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Manipulation of Majorana wave packets at surfaces of nodal noncentrosymmetric superconductors
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Nodal noncentrosymmetric superconductors can host zero-energy flat bands of Majorana surface states within
the projection of the nodal lines onto the surface Brillouin zone. Thus, these systems can have stationary, local-
ized Majorana wave packets on certain surfaces, which may be a promising platform for quantum computation.
Such applications require protocols to manipulate the wave packets in order to move them without destroying
their localization or coherence. As a step in this direction, we explore the idea that the surface states have a
nontrivial spin polarization, which can couple for example to the magnetization of a ferromagnetic insulator in
contact to the surface, via an exchange term in the Hamiltonian. Such a coupling can make the previously flat
bands weakly dispersive. We aim to model the motion of spatially localized wave packets under the influence of
an exchange field which is changed adiabatically. We calculate the time-evolved wave packet for a model system
and discuss which factors influence the direction of motion and the broadening of the wave packet.

DOLI: 10.1103/mtcl-r12c

I. INTRODUCTION

It has been shown [1-8] that time-reversal-symmetric non-
centrosymmetric superconductors (NCSs) can support flat
bands of zero-energy surface states in part of their surface
Brillouin zone (sBZ). In these systems, nodal lines of the bulk
gap can occur if the spin-triplet pairing is sufficiently strong
compared to the spin-singlet pairing. One can define a wind-
ing number that depends on the surface momentum and that is
nonzero within the projection of the bulk nodal lines onto the
sBZ, protecting zero-energy Majorana surface modes in these
regions of the sBZ [1-8]. These zero-energy surface states are
necessarily in the strong-coupling regime [9—-11] because their
kinetic energy vanishes. Moreover, these Majorana modes
are potentially interesting for quantum computation [11-22],
which, however, requires braiding to realize quantum gates,
i.e., it is necessary to move wave packets around one another
while still keeping them well localized and without destroying
their coherence. Moving wave packets requires control of the
dispersion of the surface modes; we have to make the bands
weakly dispersive with band velocity in the direction in which
we want to move the wave packets. Clearly, we also have to
be able to change the magnitude and direction of this velocity.
The application of an electric field does not work because
the Majorana modes in momentum space are charge neutral
on average. However, they do carry a momentum-dependent
spin polarization so that an applied magnetic field or an ex-
change field leads to a nontrivial dispersion [2,17,21,23-26].
We here investigate the idea of introducing an exchange field
at the surface of the superconductor, which can for example
be achieved by bringing it into contact with a ferromagnetic
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insulator (FI). The exchange field is assumed to change adi-
abatically. In this paper, we examine the resulting motion of
the wave packets. In order to calculate the time evolution of a
spatially localized wave packet under the influence of such
an exchange field, we employ a transfer-matrix method to
calculate the surface states and energies.

The remainder of this paper is organized as follows: In
Sec. II, we introduce our model Hamiltonian, discuss its
symmetries, and give a brief review on the winding number
that protects the zero-energy surface states. In Sec. III, we
derive an analytical method for the calculation of the sur-
face states both in the presence and in the absence of an
exchange field. We also discuss the mathematical construc-
tion of a wave packet and its time evolution. In Sec. IV,
we present the numerical results for the time evolution for a
system with the point group Cy4, and discuss which factors
have to be considered to construct wave packets that avoid
quick delocalization. Finally, we give a short summary and
draw conclusions in Sec. V.

II. MODEL SYSTEM

In this section, we introduce the model considered in
this paper and briefly discuss how its symmetries lead to a
surface-momentum-dependent winding number that can pro-
tect flat bands of zero-energy surface states. We start with the
BCS Hamiltonian of a three-dimensional noncentrosymmetric
single-band superconductor,

1 .
Hzcs = - ; WH (k) W, (1

which contains the spinors Wy = (ck 1, Ck.y, € 4 i i)T

of creation operators CL7 and annihilation operators ck,

for electrons of momentum k and spin o € {1, |} and the
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Bogoliubov—de Gennes (BdG) Hamiltonian

hnes®)  AK)
Mk)z(A*(k) —hh(—k))' @

This 4 x4 matrix consists of four blocks, where the diagonal
blocks are given by the normal-state Hamiltonian

hnes(K) = koo + gk - 0 (3)
and the off-diagonal blocks by the gap matrix
AK) = (Ayop + di - 6) ioy. 4)

The normal-state Hamiltonian consists of a spin-independent
dispersion ex multiplied by the 2x2 unit matrix oy and a
spin-orbit-coupling (SOC) term gy - o, where gx = Al is the
SOC vector with SOC strength A and o is the vector of Pauli
matrices. In order to ensure time-reversal symmetry (TRS),
the dispersion €k has to be even in k, while the SOC vector gx
has to be odd. The normal-state Hamiltonian can be diagonal-
ized by the eigenvectors

N 1
P (5)
e

corresponding to eigenvalues slf = ¢k £ |Ik|, which form
the positive-helicity and negative-helicity bands, respectively.
Here, we denote the components of the SOC vector by I/, i.e.,
L= 5L DT

Due to the absence of inversion symmetry, parity is not a
good quantum number so that the gap matrix A (k) generically
contains both a spin-singlet part Aj o, which is even in k, and
a spin-triplet part di - o, where dy is the spin-triplet-pairing
vector, which is odd in k. The vector di is assumed to be
parallel to the SOC vector gk as this alignment maximizes
the critical temperature [4,27]. We thus write dyx = A{(lk.
We here consider the simplest symmetry-allowed order pa-
rameters with A} = A® = const and A} = A" = const, i.e.,
(s + p)-wave pairing. As the SOC vector and the spin-triplet-
pairing vector are taken to be parallel the eigenvectors vi of
the gap matrix can be written in terms of the eigenvectors of
the normal-state Hamiltonian as v = —ioyu*, correspond-
ing to the eigenvalues Af = A* + A'|lk|, which denote the
gap on the positive-helicity and the negative-helicity Fermi
surfaces.

The specific form of the SOC vector is restricted by
the crystallographic point group, which constrains the BdG
Hamiltonian according to

UgHR™ KU = H(K), 6)

where R is an orthogonal 3x3 matrix which represents a
symmetry in the point group, the matrix R is given by R =
R/ det(R) = det(R)R, and Uy = diag(ug, uy), where uz =
exp[—if(n - 0)/2], is the spinor representation of R. This
leads to the constraints

L = Rlg-i, @)

€k = €R-k 3

for all R in the point group.

According to the classification of topological insulators
and superconductors known as the 10-fold way [28-32], a
fully gapped Hamiltonian of the form described above belongs
to the class DIII. Particle-hole symmetry (PHS) described by

UcH(—K) U = —H(k), )

with C = KUg, K being the complex-conjugation operator,
and U¢c = o0, ® 0y is ensured by the construction of the BdG
Hamiltonian and squares to +1. TRS 7 = KUr with Ur =
0o ® ioy is also present and squares to —1 since the normal-
state dispersion € is even in k, while the SOC vector, which
couples to the Pauli matrices, is odd, which leads to

UrH(—K) U} = +H(K). (10)

The combination of these antiunitary symmetries is the chiral
symmetry

U{H(K)Us = —H(k), (11)

i.e., the BAG Hamiltonian anticommutes with the unitary
matrix Us = iUrUc = —ox ® oy, which is the essential in-
gredient leading to a surface-momentum-dependent winding
number and zero-energy surface states: If we perform a
transformation with a unitary matrix Wy that diagonalizes
Us, WSUSWST = 0, ® o0y, the Hamiltonian becomes block off-

diagonal, i.e.,
0 D(k)). (12)

|7 T
(k) = WsHEK)W, =<DT(k) 0

For sufficiently large triplet-to-singlet pairing ratio A’/A*,
the gap A has nodal lines, i.e., one-dimensional regions on
the negative-helicity Fermi surface §_ = 0, where the gap
A, vanishes. Hence, no global topological invariant can be
defined. In the following, we will instead define a winding
number that depends on the momentum in the sBZ.

