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Ginzburg-Landau theory for unconventional surface superconductivity in PtBi2
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Recent experimental evidence suggests the presence of an unconventional, nodal surface-superconducting
state in trigonal PtBi2. We construct a Ginzburg-Landau theory for the three superconducting order parameters,
which correspond to the three irreducible representations of the point group C3v . The irreducible representations
A1 and A2 are the most likely. We develop a systematic method to determine the symmetry-allowed terms and
apply it to derive all terms up to fourth order in the three order parameters. The Ginzburg-Landau functional
also includes coupling to the magnetic field. The functional is employed to determine the effect of an applied
uniform magnetic field on the nodal structure for A1 and A2 pairing. The results facilitate clear-cut experimental
differentiation between these symmetries. We also predict field-induced helical superconductivity.
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I. INTRODUCTION

Trigonal PtBi2 has recently emerged as a rather puzzling
unconventional superconductor. The crystal structure with the
noncentrosymmetric space group P31m [1,2] and point group
C3v consists of Bi-Pt-Bi triple layers, where the two Bi layers
are inequivalent. Consequently, there are two inequivalent
(001) surfaces, a corrugated “decorated honeycomb” Bi layer
and a planar “kagome” Bi layer, respectively. The point group
C3v is not reduced by the presence of these surfaces.

Density functional theory (DFT) calculations [3–6] predict
12 Weyl points in general momentum positions. Since all
Weyl points are related by point-group or time-reversal sym-
metries they are at the same energy, about 45 meV above the
Fermi energy [3]. They are located close to the �MLA mirror
planes [7]. Due to the presence of Weyl points, one expects
six Fermi arcs on (001) surfaces connecting the projections
of the Weyl points into the surface (or slab) Brillouin zone.
DFT calculations for slabs indeed find these arcs [5,6]. They
are different for the two Bi terminations but in both cases
are horseshoe shaped and connect neighboring Weyl points
across the �M lines. Quasi-particle interference [8] and angle-
resolved photoemission spectroscopy (ARPES) [5,9] in the
normal state provide strong evidence for the Fermi arcs at both
surfaces.

The superconducting properties of trigonal PtBi2 are
puzzling. Initially, single crystals were found to become su-
perconducting at a broad transition at about Tc = 600 mK
[2]. More recent measurements on high-quality single crystals
showed a much sharper transition at Tc = 1.1 K [10]. Wang
et al. [11] only observed superconductivity under pressure,
with a critical pressure of 5 to 6 GPa and an otherwise weakly
pressure-dependent critical temperature of about 2 K [11].

*Contact author: carsten.timm@tu-dresden.de

Point-contact measurements [12] showed enhanced
Tc ≈ 3.5 K, attributed to the higher local density of states in
the vicinity of the point contact. The authors also concluded
that electron-phonon coupling is a plausible mechanism.

Transport measurements by Veyrat et al. [4] on thin
exfoliated flakes showed a superconducting Tc of a few
hundreds of mK. For a thickness of 60 nm, the authors
found Tc = 370 mK. The current-voltage characteristics ex-
hibited power-law scaling V ∼ Ia over a moderate range
of currents, interpreted in terms of a Berezinskii-Kosterlitz-
Thouless (BKT) transition [13–15] with critical temperature
TBKT = 310 mK determined by a(TBKT) = 3 [4]. This indi-
cates two-dimensional (2D) superconductivity in spite of the
film being much thicker than other systems showing BKT
scaling [4]. Moreover, the critical magnetic field as a function
of its angle relative to the surface exhibits a cusp-like maxi-
mum for the field in plane [4], consistent with the Tinkham
model for 2D superconductivity [16,17].

The Fermi-arc signatures in laser ARPES exhibit shifts
as functions of temperature that are characteristic for
superconducting transitions [5]. The critical temperatures
for superconductivity in the Fermi arcs are estimated as
Tc = 14 ± 2 K for the decorated honeycomb surface and
Tc = 8 ± 2 K for the kagome surface. The corresponding
superconducting gaps are 1.4 ± 0.2 and 2.0 ± 0.2 meV, re-
spectively. The intensity vs. energy for the arc states shows
an extremely sharp peak below Tc, interpreted as a super-
conducting coherence peak [5]. There is no indication of
superconductivity in the bulk down to 1.5 K.

Very recent ARPES experiments [9] with improved res-
olution have brought a big surprise: They show that the
superconducting gap vanishes, within experimental accuracy,
at the arc centers, where the arcs cross the �M lines. The gap
appears to open linearly as a function of momentum along
the arcs. While ARPES is not sensitive to the sign, or more
generally the phase, of the gap, the results are most naturally
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TABLE I. Characters and basis functions up to the order l = 2 of
the point group C3v [7,21,22]. The irreps corresponding to angular-
momentum or magnetic-field components Rx , Ry, Rz are also shown.

ε 2C3 3σv Basis functions

A1 1 1 1 1, z, x2 + y2, z2

A2 1 1 −1 Rz

E 2 −1 0

(
x
y

)
,

(
xy

(x2 − y2)/2

)
,

(
xz
yz

)
,

(
Ry

−Rx

)

explained by point nodes with linear dispersion and a sign
change of the pairing amplitude [9]. It seems unlikely that
a gap minimum without sign change shows fine-tuned linear
dispersion. The maximum gap is on the order of 3 meV. The
critical temperature lies between 10 and 15 K [9].

Recent scanning-tunneling spectroscopy (STS) experi-
ments [18] show tunneling gaps with characteristic coherence
peaks at a temperature of 5 K for both surfaces. Although
the surface topography indicates high surface quality with few
point defects, the gap is spatially highly nonuniform spanning
a range from 0 to 20 meV.

Scanning SQUID measurements [18] show a weak dia-
magnetic response at 6.4 K, characteristic for 2D supercon-
ductivity. However, vortices are not observed. No anomaly
related to superconductivity is observed in specific-heat mea-
surements, which is consistent with the absence of bulk
superconductivity. Surface superconductivity in PtBi2 accom-
panied by a normal bulk is possible since the density of states
at the surface is higher due to the Fermi arcs and can result in a
much higher mean-field transition temperature for the surface
[19,20].

In the absence of a good understanding of the microscopic
mechanism, it is worthwhile to perform an analysis that only
relies on symmetries. In this work, we set up a Ginzburg-
Landau (GL) theory for possible superconducting states at
the surface of PtBi2. The rather low symmetry described by
the point group C3v and the correspondingly small number
of irreducible representations (irreps) allows us to construct
an essentially complete GL functional involving all possible
couplings between the order parameters (OPs), also including
gradients and the applied magnetic field.

The remainder of this paper is organized as follows. In
Sec. II, we review the possible superconducting states and
their symmetry-imposed nodal structure. In Sec. III, we con-
struct the GL functional and employ it to predict the change of
the nodal structure when a magnetic field is applied. Finally,
in Sec. IV, we summarize our work and draw conclusions.

II. SYMMETRY AND NODAL STRUCTURE OF
SUPERCONDUCTING STATES

In this section, we review the symmetry analysis and re-
sulting nodal structure of surface superconductivity in PtBi2

[9] and provide additional details. The point group C3v is of
order 6 and contains the identity ε, a rotation C3 by 120◦, its
square C2

3 , and three vertical mirror planes, one of which is
denoted by σv . It has the three irreps A1, A2, and E . Table I
shows the characters and low-order basis functions of these

irreps [7,21,22]. The lowest-order basis function of A2 is
x(y + x/

√
3)(y − x/

√
3), of order l = 3 [7,22]. To be able

to safely construct terms in the GL functional, we have to
carefully assign the first and second components of the 2D
irrep E , which we denote by 1E and 2E , respectively. (Note
that most tables of basis functions do not distinguish between
the components.) We take (x, y) as the template, i.e., we re-
quire the first component to be odd under the mirror reflection
x �→ −x and the rotation C3 to map the components as

x
C3�−→ −1

2
x +

√
3

2
y, (1)

y
C3�−→ −1

2
y −

√
3

2
x. (2)

It can be checked that the other doublets given for the irrep E
in Table I transform in the same manner.

