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Ginzburg-Landau theory for unconventional surface superconductivity in PtBi,

Harald Waje ©,! Fabian Jakubczyk ©,"? Jeroen van den Brink @,

1,2,3 1,2,*

and Carsten Timm

Unstitute of Theoretical Physics, Technische Universitdt Dresden, 01062 Dresden, Germany
2Wiirzburg-Dresden Cluster of Excellence ct.qmat, Technische Universitit Dresden, 01062 Dresden, Germany
3Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany

® (Received 10 July 2025; revised 2 October 2025; accepted 9 October 2025; published 30 October 2025)

Recent experimental evidence suggests the presence of an unconventional, nodal surface-superconducting
state in trigonal PtBi,. We construct a Ginzburg-Landau theory for the three superconducting order parameters,
which correspond to the three irreducible representations of the point group Cs,. The irreducible representations
A, and A, are the most likely. We develop a systematic method to determine the symmetry-allowed terms and
apply it to derive all terms up to fourth order in the three order parameters. The Ginzburg-Landau functional
also includes coupling to the magnetic field. The functional is employed to determine the effect of an applied
uniform magnetic field on the nodal structure for A; and A, pairing. The results facilitate clear-cut experimental
differentiation between these symmetries. We also predict field-induced helical superconductivity.
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I. INTRODUCTION

Trigonal PtBi, has recently emerged as a rather puzzling
unconventional superconductor. The crystal structure with the
noncentrosymmetric space group P31m [1,2] and point group
(3, consists of Bi-Pt-Bi triple layers, where the two Bi layers
are inequivalent. Consequently, there are two inequivalent
(001) surfaces, a corrugated “decorated honeycomb” Bi layer
and a planar “kagome” Bi layer, respectively. The point group
(3, is not reduced by the presence of these surfaces.

Density functional theory (DFT) calculations [3—6] predict
12 Weyl points in general momentum positions. Since all
Weyl points are related by point-group or time-reversal sym-
metries they are at the same energy, about 45 meV above the
Fermi energy [3]. They are located close to the 'MLA mirror
planes [7]. Due to the presence of Weyl points, one expects
six Fermi arcs on (001) surfaces connecting the projections
of the Weyl points into the surface (or slab) Brillouin zone.
DFT calculations for slabs indeed find these arcs [5,6]. They
are different for the two Bi terminations but in both cases
are horseshoe shaped and connect neighboring Weyl points
across the I'M lines. Quasi-particle interference [8] and angle-
resolved photoemission spectroscopy (ARPES) [5,9] in the
normal state provide strong evidence for the Fermi arcs at both
surfaces.

The superconducting properties of trigonal PtBi, are
puzzling. Initially, single crystals were found to become su-
perconducting at a broad transition at about 7. = 600 mK
[2]. More recent measurements on high-quality single crystals
showed a much sharper transition at 7. = 1.1 K [10]. Wang
et al. [11] only observed superconductivity under pressure,
with a critical pressure of 5 to 6 GPa and an otherwise weakly
pressure-dependent critical temperature of about 2 K [11].
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Point-contact measurements [12] showed enhanced
T. ~ 3.5 K, attributed to the higher local density of states in
the vicinity of the point contact. The authors also concluded
that electron-phonon coupling is a plausible mechanism.

Transport measurements by Veyrat et al. [4] on thin
exfoliated flakes showed a superconducting 7, of a few
hundreds of mK. For a thickness of 60 nm, the authors
found 7. = 370 mK. The current-voltage characteristics ex-
hibited power-law scaling V ~ [I? over a moderate range
of currents, interpreted in terms of a Berezinskii-Kosterlitz-
Thouless (BKT) transition [13—15] with critical temperature
Tskt = 310 mK determined by a(7gxr) = 3 [4]. This indi-
cates two-dimensional (2D) superconductivity in spite of the
film being much thicker than other systems showing BKT
scaling [4]. Moreover, the critical magnetic field as a function
of its angle relative to the surface exhibits a cusp-like maxi-
mum for the field in plane [4], consistent with the Tinkham
model for 2D superconductivity [16,17].