For any given surface orientation, we distinguish between
the momentum components k; parallel to the surface and the
perpendicular component & . By holding k; fixed and treating
only k; as a momentum argument, we obtain the Hamilto-
nian Hy, (k1) of an effectively one-dimensional system. For
general k|, this one-dimensional system does not have TRS
or PHS anymore but retains chiral symmetry, which does not
change k. The off-diagonal block D(k) in Eq. (12) can now
be used to define a k-dependent winding number

1

wk)) = —/ dk, 0, arg[det D(K)]. (13)
2 ki

It has been shown [6] that this winding number can be ex-

pressed in terms of the signs of the gap functions near the

Fermi surfaces as

w(k)) = Z Z sgn(BkL §£|k:k;) sgn(Al‘ix_), (14)

ve{+,—} kp

where k; = (kj, k| ;) is the Fermi momentum of the Fermi
surface v for parallel component k;. The winding number
w(k)) is therefore zero outside of the projections of the nodal
lines onto the sBZ and changes by either +1 or —1 when
the projection of a nodal line is crossed. Since the flat-band
surface states are protected by a topological winding number
relying on chiral symmetry, which is realized as the product
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FIG. 1. New parallel coordinate m and orthogonal coordinate / at
fixed y for a (101) slab.

of particle-hole and time-reversal symmetry, we expect them
to persist even in the presence of nonmagnetic impurities.

For our numerical calculations, we assume a model sys-
tem with the point group Cy, because the resulting nodal
structure is rather simple. However, any other choice of a
noncentrosymmetric point group would also be valid and lead
to qualitatively similar results as long as the parameters are
chosen in such a way that the system has nodal lines in the
bulk. While the point group determines the symmetry of the
nodal lines [4], they exist for any noncentrosymmetric point
group for appropriately chosen parameters.

We further assume that the normal-state dispersion only
contains nearest-neighbor hopping terms with amplitude ¢
such that

€k = —2t(cos ky + cos k, + cosk;) — u, (15)

where p is the chemical potential. We expand the SOC vector
to lowest order, which leads to a Rashba-type SOC term

Iy = sink, &, — sink, &,. (16)

We choose the surface orientation (101), and define the new
coordinates

l=x+z (17)

orthogonal to the surface and

m= V;ZJ (18)

parallel to the surface, as sketched in Fig. 1. The general ideas
do not depend on our particular model and calculations can be
done for any point group lacking inversion and any dispersion
compatible with it.

We note that for a lattice parameter a = 1, the displacement
of lattice points in the [ directions is //+/2 and in the m
direction (2m + [ mod 2)/ /2. If we define the momenta

ki = (ke +k)/v2 (19)
in the direction orthogonal to the surface and
kn = (ke — k)/v/2 (20)

parallel to the surface Fourier transformations along these
directions therefore contain terms of the form exp(ik;// V2)
and explik,,(2m + [ mod 2)/ ﬁ], respectively.

For a numerically exact diagonalization, we construct a
slab Hamiltonian from Eq. (2) with a surface at [ = 0. The
derivation is presented in Appendix A. For the numerical

Ao . 2 -2

FIG. 2. Sketch of the Fermi surface with nodal lines and the
projection onto the sBZ. The regions with nonzero winding number
are labeled as F; for k,, < 0 and F, for k,, > 0.

calculations, we use the parameterst = 1, u = —4, A = 0.05,
A* =0.04, and A" =0.05. These parameters have the di-
mension of energy and are given in arbitrary units. For these
parameters, the spheroidal Fermi surface has two nodal lines,
which are parallel to the xy plane. The projections of these
lines onto the sBZ delimit two regions, which we will denote
by F; for the left region with k,, < O and F;, for the right
one with k,, > 0 (see Fig. 2). Any other choice of parameters
would also work, as long as there are nodal lines. The exact
choice of parameters would of course affect the shape of
the momentum region hosting zero-energy surface modes and
their spin polarization.

In order to move the wave packet, we have to introduce a
time-reversal-symmetry-breaking term into the Hamiltonian.
We achieve this by bringing the surface into contact with a FI
with a magnetization h that can be manipulated adiabatically.
This insulator is represented by a normal-state Hamiltonian of
the form

hr(k) = (ex +V)oo +h - 0, 21

i.e., for the sake of simplicity, we assumed the same dispersion
€k as in the superconductor and a constant potential V. For the
numerical calculations, we will use V = 3.5. This parameter
has to be chosen large enough to ensure the presence of an
energy gap so that the surface states decay exponentially into
the FI. As long as this is the case, changing V only results in
a change of the decay length. Similarly, qualitative changes
of €k are also expected to only affect the decay length, as
long as the gap remains open. The details of the model are
described in Appendix A. We denote the surface state of the
BdG Hamiltonian Hgps(Kj) of the NCS-FI slab heterostruc-
ture with I/I(kll) = (l/fl:,LFl (k”)T, ey I/IZ:LNCS_] (kH)T )T, i.e.,
¥ (kj) is a vector of length 4(LF! 4 LNCS) that solves the
eigenvalue equation Hyas (Ky) ¥ (Ky) = Ex, ¥ (k)) and ¥ (k)
are vectors of length 4.
Using the spin matrices

> = diag(o;, —0/), (22)
we calculate the spin polarizations

sk =D k) S (k) (23)
1
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FIG. 3. (a) y component and (b) m component of the spin polar-
ization of the surface states on the (101) surface of a NCS with the
point group Cy,.

of the surface states ¥ (k;) for the time-reversal-symmetric
case of h = 0. Plots of s” and s™ are shown in Fig. 3 for a slab
thickness of LN®S = 5000 for the superconducting layer and
L' = 200 for the insulator. The third component s’ vanishes.
Since both the y component s”(k;) in Fig. 3(a) and the m
component s (k) = [s*(k)) — sZ(k”)]/\/E in Fig. 3(b) are
nontrivial the introduction of a magnetization h coupling to
the spin polarization leads to a nontrivial dispersion.

III. CONSTRUCTION OF A WAVE PACKET

The goal of this section is to construct a localized wave
packet as a superposition of states from the regions F; and F,
of the sBZ and to calculate its real-space representation. As
these regions only cover a fraction of the sBZ it is impossible
to construct a wave packet that is localized at a single lattice
site [6,11]. The minimum size of a wave packet is inversely
proportional to the momentum-space area of F; U F,.. We
therefore expect that experimentally any sufficiently local ex-
citation of a zero-energy surface-state wave packet, e.g., by
tunneling from a superconducting STM tip, would result in a
maximally localized wave packet. Such a wave packet consists
of a linear combination of all states in F; U F,. In Sec. IV,
we will also consider superpositions of fewer surface states
since this idea will turn out to be beneficial for the stability of
the wave packet. In this section, we therefore do not assume
the region F C F; U F, from which the linear combination is
constructed to be the entirety of F; U F,. The experimental
implementation of a momentum-selective setup, e.g., with
F C F1 UF,, will surely be demanding and is left to future
research as our goal is only to give a proof of concept for the
theoretical framework.