We consider 2D superconductivity at a single surface of
PtBi2, in practice realized by making the bulk sufficiently
thick to decouple the surfaces. Our analysis applies to both the
decorated honeycomb and the kagome termination but the val-
ues of parameters will of course be different. There are three
possible complex superconducting OPs, corresponding to the
irreps A1, A2, and E . Since E is a 2D irrep, the corresponding
OP generally has two complex components.

The position of nodes can be obtained based on the symme-
try of the superconducting state [9]. The normal-state Fermi
arcs are nondegenerate. Hence, at low energies, the super-
conducting state can be described by projecting a multiband
Bogoliubov-de Gennes (BdG) Hamiltonian

H(�k) =
(

ĤN (�k) �̂(�k)

�̂†(�k) −ĤT
N (−�k)

)
, (3)

where the block ĤN (�k) is the normal-state Hamiltonian and
�̂(�k) is a pairing matrix, onto this single band. This relies
on the energy splitting between the Fermi-arc band and bulk
bands being larger than the superconducting energy scale.
This condition breaks down in the vicinity of the Weyl points
but ARPES experiments [5,9] show that it holds over nearly
the full arc.

The projected BdG Hamiltonian has the generic form

Hproj(�k) =
(

ξ (�k) �(�k)

�∗(�k) −ξ (−�k)

)
, (4)

where ξ (�k) is the normal-state dispersion and �(�k) is the
pairing amplitude. Since there is no sign of time-reversal
symmetry being broken spontaneously �(�k) can be chosen
real for all momenta �k. For our analysis, we only require the
dependence of the pairing amplitude along the Fermi arcs. To
parametrize �, we start from the polar angle φ of �k. φ does
not uniquely label the arc states due to the horseshoe shape
of the Fermi arcs. We can, however, remove this problem by
deforming the parametrization without changing the symme-
try [9]. The Fermi arcs are connected to short sections of bulk
Fermi surfaces in the vicinity of the Weyl points that link them
to the Fermi arcs at the opposite surface. The OP is, so far,
unmeasurably small in the bulk [5,9]. For large intervals of
angles φ, there is no normal-state Fermi surface.
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TABLE II. Low-order basis functions of the angle φ, its order l ,
corresponding irreps, and signs under time reversal T .

Basis function Order l Irrep Sign under T

1 0 A1 +(
cos φ

sin φ

)
1 E −(

sin 2φ

cos 2φ

)
2 E +

cos 3φ 3 A2 −
sin 3φ 3 A1 −(

sin 4φ

− cos 4φ

)
4 E +(

cos 5φ

− sin 5φ

)
5 E −

cos 6φ 6 A1 +
sin 6φ 6 A2 +

For every irrep A1, A2 or irrep component 1E , 2E , the
function �(φ) must be a real-valued basis function of this
irrep or component. In Table II, we list the basis functions
of the angle φ up to order l = 6. Moreover, there is another
important symmetry constraint: Fermionic antisymmetry re-
quires the pairing matrix in the full BdG Hamiltonian, Eq. (3),
to satisfy �̂T (−�k) = −�̂(�k) [23–25]. Simply speaking, this
implies that the pairing matrix must be even under time re-
versal [26]. Time reversal maps �k to −�k and thus φ to φ + π

modulo 2π . The pairing amplitude �(φ) in the projected BdG
Hamiltonian, Eq. (4), inherits this property. The correspond-
ing signs under time reversal are also given in Table II. Hence,
the pairing amplitude �(φ) must be a real basis function of
the irrep or irrep component and must be even under time
reversal. To find the symmetry-imposed nodes, it is sufficient
to consider the lowest-order basis function with these proper-
ties. Basis functions of higher order only introduce additional
modulations of the amplitude without changing its symmetry.
More details are given in Appendix A.

We now discuss the irreps in turn. The superconducting
state of full symmetry, which belongs to the trivial irrep A1,
was considered in [6]. The lowest-order basis function of A1

is the constant function. It is also even under time reversal.
Hence, there are no symmetry-imposed nodes. This is “con-
ventional” s-wave (l = 0) pairing. Recently, Mæland et al.
[27] have proposed an A1 pairing state with gap minima, but
not nodes, at the arc centers, based on a phononic mechanism.

The lowest-order basis functions of 1E and 2E that are even
under time reversal are sin 2φ and cos 2φ, respectively. This
can be described as d-wave (l = 2) pairing. Superpositions
of the two components are also possible and preserve time-
reversal symmetry if the coefficients of both can be made real
simultaneously. All these functions break rotation symmetry:
The pairing amplitude is not the same along all six Fermi arcs.
The first component by itself as well as any symmetry-related
state have point nodes with linear dispersion at some arc cen-
ters but not at all of them. There is no experimental indication
for different gaps for different arcs [9].

There also exist natural states of E symmetry that
break time-reversal symmetry. They consist of a complex

FIG. 1. Polar plots of the lowest-order basis functions showing
the symmetries of the superconducting pairing amplitudes of (a) A1

symmetry [�(φ) ∝ 1], (b) A2 symmetry (sin 6φ), (c) 1E symmetry
(sin 2φ), and (d) 2E symmetry (cos 2φ). Red and blue color refer to
positive and negative sign, respectively. The angular ranges spanned
by the Fermi arcs are sketched as gray sectors, which have been
exaggerated for clarity.

superposition of 1E and 2E components with a phase shift
of ±π/2 between them. These states can have isotropic gap
magnitude but they do not have nodes. Moreover, there is
no experimental indication for spontaneous breaking of time-
reversal symmetry [9].

The lowest-order basis function of A2 that is even under
time reversal is sin 6φ. This is i-wave (l = 6) pairing [9] (the
time-reversal odd function cos 3φ cannot appear, as discussed
in Appendix A). It has symmetry-imposed point nodes with
linear dispersion at all arc centers. In the absence of fine
tuning, this is the only symmetry consistent with the ARPES
experiments [9]. The nodes lead to topologically nontrivial
Majorana cones and protected hinge states, as discussed in
Ref. [9]. The gap function �(φ) also changes sign between
the arcs but these sign changes are not physically meaningful
due to the absence of normal-state bands at the Fermi energy.

The lowest-order basis functions for all possible pairing
symmetries are sketched in Fig. 1. The angular ranges of the
Fermi arcs are also indicated. Phase-sensitive measurements,
like for the cuprates [28], would be ideal to determine the
symmetry of the superconducting OP. We are not aware of
such measurements. In the following section, we propose that
in particular the A1 and A2 pairing states can be distinguished
by their different reaction to applied magnetic fields.

III. GINZBURG-LANDAU THEORY

In this section, we set up the GL functional for the su-
perconducting OPs. After discussing the principles used in
constructing the functional, we give all terms up to fourth
order in total and up to first order in magnetic field. Then,
we employ this functional to predict effects of an applied
magnetic field on A1 and A2 pairing.
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A. Principles of constructing the functional

The pairing amplitude �(�k) in the projected BdG Hamil-
tonian is in general a superposition of basis functions of
the irreps A1, A2 or irrep components 1E , 2E with spatially
varying complex coefficients. Their coarse-grained spatial
structure is described by the GL functional. We refer to the
coarse-grained coefficients as “superconducting OPs” and de-
note the OPs of A1, A2, and E symmetry by ψ1, ψ2, and

�ψE =
(

ψx

ψy

)
, (5)

respectively. They transform under the point group according
to the irrep or irrep component and are mapped to the complex
conjugate under time reversal.