The Fermi-arc signatures in laser ARPES exhibit shifts
as functions of temperature that are characteristic for
superconducting transitions [5]. The critical temperatures
for superconductivity in the Fermi arcs are estimated as
T, =14+£2 K for the decorated honeycomb surface and
T. =8+ 2 K for the kagome surface. The corresponding
superconducting gaps are 1.4 +0.2 and 2.0 £ 0.2 meV, re-
spectively. The intensity vs. energy for the arc states shows
an extremely sharp peak below T, interpreted as a super-
conducting coherence peak [5]. There is no indication of
superconductivity in the bulk down to 1.5 K.

Very recent ARPES experiments [9] with improved res-
olution have brought a big surprise: They show that the
superconducting gap vanishes, within experimental accuracy,
at the arc centers, where the arcs cross the I'M lines. The gap
appears to open linearly as a function of momentum along
the arcs. While ARPES is not sensitive to the sign, or more
generally the phase, of the gap, the results are most naturally
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TABLE I. Characters and basis functions up to the order / = 2 of
the point group Cs, [7,21,22]. The irreps corresponding to angular-
momentum or magnetic-field components Ry, Ry, R; are also shown.

€ 2C 30, Basis functions

Ay 1 1 1 1z, x> +y%, 2
A, 1 1 -1 R,
X xy Xz R,
E 2 -1 0 , , )
() e ) 2 ()

explained by point nodes with linear dispersion and a sign
change of the pairing amplitude [9]. It seems unlikely that
a gap minimum without sign change shows fine-tuned linear
dispersion. The maximum gap is on the order of 3 meV. The
critical temperature lies between 10 and 15 K [9].

Recent scanning-tunneling spectroscopy (STS) experi-
ments [18] show tunneling gaps with characteristic coherence
peaks at a temperature of 5 K for both surfaces. Although
the surface topography indicates high surface quality with few
point defects, the gap is spatially highly nonuniform spanning
arange from 0 to 20 meV.

Scanning SQUID measurements [18] show a weak dia-
magnetic response at 6.4 K, characteristic for 2D supercon-
ductivity. However, vortices are not observed. No anomaly
related to superconductivity is observed in specific-heat mea-
surements, which is consistent with the absence of bulk
superconductivity. Surface superconductivity in PtBi, accom-
panied by a normal bulk is possible since the density of states
at the surface is higher due to the Fermi arcs and can resultin a
much higher mean-field transition temperature for the surface
[19,20].

In the absence of a good understanding of the microscopic
mechanism, it is worthwhile to perform an analysis that only
relies on symmetries. In this work, we set up a Ginzburg-
Landau (GL) theory for possible superconducting states at
the surface of PtBi,. The rather low symmetry described by
the point group C3, and the correspondingly small number
of irreducible representations (irreps) allows us to construct
an essentially complete GL functional involving all possible
couplings between the order parameters (OPs), also including
gradients and the applied magnetic field.

The remainder of this paper is organized as follows. In
Sec. II, we review the possible superconducting states and
their symmetry-imposed nodal structure. In Sec. III, we con-
struct the GL functional and employ it to predict the change of
the nodal structure when a magnetic field is applied. Finally,
in Sec. IV, we summarize our work and draw conclusions.

II. SYMMETRY AND NODAL STRUCTURE OF
SUPERCONDUCTING STATES

In this section, we review the symmetry analysis and re-
sulting nodal structure of surface superconductivity in PtBi,
[9] and provide additional details. The point group Cs, is of
order 6 and contains the identity €, a rotation Cs by 120°, its
square C32, and three vertical mirror planes, one of which is
denoted by o,. It has the three irreps A, A, and E. Table I
shows the characters and low-order basis functions of these

irreps [7,21,22]. The lowest-order basis function of A, is
x(y + x/v/3)(y — x/+/3), of order [ =3 [7,22]. To be able
to safely construct terms in the GL functional, we have to
carefully assign the first and second components of the 2D
irrep E, which we denote by 'E and 2E, respectively. (Note
that most tables of basis functions do not distinguish between
the components.) We take (x, y) as the template, i.e., we re-
quire the first component to be odd under the mirror reflection
x = —x and the rotation C; to map the components as

s —— v, 1
X 2x+2y @))
G 1 \/§
> ——y— —x. 2
y YT 2

It can be checked that the other doublets given for the irrep £
in Table I transform in the same manner.