The wave packet reads as

\IIWP(m, v 1) = Z 9% pikin(2m-+1mod2)/v/2+ikyy Vi),
(ke oky)EF
(24)

with phases ¢i,. We choose these phases as
¢x, = arg[y (k)'v ], (25)

where v” = (0,0,0,0)7 if 1 #0 and v\, = (1,0,1,0)".
This phase choice ensures that the resulting wave packet has
the Majorana property, i.e., that

o, = o} (26)

Ry Ry

for the operator

Dg, = Z eMiRig (27)

kjeF

where R = (2m +1 mod 2)/+/2 &, + y@, is the real-space
position of the wave packet and

LNCS
é-kH = e_l¢kH Z w;-(k\\)qj(k”,l) (28)
[=—LH

is the annihilation operator of the zero-energy mode at k; with
the spinor

_ + t T
Wiy = (Caqits Coqds Coiiyrs Cigpny) - (29

Note that WWP(m, y, I) is the wave function corresponding to
the operator ®p; .

We now show that Eq. (26) holds. The PHS defined in
Eq. (9) implies that there always exist phases B, € R such
that

Vi(ky) = exp(ifx,) Uc ¥/ (—K)). (30)

Multiplying this equation by (v@)" = (v®)” and using that
Ue v©@ = v©®, we find

—¢k, = B, + Pk, - (31)
This leads to
LNCS
g-_I-kH = el¢7k“ Z \Ilz;k“yl)lﬁl(—k”)
I=—LF
LNCS
=P Y Wi Ul Uy (k)
I=—L"
LNCS
=ePme Yy Wi (k)
="
=l (32)

which, together with Eq. (27), proves the Majorana property.

In Sec. IIT A, we develop a method to find the surface states
¥(Kky) in the limit of infinite slab thickness. In Sec. IIIB,
we then examine their time evolution in real space under
the influence of an adiabatically changing magnetization h in
the FIL.

A. Limit of the eigenstates in momentum space
for infinitely thick slabs

In this section, we consider the slab Hamiltonian for the
NCS-FI heterostructure. The solution is specific to our Cy,
model system but the method can be applied to any slab
heterostructure.

We note that the eigenvalue equation

Hstavs (K ¥ (Ky) = Ex, ¥ (K))) (33)
can be rewritten as a recurrence relation

0 = (HY)'yioy + (HYS — EL)yr + HYip1 (34)
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on the NSC side, i.e., for/ > 1, and

0= (H™M 'y + (B = EL) + H 'Y (35)
on the FI side, i.e., for I < —1. The specific form of H}'“®,
HNCS, HEY, and H! can be found in Appendix A. Here, we
have dropped the dependence of all quantities on Kk for the
sake of readability. These two equations are equivalent to
the original eigenvalue equation if one imposes the boundary
condition

0= (H") Yo+ (HY = ELy)yo + HYSyy - (36)
for the interface layer [ = 0 and the two boundary conditions
0= (HN) Yynes_y + (HY — E1a)ypnes_,

= CHNS s, @37

0= (Hy" — EL4)Y_pn + H{"Y_pmgy

—(H) Yy (38)

for the top and bottom surface of the slab heterostructure,
respectively. However, in the following, we instead consider
the limit of infinitely thick slabs, which means that Eqgs. (37)
and (38) are replaced by the condition that the surface state
decays for / — Fo0. Note that in this limit, Eqs. (34)—(36)
describe the system exactly.

We rewrite Egs. (34) and (35) employing the transfer ma-
trices

0 14
TS = ( NCS\ ! (zyNes) T NCS\ 1 (zyNCS >’
_(Hl ) (Hl ) _(H1 ) (Ho _Eh)

(39)
0 14

TH = Z _ 40
(- 1) @

and the vectors

Y
= 41
o <1ﬁ1+1 @
as

x = TNSx_ = (TN x forl > 1, (42)
x =T = @™y 1+, forl < —1. (43)

From these equations, it follows that ; for all / can
be determined from v by expanding xo in the eigen-
basis {tfN, .. f{SY (', 6 of TNS (TH) for
[ >0 (I <0) and multiplying with the correct power of
the corresponding eigenvalues thCS, el té"cs (rlFI, R L)
Note that, due to the tautological equation ¥; = y; from the
upper two blocks of the transfer matrices, we do not need the
full eigenvectors. Instead, it is sufficient to know the first four
of the eight components of each vector, which we will denote
by 1% (t],,). We find

1 o I(‘EFI) tFI forl <O,

=52 (44
NG el B NCS) NS forl >0,

— hmax B I I "]

E

&

=

3

=

= QL . . |

T; g T T,+T

FIG. 4. Sketch of the time dependence of the modulus of the

magnetization of the FI as given by Eq. (48).

where n is a normalization factor. To make the wave function
continuous and conform with Eq. (36), the coefficients osz-I,
a}\ICS have to satisfy
8
_ NCS,NCS FIFI
0= (afSeNS —af'ef), (45)
j=1
8
_ FI(_FI FI
0=> [ef"(z]")" ()

j=1

—|—05NCS(HNCS E1l ) NCS
+ o[NCS NCSHNCS JNMCS] (46)

With Egs. (44)-(46), the surface state for any k; can, in
principle, be determined numerically. However, some further
simplifications are possible, which are discussed in Ap-
pendix B. For vanishing field, h = 0, the energy for k inside
the projections of the nodal lines is found to be Ex, = 0, as
expected. This serves as a sanity check for the transfer-matrix
approach. A derivation of this fact is given in Appendix C. We
also give numerical evidence that the transfer-matrix approach
results in a good approximation of the surface state of a slab
with finite but large thickness in Appendix D.

B. Real-space wave packet and time evolution

In this section, we present the time evolution of the wave
packet given in Eq. (24). We assume that the slab is infinitely
large in the parallel directions so that we can replace the sum
over k by an integral

» —>A(]—')£ / dky dky, (47)
f

2
(ky k)€ F @)

where A(F) is the area of F in momentum space. We assume
that the magnetization h in the FI is changed adiabatically
fromh = 0 to h = A, & where the direction € stays constant
and the change of the amplitude takes place linearly over
a ramp time 7;. The magnetization then stays constant until
t = T and linearly returns to h = 0 over the time 7;. We thus
have
t/T; for0 <t < T,
h(t) = hpax € X 1 1 forT; <t <T,
(+T —1)/T, forT <t<T+T.
(48)
A sketch of the modulus of h(z) is shown in Fig. 4.

We now examine the time evolution of the wave packet
using the instantaneous eigenenergies Ey, (¢) of the surface
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state at time ¢,

V2
WP — _
v (m,y,l,t)_A(}—)(zn)zLdk»'dkm

2m + Imod2 Lk )
V2 -“y
x exp(igh, ) exp <—i/ dt’EkH (t’))
0
X exp (¢§T°(t))wz (ky, 1), (49)

where we have set 7 = 1. In this expression, the geometric
phases are given by

P (1) = —/ dt' Yk, ¢ o,y (k. 1)
0

X exp (ikm

:-th%ﬂ%hfmﬂmwm, (50)

where ¥ (k;, ') are the instantaneous eigenstates of H(ky, ')
at energies Ey, () and C is the contour traced out by h(z). The
use of instantaneous eigenstates is justified if the time evolu-
tion is adiabatic. The condition of adiabaticity is discussed in
more detail in Appendix E.

For every point (m,y,[), the integral in Eq. (49) can,
in principle, be evaluated numerically, using the surface
states ¥ (kj, t') and energies Ey, (¢) calculated as described in
Sec. Il A. However, we instead make a few simplifying as-
sumptions and approximations, which will lead to numerically
less expensive calculations.