The GL functional also contains the magnetic-field com-
ponents, which transform like Rx, Ry, Rz in Table I under the
point group. Thus (By,−Bx ) transforms according to the irrep
E and Bz according to A2. Moreover, the magnetic field is odd
under time reversal. Finally, we need the 2D gauge-covariant
derivative

�D =
(

Dx

Dy

)
= �∇ − i

q

h̄c
�A, (6)

where q = −2e is the charge of Cooper pairs and �A is the
in-plane part of the vector potential. �D transforms according
to the irrep E , as can easily be checked, i.e., it is an irreducible
tensor operator of E . Since time reversal T does not affect
the position but changes the sign of the magnetic field and
the vector potential, T acts on the gauge-covariant derivative
according to [29]

�D = �∇ − i
q

h̄c
�A T�−→ �∇ + i

q

h̄c
�A = �D∗. (7)

We also require the derivative ∇z = ∂/∂z acting on the mag-
netic field. ∇z transforms according to A1 since z does.

We first investigate which terms are possible in the GL
functional. Terms in the functional must (a) respect the point-
group symmetry, i.e., transform according to A1, (b) respect
time-reversal symmetry, (c) be real, and (d) be gauge invari-
ant. The symmetry under global U(1) phase transformation is
a special case of gauge invariance.

We construct all terms containing up to four factors of
ψ1, ψ2, ψx, ψy, ψ∗

1 , ψ∗
2 , ψ∗

x , ψ∗
y , Bx, By, Bz, Dx, or Dy,

with the following constraints: we only include terms that
contain superconducting OPs or, in other words, we subtract
the normal-state free energy. Due to gauge invariance, the
number of complex conjugated OPs must equal the number
of unconjugated OPs. We restrict ourselves to the first order in
the magnetic field B = (Bx, By, Bz ). This can be understood as
the weak-field limit. However, some terms of higher order are
generated by using the gauge-covariant derivative. We indi-
cate two-component vectors by an arrow and three-component
vectors by bold-face font.

The strategy is the following. First, find all products of
irreps or irrep components up to fourth order that result in
A1. Second, for each such product insert all combinations of
ψ1, ψ2, ψx, ψy, ψ∗

1 , ψ∗
2 , ψ∗

x , ψ∗
y , Bx, By, Bz, Dx, and Dy

that transform like the factors, taking care of the constraints
mentioned above. Third, generate real terms by taking the real

or imaginary part. Some terms will turn out to vanish. Fourth,
omit terms that are linearly dependent of other terms.

The first step can be done automatically, based on the
possible expansions of irreps into second-order products,

A1 = A1 ⊗ A1, (8)

A1 = A2 ⊗ A2, (9)

A1 = 1E ⊗ 1E + 2E ⊗ 2E , (10)

A2 = A1 ⊗ A2, (11)

A2 = A2 ⊗ A1, (12)

A2 = 1E ⊗ 2E − 2E ⊗ 1E , (13)(
1E
2E

)
=

(
A1 ⊗ 1E

A1 ⊗ 2E

)
, (14)

(
1E
2E

)
=

(
−A2 ⊗ 2E

A2 ⊗ 1E

)
, (15)

(
1E
2E

)
=

(
1E ⊗ A1

2E ⊗ A1

)
, (16)

(
1E
2E

)
=

(
− 2E ⊗ A2

1E ⊗ A2

)
, (17)

(
1E
2E

)
=

(
1E ⊗ 2E + 2E ⊗ 1E
1E ⊗ 1E − 2E ⊗ 2E

)
. (18)

By iterating these expansions, we obtain products of three or
four factors. All products up to fourth order that transform
according to A1 are listed in Appendix B for completeness.

Concerning the second step, we note that while the di-
rect product of representations is commutative, the actual
expressions involve the derivatives Dx, Dy, which do not
commute with spatially-dependent fields. We here use the
convention that the derivatives act on the next field to the right
only.

For the third step, we examine how to construct terms that
are real and even under time reversal. If only OPs and deriva-
tives are present both conditions coincide since time reversal
has the same effect as complex conjugation. Once one has
found some term X that respects the lattice symmetries and
gauge invariance, one can easily make it time-reversal-even
by adding its complex conjugate, X + X ∗, essentially taking
the real part. Note that if X is imaginary the result will vanish.

For terms involving a magnetic-field component Bj , a dif-
ferent approach is necessary because the field is real but odd
under time reversal. We need to make the part X formed by
derivatives and OPs odd under time reversal as well. This can
be achieved by subtracting the complex conjugate. Since the
resulting term is imaginary, we need to multiply by i, giving
iB j (X − X ∗), i.e., involving the imaginary part. This vanishes
if X is real.

The fourth step of eliminating redundant terms may also
involve integrating by parts. For a generic term, integration by
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parts reads as∫
d2r f ∗(�r) Djg(�r) =

∫
d2r f ∗

(
∇ j − i

q

h̄c
A j

)
g

=
∫

d2r
(
−∇ j f ∗ − i

q

h̄c
A j f ∗

)
g

= −
∫

d2r g
(
∇ j + i

q

h̄c
A j

)
f ∗ = −

∫
d2r gD∗

j f ∗, (19)

where a surface term in the infinite has been dropped. Since
we have already made all terms real we can apply complex
conjugation without changing the result, giving

−
∫

d2r g∗
(
∇ j − i

q

h̄c
A j

)
f = −

∫
d2r g∗(�r) Dj f (�r). (20)

B. Ginzburg-Landau functional for PtBi2

The GL functional is

F[ψ1, ψ2, �ψ, B] =
∫

d2r F (�r), (21)

with

F = F1 + F2 + FE + F12 + F1E + F2E + F12E

+ F (L)
1E + F (L)

2E + F (B)
E + F (B)

12 + F (B)
1E + F (B)

2E

+ F ( j)
E + F ( j)

12 + F ( j)
1E + F ( j)

2E + F ( j)′
1E + F ( j)′

2E

+ F (L)
1 + F (L)

2 + F (L)
E + F (L)

12 + F (L)′
1E + F (L)′

2E . (22)

In the following, we construct these contributions to F .
The terms involving only one of the superconducting OPs

and no explicit magnetic field (but the vector potential in �D)
read as

F1 = α1

2
ψ∗

1 ψ1 + β1

4
(ψ∗

1 ψ1)2 + γ1

2
( �Dψ1)∗ · ( �Dψ1), (23)

F2 = α2

2
ψ∗

2 ψ2 + β2

4
(ψ∗

2 ψ2)2 + γ2

2
( �Dψ2)∗ · ( �Dψ2), (24)

FE = αE

2
�ψ∗

E · �ψE + βE

4
( �ψ∗

E · �ψE )2

+ β ′
E

4
(ψ∗

x ψy − ψ∗
y ψx )2 + γE

2
( �D · �ψE )∗( �D · �ψE )

+ γ ′
E

2
(Dxψy − Dyψx )∗(Dxψy − Dyψx ). (25)

The contributions F1 and F2 corresponding to the one-
dimensional irreps A1 and A2 have the standard form. FE

contains more terms since both �ψE and �D are E doublets and
there are three ways to construct a product of full symmetry
out of four E factors:

(1E ⊗ 1E + 2E ⊗ 2E ) ⊗ (1E ⊗ 1E + 2E ⊗ 2E ), (26)

(1E ⊗ 2E − 2E ⊗ 1E ) ⊗ (1E ⊗ 2E − 2E ⊗ 1E ), (27)

(1E ⊗ 1E − 2E ⊗ 2E ) ⊗ (1E ⊗ 1E − 2E ⊗ 2E )

+ (1E ⊗ 2E + 2E ⊗ 1E ) ⊗ (1E ⊗ 2E + 2E ⊗ 1E ), (28)

which result from expanding A1 ⊗ A1, A2 ⊗ A2, and E ⊗ E ,
respectively. The corresponding terms of fourth order in �ψE

are proportional to

( �ψ∗
E · �ψE )2, (29)

(ψ∗
x ψy − ψ∗

y ψx )2, (30)

(ψ∗
x ψx − ψ∗

y ψy)2 + (ψ∗
x ψy + ψ∗

y ψx )2, (31)

respectively. However, these expressions are not linearly inde-
pendent since the last expression equals

(ψ∗
x ψx + ψ∗

y ψy)2 + (ψ∗
x ψy − ψ∗

y ψx )2, (32)

which is the sum of the other two. This reduction is due to
the invariance under interchange of the two ψ∗

j or of the two
ψ j factors. Moreover, we do not obtain additional products by
using the ordering ψ∗ψ∗ψψ .