We consider 2D superconductivity at a single surface of
PtBi,, in practice realized by making the bulk sufficiently
thick to decouple the surfaces. Our analysis applies to both the
decorated honeycomb and the kagome termination but the val-
ues of parameters will of course be different. There are three
possible complex superconducting OPs, corresponding to the
irreps Ay, Az, and E. Since E is a 2D irrep, the corresponding
OP generally has two complex components.

The position of nodes can be obtained based on the symme-
try of the superconducting state [9]. The normal-state Fermi
arcs are nondegenerate. Hence, at low energies, the super-
conducting state can be described by projecting a multiband
Bogoliubov-de Gennes (BdG) Hamiltonian

. Hy (k) Ak)
h=1[..- R -, 3
H () (Af(k) _HNT(_k)> 3)

where the block ﬁN(%) is the normal-state Hamiltonian and
A(k) is a pairing matrix, onto this single band. This relies
on the energy splitting between the Fermi-arc band and bulk
bands being larger than the superconducting energy scale.
This condition breaks down in the vicinity of the Weyl points
but ARPES experiments [5,9] show that it holds over nearly
the full arc.
The projected BAG Hamiltonian has the generic form
Hor = (50 20 ) o)
A*(k)  —&(=k)
where 5(1_5) is the normal-state dispersion and A(E) is the
pairing amplitude. Since there is no sign of time-reversal
symmetry being broken spontaneously A(k) can be chosen
real for all momenta k. For our analysis, we only require the
dependence of the pairing amplitude along the Fermi arcs. To
parametrize A, we start from the polar angle ¢ of k. ¢ does
not uniquely label the arc states due to the horseshoe shape
of the Fermi arcs. We can, however, remove this problem by
deforming the parametrization without changing the symme-
try [9]. The Fermi arcs are connected to short sections of bulk
Fermi surfaces in the vicinity of the Weyl points that link them
to the Fermi arcs at the opposite surface. The OP is, so far,
unmeasurably small in the bulk [5,9]. For large intervals of
angles ¢, there is no normal-state Fermi surface.
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TABLE II. Low-order basis functions of the angle ¢, its order /,
corresponding irreps, and signs under time reversal 7.

Basis function Order [ Irrep Sign under 7
1 0 A +
cos ¢
(sin ¢) ! E B
sin 2¢
<cos 2q)) 2 E +
cos 3¢ 3 A, —
sin 3¢ 3 A _
sin 4¢
<— cos 4(15) 4 E +
cos 5S¢
(— sin 5¢> > E B
cos 6¢ 6 A +
sin 6¢) 6 As +

For every irrep A;, A, or irrep component 'E, 2E, the
function A(¢) must be a real-valued basis function of this
irrep or component. In Table II, we list the basis functions
of the angle ¢ up to order / = 6. Moreover, there is another
important symmetry constraint: Fermionic antisymmetry re-
quires the pairing matrix in the full BAG Hamiltonian, Eq. (3),
to satisfy AT (—k) = —A(k) [23-25]. Simply speaking, this
implies that the pairing matrix must be even under time re-
versal [26]. Time reversal maps k to —k and thus ptop+m
modulo 27. The pairing amplitude A(¢) in the projected BdG
Hamiltonian, Eq. (4), inherits this property. The correspond-
ing signs under time reversal are also given in Table II. Hence,
the pairing amplitude A(¢) must be a real basis function of
the irrep or irrep component and must be even under time
reversal. To find the symmetry-imposed nodes, it is sufficient
to consider the lowest-order basis function with these proper-
ties. Basis functions of higher order only introduce additional
modulations of the amplitude without changing its symmetry.
More details are given in Appendix A.

We now discuss the irreps in turn. The superconducting
state of full symmetry, which belongs to the trivial irrep Aj,
was considered in [6]. The lowest-order basis function of A;
is the constant function. It is also even under time reversal.
Hence, there are no symmetry-imposed nodes. This is “con-
ventional” s-wave (I = 0) pairing. Recently, Maland et al.
[27] have proposed an A; pairing state with gap minima, but
not nodes, at the arc centers, based on a phononic mechanism.