We begin by observing that for sufficiently small h, the
surface-state energy depends linearly on the modulus |h| [21],
which is plausible due to the bilinear coupling between the
magnetization and the spin polarization. This gives a linear
energy dependence at the first order of perturbation theory in
h. The dynamical phase can therefore be simplified to

— / dt Ex, (1)
0

*/(2T})
— _Elizmax r — 7;/2

I
_ (t=T)*-2T1+T?
2T;

for0 <t <T;
forT, <t <T, (51)
forT <t <T+T,

where El]z"‘““‘ is the surface-state energy for |h| = hyax. To
further simplify the results, we restrict our examinations to the
time t = T; + T, i.e., we only consider the final wave packet
after the magnetization has been turned on and off again. At
this time, we find

t
- f dt By, (t) = —Eym(T + T;) = —E™T (52)
0

and

Ti .
ST +T) = — / d’ yr(ky, 1) 0, (K, 1)
0

T
_/cwwmwﬁawmmﬁ
T D —

0

T+T;
—/ dt' Yk, ) vk, t).  (53)
T

If we now substitute ' — f = T + T; — ¢’ in the third term we
find that the geometric phase vanishes,

¢ (T +T) = 0. (54)

To calculate the integral in Eq. (49), we thus only need the
surface-state wave functions ¥ (k) at h = 0 and the energies
Elf“l““ at the maximum value of |h|. In particular, the geomet-
ric phase, and with it any terms containing wave functions
¥ (K, h) and their derivatives, vanish because the magnetiza-
tion is switched on and off in the same direction instead of
being rotated. The dynamical phase can be written in terms of
only El:“"‘ and not Ey, [A(¢)] because we assumed the surface-
state energy to depend linearly on A.

IV. RESULTS FOR POINT GROUP Cy,

In this section, we present the time evolution for a slab
with the point group Cy,. As before, the system parameters
arechosenast =1, u = —4,A =0.05,V = 3.5, A* = 0.04,
A" = 0.05, and Ay, = 0.05. The numerical integration of the
wave function in Eq. (49) is performed with a global adaptive
method in Mathematica [33], setting both the precision goal
and the accuracy goal to 4. We begin by examining a wave
packet constructed from zero-energy states from the full re-
gion F; U F,. We obtain

WV(m, y, [, T +Tp)

N K k) ks )
=A(.7:r)—2/ dk, / dkm+/ dky,
(27{) _k;nmx —kmax (k) Jmin (ky)

m

2m+ Ilmod2 .
T + lkyy)

x exp(idx, ) exp (-iE{j;MT)I/f, (kj,h =0). (55)
The boundaries kmi“(ky), kX (ky), and k'™ of F can be

m
expressed analytically for our model and are presented in
Appendix F.

Figure 5 shows initial wave packets and several time-
evolved wave packets in the layer / = O for different times
T. In the first row, Figs. 5(a)-5(d), the magnetization points
in the m direction and the times 7 are chosen as T =0,
4x10*, 8x10% and 1.2x 10°, respectively. In the second row,
Figs. 5(e)-5(h), the magnetization points in the y direction
and we choose T =0, 2x10% 4x10*, and 6x10*, respec-
tively. Note that the units of T are the inverse of the units of
energy.

It becomes clear that the wave packet is indeed spatially
localized and moves in the negative y direction for h || €, and
in the negative m direction for h || &,. Interestingly, the fact
that the support F of the superposition in Eq. (24) is symmet-
ric under time reversal and mirror reflections does not prevent
directed motion of the wave packet. We also see that the time
evolution leads to a significant broadening of the wave packet,
which increases with time 7. Both the direction of motion
and the broadening are expected features as the exchange field
couples to the spin polarization shown in Fig. 3. The energies
Eli":““* of the surface states with a magnetization in a certain
direction are therefore proportional to the spin polarization in
that direction. These energies determine the time evolution. A

X exp <ikm
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FIG. 5. Time evolution of a maximally localized wave packet in the / = O plane. The first row shows the time-evolved packet for a
magnetization in the m direction at times (a) T =0, (b) T =4x10* (¢) T = 8x10*, and (d) T = 1.2x10°. The second row shows the
time-evolved packet for a magnetization in the y direction at times (e) 7 = 0, (f) T = 2x10*, (g) T = 4x10*, and (h) T = 6x10*.

linear dispersion would lead to a motion without broadening,
while nonlinearities increase the width and change the shape
of the wave packet. Therefore, the wave packets broaden
rather quickly as the spin polarization is strongly nonlinear
in k” .

Figure 6 shows cuts through the NCS slab of the wave
packets at m = 0 in Figs. 6(a) and 6(c) and at y =10 in
Figs. 6(b) and 6(d). The first row, Figs. 6(a) and 6(b), shows
the initial wave packet, while the second row, Figs. 6(c) and
6(d), shows time-evolved wave packets at T = 1.2x10° and

10 T X = T
a)m=0,h=0 {[(b)y=0,h=0
(@ (b)y .
~ 5t =4 F g
. - L 0.08
o0 lnltla.I initial
= P on ol n
Zl o a : - 0.06
| ém ] [(d)y=0,h|
© c)m=0,h|é&, d) y=0, é
= * 18 0.04
~ 5t - F g
total total 0.02
distance distance
moved moved
0 . ! ! ! 0.00
=20 0 “100 0 10 |y
Yy m

FIG. 6. Cuts through the NCS slab of (a), (b) the initial and (c),
(d) the time-evolved wave packets. (a), (c) Show cuts in the m =
0 plane, whereas (b) and (d) show cuts in the y = 0 plane. While
the initial packets correspond to 7' = 0, the time-evolved packets are
shown for the times 7 = 1.2x10° in (c) and T = 6x 10* in (d).

6x 10*, respectively. Both the initial and the time-evolved
wave packets are localized at the surface. It is indeed expected
that the wave packets remain localized under the adiabatic
time evolution since the ramp time 7; is long compared to the
inverse bulk gap. We again observe the motion of the wave
packet in the direction orthogonal to the magnetization as well
as the broadening.

How can we reduce the undesirable broadening? As men-
tioned in the beginning of Sec. III, this can be achieved by
restricting the superposition to smaller regions F C F; U F,.
It is clear, though, that the practical generation of such a
superposition would be challenging. Shrinking the support in
momentum space necessarily makes the initial wave packet
broader in real space, which seems to conflict with our goals.
However, we will show that the increase of the width accu-
mulated during time evolution can be reduced dramatically
by this alteration. We choose a simple and systematic way
of defining the smaller region, which we will denote by F.
Here, f € (0, 1] is a number that denotes the square root of the
fraction of the area of F; U F, over which we will integrate
to construct the wave packet. The new range of integration
F = F again consists of two unconnected regions, which
are subsets of F; and F,. The two regions are mirror images
of each other, which is necessary to preserve the Majorana
property. The right-hand region is defined in such a way that
its center of mass coincides with the center of mass of , and
the distance from this center is scaled by a factor of f < 1,
ie.,

=S (56)
ko (ky) = ke + Flhnhy/ ) — k™). (57)
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-f=1

-f=075
1l-f=05
1-r=02

FIG. 7. Sketch of the smaller regions of integration 7, C F; U F,.

Here, the coordinates of the center of mass are given by k, = 0
and

7, ko
I,

e k= k)
f,)k;nax dk)‘ fk,‘a:l dkm km

cent __
ky," =

(ky)

kypex kp=""1(ky)
St by fiyZa )" A

e b { [k )] = [k )]}
2 [ b [k ) — i (k)]

(58)

A sketch of this is shown in Fig. 7.

