
c j,k,l that respect the lattice symmetries [26,27]. We expect
the dominant contribution in lk to come from nearest-neighbor
terms. For a nonzero winding number, we not only need to
write the SOC vector as lk = l (k)nk‖ but we also require l (k)
not to be even in k⊥. If l (k) were even in k⊥ the image of
the function Dσ (k) in Eq. (31) as a function of k⊥ would be
a curve in the complex plane that does not enclose any area
and therefore cannot lead to a nonzero winding number. It is
therefore necessary that l (k) is not even in k⊥.

Equation (41) shows that the point groups C2, C3, C4, C6,
D2, D3, D4, and D6 lead to a unidirectional SOC vector with
k⊥ = kz if only the coefficients of terms parallel to ẑ are
nonzero. This corresponds to a SOC vector proportional to
sin kz ẑ to first order. For the point group D2, one can alter-
natively also set k⊥ = kx if the SOC vector is proportional to
sin kx x̂ or k⊥ = ky if the SOC vector is proportional to sin ky ŷ
to first order. For the point groups C2 and Cs, the three surface
orientations (100), (010), and (001), i.e., k⊥ ∈ {kx, ky, kz} can
all lead to a first-order approximation l (k) = sin k⊥ and a
nonzero winding number in the full sBZ. In these cases, the
SOC vector is oriented normal to the corresponding surface. In
principle, higher-index surfaces containing the z axis are also
permitted since the SOC vector may point in any direction
in the xy plane. However, this leads to backfolding of the
sBZ and is thus incompatible with the special shape of the
normal-state Fermi surface assumed in our model.

For the point group C2v , the most general form of the SOC
vector on an orthorhombic lattice is

lk =
∞∑

j,k,l = 0

⎛
⎜⎝

cx
j,k,l cos( jkx ) sin(kky) cos(lkz )

cy
j,k,l sin( jkx ) cos(kky) cos(lkz )

cz
j,k,l sin( jkx ) sin(kky) sin(lkz )

⎞
⎟⎠

= (
cx

0,1,0 sin ky + . . .
)

x̂ + (
cy

1,0,0 sin kx + . . .
)

ŷ

+ (
cz

1,1,1 sin kx sin ky sin kz + . . .
)

ẑ, (42)

with real coefficients cx
j,k,l , cy

j,k,l , and cz
j,k,l . This can be derived

from Eq. (41) by expanding sin( jkx + kky + lkz ) and using
the symmetries to derive conditions for the coefficients c j,k,l .
For example, for the z-component of the SOC vector, the
two-fold rotation symmetry leads to lz

kx,ky,kz
= lz

−kx,−ky,kz
, from

which we can conclude cz
j,k,l = cz

− j,−k,l , and the two mir-
ror planes lead to lz

kx,ky,kz
= lz

kx,−ky,kz
(xz-plane) and lz

kx,ky,kz
=

lz
−kx,ky,kz

(yz-plane), i.e., cz
j,k,l = cz

j,−k,l = cz
− j,k,l . Combining

these conditions, rewriting the sum in Eq. (41) such that j, k,
and l are positive, and redefining cz

j,k,l to absorb all constant
prefactors leads to the z-component in Eq. (42). We therefore
again find the options k⊥ ∈ {kx, ky} for

lk = sin kx
[(

cy
1,0,0 + cy

1,1,0 cos ky + cy
1,0,1 cos kz

+ cy
1,1,1 cos ky cos kz

)
ŷ + sin ky sin kzẑ

]
(43)

and

lk = sin ky
[(

cx
1,0,0 + cx

1,1,0 cos kx + cx
1,0,1 cos kz

+ cx
1,1,1 cos kx cos kz

)
x̂ + sin kx sin kzẑ

]
(44)

to lowest order. Focusing only on nearest-neighbor terms,
this leads to lk ∝ sin kxŷ for k⊥ = kx and lk ∝ sin kyx̂ for
k⊥ = ky. For this point group, the choice nk‖ = ẑ cannot lead
to W⊥,σ (k‖) 
= 0 for all k‖, because even if the prefactors
of sin ky x̂ and sin kx ŷ are arbitrarily small compared to the
coefficients cz

j,k,l the SOC vector rotates from an orientation
parallel to ẑ to one parallel to ŷ or x̂ in a sufficiently small
neighborhood of kx → 0 or ky → 0, respectively, so that the
spin symmetry is broken there.

An analogous problem occurs for nk‖ = ẑ for the point
groups C3v , C4v , C6v , D2d , C3h, D3h, and S4. All of these
groups include more than just twofold rotation symme-
tries or a single mirror plane so that the z-axis is the
only orientation of a unidirectional SOC vector that is not
forbidden by Eq. (40). However, like for C2v , nk‖ = ẑ can-
not lead to a nonzero winding number in the full sBZ.
Therefore one cannot get a nonzero winding number in
the whole sBZ for any surface orientation for these point
groups.

This leaves the eleven point groups C1, C2, C3, C4, C6,
D2, D3, D4, D6, C2v , and Cs which can all lead to a nonzero
winding number in the whole sBZ if the parameters in
the SOC vector are fine-tuned appropriately. A detailed list
of the possible options can be found in Table I in Ap-
pendix B. Superconductors belonging to several of these point
groups exist, e.g., Ir2Ga9 [28], Rh2Ga9 [28], and Y3Pt4Ge13

[29] in Cs, BiPd [30–32] and UIr under pressure [33–35]
in C2, LaNiC2 [36,37] and ThCoC2 [38] in C2v , as well
as (Ta, Nb)Rh2B2 [39,40] with C3. To our knowledge, the
triplet-to-singlet pairing ratio, which needs to be large for
our scenario, is unknown for these compounds. The pos-
sible exception is (Ta, Nb)Rh2B2, which might have line
nodes [40], suggesting a sizable triplet component. How-
ever, the presence of line nodes of course precludes our
scenario.

B. Results

For the eleven point groups C1, C2, C3, C4, C6, D2, D3, D4,
D6, C2v , and Cs, there is at least one surface orientation k⊥ ∈
{kx, ky, kz} such that the nearest-neighbor approximation for
the SOC vector is

lk = sin k⊥ n, (45)

with a unit vector n = nk‖ .
In this section, we will assume that the parameters are

chosen such that there is a vector n which is exactly parallel
to lk⊥,k‖ for all k. The experimentally more realistic case, in
which this condition is only approximately satisfied, is dis-
cussed in Sec. IV. In order to get a nonzero winding number,
it is also necessary that the gaps on the positive-helicity and
negative-helicity Fermi surfaces have opposite signs. The gap
�+

k+
F

on the positive-helicity Fermi surface always has positive

sign if we assume �s
k = �s > 0 and �t

k =�t > 0 so that this
is equivalent to requiring the gap �−

k−
F

to be negative. Here,
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we use the definition of the Fermi momenta k±
F = (k(i)

⊥ , k‖)
from Sec. II B, where they were given as the solutions k
of ξ±

k = εk ± λ|lk| = 0. This means that the projection of
the Fermi surfaces has to cover the entire sBZ in order to
get solutions k(i)

⊥ for all k‖ in the sBZ. We assume a SOC
vector lk⊥,k‖ ‖ n with l (k) = cz sin kz and k⊥ = kz. For the
dispersion εk, we choose a model with C4 point-group sym-
metry on a tetragonal lattice. We assume a nearest-neighbor
hopping amplitude tz in the z direction and a hopping am-
plitude txy in the x and y directions as well as a chemical

potential μ, i.e.,

εk = −μ − 2tz cos kz − 2txy(cos kx + cos ky). (46)

Changing the dispersion, e.g., to account for a different point
group, does not qualitatively alter the following results, and
calculations for different directions of n and k⊥ can be done
analogously and also lead to similar results.