The lowest-order basis functions of ' E and *E that are even
under time reversal are sin 2¢p and cos 2¢, respectively. This
can be described as d-wave (I = 2) pairing. Superpositions
of the two components are also possible and preserve time-
reversal symmetry if the coefficients of both can be made real
simultaneously. All these functions break rotation symmetry:
The pairing amplitude is not the same along all six Fermi arcs.
The first component by itself as well as any symmetry-related
state have point nodes with linear dispersion at some arc cen-
ters but not at all of them. There is no experimental indication
for different gaps for different arcs [9].

There also exist natural states of E symmetry that
break time-reversal symmetry. They consist of a complex

1 Ay
(c) (d)

(a) @ (b)
A

B ’E

FIG. 1. Polar plots of the lowest-order basis functions showing
the symmetries of the superconducting pairing amplitudes of (a) A;
symmetry [A(¢) o 1], (b) A, symmetry (sin 6¢), (c) 'E symmetry
(sin 2¢), and (d) 2E symmetry (cos 2¢). Red and blue color refer to
positive and negative sign, respectively. The angular ranges spanned
by the Fermi arcs are sketched as gray sectors, which have been
exaggerated for clarity.

superposition of 'E and 2E components with a phase shift
of +m /2 between them. These states can have isotropic gap
magnitude but they do not have nodes. Moreover, there is
no experimental indication for spontaneous breaking of time-
reversal symmetry [9].

The lowest-order basis function of A, that is even under
time reversal is sin 6¢). This is i-wave (I = 6) pairing [9] (the
time-reversal odd function cos 3¢ cannot appear, as discussed
in Appendix A). It has symmetry-imposed point nodes with
linear dispersion at all arc centers. In the absence of fine
tuning, this is the only symmetry consistent with the ARPES
experiments [9]. The nodes lead to topologically nontrivial
Majorana cones and protected hinge states, as discussed in
Ref. [9]. The gap function A(¢) also changes sign between
the arcs but these sign changes are not physically meaningful
due to the absence of normal-state bands at the Fermi energy.

The lowest-order basis functions for all possible pairing
symmetries are sketched in Fig. 1. The angular ranges of the
Fermi arcs are also indicated. Phase-sensitive measurements,
like for the cuprates [28], would be ideal to determine the
symmetry of the superconducting OP. We are not aware of
such measurements. In the following section, we propose that
in particular the A| and A, pairing states can be distinguished
by their different reaction to applied magnetic fields.

II1I. GINZBURG-LANDAU THEORY

In this section, we set up the GL functional for the su-
perconducting OPs. After discussing the principles used in
constructing the functional, we give all terms up to fourth
order in total and up to first order in magnetic field. Then,
we employ this functional to predict effects of an applied
magnetic field on A; and A, pairing.
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A. Principles of constructing the functional

The pairing amplitude A(k) in the projected BdG Hamil-
tonian is in general a superposition of basis functions of
the irreps A, A, or irrep components 'E, 2E with spatially
varying complex coefficients. Their coarse-grained spatial
structure is described by the GL functional. We refer to the
coarse-grained coefficients as “superconducting OPs” and de-
note the OPs of Ay, A,, and E symmetry by v, ¥, and

T wx

WE - <wy> ’ (5)
respectively. They transform under the point group according
to the irrep or irrep component and are mapped to the complex
conjugate under time reversal.

The GL functional also contains the magnetic-field com-
ponents, which transform like R,, Ry, R; in Table I under the
point group. Thus (B, —B,) transforms according to the irrep
E and B, according to A,. Moreover, the magnetic field is odd
under time reversal. Finally, we need the 2D gauge-covariant
derivative

o D, N . q -
D= =V—-i—A, 6
(Dy) L (6)
where ¢ = —2e is the charge of Cooper pairs and A is the

in-plane part of the vector potential. D transforms according
to the irrep E, as can easily be checked, i.e., it is an irreducible
tensor operator of E. Since time reversal 7 does not affect
the position but changes the sign of the magnetic field and
the vector potential, 7 acts on the gauge-covariant derivative
according to [29]

D=V-iLi L v+ili=p %)

hc hc

We also require the derivative V, = d/dz acting on the mag-
netic field. V, transforms according to A; since z does.