Figure 8 shows projections of wave packets in the layer
| = 0 with a magnetization along the m direction for wave
packets constructed from regions F; with various scaling
factors f. Since the motion in deeper layers / > 0 roughly
follows the one in the top layer [ = 0, as shown in Fig. 6,
we here focus on the top layer. The magnetization points in
the m direction for the first two columns of Fig. 8 and in the y
direction for the third and fourth columns. The first and third
columns show projections of the wave packets along the m
direction and the second and fourth columns show projections
along the y direction. The rows correspond to different sizes
of Fr, f=0.25,0.5, 0.75, and 1. A color scale is used to
indicate the time variable T. We also plot a dot at the coor-
dinates y**™ and m™ where the modulus of a wave function
|W;—o|? reaches its maximum. The horizontal crossing the dot
indicates the full width at half-maximum (FWHM) along the
given direction.

We observe that for all values of f, the wave packets
move only in the direction orthogonal to the magnetization but
broaden in both directions. While the motion of y*™ and m®"™
does not depend significantly on f, we see that the increase
of w(T') is much smaller for small values of f, implying that
a smaller region F indeed reduces the delocalization due to
the time evolution. We also see that for smaller regions F,
the initial wave packet is more spread out.

Figure 9 summarizes our findings concerning the motion
of the wave packets for a magnetization in the m direction in
Fig. 9(a) and for a magnetization in the y direction in Fig. 9(b).
The purpose of this figure is to compare the distance moved
to the width of the final wave packet for different values of
f. The vertical axis shows the area as(T) in real space in
which |W,_o|? is larger than half its maximum value. This
quantity is a two-dimensional generalization of the FWHM
and encompasses the broadening in both surface directions.

To make this quantity comparable for different values of f, we
normalize it to its initial value ay(T = 0). The horizontal axis
gives the absolute value of the coordinate of the wave-packet
center in the direction of motion, normalized by the square
root of ay(T = 0). This means that a shallower slope of the
curves corresponds to weaker delocalization. We see that for
smaller values of f, the wave packets delocalize very little,
which is evidenced by the almost horizontal red and yellow
lines.

V. SUMMARY AND CONCLUSIONS

In summary, we have investigated the time evolution of lo-
calized wave packets constructed from Majorana zero-energy
states at the surface of NCSs. Due to the presence of zero-
energy surface modes in a part of the sBZ, it is mathematically
straightforward to construct a superposition of surface states
that is localized in real space. Any envisaged application
of such Majorana wave packets for quantum computation
requires that they can be moved along the surface without
excessive loss of their localization and coherence and that
they exhibit non-Abelian braiding statistics. In this paper,
we have addressed the first point by exploring the motion
of the wave packets by means of a time-reversal-symmetry-
breaking exchange field. This field is introduced by bringing
the NCS into contact with a FI with magnetization h. This
is only a first step towards realizing a braiding protocol that
could, e.g., exchange wave packets localized at two points
in space. Beyond effects arising from the individual broad-
ening and the overlap of a pair of wave packets, there might
be a rotation in the degenerate subspace of Fock space cor-
responding to the zero-energy surface states when moving
two wave packets around each other. However, a spatially
homogeneous FI as considered in this work would only move
both wave packets in the same direction. For braiding, it
will instead be necessary to introduce an inhomogeneous
magnetization.

We have introduced a general NCS model with a FI slab
on top, as well as a specific model with the point group Cy,
and a (101) surface, which we have used for our numeri-
cal calculations. After constructing a localized wave packet
from the zero-energy surface states, we have established a
transfer-matrix method to calculate the zero-energy surface
states in the limit of infinitely thick slabs. This method is
much faster and less memory intensive than numerical ex-
act diagonalization of the BAG Hamiltonian of a thick slab
but just as precise for sufficiently large slab thickness. For
vanishing magnetization of the FI, h = 0, the surface states
can be obtained analytically. The transfer-matrix method also
allows us to calculate the surface states and the surface-state
energies at h £ 0. While this is less efficient than for h = 0 as
it requires a root-finding algorithm, it also uses less memory
and is still efficient for large slab thickness.

Applying the transfer-matrix method, we have calcu-
lated the time-evolved wave packet and showed that an
NCS-FI heterostructure with a magnetization in the m di-
rection moves the wave packet in the y direction and vice
versa. If we construct the Majorana wave packets by super-
position of states from the entire sBZ region containing the
flat surface band, then the states broaden rather quickly since
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FIG. 8. Time evolution of wave packets which result from integrating over only a fraction of the region F; C F; U F,, shown for the top
layer I = 0. The magnetization points in the m direction for the first two columns [(a), (b), (e), (), (i), (j), (m), and (n)] and in the y direction
for the last two columns [(c), (d), (g), (h), (k), (1), (0), and (p)]. The first and third columns show a projection along the m axis and the second
and fourth columns show a projection along the y axis. The four rows correspond to different values of f = 0.25, 0.5, 0.75, and 1, respectively.
The color scale is used to indicate the variable 7', which is related to the time that has elapsed during the time evolution of the particular wave

packet (see Fig. 4).

the energy dispersion becomes strongly nonlinear. We have
therefore explored an alternative method of constructing the
wave packets from only part of the support of the zero-energy
states, which initially leads to broader wave packets. However,
these wave packets delocalize much more slowly during time
evolution.

The analysis in the paper is intended as a proof of con-
cept. We have presented a method of moving wave packets
of zero-energy surface states along the surface using the

magnetization of a FI. We have also shown that this motion
is associated with weaker delocalization if the initial wave
packet is constructed from a smaller region of the sBZ. The
protocol presented here only moves a single wave packet
in a certain direction. In order to move two wave packets
around each other, e.g., for braiding, it would be necessary
to move two wave packets in opposite directions. This cannot
be achieved with the methods presented in this work because
we rely on the assumption of momentum conservation and
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FIG. 9. Comparison of the motion and broadening of wave pack-
ets containing flat-band states from only a fraction of the region
Fy € F; UF,, inthelayer I = 0. The wave packets are time evolved
with a magnetization (a) in the m direction and (b) in the y direction.
The horizontal axis shows the absolute value of the position of the
wave-packet center along the direction of motion, normalized to the
square root of the initial area of the wave packet, and the vertical axis
shows the area normalized to its initial value.

therefore assume transitional symmetry. However, this work
provides a first step for studying the behavior of the Majorana
wave packets during braiding.
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APPENDIX A: SLAB HAMILTONIAN

In this Appendix, we derive the Hamiltonian matrices for a
superconducting slab with and without a magnetic insulator at
its surface. We begin with the 4 x4 BdG Hamiltonian given in
Eq. (2) with blocks described by Egs. (3), (4), (15), and (16).
We then use the definitions of the perpendicular momentum
k; in Eq. (19) and the parallel momentum k,, in Eq. (20) and
ky to transform all equations from k,, k,, and k; to k,,, k,, and
k;, which amounts to the rotation

1 1
0 5\ (kn

ky V2
=l o 1 off«x (AD)
k, L o L k;

V2 V2

In the next step, we Fourier transform along the perpendicular

(1) direction,
—ik;l
( )C(k,,,,kv,zm (A2)

where we introduce k| = (k,, k;) and the slab thickness LNCS,
We assume open boundary conditions at both surfaces of the
slab. This leads to

INCS _1

C(klhkl)ﬁ = m Z

1
;
Hpcs = 2 Z [qj(k” I (kH) W) + ‘I’(kH - 1) (kll) W) + ll’(k” 1+1) (kll) Wi, l)] (A3)
NN
with
—p — 2t cosky A sink, —A'sink, A*
A sink, —u — 2t cosky —A* A’ sink,
Hy (k) = . | . , (A4)
—A'sink, —A° w2t cosk, A sink,
A’ A’ sink, A sink, W+ 2t cosk,
k A ikm. t ikm
2t cos N eV —S eV 0
P k N
—5eV? 2t cos 0 —5eV?
HSEk) =] ", . | (A5)
Sev 0 2t cos ﬁ —5Sev?
" iy
0 %e 2 %e 2 2t cos Lz
and the spinors
- i § T
Wi,y = (Caiyt €Dy €k iy C—kpid) - (A6)
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Next, we write the Hamiltonian in matrix form