For every point k‖ in the sBZ, the two solutions k(3),(4)
⊥

of the equation εk − λ|l (kz )| = 0, i.e., the negative-helicity
Fermi momenta, can be calculated, yielding

k(3),(4)
⊥ = 2 arctan

λ̃ ±
√

4 + λ̃2 − [−μ̃ − 2t̃xy(cos kx + cos ky)]2

2 + [−μ̃ − 2t̃xy(cos kx + cos ky)]
(47)

if 4 + λ̃2 − [μ̃ + 2t̃xy(cos kx + cos ky)]2 > 0, where we have introduced the dimensionless parameters t̃xy = txy/tz, μ̃ = μ/tz, and
λ̃ = czλ/tz. We therefore get a nonzero winding number if lmin < �s/(cz�

t ) < lmax with

lmin = max

(
0, max

kx,ky

λ̃[−μ̃ − 2t̃xy(cos kx + cos ky)] − 2
√

4 + λ̃2 − [−μ̃ − 2t̃xy(cos kx + cos ky)]2

4 + λ̃2

)
, (48)

lmax = min
kx,ky

λ̃[−μ̃ − 2t̃xy(cos kx + cos ky)] + 2
√

4 + λ̃2 − [−μ̃ − 2t̃xy(cos kx + cos ky)]2

4 + λ̃2
. (49)

This means that the winding number is nonzero in the
entire sBZ for a subset of nonzero measure of the parameter
space (μ̃, λ̃,�s/(cz�

t ), t̃xy). Figure 1 shows the boundary of
the projection of this region into the three-dimensional pa-
rameter space (μ̃, λ̃,�s/(cz�

t )) in gray. The colored planes
in this region indicate below which maximal value of t̃xy

a nonzero winding number at that point (μ̃, λ̃,�s/(cz�
t ))

is still ensured in the whole sBZ. Figure 1 shows that the
dispersion εk must be sufficiently flat in the k‖ direction,
i.e., t̃xy must be sufficiently small, and that �s/(cz�

t ) must
be sufficiently small, i.e., the spin-triplet component of the

FIG. 1. Parameter regime which ensures a nonzero winding
number in the entire sBZ for the model of Sec. III B. The boundary
of the region in the three-dimensional space (μ̃, λ̃, �s/(cz�

t )) where
this is possible is shown in semi-transparent gray. The colored planes
show the maximal possible value of t̃xy such that the winding number
is still nonzero everywhere in the sBZ.

pairing must be sufficiently strong compared to the spin-
singlet pairing.

As an example, Fig. 2 shows the energy and inverse partic-
ipation ratio (IPR) of the surface state and of the bulk state
with the lowest energy at given k‖ = (kx, ky) for a system
with tz = 1, txy = 0.1, μ = −1, λ = 0.1, �s = 0.1, �t = 0.2,
and cz = 1 calculated by exact diagonalization of the BdG
Hamiltonian on a slab with Z = 500 layers. The derivation
of the specific matrix that has to be diagonalized is presented
in Appendix C. The IPR

I[�(zi, k‖)] =
∑

zi

|�(zi, k‖)|4, (50)

where � is the normalized wave function, measures the local-
ization of a state, i.e., a localized surface state has a higher IPR
than a delocalized bulk state. Figure 2(a) shows the energies
of both states, which illustrates that the bulk is indeed fully
gapped. Here, the bulk state with the lowest energy refers to
the eigenstate of the slab Hamiltonian at given k‖ = (kx, ky )
that has the minimal positive eigenenergy among those states
that are not localized at the surface, as inferred from the IPR.
In Figs. 2(b) and 2(c), we plot the energy of the bulk state and
the corresponding IPR, respectively. Figure 2(d) shows the
energy of the surface state, which is an almost flat band very
close to zero energy. The IPR of the surface state is plotted
in Fig. 2(e). When comparing the IPR of the surface state
and of the bulk state, note that the same color scheme was
used for different orders of magnitude. It is obvious from the
comparison of Figs. 2(c) and 2(e) that the IPR of the surface
state is much higher than the IPR of the bulk state because the
former is localized at the surfaces of the slab, while the latter
is spread out over all layers.
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FIG. 2. Energy and IPR of the surface state and the bulk state with the lowest energy at given k‖ = (kx, ky ) in an ideal system with nonzero
winding number W⊥,σ (k‖) in the full sBZ. (a) Surface-state energy and lowest bulk energy, illustrating the size of the gap. (b) Lowest bulk
energy as a density plot. (c) IPR of the corresponding state, where low IPR corresponds to a delocalized state and high IPR corresponds to a
strongly localized state. (d) Energy and (e) IPR of the surface state. Note that in panels (b) to (e) the same color scheme is used for different
orders of magnitude.

Figure 3 demonstrates that for sufficiently small �s/�t ,
the energy of the surface state indeed decreases exponentially
with increasing thickness Z . The finite energy of this state
within the parameter region with a nonzero winding number
is therefore a consequence of the finite thickness. Outside
of this parameter region, the energy approaches a constant
nonzero value for Z → ∞. This transition from nonzero to
zero winding number can be seen in the inset, where the
former corresponds to the lines with negative curvature while
the latter corresponds to lines with positive curvature. The
transition is marked by the red line in Fig. 3, which has
been determined by calculating �t = �s/(czlmax) where lmax

is given by Eq. (49). This leads to a value of �t ≈ 0.1335,
which has been used to obtain the red line.

FIG. 3. Lowest eigenvalue of the Hamiltonian as a function of
the thickness Z for various values of the triplet pairing amplitude �t .
For sufficiently large values of �t , the winding number ensures the
existence of a zero-energy surface state in the limit of an infinitely
thick slab, while for a slab of finite thickness, the energy of the
surface state decreases exponentially. If �t is too small, there are no
zero-energy surface states and the energy approaches a finite value.
The inset shows the same data for small �t on a double logarith-
mic scale. The red line indicates the transition between zero-energy
surface states and states at finite energy.

IV. NONIDEAL SYSTEMS

In this section, we consider terms in the Hamiltonian that
break the symmetries described in Sec. III. By construction,
PHS is always present in the BdG formalism. Therefore chiral
symmetry and time-reversal symmetry are equivalent. These
symmetries could for example be broken by introducing an
exchange field at the surface of the slab [12,17,41], which
would couple to the spin polarization of the surface states. In
the case where the spin-rotation symmetry is still preserved,
i.e., the field points along the spin axis, this leads to a shift
of the flat bands in energy. The shift depends on the (very
small) range of the exchange field and on the decay length
of the surface state into the bulk, i.e., on its localization at
the surface. If the exchange field breaks not only TRS but
also spin-rotation symmetry, i.e., if the field is not parallel
to the spin-rotation-symmetry axis, the leading energy cor-
rection still comes from the field component that couples to
the spin polarization of the unperturbed system. Only if the
field is orthogonal to the spin rotation axis the leading term in
perturbation theory is of quadratic order in the field. However,
in real physical systems, the idealized situation described in
Sec. III is unlikely to occur even in the absence of an applied
field because the spin symmetry in Eq. (12) can only be
achieved by fine tuning parameters in the SOC vector. In this
section, we therefore focus on the case where this symmetry
is broken: It is plausible to assume that while one can find
systems where the SOC vector will point in approximately
the same direction for varying momentum k⊥ perpendicular
to the surface, there will generically be small deviations from
this direction. If the spin symmetry is not present, the winding
number W⊥,σ (k‖) cannot be defined and there are no flat bands
of zero-energy surface states. However, we can still consider
the BdG Hamiltonian

H(k) = H(0)(k) + H(1)(k) (51)
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as the sum of the unperturbed Hamiltonian

H(0)(k) =
(

εkσ0 + λl‖k·σ
(
�s

k + �t
kl‖k·σ

)
(iσy)

−(iσy)
(
�s

k + �t
kl‖k·σ

) −εkσ0 + λl‖k·σ∗

)
,

(52)
which only contains the part l‖k ≡ (lk · nk‖ )nk‖ ≡ l‖(k)nk‖ of
the SOC vector parallel to nk‖ and a small perturbation

H(1)(k) =
(

λl⊥k · σ �t
k(l⊥k · σ )(iσy)

−�t
k(iσy)(l⊥k · σ) λl⊥k · σ∗

)
, (53)

which contains the components l⊥k = lk − (lk · nk‖ )nk‖ or-
thogonal to nk‖ . In this section, we will use degenerate
first-order perturbation theory to estimate the energy of the
surface states of H(k), employing an approximation for the
surface states of H(0)(k) which we obtain by a quasiclassical
approximation in the direction orthogonal to the surface.