We first investigate which terms are possible in the GL
functional. Terms in the functional must (a) respect the point-
group symmetry, i.e., transform according to A;, (b) respect
time-reversal symmetry, (c) be real, and (d) be gauge invari-
ant. The symmetry under global U(1) phase transformation is
a special case of gauge invariance.

We construct all terms containing up to four factors of
Vi, V2, Yo Wy, YL V3, UL, ¥, By, By, B, Dy, or Dy,
with the following constraints: we only include terms that
contain superconducting OPs or, in other words, we subtract
the normal-state free energy. Due to gauge invariance, the
number of complex conjugated OPs must equal the number
of unconjugated OPs. We restrict ourselves to the first order in
the magnetic field B = (By, By, B;). This can be understood as
the weak-field limit. However, some terms of higher order are
generated by using the gauge-covariant derivative. We indi-
cate two-component vectors by an arrow and three-component
vectors by bold-face font.

The strategy is the following. First, find all products of
irreps or irrep components up to fourth order that result in
Aj. Second, for each such product insert all combinations of
wl» Wz, 1/fm Kﬁy, I/Iik’ Wf, ;7 ;7 Bx’ By’ BZ’ Dx’ and Dy
that transform like the factors, taking care of the constraints
mentioned above. Third, generate real terms by taking the real

or imaginary part. Some terms will turn out to vanish. Fourth,
omit terms that are linearly dependent of other terms.

The first step can be done automatically, based on the
possible expansions of irreps into second-order products,

A=A ®A, ®)
A=A ®Ay, ©)
A ='EQ'E+’EQ®’E, (10)
Ay =A1 ®Ay, (11)
Ay =A ®A, (12)
A ='"E®’E-’EQ'E, (13)
'E\  (Ai®'E a4
) \A®2E)

1 2

E —A, Q2E

=070, (15)
E A Q®'E

'E 'E® A

2] T2 ’ (16)
E E®A;

'E -EQ® A

g ] 1 ’ a7
E EQ®A;

'E __‘E®2E+¢E®1E as)
k] \'EQ'E-EQZE)

By iterating these expansions, we obtain products of three or
four factors. All products up to fourth order that transform
according to A are listed in Appendix B for completeness.

Concerning the second step, we note that while the di-
rect product of representations is commutative, the actual
expressions involve the derivatives Dy, D,, which do not
commute with spatially-dependent fields. We here use the
convention that the derivatives act on the next field to the right
only.

For the third step, we examine how to construct terms that
are real and even under time reversal. If only OPs and deriva-
tives are present both conditions coincide since time reversal
has the same effect as complex conjugation. Once one has
found some term X that respects the lattice symmetries and
gauge invariance, one can easily make it time-reversal-even
by adding its complex conjugate, X + X*, essentially taking
the real part. Note that if X is imaginary the result will vanish.

For terms involving a magnetic-field component B}, a dif-
ferent approach is necessary because the field is real but odd
under time reversal. We need to make the part X formed by
derivatives and OPs odd under time reversal as well. This can
be achieved by subtracting the complex conjugate. Since the
resulting term is imaginary, we need to multiply by i, giving
iB; (X — X*),1.e., involving the imaginary part. This vanishes
if X is real.

The fourth step of eliminating redundant terms may also
involve integrating by parts. For a generic term, integration by
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parts reads as
[ = [ @ (v-i L a)e
= /dzr (—ij* —i%Ajf*>g

= —fdzrg<vj +i%Aj)f* =

where a surface term in the infinite has been dropped. Since
we have already made all terms real we can apply complex
conjugation without changing the result, giving

—/dzrng;f*, (19)

/ Pre (v, —iLa)r=- / &Prg (P D f(F). (20)

B. Ginzburg-Landau functional for PtBi,
The GL functional is

FLy1. Y. . B] = / PrF @), 1)

with
F=F+F+F+F,+Feg+Fe+ Foe
+FY + By +FP +FY +FY + By
+ B+ R+ R+ B+ R B
+RY+ BY + B+ Ry + P+ B (22)

In the following, we construct these contributions to F.