Hgfcs(kﬂ). H}\‘CS(kH)_ 0 0
1 (HYS) 1)) SN g
Hpcs = 3 Z(‘I’E”CS)T 0. h 0 ‘I’EHCS’ A7)
k R .
” : L HYOS (k)
[ O (H%\ICS)T(k”) HO(kH)

where the spinors now have 4L entries, W™ = (W ;_, -
NCS

Hiaw (k)

. \IJ(TkH I:LNCS_I))T, instead of four. This defines the BAG Hamilto-

nian H > (k) of a superconducting slab with (101) surfaces without a FI on top.
For the FI, we perform the same transformation on a BdG Hamiltonian with vanishing gap matrix and a normal-state
Hamiltonian given in Eq. (21). The FI slab is thus described by the Hamiltonian

HEY k) H'(ky) 0. 0
: (HT) (k) e :
Hia, = 5 ) (Vi) 0. o |
2%: I o I (A8)
: e e HEK)
Han (ki)
where the spinor is \Iflfnl = (lI/(Tk”’ PRI \L’&”’ ,:71))7, with the thickness L, and the blocks are given by
—p — 2t cosky, +V + h* h+ ik 0 0
B — W —u —2t cosky, —h*+V 0 0
Hy'(ky) = ’ . .
0 0 W42t cosk, —h* =V —h* + ik
0 0 —h* — ik w+2t cosk, +h* =V
(A9)
[
and surface states and the corresponding eigenvalues, we have

ki ..
H{'(ky) = 2t cos <E>dlag(—l, —1,1,1).  (A10)

We now combine Egs. (A7) and (AS), leading to the BdG
Hamiltonian of the NCS-FI heterostructure:

Hiw(k))  Bky)
Haans (Ky) = s All
1abs (K ( Bl HYS(K) (A11)
where
0 0.0
Bky) = o, Al2
( ”) 0..... 0 ( )

i.e., the off-diagonal blocks are empty except for blocks
HIFI(kH) and (HIFI)T(kH) in the top right and bottom
left corner, respectively, and the spinor is given by
Yy, = (\If(TkHJZ%H), e \Ij(TkH,I:LNCS—l))T' The Hamiltonian in
Eq. (All) is used to derive the transfer-matrix method in
Sec. IIT A. Also, the results in Sec. IIl A are compared to

the eigenstates of this Hamiltonian. Since we only need the

used an implicitly restarted Lanczos method implemented in
the sCIPYfunction scipy.sparse.linalg.eigsh.

APPENDIX B: CALCULATION OF THE WAVE FUNCTION

WITH THE TRANSFER-MATRIX METHOD
The eigenvalues NS of the transfer matrix 7N are de-
termined by the eigenvalue equation

TNCS;NCS _ _NCS,/NCs

; PR (BI)

which for TN 5 0 is equivalent to

0= [(erCS)—l(HlNCS)T + (H(l)\lcs _ E]14) + T}\ICSHIIVCS]tNCS

jou

(B2)

where we have defined t]IquCS to consist of the first four com-

ponents of NS, and the remaining four components follow as
thgs _ Tchsths'

For numerical calculations, it is most efficient to solve the
eigenvalue Eq. (B1) numerically. However, to find an analytic
relationship between the eigenvalues thCS, we can use the
fact that Eq. (B1) is equivalent to finding the roots of an
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eighth-order polynomial

8
)=y et (B3)
i=0

in ‘EJNCS with coefficients

1 Kon
cg = Cé = — ezﬁlk’”[(AI)Z + )\2]2 + 1614 COS4 —

16 /2

%(1 + eV [(AN)? - 52, (B4)

ko :
¢ = ¢} =21 cos —2(8t2(cos V2 + 1)(21 cosky + 1) + eV (A2 — (AT)2](21 cos ky + @) — 2A°A'AY), (B3)

/2

6 = ¢4 = 21*(cos v/ 2k, + D{2(A%)* — 2E]§” +[(A")? = 2*1(3 — 2 cos” ky) + 6(2¢ cos ky + p1)*}

+ %e'ﬁ’%([(&f + A2E; — (A 42713 — 2 cos’ &)}

+2[(A")? — A*][(A%)? — (21 cosky + pn)*] — 8ATA'A(2t cosky + 1))

4+ 166*(cos v/ 2k + 1Y% — (1 + eV )22 [(ATY? — 2], (B6)

ko ,
s = ¢} =4t cos —= ((2¢ cosky + ) {2(A%) = 2E¢ + [(A")* = A3 — 2 cos® ky) + 121°}

V2

+ A*A'A(6 — 4 cos® ky) +2(2t cosky, + w)® + 12¢% cos 2k, (2t cosky, + )

_ Eiﬁkm{ASAl)\, _ %[)\'2 _ (At)z](zt COSky + H’)})’ (B7)

C1 = g[(A’)2 + A7+ {Eﬁ — (A*)? — 8% cos® =

V2

2
—[(A")? + )ﬂ(% — cos? ky) — (u + 2t cos ky)z}

3 ki, !
- 4(— — cos? ky> {8A2t2 cos? 7 + [A°AT — A(u + 2t cos ky)]z}

2

km km
+ 4¢% cos? WG {(A’)2 — 2242 cos? —=[2% — (A" + 421 + 8(u + 21 cos ky)z}. (B8)

/2

Due to the relation

ci =Cy_; (B9)

—1

between the coefficients, if tJNCS is an eigenvalue of the trans-

fer matrix, then we find another eigenvalue, which we will call
NCS

‘EJ-+4 as

(B10)

Using the eigenvalues 7} of the transfer matrix, we now

define the quantity k) = —+/2i In NS, With this definition,
we can rewrite Eq. (B1) as

(B11)

Finding the eigenvalue of the transfer matrix is therefore
equivalent to finding the complex solution kl(" ) of

0 = det [H(ky, k) — Ey,], (B12)

(

which is equivalent to solving the two equations

Elzu - (Skiu,k[)z - (Ai(t”,k,)2 =0.

As there is a one-to-one correspondence between the so-
lutions &/’ of this equation and the roots T of Eq. (B3),
we find eight complex solutions, which occur in pairs
with Re(k/*") = Re(k”) and Im(k"*") = —Im(k\")). Us-
ing Eq. (44), we see that the surface state is a linear
combination of the eigenvectors of the transfer matrix with
prefactors that either decay (for r]NCS < 1) or increase (for

NC
T

(B13)

S > 1) exponentially in . Since the wave function v has to
be bounded, the coefficients &N which correspond to terms
with exponential increase, have to vanish. This is the case

for eigenvalues 7} > 1, or equivalently values of kY with

negative real part. If any of the solutions k,(j ) were real, the
surface-state energy Ek, would be an eigenvalue of the BdG
Hamiltonian in Eq. (2) for k = (ky, kl(j )). However, since we
want to find a surface state in the bulk gap we consider only
energies Ek, < Af such that none of the kl(j ) are real. We can
therefore ignore the solutions with negative real part, which
we choose to be kl(s) e, kl(g), and only proceed with the solu-
tions kl(l), cee k1(4) with positive real part. The corresponding
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eigenvectors INCS follow from Eq. (B11) as

oyt
Yk io”? Uiy

where we introduced the notation k) = (k, k) and uk(,,

are the eigenvectors of the normal-state Hamlltoman given

in Eq. (5). The prefactor in the lower components in

Eq. (B14) is

+
l‘NCS kW)

Jou

(B14)

Ek(/)

TAE
Ak(/)

+

E,
Vo) = .