The normal-state block of the unperturbed Hamiltonian
has the eigenvalues ξ±

k = εk ± λ|l‖k| = εk ± λ|l‖(k)| with the
corresponding eigenvectors

v±
k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1,± nx

k‖ +iny
k‖

sgn[l‖(k)]±nz
k‖

)T

for nz
k‖ 
= 1,{

(1, 0)T , (0, 1)T
}

for nz
k‖ = 1, l‖(k) > 0,{

(0, 1)T , (1, 0)T
}

for nz
k‖ = 1, l‖(k) < 0.

(54)

As the matrix �s
k + �t

kl‖k · σ commutes with the normal-state
block, the two matrices are simultaneously diagonalizable,
which means that the vectors in Eq. (54) are also eigenvectors
of �s

k + �t
kl‖k · σ. The corresponding eigenvalues are �±

k =
�s

k ± �t
k|l‖(k)|.

We assume that the unperturbed Hamiltonian is fully
gapped, thus we expect the gap to also stay open in the per-
turbed system as long as the perturbation is sufficiently small.
We also know that there is a finite region of the parameter
space where W⊥,↑(k‖) = W⊥,↑ = 1 for all momenta in the sBZ
and that this leads to |W⊥,↑| + |W⊥,↓| = 2 |W⊥,↑| = 2 pro-
tected zero-energy surface states in the unperturbed system.

For every point k‖ in the sBZ, there are four points on
the positive-helicity and negative-helicity Fermi surfaces that
are projected onto this point. As in Sec. II B, the solutions
of ξ+

k⊥,k‖ = 0 are denoted by k(1)
⊥ > 0 and k(2)

⊥ < 0, while the

solutions of ξ−
k⊥,k‖ = 0 are denoted by k(3)

⊥ > 0 and k(4)
⊥ < 0.

We make the ansatz [42]

�(r⊥, k‖) = a(1)
k‖ �+(k(1)

⊥ , k‖) exp
(
ik(1)

⊥ r⊥ − κ+
k(1)
⊥ ,k‖

r⊥
)

+ a(2)
k‖ �+(k(2)

⊥ , k‖) exp
(
ik(2)

⊥ r⊥ − κ+
k(2)
⊥ ,k‖

r⊥
)

+ a(3)
k‖ �−(k(3)

⊥ , k‖) exp
(
ik(3)

⊥ r⊥ − κ−
k(3)
⊥ ,k‖

r⊥
)

+ a(4)
k‖ �−(k(4)

⊥ , k‖) exp
(
ik(4)

⊥ r⊥ − κ−
k(4)
⊥ ,k‖

r⊥
)

(55)

for the wave function of the surface state, where κ±
k is the

inverse decay length

κ±
k =

√
|�±

k |2 − E2

h̄|v±
⊥,F |

E=0= |�±
k |

h̄|v±
⊥,F | , (56)

with the Fermi velocity perpendicular to the surface,

v±
⊥,F = 1

h̄

∂ξ±
k

∂k⊥

∣∣∣∣
k=(kF

⊥,k‖ )

. (57)

The spinors �± are defined as

�±(k±
⊥, k‖) =

√
sgn[l‖(k)] ± nz

k‖

4 sgn[l‖(k)]
(1,±n,∓γ ±

k n, γ ±
k )T ,

(58)

with n = (nx
k‖ + iny

k‖ )/(sgn[l‖(k)] ± nz
k‖ ), which is only well

defined for nz
k‖ 
= 1. Moreover, k±

⊥ is chosen such, that k ≡
(k±

⊥, k‖) = kF is a Fermi momentum, i.e., k+
⊥ ∈ {k(1)

⊥ , k(2)
⊥ }

and k−
⊥ ∈ {k(3)

⊥ , k(4)
⊥ }. For nk‖ = ẑ, we instead find

�±(k±
⊥, k‖) =

{
1√
2

(1, 0, 0, γ +
k )T ,

1√
2

(0, 1,−γ −
k , 0)T

}
(59)

for l‖(k) > 0 and

�±(k±
⊥, k‖) =

{
1√
2

(0, 1,−γ +
k , 0)T ,

1√
2

(1, 0, 0, γ −
k )T

}
(60)

for l‖(k) < 0. Moreover, we have defined

γ ±
k = 1

�±
k

[E − i sgn(v±
⊥,F )

√
|�±

k |2 − E2], (61)

which for E = 0 becomes

γ ±
k = −i sgn(v±

⊥,F ) sgn(�±
k )

=
{

−i for k+
⊥ = k(1)

⊥ and for k−
⊥ = k(4)

⊥ ,

i for k+
⊥ = k(2)

⊥ and for k−
⊥ = k(3)

⊥ .
(62)

Our approach relies on the quasiclassical assumption that
the system is continuous in the direction perpendicular
to the surface, which is located at r⊥ = 0. For a sur-
face state, the coefficients a(i) have to be chosen such that
the wave function vanishes at the surface, i.e., �(r⊥=0, k‖) =
0 and is normalized, i.e.,

∫ ∞

0
dr⊥�†(r⊥, k‖)�(r⊥, k‖) = 1. (63)

The first condition means that the coefficient vector
(a(1)

k‖ , a(2)
k‖ , a(3)

k‖ , a(4)
k‖ )T must be in the kernel ker(M) =

{(−1, 0, 0, 1)T , (0,−1, 1, 0)T } of the matrix

M = (�+(k(1) ), �+(k(2) ), �−(k(3) ), �−(k(4) )), (64)

where k(i) = (k(i)
⊥ , k‖). Therefore there is a two-dimensional

eigenspace of zero-energy surface states for H(0), which is
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spanned by the vectors �1(r⊥, k‖) and �2(r⊥, k‖) with

�1(r⊥, k‖) = a(1)
k‖

[− exp
(
ik(1)

⊥ r⊥ − κ
(1)
kF

r⊥
)+ exp

(
ik(4)

⊥ r⊥ − κ
(4)
kF

r⊥
)]

×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√√√√ sgn[l‖(k(1)
⊥ , k‖)] + nz

k‖

4 sgn[l‖(k(1)
⊥ , k‖)]

(
1,

nx
k‖+iny

k‖
sgn[l‖(k(1)

⊥ ,k‖ )]+nz
k‖

, i
nx

k‖+iny
k‖

sgn[l‖(k(1)
⊥ ,k‖ )]+nz

k‖
,−i

)T

for nz
k‖ 
= 1,

1√
2
(1, 0, 0,−i)T for nz

k‖ = 1, l‖(k) > 0,

1√
2
(0, 1, i, 0)T for nz

k‖ = 1, l‖(k) < 0,

(65)

�2(r⊥, k‖) = a(2)
k‖

[− exp
(
ik(2)

⊥ r⊥ − κ
(2)
kF

r⊥
)+ exp

(
ik(3)

⊥ r⊥ − κ
(3)
kF

r⊥
)]

×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√√√√ sgn[l‖(k(1)
⊥ , k‖)] − nz

k‖

4sgn[l‖(k(1)
⊥ , k‖)]

(
1,− nx

k‖ +iny
k‖

sgn[l‖(k(1)
⊥ ,k‖ )]−nz

k‖
, i

nx
k‖ +iny

k‖
sgn[l‖(k(1)

⊥ ,k‖ )]−nz
k‖

, i

)T

for nz
k‖ 
= 1,

1√
2
(0, 1,−i, 0)T for nz

k‖ = 1, l‖(k) > 0,

1√
2
(1, 0, 0, i)T for nz

k‖ = 1, l‖(k) < 0,

(66)

where we have used sgn[l�(k(1)
⊥ , k�)] = sgn[l�(k(3)

⊥ , k�)] = −sgn[l�(k(2)
⊥ , k�)] = −sgn[l�(k(4)