For the terms of second order in �ψE and containing two
derivatives, the situation is more complicated since the gauge-
covariant derivatives generally do not commute. The allowed
terms corresponding to the products A1 ⊗ A1, A2 ⊗ A2, and
E ⊗ E can be written as

( �D · �ψE )∗( �D · �ψE ), (33)

(Dxψy − Dyψx )∗(Dxψy − Dyψx ), (34)

(Dxψx − Dyψy)∗(Dxψx − Dyψy)

− (Dxψy + Dyψx )∗(Dxψy + Dyψx ), (35)

respectively. They all satisfy time-reversal symmetry, see
Eq. (7). For a term (Di f )∗Dkg, an elementary calculation
involving twofold integration by part gives∫

d2r (Di f )∗ Djg

=
∫

d2r
[
(Dj f )∗ Dig + i

q

h̄c
(∇iA j − ∇ jAi ) f ∗g

]

=
∫

d2r

[
(Dj f )∗ Dig + i

q

h̄c

∑
k

εi jk Bk f ∗g

]
, (36)

where εi jk is the Levi-Civita symbol. The application to
Eq. (35) generates, under the spatial integral, the terms in
Eqs. (33) and (34) plus the term

− 4i
q

h̄c

(∇xAy − ∇yAx
)
(ψ∗

x ψy − ψ∗
y ψx )

= −4i
q

h̄c
Bz (ψ∗

x ψy − ψ∗
y ψx ), (37)

which appears if a magnetic field is applied along the z direc-
tion. It is included below in Eq. (44).

The coupling terms without explicit magnetic field and of
even order in derivatives read as

F12 = δ12

2
ψ∗

1 ψ1ψ
∗
2 ψ2 + δ′

12

2
(ψ∗

1 ψ2ψ
∗
1 ψ2 + c.c.), (38)

F1E = δ1E

2
ψ∗

1 ψ1 �ψ∗
E · �ψE + δ′

1E

2
(ψ∗

1
�ψE · ψ∗

1
�ψE + c.c.)

+ δ′′
1E

2
[ψ∗

1 ψx(ψ∗
x ψy + ψ∗

y ψx )
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+ψ∗
1 ψy(ψ∗

x ψx − ψ∗
y ψy) + c.c.]

+ ε1E

2
[(Dxψ1)∗(Dxψy + Dyψx )

+ (Dyψ1)∗(Dxψx − Dyψy) + c.c.], (39)

F2E = δ2E

2
ψ∗

2 ψ2 �ψ∗
E · �ψE + δ′

2E

2
(ψ∗

2
�ψE · ψ∗

2
�ψE + c.c.)

+ δ′′
2E

2
[ψ∗

2 ψx(ψ∗
x ψx − ψ∗

y ψy)

−ψ∗
2 ψy(ψ∗

x ψy + ψ∗
y ψx ) + c.c.]

+ ε2E

2
[(Dxψ2)∗(Dxψx − Dyψy)

− (Dyψ2)∗(Dxψy + Dyψx ) + c.c.], (40)

F12E = δ12E

2
[ψ∗

1 ψ2 (ψ∗
x ψy − ψ∗

y ψx ) + c.c.]. (41)

A term proportional to (Dxψ1)∗Dyψ2 − (Dyψ1)∗Dxψ2 + c.c.
is also symmetry allowed. In analogy to the terms in FE with
two derivatives, twofold integration by parts gives, under the
spatial integral, i (q/h̄c) Bz(ψ∗

1 ψ2 − ψ∗
2 ψ1), which is included

below in Eq. (45). Moreover, the symmetry-allowed term pro-
portional to ψ∗

1 ψxψ
∗
2 ψy − ψ∗

1 ψyψ
∗
2 ψx + c.c. vanishes.

Terms of first order in derivatives are called “Lifshitz in-
variants” [30–34]. We find the following Lifshitz invariants
without explicit magnetic field:

F (L)
1E = η1E (ψ∗

1
�D · �ψE − �ψ∗

E · �Dψ1), (42)

F (L)
2E = η2E [ψ∗

2 (Dxψy − Dyψx ) − (ψ∗
y Dx − ψ∗

x Dy)ψ2].

(43)

They are enabled by the possibility of products of OPs that
transform in the same way as the derivative. Lifshitz invariants
allow for unconventional superconducting states, as discussed
below.

In the presence of a magnetic field, we obtain the following
terms of first order in the field and without any derivatives:

F (B)
E = ζE i Bz (ψ∗

x ψy − ψ∗
y ψx ), (44)

F (B)
12 = ζ12 i Bz (ψ∗

1 ψ2 − ψ∗
2 ψ1), (45)

F (B)
1E = ζ1E i [By (ψ∗

1 ψx − ψ∗
x ψ1)

− Bx (ψ∗
1 ψy − ψ∗

y ψ1)], (46)

F (B)
2E = ζ2E i [By (ψ∗

2 ψy − ψ∗
y ψ2)

+ Bx (ψ∗
2 ψx − ψ∗

x ψ2)]. (47)

We have seen above that terms of the form of F (B)
E and F (B)

12 are
generated from terms with two gauge-covariant derivatives.
However, terms containing the magnetic field generically stem
from two distinct physical effects: One is the orbital motion
of the charged fields ψ1, ψ2, and �ψE , expressed by the gauge-
covariant derivatives. The other is the spin of the Cooper pairs.
Since PtBi2 lacks inversion symmetry even in the bulk and in
particular at the surface we expect all superconducting states

to exhibit singlet-triplet mixing [34,35], i.e., nonvanishing
Cooper-pair spin.