(B15)

The sign =+ has to be chosen according to the sign for which

they take the simple form

1L gor. = (€7 cos(£/2), 5in(5/2),0,0)",  (B19)
1L ge 1y = (—€ sin(€/2), cos(£/2),0,0)",  (B20)
1L | gt = (0,0, €" cos(£/2), sin(€/2))", (B21)
L g1 0 = (0,0, —€"sin(£/2), cos(£/2))".  (B22)

Next, we examine the boundary conditions in Egs. (45) and
(46), which are two vector equations of length four, i.e., eight
scalar equations. These equations are linear in the coefficients

oS, L, oSS, and a?lg and can thus be written as

Eq. (B13) is satisfied. 0=M(@, ..., o) off of! | oo™ ), (B23)
In analogy to the NCS case, the eigenvalues 7} for the FI , ,
G _ - ) with an 8 x8 matrix M which is given by
can be used to define k)’ =+21n ;. We then ﬁnd that «}’
are the solutions of det[?—LFI(k“, k = ucl) Ey,] = 0 with M= M, M, (B24)
Mz My
ha(Ky, k) 0 .
FI _ ek, K
H Ky, k) = < 0 lhr (=K, —kl)]T>’ (B16) with the blocks
which are real. In order to ensure that v (k)) is bounded, ! ! ! !
we again have to set the prefactors o' in Eq. (44) to zero M, = a 9 5 44 (B25)
for terms which increase exponentially for / — —oo. We can )2;{1 ]:2]%2 ?33 )fz“
therefore restrict ourselves to positive solutions Kj_]). We find ! : : '
four positive real solutions —e"Mcoss e Msing 0 0
V —u—2t cosky, —¢Ek, +olh —sing —cos & 0 0
k) = k87 = 2 arcosh a ykg“ ly + 01 |. My = ? 2 , e ot |
4t cos i 0 0 —e'cos 3 €"sinz
(B17) 0 0 —sin§  —cos}
The first four components of the corresponding eigenvectors (B26)
of the transfer matrix span the null space of HF(k), &k =
iK))— Ey, . If we rewrite the magnetization h in spherical myy myp mp3z M4
coordinates, M; = mpy| Npp Mp3 Ny (B27)
I cos 7 siné ’ myy m3y  m33 mag4 |’
h=|r | =nh|sinnsin& |, (B18) M4y Maz M43 Mg
h* cosé& and
|
Ki’] . Kl'_]
e VT Mcosy —e v " §in o 0 0
Kl‘l KL*]
~% gin & - 3
ki e VIsinz e V¥ cos3 0 0
M, =2t cos E i i , (B28)
0 0 —e At cos§y e +n sin §
—1,1 »(_] -1
0 0 —e sin% —e cos%
[
where W K,
. ms ;= —e ’ﬁ[4yqtcos——e f(yk+A’)i|, (B32)
l kD + llkH x9) ) Y V2
g =+ , (B29) L
x 2 y 2 e Zm ®
\/(lk k('”) + (lk”,kl(j)) my, 26 |:4y,t cos ﬁ +e Vigi(yih+ A )]
1 k(/) k
my ;= Ee e |: 4t cos ﬁ +e qu(yj — )»)j|. (B30) (B33)
) k, Nontrivial solutions require detM = 0. For h =0, this is
my=—=e iy |:4qj fcos % 4+ e “ 2 (y AT — )\)] (B31) achieved for Ex, = 0, as expected. The derivation is relegated
2 V2 to Appendix C. For h # 0, the time-reversal-symmetry-
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breaking term introduces a dispersion to the previously flat
band and Eq. (B23) has to be solved numerically.
Finally, the surface state can be obtained as

— eXP(KPkH ) Z] 1 OlNCS(kn)
L (k7 L5 ) NS iy for >0
1R = .
ﬁ eXp(ld)ku ) Z{,GEH—I,—I} a?,la (ky)
X exp (Kj’” (k@%)tf}mu(k”) forl <0,
(B34)
with the normalization constant
kel
nk\l = ) ,0
o exp(ﬁ/ci )—1
1/2
4 (aNCS)* NCS (INCS) ths
+ W (B33
m,n=1 1—- €xp {fl[kl - (kl ) ]}
and a phase

4
= arg [ D Syt [(YSxk](1,7,0,0)7

APPENDIX C: SURFACE STATES FORh =0

For our model system with C4 point group at h = 0, the
surface state obtained from the transfer-matrix method can
be calculated analytically. Finding the transfer matrix requires
us to determine the energy Ey,, for which Egs. (45) and (46)

allow nontrivial solutions for the coefficients a}“cs, afl. These

equations mean that the coefficients ¥, of! are given by

the null space of the matrix M given in Eq. (B24), where the
values for «7° and kl(j ) have to be determined as described
in Appendix B to be consistent with the value of E,. If h =
0, then for Ey, = 0, Eq. (B17) implies k =« =« ™" =
"I] 1 _ K—l —1

Using Eqs (B13) and (B15), we also find that y
{i, —i}. In particular, labeling the positive- hehclty solutlons
which satisfy Eq. (B13) with a positive sign, as k and k(z)
with Re(kl(l)) > Re(kl(z) ) and the negative-helicity solutions
which satisfy Eq. (B13) with a negative sign as k1(3) and
k(4), we find y; = —y, = —y3 = —y4 = i within the region
.7-' [6]. A relabeling would change which of the y; has a
different sign than the others and for a surface momentum in
the region J7, all y; switch sign. With these simplifications for

K, k(/) €

, (B36)  «°7 and y;, one can easily check that det M = 0 so that the
j=1 null space is nontrivial, which proves that there is a surface
. . . . . state at Ey, = 0. We can also calculate the null space, which
which ensures the mirror symmetry in the y direction.
leads to
e — 0, (ChH
km \/, —K+1(k”) (4)) L 3) f () f
oS — |:16z cos <E>(q3 _ q4)(eK/ 2 e L NV ik 2)
A " A A(2) k(4)
= 2ir(1 + e VHn) (A" = ia)(eM V2 — V) (g3ga + 1)+ (A — iR (—e ") (g5 — q4>] SN(e5)
ik ®
aé\ICS [16t cos <k7m_>(q4 _ qz)(eK/\rz +e +(kf/§ k) ) _ eikIQ)/ﬁ _ e[k/‘“/ﬁ)
2
. i . e @) . —zka km ‘W
= 2i(1+ e V(AT — i2) (MY — V) (gagy + 1) + (AT = in)(—e ) (g — 6]2)} . (C3)
i@ ®
oS = 161% cos? (%)(% _ q3)<e’(/*/§ G EE P eik,‘”/ﬁ)
2
. (2 23 K—2ikm
= 2ir(1 4 e VRny(AT — i2)(HV2 = V) (gags + 1) + (A — i) (=€) (g2 — 43) (C4)
for the NCS components and
T
(afll, a]f] . O‘}il1,1’ 0‘511,71) =-M; 1M1( NCS a,;\lCS a13\1cs aéI;ICS) (C5)

for the FI components in the region F,. The null space in
the region F; can be computed analogously. This means that
it is possible to calculate the zero-energy surface states of
the system at h = O analytically if the values for kz(] ) which
satisfy Eq. (B13) are given. This equation is equivalent to the
eighth-order polynomial in tNCS = exp(zk(’ ) /~/2) given by
Eq. (B3) and can typically not be solved analytically.