⊥ , k�)]. To ensure normalization, the
coefficients a(i)

k‖ have to be chosen as

a(1)
k‖ =

[∫ ∞

0
dr⊥

∣∣− exp
(
ik(1)

⊥ r⊥ − κ
(1)
kF

r⊥
)+ exp

(
ik(4)

⊥ r⊥ − κ
(4)
kF

r⊥
)∣∣2]−1/2

=
[∫ ∞

0
dr⊥ 2e−(κ (1)

kF
+κ

(4)
kF

)r⊥[cosh
(
κ

(1)
kF

r⊥ − κ
(4)
kF

r⊥
)− cos

(
k(1)
⊥ r⊥ − k(4)

⊥ r⊥
)]]−1/2

, (67)

a(2)
k‖ =

[∫ ∞

0
dr⊥

∣∣− exp
(
ik(2)

⊥ r⊥ − κ
(2)
kF

r⊥
)+ exp

(
ik(3)

⊥ r⊥ − κ
(3)
kF

r⊥
)∣∣2]−1/2

=
[∫ ∞

0
dr⊥2e−(κ (2)

kF
+κ

(3)
kF

)r⊥[cosh
(
κ

(2)
kF

r⊥ − κ
(3)
kF

r⊥
)− cos

(
k(2)
⊥ r⊥ − k(3)

⊥ r⊥
)]]−1/2

. (68)

The first-order corrections to the energy of the surface state for the full Hamiltonian H = H(0) + H(1) can be calculated by
diagonalizing the 2 × 2 matrix P with entries

Pi j = 〈�i|H(1)|� j〉 =
∫ ∞

0
dr⊥�

†
i (r⊥, k‖)H(1)(−i∂r⊥ , k‖)� j (r⊥, k‖), (69)

where the first argument of H(1)(k) = H(1)(k⊥, k‖) is replaced by −i∂k⊥ (note h̄ = 1), acting on the wave function � j (r⊥, k‖).
If we assume that only the lowest-order terms in l⊥k are relevant, i.e., that l⊥k does not depend on k⊥, we get the first-order energy
corrections

E (1)
± (k‖) = ±a(1)

k‖ a(2)
k‖

√
(�t )2 + λ2 |l⊥k |

∫ ∞

0
dr⊥

(
e−ik(1)

⊥ r⊥−κ
(1)
kF

r⊥ − e−ik(4)
⊥ r⊥−κ

(4)
kF

r⊥)(eik(3)
⊥ r⊥−κ

(3)
kF

r⊥ − eik(2)
⊥ r⊥−κ

(2)
kF

r⊥) (70)

of the eigenvalue corresponding to the surface state. We thus find

E (1)
± (k‖) = ±αk‖

√
(�t )2 + λ2 |l⊥k | (71)

with the prefactor

αk‖ = 2
[(

κ
(1)
kF

+ κ
(2)
kF

+ κ
(3)
kF

+ κ
(4)
kF

)2 + (k(1)
⊥ − k(2)

⊥ − k(3)
⊥ + k(4)

⊥ )2
]1/2

(
κ

(1)
kF

κ
(2)
kF

κ
(3)
kF

κ
(4)
kF(

κ
(1)
kF

+ κ
(4)
kF

)(
κ

(2)
kF

+ κ
(3)
kF

)
)1/2

×
⎛
⎝ (

κ
(1)
kF

+ κ
(4)
kF

)2 + (
k(1)
⊥ − k(4)

⊥
)2

[(
κ

(1)
kF

+ κ
(2)
kF

)2 + (
k(1)
⊥ − k(2)

⊥
)2][(

κ
(1)
kF

+ κ
(3)
kF

)2 + (
k(1)
⊥ − k(3)

⊥
)2]
⎞
⎠

1/2

×
⎛
⎝ (

κ
(2)
kF

+ κ
(3)
kF

)2 + (
k(2)
⊥ − k(3)

⊥
)2

[(
κ

(2)
kF

+ κ
(4)
kF

)2 + (
k(2)
⊥ − k(4)

⊥
)2][(

κ
(3)
kF

+ κ
(4)
kF

)2 + (
k(3)
⊥ − k(4)

⊥
)2]
⎞
⎠

1/2

. (72)
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For practical purposes, it is useful to compare the energy
E (1)

± (k‖) to the energy of the lowest-lying bulk state, i.e., with
the gap size. The minimal gap size is Ebulk,min = mink‖ |�−

kF
|,

such that

E (1)
± (k‖)

Ebulk,min
= ±αk‖

√
(�t )2 + λ2 |l⊥k |

�t mink‖ |lkF | − �s
. (73)

We now simplify the model further, in order to be able to
calculate αk‖ analytically. To this end, we assume the momen-
tum dependence of the SOC vector of the unperturbed system
to be l‖(k) = sin k⊥ and the dispersion εk⊥,k‖ = ε−k⊥,k‖ to be
even in k⊥. The first assumption is reasonable for most of the
noncentrosymmetric point groups which can exhibit a nonzero
winding number W⊥,σ (k‖) in the full sBZ, if we assume that
the SOC vector is dominated by nearest-neighbor terms, as
shown in Appendix B. The second assumption means that
hopping terms in any direction which is neither parallel nor
orthogonal to the surface should be negligible. For instance,
this is the case if we assume dispersions consisting only of
nearest-neighbor hopping terms. These assumptions lead to
k(2)
⊥ = −k(1)

⊥ , k(4)
⊥ = −k(3)

⊥ , and κ
(1)
kF

= κ
(2)
kF

, κ
(3)
kF

= κ
(4)
kF

so that
the prefactor is

αk‖ = κ
(1)
kF

κ
(3)
kF

κ
(1)
kF

+ κ
(3)
kF

(
κ

(1)
kF

+ κ
(3)
kF

)2 + (
k(1)
⊥ + k(3)

⊥
)2

(
κ

(1)
kF

+ κ
(3)
kF

)2 + (
k(1)
⊥ − k(3)

⊥
)2

× 1√(
κ

(1)
kF

)2 + (
k(1)
⊥
)2
√(

κ
(3)
kF

)2 + (
k(3)
⊥
)2

. (74)

We now compare Eq. (71) with the result of exact numer-
ical diagonalization of the BdG Hamiltonian of a slab with
a (001) surface and Z = 500 layers in the z direction for a
system with C4 point-group symmetry. Other possible point
groups and surface orientations are discussed and compared
in Appendix B. The general form of the SOC vector in this
point group is

lk =
∑
j,k,l

⎛
⎜⎝

cx
j,k,l sin( jkx + kky) cos(lkz )

cx
j,k,l sin( jky − kkx ) cos(lkz )

cz
j,k,l cos( jkx + kky) cos(kkx − jky) sin(lkz )

⎞
⎟⎠,

(75)
with the real coefficients cx

j,k,l and cz
j,k,l . Restricting this to

nearest-neighbor terms, we get

lk = (
cx

1,0,0 sin kx + cx
0,1,0 sin ky

)
x̂

+ (
cx

1,0,0 sin ky − cx
0,1,0 sin kx

)
ŷ

+ cz
0,0,1 sin kz ẑ. (76)

In order to obtain a SOC vector which is approximately
parallel to the z axis, we require |cx

1,0,0|, |cx
0,1,0| � |cz

0,0,1|.
Equation (71) leads to the approximation

E (1)
± (k‖) = αk‖

√
2
√

(�t )2 + λ2

√(
cx

1,0,0

)2 + (
cx

0,1,0

)2

×
√

sin2 kx + sin2 ky (77)

for the surface-state energy. This relation shows that the en-
ergy of the perturbed surface band and thus the band width

are of first order in the perturbation, i.e., in the SOC terms
that break the symmetry in Eq. (12).