Moreover, there are contributions involving derivatives of
the magnetic field, which, according to the Ampère-Maxwell
law, are related to currents. To fourth order overall, these
contributions can only be of the form i (∇B)(ψ∗ψ − c.c.)
in order to respect time-reversal symmetry. Several allowed
terms vanish because the part ψ∗ψ is real. The remaining
contributions involving in-plane derivatives are

F ( j)
E = κE i (∇xBx + ∇yBy)(ψ∗

x ψy − ψ∗
y ψx ), (48)

F ( j)
12 = κ12 i (∇xBx + ∇yBy)(ψ∗

1 ψ2 − ψ∗
2 ψ1), (49)

F ( j)
1E = κ1E i [(∇yBz )(ψ∗

1 ψx − ψ∗
x ψ1)

− (∇xBz )(ψ∗
1 ψy − ψ∗

y ψ1)]

+ κ ′
1E i [(−∇xBx + ∇yBy)(ψ∗

1 ψx − ψ∗
x ψ1)

+ (∇xBy + ∇yBx )(ψ∗
1 ψy − ψ∗

y ψ1)], (50)

F ( j)
2E = κ2E i[(∇yBz )(ψ∗

2 ψy − ψ∗
y ψ2)

+ (∇xBz )(ψ∗
2 ψx − ψ∗

x ψ2)]

+ κ ′
2E i [(∇xBx − ∇yBy)(ψ∗

2 ψy − ψ∗
y ψ2)

+ (∇xBy + ∇yBx )(ψ∗
2 ψx − ψ∗

x ψ2)]. (51)

Unlike the OPs of the 2D superconductor, the magnetic field
B can have a nonzero derivative in the z direction. Since ∇z

is invariant under the point group (A1 symmetry) the resulting
contributions can simply be obtained from Eqs. (44)–(47) by
replacing Bj by ∇zB j . Due to Gauss’ law for the magnetic
field, the results involving ∇zBz reproduce F ( j)

E and F ( j)
12 . The

new terms are

F ( j)′
1E = λ1E i [(∇zBy)(ψ∗

1 ψx − ψ∗
x ψ1)

− (∇zBx )(ψ∗
1 ψy − ψ∗

y ψ1)], (52)

F ( j)′
2E = λ2E i [(∇zBy)(ψ∗

2 ψy − ψ∗
y ψ2)

+ (∇zBx )(ψ∗
2 ψx − ψ∗

x ψ2)]. (53)

Since the superconductor exists at the surface the derivative
∇zB is generically nonzero if a field is applied.

Finally, we find contributions of first order in the field and
in the derivative acting on OPs, hence, additional Lifshitz
invariants [30–34]. These terms read as

F (L)
1 = ξ1 i(Byψ

∗
1 Dxψ1 − Bxψ

∗
1 Dyψ1 − c.c.), (54)

F (L)
2 = ξ2 i(Byψ

∗
2 Dxψ2 − Bxψ

∗
2 Dyψ2 − c.c.), (55)

F (L)
E = ξE iBz[ψ

∗
x (Dxψx − Dyψy) − ψ∗

y (Dxψy + Dyψx )]

+ ξ ′
E i[(Byψ

∗
x − Bxψ

∗
y )(Dxψx + Dyψy) − c.c.]

+ ξ ′′
E i[(Byψ

∗
y + Bxψ

∗
x )(Dxψy − Dyψx ) − c.c.], (56)

F (L)
12 = ξ12 i(Bxψ

∗
1 Dxψ2 + Byψ

∗
1 Dyψ2 − c.c.), (57)

F (L)′
1E = ξ1E i[Bzψ

∗
1 (Dxψy − Dyψx ) − c.c.]

+ ξ ′
1E i [Byψ

∗
1 (Dxψy + Dyψx )

− Bxψ
∗
1 (Dxψx − Dyψy) − c.c.], (58)
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F (L)′
2E = ξ2E i

[
Bzψ

∗
2 (Dxψx + Dyψy) − c.c.

]
+ ξ ′

2E i [Byψ
∗
2 (Dxψx − Dyψy)

+ Bxψ
∗
2 (Dxψy + Dyψx ) − c.c.]. (59)

The two terms in F (L)
E with in-plane field components are

similar to the terms with two derivatives in FE , see Eq. (25).
The terms corresponding to the products A1 ⊗ A1, A2 ⊗ A2,
and E ⊗ E read as

i [(Byψ
∗
x − Bxψ

∗
y )(Dxψx + Dyψy) − c.c.], (60)

i [(Byψ
∗
y + Bxψ

∗
x )(Dxψy − Dyψx ) − c.c.], (61)

i [(Byψ
∗
x + Bxψ

∗
y )(Dxψx − Dyψy)

+ (Byψ
∗
y − Bxψ

∗
x )(Dxψy + Dyψx ) − c.c.], (62)

respectively. One can show that taking the sum of the first two
terms and using integration by parts generates the third term
plus a field-derivative term proportional to F ( j)

E in Eq. (48)
[36].

C. A1 and A2 pairing in a magnetic field

As noted above, high-precision ARPES results [9] are most
consistent with A2 pairing in PtBi2 but cannot exclude A1

pairing with accidental (near) nodes and fine-tuned linear
dispersion. It is thus important to find experimental signatures
that distinguish between these possibilities. Therefore, we fo-
cus on the comparison of primary A1 and A2 superconducting
OPs.

As a reminder, in the absence of a magnetic field, A1 pair-
ing is stabilized if the coefficient α1 in F1, Eq. (23), becomes
negative below a certain critical temperature Tc, while α2 is
still positive. The coefficients β1, γ1, β2, and γ2 must be pos-
itive to ensure that the GL functional is bounded from below.
Even if α2 also becomes negative at a lower temperature,
A2 pairing generically does not set in immediately because
the coupling between A1 and A2 order in F12, Eq. (38), is
expected to be repulsive because the superconducting states
of different symmetry compete for the same electrons. The
case of primary A2 pairing is analogous.

First, we consider a uniform magnetic field applied in par-
allel to the surface. A uniform field is indeed expected in this
case if the two surfaces are decoupled. For A2 superconduc-
tivity and a magnetic field along the x direction, i.e., parallel
to the �M lines and to the nodal planes, the relevant terms
containing the magnetic field in the GL functional are

F (B)
2E = ζ2E i Bx (ψ∗

2 ψx − ψ∗
x ψ2), (63)

F (L)
2 = −ξ2 i Bx (ψ∗

2 ∇yψ2 − ψ2∇yψ
∗
2 ). (64)

We have replaced �D by �∇ since we treat the magnetic field at
first order. The second term is discussed below in the context
of helical states. The first one implies that a superconducting
OP ψx is induced, which, for weak fields, is linear in Bx and
in ψ2. Moreover, since F (B)

2E contains the imaginary part of
ψ∗

2 ψx the induced OP ψx has a phase shift of ±π/2 relative
to the primary OP ψ2. The sign depends on the sign of ζ2E Bx.
The induced first component of the E OP has the symmetry
of sin 2φ, see Table II. Hence, it has nodes at the Fermi-arc

centers at φ = 0 and φ = π but is nonzero on the other four
arcs. It thus preserves the nodes at φ = 0, π and removes the
nodes at φ = π/3, 2π/3, 4π/3, and 5π/3 [37].

On the other hand, for A1 superconductivity and field along
the x direction, the relevant terms are

F (B)
1E = −ζ1E i Bx (ψ∗

1 ψy − ψ∗
y ψ1), (65)

F (L)
1 = −ξ1 i Bx (ψ∗

1 ∇yψ1 − ψ1∇yψ
∗
1 ). (66)

The OP induced by F (B)
1E is ψy, which has the symmetry of

cos 2φ. This OP does not have nodes at any arc center. If
the primary A1 superconductivity has accidental nodes, as
required by the ARPES results [9], they are all removed by the
applied field. Hence, we find qualitatively different behavior
for A2 compared to A1 superconductivity. It is easy to check
that for magnetic field along the y direction, i.e., between the
Fermi arcs, the results are reversed.

For magnetic field applied in the z direction, the situation
is more complicated because of the formation of vortices. Our
GL functional in principle allows to obtain vortex solutions.
Due to the presence of nonzero derivatives, many of the terms
are activated. Here, we only discuss the case of approximately
uniform field close to but below the upper critical field, when
the magnetic flux associated with individual vortices strongly
overlaps. In this case, the relevant term for both A1 and A2

superconductivity is

F (B)
12 = ζ12 i Bz (ψ∗

1 ψ2 − ψ∗
2 ψ1). (67)

Hence, for both cases the other OP is induced with a
phase difference of ±π/2. For primary A2 OP, the induced
A1 OP is the same at all arcs and generically nodeless,
and thus removes all nodes. For primary A1 OP with ac-
cidental nodes, the induced A2 OP has symmetry-imposed
nodes at all arc centers. Hence, all accidental nodes persist.
Again, we find qualitatively different behavior for A1 and A2

pairing.
The ideal experiment to probe the persistence or lifting of

the nodes would be ARPES in applied magnetic field. This is
difficult because the magnetic field affects the photoelectrons’
trajectory. However, Ryu et al. [38] have recently made signif-
icant progress by confining the magnetic field to a thin layer
close to the sample surface.