(

Note that one could also find a surface state for a het-
erostructure of finite thickness using the same transfer-matrix
method, taking the boundary conditions (37) and (38) into
account. In that case the negative solutions /c(’ ) and solutions
kl(J ) with negative imaginary part are not neglected. Including
Egs. (37) and (38), we then have a system of 16 homogeneous
linear equations for the Y and «}". The solution would then
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FIG. 10. Comparison of the zero-energy surface state for kK
inside the projections of the nodal lines of the infinite NCS-FI
heterostructure to the state obtained from numerical diagonaliza-
tion of the Hamiltonian of the finite slab. (a) Squared modulus
[HE e () — Ey )Y (k]|* as a function of / for the case of h = 0.
(b) The same for h = 0.05 &,. Here, results from the transfer-matrix
method, cut off at different thicknesses LNCS, are shown in darker
colors, whereas results from exact diagonalization for the finite slab

are shown in lighter colors.

be found by identifying the values of E for which the the
determinant of the coefficient matrix is zero and the resulting
eigenvalue and eigenstate would be identical to the ones found
by diagonalizing the slab Hamiltonian. In practice, this proce-
dure is likely slower than using some numerical method to
directly find the lowest-energy eigenvalue of the slab Hamil-
tonian, except for very large slab thicknesses, because it
includes numerical root finding both for the determinant and
to calculate the kl(j )1t does, however, have the advantage
that it uses significantly less storage for the eigenvectors,
which can be fully calculated with just the eight values of
aNCS | o FL kl(j ). and «$?, while the full eigenvector contains

A4(LFT 4 LNCS) components.

APPENDIX D: NUMERICAL COMPARISON OF THE
TRANSFER-MATRIX SURFACE STATES WITH RESULTS
FROM EXACT DIAGONALIZATION

Real systems are of finite thickness. In the following, we
present numerical evidence that these results are a good ap-
proximation for the eigenstates of a sufficiently thick slab.
Note that to this purpose, it is not helpful to numerically
calculate the surface states of a finite slab and compare it, or its
modulus, to the surface states obtained by the transfer-matrix
method. Due to the hybridization of the surface states at the
[ = 0 surface and at the [ = LNCS gsurface, these results may
not be close to each other even if the state obtained with the
transfer-matrix method is an eigenstate of the Hamiltonian in
the limit of infinitely thick slabs. Therefore, we instead show

CS

the squared modulus of the vector [HSlebs (k) — Ex, J¥ (k) in

Fig. 10. For an exact eigenstate of the Hamiltonian Hﬁ:ﬁ: k),
this quantity should vanish for all /. For the numerical calcu-
lation, we use the parameter values k,, = 1, k, = 0.05,t =1,

uw=-—4,1=0.05V =35 A*=0.04, and A" =0.05. We
choose L = 200 as the thickness of the ferromagnetic layer.

For comparison, we plot the results for eigenstates de-
termined by exact diagonalization of the slab Hamiltonian
for LN = 2000 (light green), LN = 5000 (light red), and
LNCS = 10000 (light blue). Figure 10(a) shows the time-
reversal-symmetric case h = 0, while Fig. 10(b) shows the
results for a nonzero magnetization h = 0.05 &, of the FI. We
see that in all cases, the results are almost constant at about
1072 to 107, which is expected due to the calculation at
finite machine precision.

In darker colors, we show the squared modulus
ITHEL (ky) — Ex, 1 (k) for states v obtained by the
transfer-matrix method and cut off at the corresponding
widths LNCS = 2000, 5000, 10000. See Eq. (B34) in Ap-
pendix B. These plots show that for large values of LNCS, the
transfer-matrix method is a good approximation of the surface
state since the value of |[HL " (k) — Ex, ¥ (k))|* is similar
to or even lower than the result obtained by numerical diag-
onalization. For small slab thickness, e.g., for LNCS — 2000,
the approximation fails at [ = LN®S — 1, as evidenced by the
dark green line that rises to a value of approximately 10717,
which is much higher than the value of approximately 10732
obtained by numerical diagonalization. This is expected since
the transfer-matrix method neglects the boundary conditions
at! = LN — [ and —L™.

It can also be seen that due to the explicit representation
of an exponential decay in Eq. (B34), the transfer matrix
is much better suited to calculate the surface state for large
values of I, whereas exact diagonalization results are more
limited by machine precision. Note, however, that none of
the exceedingly small numbers in the plot are supposed to
be measurable quantities. On the contrary, the only relevant
feature for our purposes is that the results stay below machine
precision, such that they are a good estimate for the surface
state.

APPENDIX E: ADIABATICITY

Adiabaticity can easily be defined in the case that the
region JF does not include the entirety of F; U F, so that the
infimum of the energy of the first excited quasiparticle state is
nonzero,

A = inf ({Al‘iz(k”’kl)|v =4,k € F ks € [-7,m)}) > 0.
(ED

In this case, the dynamics is certainly adiabatic if the ramp
time 7; is large compared to the timescale /i/A given by the
inverse of this excitation energy, where we set i = 1.
However, if F gets arbitrarily close to the projections of
the nodal lines the timescale /i/ A, diverges and a different
condition is required. We note that the excited quasiparticle
states the dispersion of which approaches zero energy at the
nodes are bulk states. In this case, we compare the density
of states of the surface states and the local density of states
of bulk states at the surface to assess the adiabaticity. In
the field-free system, the density of surface states is a Dirac
delta peak at E = 0. Integrating over this peak in an interval
E e [-h/T;, h/T;] yields a constant. The local density of bulk
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states close to £ = 0 is linear, i.e., D(E)  |E|. The local
density of bulk states at the surface is also independent of
the slab thickness if the thickness is sufficiently large. We
can therefore choose a timescale 7; that is large enough such
that the (constant) number of surface states in the energy
interval [—£//T;, h/T;] is large compared to the number of bulk
states, which is proportional to /i/7;. Under this condition, we
expect that the mixing of surface states with bulk states can
be neglected so that it is still reasonable to assume that the
system stays in the instantaneous eigenstates, i.e., the surface
states.

APPENDIX F: BOUNDARIES OF THE REGION
WITH ZERO-ENERGY SURFACE STATES

In this Appendix, we will derive an expression for the
boundaries of the region , that hosts the zero-energy surface
states in the part of the sBZ with k,, > 0, depicted in Fig. 2.
The region JF; can be determined by reflecting 7, at the k,
axis. The boundaries of F, are determined by projecting the
bulk nodal lines onto the sBZ. Therefore, it can be found by
eliminating the perpendicular momentum component k; from
the equations

0 = ex i, — Ak, | (F1)

0= A% — Al|l - (F2)

Equation (F1) defines the negative-helicity Fermi surface and
Eq. (F2) are the roots of the negative-helicity gap function.
The intersections of the two surfaces described by these

J

equations are the nodal lines of the gap. Solving Eq. (F2)
yields

AS\?
ki = —k, £ +/2 arcsin <E> — sin® ky (F3)

Substitution into Eq. (F1) gives the implicit equation

s

A kin
0= EA+M+2I cosk, + 4t cos (E)

(F4)

for the boundary. We see that this equation can only be satis-

fied if
AN\?
(E) —sin?k, € [0, 1] (FS)
because otherwise one of the square roots would be imaginary
such that the entire term in Eq. (F4) could not be zero. This
leads to the minimum and maximum values of k, as

N

. (F6)

k;“‘“ = —k;“‘" = arcsin

Solving Eq. (F4) for k,, gives the solutions

k" (k,) = ~/2 arccos l éSz—sinzk - |1-
m\"y/ 2 N y

s 2 N
A —sin®k, éi lcosk —l—ﬁ
YI\Ar4r 2 Y4t

24172

v A\ A\ AS A m
-3 |:<E> —s1n2ky:| 1— l—[(y) —51n2ky:|+EZ+cosky+Z

(F7)

with v = 1. The functions k. (ky) and k! (ky) describe the upper and lower boundary of F,, respectively.
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