Figure 4 shows the energy and IPR of the surface state and
the first bulk state for the point group C4, with the parameters
for H(0) being tz = 1, txy = 0.1, μ = −1, λ = 0.1, �s = 0.1,
and �t = 0.2, as in Sec. III and the parameters for H(1) being
cx

1,0,0 = cx
0,1,0 = 0.025 and cz

0,0,1 = 1. Figure 4(a) shows both
the energy of the surface state and the gap. For the surface-
state energy, the result of the exact diagonalization of the BdG
Hamiltonian is given in blue, while the result of first-order
perturbation theory is plotted in orange. Both results lie almost
exactly on top of each other, with the relative difference be-
tween the two never exceeding 7 × 10−3 such that the orange
and blue plot cannot be distinguished in the figure. A plot of
the relative difference between the two energies is given in
Appendix B in Fig. 6. For the first bulk state, i.e., the gap size,
the value from the exact diagonalization is plotted in green.
The plot in red shows the gap

min
k⊥

�−
k⊥,k‖ = �−

k−
⊥,F ,k‖

. (78)

Both plots should coincide in the limit of an infinitely thick
slab, while for finite thickness, the result from exact diagonal-
ization should be slightly higher, due to the discretization of
momentum space. In Fig. 4(a), the red plot is barely visible
below the green, which shows that the thickness is sufficiently
large to yield the expected energy for the bulk states. In
Figs. 4(b) and 4(c), we plot the energy of the lowest-energy
bulk state and its IPR, respectively. Figure 4(d) shows the
energy of the surface state, calculated by exact diagonaliza-
tion of the slab Hamiltonian, while Fig. 4(e) shows its IPR.
The comparison of Figs. 4(b) and 4(d) demonstrates that the
energy of the surface state is still much smaller than the gap.
The flatness of the surface band can be controlled by the ratio
of the parameters cx

1,0,0 and cx
0,1,0 to cz

0,0,1. The fact that the
IPR in Fig. 4(e) is much larger than the one in Fig. 4(c) shows
that the state close to zero energy is still much more strongly
localized than the bulk state and the perturbation H(1) does
not destroy the surface state.

V. SUMMARY AND CONCLUSIONS

Superconductors with zero-energy flat bands of Majorana
states at their surfaces accompanied by full energy gaps in
the bulk would be of tremendous interest from both funda-
mental and applied perspectives. However, crystal symmetries
and TRS generically cannot guarantee such a situation. We
have shown that it should nevertheless be possible to real-
ize such systems at least approximately, i.e., with a nearly
flat surface band in a full bulk gap. We have done this in
two steps. First, we have derived the conditions for ideal
flat surface bands. We have identified a winding number that
protects such flat bands at specific surfaces of noncentrosym-
metric superconductors with TRS. For every point in the sBZ,
these superconductors must have a SOC vector that does not
change in direction—but may change in magnitude—as a
function of the momentum component normal to the surface
and is parallel to the triplet-pairing vector. Consequently, the
BdG Hamiltonian commutes with a component of the elec-
tronic spin and can be block-diagonalized into spin-up and a
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FIG. 4. Energy and IPR of the surface state and the bulk state with the lowest energy at given k‖ = (kx, ky ) for the C4 point group and a
SOC vector with nonzero components l‖k with cx

1,0,0 = cx
0,1,0 = 0.025, cz

0,0,1 = 1. (a) Surface-state energy from first-order perturbation theory
(blue) and from exact diagonalization (orange, obscured by and indistinguishable from the blue surface) and lowest bulk energy from exact
diagonalization (green) and from the minimal gap (red, nearly obscured by the green surface), illustrating the size of the gap. (b) Lowest bulk
energy as a density plot. (c) IPR of the corresponding state, where low IPR corresponds to a delocalized state and high IPR corresponds to a
strongly localized state. (d) Energy and (e) IPR of the surface state.

spin-down blocks. While the fully gapped BdG Hamiltonian
of the entire system obeys TRS T with T 2 = −1, PHS C with
C2 = +1, and chiral symmetry, and is therefore in symmetry
class DIII, the spin-up and spin-down blocks individually
obey neither TRS nor PHS but retain chiral symmetry so that
they are both in symmetry class AIII. Due to the chiral sym-
metry, we can bring the spin blocks into off-diagonal form and
define a winding number as the winding of the off-diagonal
entries in the complex plane when the momentum component
normal to the surface traverses the bulk Brillouin zone. We
have discussed a simple model for which the winding number
can be written in terms of the signs of the gaps on the spin-up
and spin-down bands at the respective Fermi surfaces. If the
triplet-pairing amplitude is sufficiently large and the normal-
state dispersion is sufficiently flat in the directions parallel to
the surface, i.e., it is quasi-one-dimensional, the chemical po-
tential can be chosen such that the winding number is nonzero
in the entire sBZ.

Furthermore, we have identified the point groups that per-
mit such a nonzero winding number. As an example, we

have calculated the surface-state and lowest bulk-state en-
ergy for the BdG Hamiltonian of a slab with C4 point-group
symmetry and a SOC vector pointing in the z direction. We
have also calculated the IPRs for these states to show that
there is indeed a zero-energy surface state and a finite bulk
gap everywhere in the sBZ. The method of choice for the
detection of (approximately) zero-energy surface bands is
angle-resolved photoemission spectroscopy (ARPES). How-
ever, ARPES may not work because heating effects could
prevent reaching the required low temperatures. The key ex-
perimental signature of the zero-energy surface band is then
a zero-bias conductance peak in low-temperature tunneling
experiments [1,2,4,6,43,44].

In the second step, we have examined the effect of a small
component in the SOC term that breaks the spin-component
symmetry. This is the realistic situation because, in contrast
to the occurrence of an exact commutation with a spin com-
ponent, it does not require fine-tuning of parameters. We
treat the symmetry-breaking term as a small perturbation.
We have employed a quasiclassical approximation for the

FIG. 5. Surface-state energy Ee
0 calculated by exact diagonalization of the slab BdG Hamiltonian for the point groups (a) C2, (b) C4, (c)

D2, (d) Cs, and (e) C2v .
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FIG. 6. Relative difference between the surface-state energy Ee
0 calculated by exact diagonalization of the slab BdG Hamiltonian and the

surface-state energy E p
0 calculated within perturbation theory with Eq. (71) for the point groups (a) C2, (b) C4, (c) D2, (d) Cs, and (e) C2v .

unperturbed surface state and have derived its energy within
degenerate perturbation theory. The dispersion of the surface
states and their band width turn out to be of first order in
the symmetry-breaking SOC terms. We have compared these
results to the numerical exact diagonalization of the BdG
Hamiltonian of a slab for the exemplary point group C4, find-
ing very good agreement of the quasiclassical and perturbative
approximation and exact diagonalization. The results show
that sufficiently weak breaking of the spin-rotation symmetry
does not destroy the surface states and keeps them at low
energies but makes their dispersion weakly dispersive. On the
other hand, the bulk gap remains large. We therefore expect
a somewhat broadened zero-bias conductance peak in low-
temperature tunneling experiments for such systems [2,4,43].

Our work describes the surface bands at the BdG mean-
field level, i.e., the quasiparticle states forming these bands
are effectively noninteracting. Since the band width is small,
residual interactions between the quasiparticles easily drive
the system into a strongly correlated regime. The correla-
tion effects will be fundamentally different from, e.g., flat
bands in magic-angle twisted bilayer graphene, in that the
Bogoliubov quasiparticles are not charge eigenstates and their
average charge is small. Hence, interactions mediated by
the Cooper-pair condensate and possibly by phonons will
play an important role. The proposed setup thus provides a
route to unconventional, strongly correlated, two-dimensional
fermionic systems.