The terms involving only one of the superconducting OPs
and no explicit magnetic field (but the vector potential in D)
read as

Fi=3vivi+ b T Wi+ 2 Oy By, @3)
F2=—1/f21/fz+ﬁ W32 + 2 (Do) By, 24)
Fe = % g+ TE G ey
2 gy —wu + B e B )
+ V2—E (Dathy — Dytr)* (Dasy — Dy, (25)

The contributions F; and F, corresponding to the one-
dimensional irreps A; and A, have the standard form. Fg
contains more terms since both @E and D are E doublets and
there are three ways to construct a product of full symmetry
out of four E factors:

(E®'E4+’E®’E)® (E®Q'E+’E®’E),  (26)

(E®E-E®R'E)Q(E®’E-*E®'E), (7)

(E®R'E-E®’E)® 'E®'E-*E®’E)
+(EQ’E+’EQ'E)® (E®’E+’E®'E), (28)

which result from expanding Ay ® A, Ay ® Ay, and E Q E,
respectively. The corresponding terms of fourth order in ¥g
are proportional to

W5 ve) (29)
Wiy — ¥ v, (30)
Wi — Y + (Wi + ¥ v ) 31)

respectively. However, these expressions are not linearly inde-
pendent since the last expression equals

Wi + Y + (Ui — v v’ (32)

which is the sum of the other two. This reduction is due to
the invariance under interchange of the two w;‘ or of the two
; factors. Moreover, we do not obtain additional products by
using the ordering Yy *y* Y.

For the terms of second order in ¥ and containing two
derivatives, the situation is more complicated since the gauge-
covariant derivatives generally do not commute. The allowed
terms corresponding to the products A} ® A}, A, ® A,, and
E ® E can be written as

(DY) (DY), (33)

(Dxl/fy - Dyl[’x)*(way - Dy‘/fx)s (34)
(DXWX - Dylpy)*(wax - Dyl”y)

- (way + Dywx)*(way + Dywx)v (35)

respectively. They all satisfy time-reversal symmetry, see
Eq. (7). For a term (D;f)*Dig, an elementary calculation
involving twofold integration by part gives

/ d*r (Dif)* D

e (ViA; — Vin)f*g]

:/d2r|:(Djf) Dig+i-- Xk:ei,-kka g}, (36)

where €;;; is the Levi-Civita symbol. The application to
Eq. (35) generates, under the spatial integral, the terms in
Egs. (33) and (34) plus the term

VyAx) (Iﬂ: 1/fy -

— /dzr[(Djf)* Dig+iL

—di - L (VA — Vi)

= —4i % B (Y — ¥y, (37

which appears if a magnetic field is applied along the z direc-
tion. It is included below in Eq. (44).

The coupling terms without explicit magnetic field and of
even order in derivatives read as

_ 512 * * 512 * *
Fp=— Wl V1Y, ¥ + —(% Yo Y +cc.),  (38)

5
Fig = 1/f1 Wﬂﬁf R

(‘MWE 1pHﬁE‘f‘CC)

+5“E Wy + P7)
5 WV vy y Wx
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+ W%(ﬁ% - W}*%) + c.c.]
+ S D) (Davy +Dyh)
+ (Dywl )*(DXWX - Dyl[’y) + C.C.], (39)
o — 2k ) TE T 6éE * 7 * 7
w = Vo - Ve + > (U2 ¥e - Yy yE +c.c.)
+ Dok (W3 (Ui e — Y y)
2 2 Vx\¥x Vx yry
I + ) + e

+ %E [(Dy2)* (D — Do)

— (Dy¥2)* (D + Dyt + c.c.], (40)
1)
Fiog = =S [0v2 (W30 — Y30 + el (41)

A term proportional to (Dyyr()* Dy, — (Dyyr1)* Dz + c.c.
is also symmetry allowed. In analogy to the terms in Fg with
two derivatives, twofold integration by parts gives, under the
spatial integral, i (q/fic) B,(¥{ Y2 — ¥ 1), which is included
below in Eq. (45). Moreover, the symmetry-allowed term pro-
portional to ¥ Y 3y, — Yyl + c.c. vanishes.