The most promising idea, in particular if all nodes are
removed, may be to observe a change of the shape of the
tunneling gap in STS upon removal of the nodes by an applied
magnetic field. In fact, the results for zero magnetic field are
consistent with a nodal gap [18].

Next, we address Lifshitz invariants activated by the
applied magnetic field. Besides the terms F (L)

1 and F (L)
2 , ad-

ditional terms become nonzero because of the presence of the
induced superconducting OP. However, the induced OP is of
first order in magnetic field so that terms that contain explicit
factors of the field or more than one factor of the induced
OP are of higher order in the field and should be ignored
for consistency. A magnetic field along the z direction does
not activate Lifshitz invariants for primary A1 or A2 pairing,
to linear order in the field. For a magnetic field along the x
direction, the remaining terms are the Lifshitz invariants F (L)

1E
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TABLE III. Summary of the consequences of a uniform mag-
netic field applied along the x vs. z direction for pairing with A1

symmetry and with A2 symmetry. Nodes for A1 symmetry are ac-
cidental, while they are required by A2 symmetry.

Field A1 pairing A2 pairing

all nodes gapped out two nodes gapped out
Bx

helical state, modulation vector (0, qy ) ∝ Bx

all nodes persist all nodes gapped out
Bz

no modulation

and F (L)
2E . We obtain, for A2 pairing,

F (L)
2 + F (L)

2E = −ξ2 i Bx (ψ∗
2 ∇yψ2 − ψ2∇yψ

∗
2 )

− η2E (ψ∗
2 ∇yψx − ψ∗

x ∇yψ2). (68)

The ansatz ψ2 = |ψ2| eiqyy, ψx = ±i |ψx| eiqyy gives

F (L)
2 + F (L)

2E = 2ξ2Bx qy |ψ2|2 ± 2η2E qy |ψ2||ψx|. (69)

In addition, the free energy contains a standard term propor-
tional to q2

y . Minimization with respect to qy leads to a helical
state [39] with modulation vector �q = (0, qy) proportional to
ξ2Bx |ψ2|2 ± η2E |ψ2||ψx| and thus to the applied field, as ex-
pected for Lifshitz invariants [30–34]. For primary A1 pairing,
we analogously have to consider

F (L)
1 + F (L)

1E = −ξ1 i Bx (ψ∗
1 ∇yψ1 − ψ1∇yψ

∗
1 )

+ η1E (ψ∗
1 ∇yψy − ψ∗

y ∇yψ1)

= 2ξ1Bx qy |ψ1|2 ∓ 2η1E qy |ψ1||ψy|. (70)

Minimization leads to a helical state with modulation vector
proportional to ξ1Bx |ψ1|2 ∓ η1E |ψ1||ψy|. Equations (69) and
(70) show that the two solutions for signs ± in the ansatz have
different free energies. Which one is stable depends on the
signs of the coefficients and on the direction of the magnetic
field. Hence, we obtain a modulation with a single wave vector
�q, i.e., a helical state [34]. For both A2 and A1 symmetry,
the modulation vector is proportional to the magnetic-field
strength and perpendicular to the field so that it does not help
to distinguish A2 from A1 pairing. For convenience, we sum-
marize the predictions for A1 versus A2 pairing in Table III.

IV. SUMMARY AND CONCLUSIONS

In this work, we have constructed the GL functional for
trigonal PtBi2 including superconducting OPs of all possible
point-group symmetries (irreps A1, A2, and E of point group
C3v) in the presence of a magnetic field. Many unconventional
terms are generated, including Lifshitz invariants, i.e., terms
of first order in gradients of OPs.

As an application, we have studied the behavior of the
nodes in an applied uniform magnetic field. We find that the
results are distinct for A1 pairing with accidental nodes and
A2 pairing with symmetry-imposed nodes. For a uniform field
applied along the x direction, i.e., the direction towards the
Fermi-arc centers, A2 pairing is characterized by the nodes
in the direction parallel to the field being preserved whereas

the other four nodes are gapped out. On the other hand, for
A1 pairing all nodes are gapped out. For an approximately
uniform field applied along the z direction, A2 pairing is
characterized by all nodes being gapped out, whereas for A1

pairing all nodes persist.
These predictions could, in principle, be tested by mag-

netoARPES [38], which is technically challenging. It should
also be possible to distinguish between a full and a nodal
gap based on measurements of the tunneling gap in STS. An
in-plane field also generates spatially modulated superconduc-
tivity with a single modulation vector �q, i.e., a helical state, for
both A1 and A2 pairing.

The inclusion of gradients also allows to describe both
vortex states and local effects of impurities. We expect that
the activation of many terms in the GL functional leads to a
complex admixture of superconducting OPs. For example, the
Lifshitz invariants containing derivatives but no fields, F (L)

1E

and F (L)
2E , induce a large E OP in the vicinity of vortex cores,

where the primary A1 or A2 OP changes rapidly. We leave the
study of vortices in PtBi2 to future work. It may shed light
on the question why vortices have so far not been observed in
scanning SQUID experiments [18].

Another issue for future study is the interplay between
bulk and surface superconductivity in trigonal PtBi2. As noted
above, bulk superconductivity sets in at a critical temperature
on the order of 1 K [2,10]. The bulk OP could similarly be
decomposed into A1, A2, and E components and the cou-
pling between bulk and surfaces could be described within
the Ginzburg-Landau framework. We expect that bulk super-
conductivity strongly affects surface superconductivity. For
example, if bulk superconductivity were of (conventional)
A1 symmetry, whereas surface superconductivity transforms
according to A2, the bulk OP would open an A1 gap on the
Fermi arcs by proximity effect, which would lower the possi-
ble free-energy gain for surface superconductivity and thereby
suppress it.

Of course, while much can be learned from symmetry-
based phenomenological GL theory, one would also like to
understand the microscopic mechanism of superconductivity
in PtBi2. This requires microscopic modeling. An interesting
aspect is the connection to bulk states. The localization length
of the Fermi-arc states diverges towards the projections of the
Weyl points. Experimentally, the pairing amplitude appears to
vanish in this limit [9]. On the other hand, the band splitting
also goes to zero so that multiband pairing becomes possible.

To conclude, the results from the symmetry-based phe-
nomenological GL theory presented here can help to elucidate
various scenarios for the surface-superconducting state of
trigonal PtBi2, including nodal topological i-wave supercon-
ductivity. However, many fundamental and microscopic open
questions remain, in particular regarding the mechanism that
drives surface superconductivity in PtBi2.
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APPENDIX A: SYMMETRIES OF PAIRING STATES

In this Appendix, we give more details on the derivation
of possible symmetries of the superconducting gap function.
In the BdG Hamiltonian H(�k) in Eq. (3), the off-diagonal
block �̂(�k) is a 2 × 2 matrix on spin space. It is useful to
write �̂(�k) = D̂(�k)ÛT , where ÛT is the unitary part of the
antiunitary time-reversal operator, here ÛT = iσy. One can
show that D̂(�k) transforms like a matrix under point-group
transformations [26], which allows one to decompose D̂(�k)
into contributions transforming according to the irreps A1, A2,
and E (i.e., being irreducible tensor operators belonging to
these irreps).