A reasonable next step is to search for suitable candidate
materials. These materials should be superconductors with
a crystal structure belonging to one of the point groups C1,
C2, C3, C4, C6, D2, D3, D4, D6, C2v , or Cs. Moreover, they
should have a Fermi surface which is sufficiently flat in di-
rections parallel to a surface such that the projection covers
the entire sBZ. Moreover, the material should have a strong
triplet-to-singlet ratio for the superconducting gap. Among the
identified candidates, one can then try to find the ones which
come closest to a unidirectional SOC vector.
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APPENDIX A: CONDITIONS FOR
NONZERO WINDING NUMBER

In this Appendix, we derive the conditions under which
the winding number defined in Eq. (35) can be nonzero
in the entire sBZ. The winding number W⊥,σ (k‖) describes
the winding of the image of the function Dσ (k⊥, k‖) = εk +
σλl (k) + i [�s

k + σ�t
kl (k)], see Eq. (31), around the origin

of the complex plane. We note the close connection between
the real part of Dσ (k⊥, k‖) and the dispersion of the positive-
helicity and negative-helicity bands ξ±

k :

Re Dσ (k⊥, k‖) = εk + σλl (k) =
{
ξσ

k for l (k) � 0,

ξ−σ
k for l (k) < 0,

(A1)
as well as of the imaginary parts of Dσ (k⊥, k‖) and the gap
�±

k on the two bands,

Im Dσ (k⊥, k‖) = �s
k + σ�t

kl (k) =
{
�σ

k for l (k) � 0,

�−σ
k for l (k) < 0.

(A2)
We assume that for every point k‖ in the sBZ, both ξ+

k⊥,k‖ = 0

and ξ−
k⊥,k‖ = 0 have exactly two solutions each, which we

denote by k(1)
⊥ > 0, k(2)

⊥ < 0 and k(3)
⊥ > 0, k(4)

⊥ < 0, respec-
tively. This means that the projections of the positive-helicity
and the negative-helicity Fermi surfaces both cover the entire
sBZ, which can for example be achieved in a model where
the hopping is much stronger in the direction orthogonal to
the surface than in the in-plane directions and the SOC is
sufficiently weak.

We rewrite Eq. (35) as

W⊥,σ (k‖) = 1

2π

∫
k⊥

dk⊥ ∂k⊥ arg
(−[�s

k + σ�t
kl (k)

]
+ i [εk + σλl (k)]

)
. (A3)

The argument function is smooth except for a branch cut on
the negative real axis, where it jumps by ±2π , depending
on the direction in which the real axis is crossed. Since the
argument function is real valued and momentum space is pe-
riodic the only contributions to the integral come from points
k0,(i)
⊥,σ where −[�s

k + σ�t
kl (k)] + i [εk + σλl (k)] crosses the
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negative real axis:

W⊥,σ (k‖) = −
∑

i

�
[
�s

k0,(i)
⊥,σ ,k‖

+ σ�t
k0,(i)
⊥,σ ,k‖

l
(
k0,(i)
⊥,σ , k‖

)]

× sgn

(
∂[εk + σλl (k)]

∂k⊥

∣∣∣∣
k⊥=k0,(i)

⊥,σ

)
, (A4)

where � is the Heaviside step function. The sign function
determines whether the arg function jumps by +2π or by
−2π . It depends on the k⊥ component of the Fermi velocity.
The functions Re Dσ (k⊥, k‖) = εk + σλl (k) can only have an
even number of zeros as the image of Dσ is a closed curve in
the complex plane and therefore cannot cross the real axis an
odd number of times.

Note that there is a one-to-one correspondence between
the zeros k(i)

⊥ of ξ± and the zeros of Re Dσ (k⊥, k‖), me-
diated by Eq. (A1). If all the four values k(i)

⊥ are also
zeros of Re D↑(k⊥, k‖), then Re D↓(k⊥, k‖) is nonzero for
all k⊥ ∈ [−π, π ). This would mean that W⊥,↓(k‖) = 0 and
thus W⊥,↑(k‖) = W⊥,↓(−k‖) = 0 such that there is no nonzero
winding number in the full sBZ. An analogous argument holds
if all k(i)

⊥ are zeros of Re D↓(k⊥, k‖).
The two momenta k(1)

⊥ and k(2)
⊥ , which correspond to the

positive-helicity Fermi surface, are zeros of Re D↑(k⊥, k‖) if
l (k(i)

⊥ , k‖) > 0 and zeros of Re D↓(k⊥, k‖) if l (k(i)
⊥ , k‖) < 0.

For the momenta k(3)
⊥ and k(4)

⊥ on the negative-helicity Fermi
surface, the opposite is true. The sign of l (k⊥, k‖) cannot
change between k⊥ = k(1)

⊥ and k⊥ = k(3)
⊥ and between k⊥ =

k(2)
⊥ and k⊥ = k(4)

⊥ since this would lead to additional ze-
ros of ξ±. This leaves two possible cases: In the first case,
both l (k(1)

⊥ , k‖) and l (k(3)
⊥ , k‖) are positive, whereas l (k(2)

⊥ , k‖)
and l (k(4)

⊥ , k‖) are negative, such that k(1)
⊥ and k(4)

⊥ are solu-
tions of Re D↑(k⊥, k‖) = 0 and k(2)

⊥ and k(3)
⊥ are solutions of

Re D↓(k⊥, k‖) = 0. Without loss of generality, we can assume
that �s

k ≡ �s > 0 and �t
k =�t > 0. This means that the mo-

menta on the positive-helicity Fermi surface both contribute
to the sum in their respective winding number in Eq. (A4)
because the argument of the Heaviside step function for these
momenta, i.e., �+

k , is always positive. The contribution is
either +1 or −1, depending on the sign of the k⊥-component
of their Fermi velocity, which is positive for k(1)

⊥ and negative
for k(2)

⊥ .
The momenta on the negative-helicity Fermi surface, i.e.,

k(3)
⊥ and k(4)

⊥ , contribute to the sum if the corresponding
gap �− is positive, i.e., �s/�t > |l (k(3)

⊥ , k‖)| and �s/�t >

|l (k(4)
⊥ , k‖)|. If this is the case, then the contribution of the

negative k⊥-component of the Fermi velocity corresponding
to k(4)

⊥ cancels the contribution of the term corresponding to
k(1)
⊥ in W⊥,↑(k‖) and the positive k⊥-component of the Fermi

velocity corresponding to k(3)
⊥ cancels the contribution of the

term corresponding to k(2)
⊥ in W⊥,↓(k‖), such that both wind-

ing numbers are zero. If �s/�t < mini∈{3,4} |l (k(i)
⊥ , k‖)|, then

k(3)
⊥ and k(4)

⊥ do not contribute to the winding numbers and
W⊥,↑(k‖) = −1 = −W⊥,↓(k‖).

In the second case, both l (k(1)
⊥ , k‖) and l (k(3)

⊥ , k‖)
are negative and l (k(2)

⊥ , k‖) and l (k(4)
⊥ , k‖) are positive.

An analogous line of reasoning leads to a nonzero

winding number W⊥,↑(k‖) = 1 = −W⊥,↓(k‖) if �s/�t <

mini∈{3,4} |l (k(i)
⊥ , k‖)|. In conclusion, we find nonzero winding

numbers W⊥,↑(k‖) and W⊥,↓(k‖) in the full sBZ if and only
if �s/�t < mini∈{3,4} |l (k(i)

⊥ , k‖)| and l changes sign between
the Fermi surfaces at positive k(1,3)

⊥ and the Fermi surfaces at
negative k(2,4)

⊥ . This is equivalent to requiring

sgn
(
�+

k(1)
⊥ ,k‖

)
= −sgn

(
�−

k(4)
⊥ ,k‖

)
, (A5)

sgn
(
�+

k(2)
⊥ ,k‖

)
= −sgn

(
�−

k(3)
⊥ ,k‖

)
, (A6)

which are the conditions given in Eqs. (38) and (39).

APPENDIX B: OTHER POINT GROUPS

In this Appendix, we consider the effects of a not exactly
unidirectional SOC vector on the surface states for systems
with various point groups. There are 11 noncentrosymmetric
point groups which allow for a unidirectional SOC vector
and a nonzero winding number W⊥,σ (k‖) in the full Brillouin
zone, namely C1, C2, C3, C4, C6, D2, D3, D4, D6, C2v , and Cs,
as discussed in Sec. III. Table I shows the nearest-neighbor
approximation for the SOC vector in these groups, which
is restricted according to Eq. (9). Moreover, the table lists
all possible orientations n for a unidirectional SOC vector
and the corresponding direction of k⊥ which can lead to a
nonzero winding number W⊥,σ (k‖). The last two columns list
the conditions which must be fullfilled by the coefficients in
order to get an approximately unidirectional SOC vector and
the component l‖k of the SOC vector which is parallel to n.