As stated in Sec. II, fermionic antisymmetry additionally
requires [23–26]

�̂T (−�k) = −�̂(�k). (A1)

For the matrix D̂(�k), this condition translates to

ÛT D̂T (−�k)Û †
T = ÛT Û ∗

T �̂T (−�k)Û †
T = −�̂T (−�k)Û †

T

= +�̂(�k)Û †
T = D̂(�k). (A2)

Note that D̂T generally differs from D̂∗ since D̂ is not Her-
mitian. For a Hermitian matrix, Eq. (A2) would just express
time-reversal symmetry. For the generally non-Hermitian D̂,
one gets distinct relations containing D̂T and D̂∗. The deriva-
tion gives the form with D̂T .

As a 2 × 2 matrix, D̂(�k) can also be written as a linear
combination of the identity matrix σ0 and the Pauli matrices
σ = (σx, σy, σz ),

D̂(�k) = ψ (�k) σ0 + d(�k) · σ. (A3)

Here, ψ is the pairing amplitude for spin-singlet pairing, while
d describes the strength and spin content of spin-triplet pair-
ing. σ0 is even under time reversal, whereas σ is odd. The
condition (A2) thus implies that

ψ (−�k) = ψ (�k), (A4)

d(−�k) = −d(�k), (A5)

as is well known.
As noted in Table I, the spin angular-momentum com-

ponent σz transforms according to A2, while (σy,−σx )
transforms as an E doublet. σ0 of course transforms trivially
according to A1. Choosing functions ψ (�k) and d(�k) as basis
functions of the irreps, we can now in principle construct all
contributions to pairing of any symmetry (irrep). The sym-
metries of products of �k-dependent functions and matrices σi

follow from the usual rules for products of representations.
For our purposes, it is sufficient to consider the simplest

basis functions, i.e., the ones of lowest angular momentum
l . Higher-order basis functions just add modulations to the

gap functions without changing the symmetry. However, ac-
cidental nodes are possible. They can only be obtained from
a microscopic and material-specific theory. Recent ARPES
experiments [9] indicate that the pairing amplitude goes to
zero towards the Weyl points but does not contain further
nodes.

The basis functions up to l = 6, expressed in terms of
the polar angle φ of �k, are given in Table II. According to
Eqs. (A4) and (A5), only the basis functions for l = 0, 2, 4, 6
(l = 1, 3, 5) can occur in ψ (�k) (d(�k)). Thus the lowest-order
spin-singlet contributions to pairings belonging to the three
irreps are

A1 : D̂(�k) ∝ σ0, (A6)

A2 : D̂(�k) ∝ sin 6φ σ0, (A7)

E : D̂(�k) ∝
{
sin 2φ σ0

cos 2φ σ0.
(A8)

The lowest-order spin-triplet contributions with spin compo-
nents σz are

A1 : D̂(�k) ∝ cos 3φ σz, (A9)

A2 : D̂(�k) ∝ sin 3φ σz, (A10)

E : D̂(�k) ∝
{

sin φ σz

− cos φ σz,
(A11)

and the lowest-order spin-triplet contributions with in-plane
spin components are

A1 : D̂(�k) ∝ − sin φ σx + cos φ σy, (A12)

A2 : D̂(�k) ∝ cos φ σx + sin φ σy (A13)

E : D̂(�k) ∝
{− cos φ σx + sin φ σy

sin φ σx + cos φ σy.
(A14)

Generically, all contribution of the same symmetry (irrep)
coexist [40]. Note that all pairing matrices in Eqs. (A6)–
(A14) are even under time reversal, which inverts σ and shifts
φ → φ + π modulo 2π . They thus belong to the irreps A1+,
A2+, and E+.

Since σ0 has full symmetry the �k-dependent prefactors
in Eqs. (A6)–(A8) already give the A1, A2, and E pairing
amplitudes shown in Fig. 1. The next step is to show that
the triplet contributions lead to momentum dependence of the
same symmetry when projected onto the low-energy band.

To obtain the low-energy Hamiltonian, we first perform a
unitary transformation into the band basis. The BdG Hamilto-
nian to the band basis is given by

H̃(�k) ≡
(

H̃N (�k) �̃(�k)

�̃†(�k) −H̃T
N (−�k)

)
= U (�k)H(�k)U (�k)†, (A15)

with

U (�k) =
(

Û (�k) 0
0 Û ∗(−�k)

)
=

(
Û (�k) 0

0 Û (�k)ÛT

)
, (A16)

where the final form makes use of the time-reversal symmetry
of ĤN .
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In the band basis, the normal-state Hamiltonian is diagonal,

H̃N (�k) =
(

ξ−(�k) 0

0 ξ+(�k)

)
, (A17)

where ξ−(�k) is the dispersion of the band forming the Fermi
arcs, without loss of generality. The states with dispersion
ξ+(�k) are then high-energy states [40]. The projected BdG
Hamiltonian for the low-energy band forming the Fermi arcs
is obtained from H̃(�k) by taking only the matrix elements
pertaining to the “−” band,

Hproj(�k) =
(

ξ−(�k) �(�k)

�∗(�k) −ξ−(−�k)

)
. (A18)

We use ξ (�k) ≡ ξ−(�k) in Sec. II. We have checked numerically
(not shown) that the triplet contributions indeed lead to mo-
mentum dependence of �(�k) of the same symmetry as the
singlet contributions belonging to the same irrep.

However, we actually do not need to perform this unitary
transformation and projection to determine the symmetries of
the gap functions �(�k), as stated in Sec. II. �(�k) is a real
function of �k (it can be chosen real because the system does
not break time-reversal symmetry). It must transform like the
pairing matrix D̂(�k) under the point group and under time
reversal since the unitary transformation to the band basis
must not change the symmetry. This means that �(�k) must be
a real basis function of the same irrep, i.e., A1+, A2+, or E+, as
D̂(�k). The lowest-order basis functions are the ones given in
the manuscript, 1 for A1+, sin 6φ for A2+, and (sin 2φ, cos 2φ)
for the two components of E+. These functions are plotted in
Fig. 1.

APPENDIX B: ENUMERATION OF FULL-SYMMETRY
PRODUCTS

It is possible to use symbolic algebra to generate all terms
with n factors out of {A1, A2,

1E , 2E} that have full symmetry,
i.e., that transform according to A1. For n = 2, the results are
clear,

A1 ⊗ A1, (B1)

A2 ⊗ A2, (B2)

1E ⊗ 1E + 2E ⊗ 2E . (B3)

For n = 3, the terms are

A1 ⊗ A1 ⊗ A1, (B4)

A1 ⊗ A2 ⊗ A2, (B5)

A1 ⊗ 1E ⊗ 1E + A1 ⊗ 2E ⊗ 2E , (B6)

A2 ⊗ A1 ⊗ A2, (B7)

A2 ⊗ A2 ⊗ A1, (B8)

A2 ⊗ 1E ⊗ 2E − A2 ⊗ 2E ⊗ 1E , (B9)

1E ⊗ A1 ⊗ 1E + 2E ⊗ A1 ⊗ 2E , (B10)

1E ⊗ A2 ⊗ 2E − 2E ⊗ A2 ⊗ 1E , (B11)

1E ⊗ 2E ⊗ A2 − 2E ⊗ 1E ⊗ A2, (B12)

1E ⊗ 1E ⊗ A1 + 2E ⊗ 2E ⊗ A1, (B13)

1E ⊗ 1E ⊗ 2E + 1E ⊗ 2E ⊗ 1E

+ 2E ⊗ 1E ⊗ 1E − 2E ⊗ 2E ⊗ 2E . (B14)

For n = 4, the terms are

A1 ⊗ A1 ⊗ A1 ⊗ A1, (B15)