We now use the SOC vectors from Table I to calculate
the surface-state energies in a nonideal system, i.e., a system
where the SOC vector is not exactly unidirectional for the
examples of the C2, C4, D2, Cs, and C2v groups. We require
the spin-rotation symmetry in Eq. (12) to be approximately
satisfied, which leads to certain conditions shown in the fifth
column of Table I. For the numerical calculations, we choose
the parameters in such a way that these conditions are sat-
isfied; our choice is given in Table II. Here, we do not list
the point group C1 as it requires many parameters to be fine
tuned but does not yield any additional insight. We also leave
out choices that lead to SOC vectors or first-order energy
corrections which have the same form as the ones we have
already listed. The first-order approximation for the surface-
state energy according to Eq. (71) is listed in the last column
of Table II. For the normal-state dispersion, we choose

εk = −μ − 2t⊥ cos k⊥ − 2t‖(cos k‖,1 + cos k‖,2), (B1)

where k‖,1 and k‖,2 are two orthogonal momentum compo-
nents parallel to the surface. We choose the parameters t⊥ = 1,
t‖ = 0.1, μ = −1, λ = 0.1, �s = 0.1, and �t = 0.2, which
would ensure a nonzero winding number in the entire sBZ for
the ideal system.

The results for the surface state energies for the various
point groups calculated by exact diagonalization of a slab
with a thickness of Z = 500 layers are shown in Fig. 5. The
figure shows that for all the point groups, the surface bands
become weakly dispersive. The maximal surface state energy
is approximately the same for all cases as it only depends on
the parameters of the unperturbed system, which are chosen
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TABLE I. Nearest-neighbor approximation for the antisymmetric SOC vector for all noncentrosymmetric point groups which permit a
nonzero winding number W⊥,σ (k‖) in the full sBZ. The constants cx

i, j,k , cy
i, j,k , and cz

i, j,k are real valued. The second column gives the most
general nearest-neighbor term in the SOC vector. The third and fourth columns give all possible options for the direction of a unidirectional
SOC vector and the corresponding surface orientations that can lead to a nonzero winding number W⊥,σ (k‖). The fifth column lists the
conditions which must be satisfied by the coefficients ci, j,k so that the SOC vector can be approximately unidirectional and lead to surface
modes close to zero energy in the entire sBZ. The last column gives the component l‖k of the SOC vector which is parallel to n.

Component of the
Point SOC vector (nearest-neighbor Condition for SOC vector parallel
group approximation), general n k⊥ lk ≈ l (k)n to n

C1 lk = c1,0,0 sin kx + c0,1,0 sin ky + c0,0,1 sin kz c1,0,0 kx |c0,1,0|, |c0,0,1| � |c1,0,0| l‖k = sin kx c1,0,0

c0,1,0 ky |c1,0,0|, |c0,0,1| � |c0,1,0| l‖k = sin ky c0,1,0

c0,0,1 kz |c1,0,0|, |c0,1,0| � |c0,0,1| l‖k = sin kz c0,0,1

C2 lk = (
cx

1,0,0 sin kx + cx
0,1,0 sin ky

)
x̂

+ (
cy

1,0,0 sin kx + cy
0,1,0 sin ky

)
ŷ

+ c0,0,1 sin kz ẑ

⊥ ẑ kx

∣∣cx
0,1,0

∣∣, ∣∣cy
0,1,0

∣∣, ∣∣cz
0,0,1

∣∣
� ∣∣cx

1,0,0

∣∣, ∣∣cy
1,0,0

∣∣
l‖k = sin kx

× (
cx

1,0,0x̂ + cy
1,0,0ŷ

)
ky

∣∣cx
1,0,0

∣∣, ∣∣cy
1,0,0

∣∣, ∣∣cz
0,0,1

∣∣
� ∣∣cx

0,1,0

∣∣, ∣∣cy
0,1,0

∣∣
l‖k = sin ky

× (
cx

0,1,0x̂ + cy
0,1,0ŷ

)
ẑ kz

∣∣cx
1,0,0

∣∣, ∣∣cx
0,1,0

∣∣, ∣∣cy
1,0,0

∣∣,∣∣cy
0,1,0

∣∣ � ∣∣cz
0,0,1

∣∣ l‖k = c0,0,1 sin kz ẑ

C3 lk = [
cx

1,0,0 sin(kx/2) cos(
√

3ky/2) + cy
1,0,0

× cos(kx/2) sin(
√

3ky/2) + cx
1,0,0 sin kx

]
x̂

− [− 3cx
1,0,0 cos(kx/2) sin(

√
3ky/2)

+ cy
1,0,0 sin(kx/2) cos(

√
3ky/2)

+ cy
1,0,0 sin kx

]
/
√

3 ŷ + {
cz

1,0,0[1/2 sin kx

+ sin(kx/2) cos(
√

3ky/2)] + cz
0,0,1 sin(kz )

}
ẑ

ẑ kz

∣∣cx
1,0,0

∣∣, ∣∣cy
1,0,0

∣∣
� |cz

1,0,0|
� ∣∣cz

0,0,1

∣∣
l‖k = {

cz
1,0,0[1/2 sin kx

+ sin(kx/2)

× cos(
√

3ky/2)]

+ cz
0,0,1 sin(kz )

}
ẑ

C4 lk = (
cx

1,0,0 sin kx + cx
0,1,0 sin ky

)
x̂

+ (
cx

1,0,0 sin ky − cx
0,1,0 sin kx

)
ŷ

+ cz
0,0,1 sin kz ẑ

ẑ kz

∣∣cx
1,0,0

∣∣, ∣∣cx
0,1,0

∣∣ � ∣∣cz
0,0,1

∣∣ l‖k = cz
0,0,1 sin kz ẑ

C6 lk =[cx
1,0,0 sin(kx/2) cos(

√
3ky/2) + cy

1,0,0

× cos(kx/2) sin(
√

3ky/2) + cx
1,0,0 sin kx

]
x̂

− [− 3cx
1,0,0 cos(kx/2) sin(

√
3ky/2)

+ cy
1,0,0 sin(kx/2) cos(

√
3ky/2)

+ cy
1,0,0 sin kx

]
/
√

3 ŷ + cz
0,0,1 sin kz ẑ

ẑ kz

∣∣cx
1,0,0

∣∣, ∣∣cy
1,0,0

∣∣ � ∣∣cz
0,0,1

∣∣ l‖k = cz
0,0,1 sin kz ẑ

D2 lk = cx
1,0,0 sin kx x̂ + cy

0,1,0 sin kyŷ

+ cz
0,0,1 sin kz ẑ

x̂ kx

∣∣cy
0,1,0

∣∣, ∣∣cz
0,0,1

∣∣ � ∣∣cx
1,0,0

∣∣ l‖k = cx
1,0,0 sin kx x̂

ŷ ky

∣∣cx
1,0,0

∣∣, ∣∣cz
0,0,1

∣∣ � ∣∣cy
0,1,0

∣∣ l‖k = cy
0,1,0 sin kyŷ

ẑ kz

∣∣cx
1,0,0

∣∣, ∣∣cy
0,1,0

∣∣ � ∣∣cz
0,0,1

∣∣ l‖k = cz
0,0,1 sin kz ẑ

D3 lk = cx
1,0,0{[sin(kx/2) cos(

√
3ky/2) + sin kx]x̂

+
√

3 cos(kx/2) sin(
√

3ky/2)ŷ}
+ {

cz
1,0,0[1/2 sin kx + sin(kx/2) cos(

√
3ky/2)]

+ cz
0,0,1 sin(kz )

}
ẑ

ẑ kz

∣∣cx
1,0,0

∣∣
� ∣∣cz

1,0,0

∣∣
� ∣∣cz

0,0,1

∣∣
l‖k = {

cz
1,0,0[1/2 sin kx

+ sin(kx/2)

× cos(
√

3ky/2)]

+ cz
0,0,1 sin(kz )

}
ẑ

D4 lk = cx
1,0,0(sin kx x̂ + sin kyŷ) + cz

0,0,1 sin kz ẑ ẑ kz

∣∣cx
1,0,0

∣∣ � ∣∣cz
0,0,1

∣∣ l‖k = cz
0,0,1 sin kz ẑ

D6 lk = cx
1,0,0{[sin(kx/2) cos(

√
3ky/2) + sin kx]x̂

+
√

3 cos(kx/2) sin(
√

3ky/2)ŷ}
+ cz

0,0,1 sin(kz )ẑ

ẑ kz

∣∣cx
1,0,0

∣∣ � ∣∣cz
0,0,1

∣∣ l‖k = cz
0,0,1 sin kz ẑ
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TABLE I. (Continued.)