A1 ⊗ A1 ⊗ A2 ⊗ A2, (B16)

A1 ⊗ A1 ⊗ 1E ⊗ 1E + A1 ⊗ A1 ⊗ 2E ⊗ 2E , (B17)

A1 ⊗ A2 ⊗ A1 ⊗ A2, (B18)

A1 ⊗ A2 ⊗ A2 ⊗ A1, (B19)

A1 ⊗ A2 ⊗ 1E ⊗ 2E − A1 ⊗ A2 ⊗ 2E ⊗ 1E , (B20)

A1 ⊗ 1E ⊗ A1 ⊗ 1E + A1 ⊗ 2E ⊗ A1 ⊗ 2E , (B21)

A1 ⊗ 1E ⊗ A2 ⊗ 2E − A1 ⊗ 2E ⊗ A2 ⊗ 1E , (B22)

A1 ⊗ 1E ⊗ 2E ⊗ A2 − A1 ⊗ 2E ⊗ 1E ⊗ A2, (B23)

A1 ⊗ 1E ⊗ 1E ⊗ A1 + A1 ⊗ 2E ⊗ 2E ⊗ A1, (B24)

A1 ⊗ 1E ⊗ 1E ⊗ 2E + A1 ⊗ 1E ⊗ 2E ⊗ 1E

+ A1 ⊗ 2E ⊗ 1E ⊗ 1E − A1 ⊗ 2E ⊗ 2E ⊗ 2E , (B25)

A2 ⊗ A1 ⊗ A1 ⊗ A2, (B26)

A2 ⊗ A1 ⊗ A2 ⊗ A1, (B27)

A2 ⊗ A1 ⊗ 1E ⊗ 2E − A2 ⊗ A1 ⊗ 2E ⊗ 1E , (B28)

A2 ⊗ A2 ⊗ A1 ⊗ A1, (B29)

A2 ⊗ A2 ⊗ A2 ⊗ A2, (B30)

A2 ⊗ A2 ⊗ 1E ⊗ 1E + A2 ⊗ A2 ⊗ 2E ⊗ 2E , (B31)

A2 ⊗ 1E ⊗ A1 ⊗ 2E − A2 ⊗ 2E ⊗ A1 ⊗ 1E , (B32)

A2 ⊗ 1E ⊗ A2 ⊗ 1E + A2 ⊗ 2E ⊗ A2 ⊗ 2E , (B33)

A2 ⊗ 1E ⊗ 2E ⊗ A1 − A2 ⊗ 2E ⊗ 1E ⊗ A1, (B34)

A2 ⊗ 1E ⊗ 1E ⊗ A2 + A2 ⊗ 2E ⊗ 2E ⊗ A2, (B35)

A2 ⊗ 1E ⊗ 1E ⊗ 1E − A2 ⊗ 1E ⊗ 2E ⊗ 2E

− A2 ⊗ 2E ⊗ 1E ⊗ 2E − A2 ⊗ 2E ⊗ 2E ⊗ 1E , (B36)
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1E ⊗ A1 ⊗ A1 ⊗ 1E + 2E ⊗ A1 ⊗ A1 ⊗ 2E , (B37)

1E ⊗ A1 ⊗ A2 ⊗ 2E − 2E ⊗ A1 ⊗ A2 ⊗ 1E , (B38)

1E ⊗ A1 ⊗ 2E ⊗ A2 − 2E ⊗ A1 ⊗ 1E ⊗ A2, (B39)

1E ⊗ A1 ⊗ 1E ⊗ A1 + 2E ⊗ A1 ⊗ 2E ⊗ A1, (B40)

1E ⊗ A1 ⊗ 1E ⊗ 2E + 1E ⊗ A1 ⊗ 2E ⊗ 1E

+ 2E ⊗ A1 ⊗ 1E ⊗ 1E − 2E ⊗ A1 ⊗ 2E ⊗ 2E , (B41)

1E ⊗ A2 ⊗ A1 ⊗ 2E − 2E ⊗ A2 ⊗ A1 ⊗ 1E , (B42)

1E ⊗ A2 ⊗ A2 ⊗ 1E + 2E ⊗ A2 ⊗ A2 ⊗ 2E , (B43)

1E ⊗ A2 ⊗ 2E ⊗ A1 − 2E ⊗ A2 ⊗ 1E ⊗ A1, (B44)

1E ⊗ A2 ⊗ 1E ⊗ A2 + 2E ⊗ A2 ⊗ 2E ⊗ A2, (B45)

1E ⊗ A2 ⊗ 1E ⊗ 1E − 1E ⊗ A2 ⊗ 2E ⊗ 2E

− 2E ⊗ A2 ⊗ 1E ⊗ 2E − 2E ⊗ A2 ⊗ 2E ⊗ 1E , (B46)

1E ⊗ 2E ⊗ A1 ⊗ A2 − 2E ⊗ 1E ⊗ A1 ⊗ A2, (B47)

1E ⊗ 2E ⊗ A2 ⊗ A1 − 2E ⊗ 1E ⊗ A2 ⊗ A1, (B48)

1E ⊗ 2E ⊗ 1E ⊗ 2E − 1E ⊗ 2E ⊗ 2E ⊗ 1E

− 2E ⊗ 1E ⊗ 1E ⊗ 2E + 2E ⊗ 1E ⊗ 2E ⊗ 1E , (B49)

1E ⊗ 1E ⊗ A1 ⊗ A1 + 2E ⊗ 2E ⊗ A1 ⊗ A1, (B50)

1E ⊗ 1E ⊗ A1 ⊗ 2E + 1E ⊗ 2E ⊗ A1 ⊗ 1E

+ 2E ⊗ 1E ⊗ A1 ⊗ 1E − 2E ⊗ 2E ⊗ A1 ⊗ 2E , (B51)

1E ⊗ 1E ⊗ A2 ⊗ A2 + 2E ⊗ 2E ⊗ A2 ⊗ A2, (B52)

1E ⊗ 1E ⊗ A2 ⊗ 1E − 1E ⊗ 2E ⊗ A2 ⊗ 2E

− 2E ⊗ 1E ⊗ A2 ⊗ 2E − 2E ⊗ 2E ⊗ A2 ⊗ 1E , (B53)

1E ⊗ 1E ⊗ 1E ⊗ A2 − 1E ⊗ 2E ⊗ 2E ⊗ A2

− 2E ⊗ 1E ⊗ 2E ⊗ A2 − 2E ⊗ 2E ⊗ 1E ⊗ A2, (B54)

1E ⊗ 1E ⊗ 2E ⊗ A1 + 1E ⊗ 2E ⊗ 1E ⊗ A1

+ 2E ⊗ 1E ⊗ 1E ⊗ A1 − 2E ⊗ 2E ⊗ 2E ⊗ A1, (B55)

1E ⊗ 1E ⊗ 1E ⊗ 1E − 1E ⊗ 1E ⊗ 2E ⊗ 2E

+ 1E ⊗ 2E ⊗ 1E ⊗ 2E + 1E ⊗ 2E ⊗ 2E ⊗ 1E

+ 2E ⊗ 1E ⊗ 1E ⊗ 2E + 2E ⊗ 1E ⊗ 2E ⊗ 1E

− 2E ⊗ 2E ⊗ 1E ⊗ 1E + 2E ⊗ 2E ⊗ 2E ⊗ 2E , (B56)

1E ⊗ 1E ⊗ 1E ⊗ 1E + 1E ⊗ 1E ⊗ 2E ⊗ 2E

+ 2E ⊗ 2E ⊗ 1E ⊗ 1E + 2E ⊗ 2E ⊗ 2E ⊗ 2E . (B57)

Analogously, high-order terms and also terms of A2, 1E , or 2E
symmetry can be generated.
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