Component of the
Point SOC vector (nearest-neighbor Condition for SOC vector parallel
group approximation), general n k⊥ lk ≈ l (k)n to n

C2v lk = cx
0,1,0 sin kyx̂ + cy

1,0,0 sin kx ŷ x̂ ky

∣∣cy
1,0,0

∣∣ � ∣∣cx
0,1,0

∣∣ l‖k = cx
0,1,0 sin kyx̂

ŷ kx

∣∣cx
0,1,0

∣∣ � ∣∣cy
1,0,0

∣∣ l‖k = cy
1,0,0 sin kx ŷ

Cs lk = cx
0,0,1 sin kzx̂ + cy

0,0,1 sin kzŷ

+ (
cz

1,0,0 sin kx + cz
0,1,0 sin ky

)
ẑ

⊥ ẑ kz

∣∣cz
1,0,0

∣∣, ∣∣cz
0,1,0

∣∣
� ∣∣cx

0,0,1

∣∣, ∣∣cy
0,0,1

∣∣
l‖k = sin kz

× (
cx

0,0,1x̂ + cy
0,0,1ŷ

)
ẑ kx

∣∣cx
0,0,1

∣∣, ∣∣cy
0,0,1

∣∣, ∣∣cz
0,1,0

∣∣
� ∣∣cz

1,0,0

∣∣
l‖k = cz

1,0,0 sin kx ẑ

ky |cx
0,0,1|, |cy

0,0,1|,
∣∣cz

1,0,0

∣∣
� ∣∣cz

0,1,0

∣∣
l‖k = cz

0,1,0 sin kyẑ

identically for all the point groups, and on the strength of the
perturbative term, which can be measured by maxk‖∈ sBZ |l⊥k‖ |.
We have chosen the parameters in the SOC vector such that
this measure stays the same, namely maxk‖∈ sBZ |l⊥k‖ | = 0.05.
The exact shape of the surface band depends on the point
group, which is also reflected by the equations for the first-
order perturbative approximation given in the last column of
Table II.

Figure 6 shows the relative difference |Ee
0 − E p

0 |/Ee
0

between the surface-state energy Ee
0 calculated by exact diag-

onalization of the slab Hamiltonian and the approximation E p
0

calculated by first-order perturbation theory. All the relative
differences are very small, which confirms the very good
agreement between the results of exact diagonalization and
the approximation in Eq. (71). We have also checked that there
are no qualitative differences for the IPR of the surface states
and the energy and IPR of the first bulk state compared to the
point group C4 so that they all look similar to the ones shown
in Fig. 4.

APPENDIX C: HAMILTONIAN MATRIX AND EXACT
DIAGONALIZATION

In this Appendix, we present the derivation of the Hamilto-
nian matrix in real space that needs to be diagonalized and

comment on the numerical method. To derive the Hamil-
tonian of a slab of thickness Z , we first Fourier transform
the Hamiltonian matrix in Eq. (1) in the direction normal to
the slab, i.e., with respect to k⊥, to real space. Here, we use
the example from Sec. III, with the normal-state dispersion

εk = −μ − 2tz cos kz − 2txy(cos kx + cos ky) (C1)

and the SOC vector lk = sin k⊥ n. For the sake of concrete-
ness, we choose k⊥ = kz and n = ẑ. The Fourier transform of
the fermionic operators is defined as

ck,σ = 1√
Z

∑
z

e−ikzz c(z,k‖ ),σ , (C2)

where c†
(z,k‖ ),σ (c(z,k‖ ),σ ) is the creation (annihilation) operator

of an electron with surface momentum k‖ and spin σ ∈ {↑,↓}
in layer z. Performing the Fourier transformation and restrict-
ing the Hamiltonian to layers z ∈ {0, . . . , Z − 1} leads to

H = 1

2

∑
k‖

�
†
k‖H(k‖)�k‖ , (C3)

TABLE II. Orientation of the SOC vector and the surface as well as parameter choices and first-order energy corrections of the surface
state for the numerical calculations in Figs. 5 and 6.

Group n k⊥ Parameters E (1)(k‖)/(αk‖
√

(�t )2 + λ2)

C2 ẑ kz cz
0,0,1 = 1 � cx

1,0,0 = 0.025,
cx

0,1,0 = 0.005, cy
1,0,0 = 0.02,

cy
0,1,0 = 0.02

√(
cx

1,0,0 sin kx + cx
0,1,0 sin ky

)2 + (
cy

1,0,0 sin kx + cy
0,1,0 sin ky

)2

C4 ẑ kz cz
0,0,1 = 1 � cx

1,0,0 = 0.025,
cx

0,1,0 = 0.025

√
2
√(

cx
1,0,0

)2 + (
cx

0,1,0

)2
√

sin2 kx + sin2 ky

D2 ẑ kz cz
0,0,1 = 1 � cx

1,0,0 = 0.04,
cy

0,1,0 = 0.03

√(
cx

1,0,0

)2
sin2 kx + (

cy
0,1,0

)2
sin2 ky

Cs ⊥ ẑ kz cx
0,0,1, cy

0,0,1 = 1/
√

2 � cz
1,0,0 =

0.02, cz
0,1,0 = 0.03

∣∣cz
1,0,0 sin kx + cz

0,1,0 sin ky

∣∣
C2v ŷ kx cy

1,0,0 = 1 � cx
0,1,0 = 0.05

∣∣cx
0,1,0 sin ky

∣∣
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with the spinors

�k‖ = (
c(0,k‖ ),↑, c(0,k‖ ),↓, c†

(0,−k‖ ),↑, c†
(0,−k‖ ),↓, . . . , c(Z−1,k‖ ),↑, c(Z−1,k‖ ),↓, c†

(Z−1,−k‖ ),↑, c†
(Z−1,−k‖ ),↓

)T
(C4)

with 4Z components. The BdG Hamiltonian H(k‖) in Eq. (C3) is given by the block-band matrix

H(k‖) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d (0)
k‖ d (1)

k‖ 0 . . . 0(
d (1)

k‖

)†
d (0)

k‖ d (1)
k‖

...

0
(
d (1)

k‖

)†
d (0)

k‖
. . . 0

...
. . .

. . . d (1)
k‖

0 . . . 0
(
d (1)

k‖

)†
d (0)

k‖

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(C5)

with the 4 × 4 blocks

d (0)
k‖ =

⎛
⎜⎜⎝

−μ − 2txy(cos kx + cos ky) 0 0 �s

0 −μ − 2txy(cos kx + cos ky) −�s 0
0 −�s μ + 2txy(cos kx + cos ky) 0
�s 0 0 μ + 2txy(cos kx + cos ky)

⎞
⎟⎟⎠

(C6)
and

d (1)
k‖ =

⎛
⎜⎜⎝

−tz − iλ/2 0 0 −i�t/2
0 −tz − iλ/2 −i�t/2 0
0 −i�t/2 tz − iλ/2 0

−i�t/2 0 0 tz + iλ/2

⎞
⎟⎟⎠. (C7)

The matrix in Eq. (C5) has to be diagonalized in order to obtain the eigenvalues and eigenstates of the slab. In our case, we only
need the eigenvalues of lowest magnitude and the corresponding eigenstates. We have performed the diagonalization with the
SciPy function scipy.sparse.linalg.eigsh, which uses the implicitly restarted Lanczos method. However, since the matrix
size is only 4Z × 4Z for slab width Z (we take Z = 500) other methods should also work.
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