Terms of first order in derivatives are called “Lifshitz in-
variants” [30-34]. We find the following Lifshitz invariants
without explicit magnetic field:

FY = me(iD - g — vy - Dyn), 42)
Fy = mop[3 (Deby — Do) — (WD — YD)
(43)

They are enabled by the possibility of products of OPs that
transform in the same way as the derivative. Lifshitz invariants
allow for unconventional superconducting states, as discussed
below.

In the presence of a magnetic field, we obtain the following
terms of first order in the field and without any derivatives:

FP = ¢pi B, (Y vy — ¥y vn), (44)
FYY = tniB, (Y7v — ¥39n). (45)
FP =i [By (Y7 v — ¥1vn)

— B (Y — Yy, (46)
Fyp = Gp i [By (W3 — ¥iv)

+ B, (W3 — Y v)]. (47)

We have seen above that terms of the form of F” and F, h ) are
generated from terms with two gauge-covariant derivatives.
However, terms containing the magnetic field generically stem
from two distinct physical effects: One is the orbital motion
of the charged fields ¥, ¥, and Ve, expressed by the gauge-
covariant derivatives. The other is the spin of the Cooper pairs.
Since PtBi, lacks inversion symmetry even in the bulk and in
particular at the surface we expect all superconducting states

to exhibit singlet-triplet mixing [34,35], i.e., nonvanishing
Cooper-pair spin.

Moreover, there are contributions involving derivatives of
the magnetic field, which, according to the Ampere-Maxwell
law, are related to currents. To fourth order overall, these
contributions can only be of the form i (VB)(y*y —c.c.)
in order to respect time-reversal symmetry. Several allowed
terms vanish because the part ¥*i is real. The remaining
contributions involving in-plane derivatives are

Fy) = kp i (ViBy + VyBy) (Wi Yy — Y ), (48)
FY = ki (VB + VBl — ¥3v0).  (49)
FP = kip i (VB — ¥i9n)

— (VB Yy — ¥ )]

+xlp i [(=ViBy + VyBy) (Wi — ¥iyn)

+ (ViBy + VyB)(Wiy — Wiy, (50)
Fy) = kg il(VyB) (W3 ¥y — ¥2)

+ (VB)W3 ¥ — Y591

+ i i [(ViBy — VyBy) (W5 vy — W)

+ (ViBy + VyB (W3 — YY), (51)

Unlike the OPs of the 2D superconductor, the magnetic field
B can have a nonzero derivative in the z direction. Since V,
is invariant under the point group (A; symmetry) the resulting
contributions can simply be obtained from Eqs. (44)—(47) by
replacing B; by V.B;. Due to Gauss’ law for the magnetic
field, the results involving V,B, reproduce FE(’ ) and Fl(zj). The
new terms are

FP = ap i (VB (Wiv, — i)

— (VB ¥y — ¥y, (52)
Fy" = Mg i [(VBy) (W5 vy — ¥i)
+ (VB39 — YY)l (53)

Since the superconductor exists at the surface the derivative
V.B is generically nonzero if a field is applied.

Finally, we find contributions of first order in the field and
in the derivative acting on OPs, hence, additional Lifshitz
invariants [30-34]. These terms read as

FP = & i(Byy{ Dy — By Dy — c.c), (54)
Y = & i(ByW3 D — BAps Dy — c.c), (55)
FiY = &g iB.[} (Do — Dyyry) — Yy (Dstry + D)

+EL By — By ) Dy + Dyy) — c.c.]

+EL LBy + By Dy — Dyy) —cc.l, (56)
FYY = 0 i(BaiDa + By Dy — c.c.), (57)
F{Y = &g i[B.y{ (DsWry — D) — c.c]

& i [ByY} Dy + Dy

— By (Devre — Dyiry) — c.c], (58)
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EY = & i[BA5 (D + Dyy) — c.c.
+ ééE i[Byw;(wax - D}'I/fy)
+ B3 (D, + Dyyry) — c.c.]. (59)

The two terms in FEEL) with in-plane field components are
similar to the terms with two derivatives in Fg, see Eq. (25).
The terms corresponding to the products A} ® A;, Ax ® As,
and E ® E read as

i [(By¢: - wa;)(wax + Dywy) - C.C.], (60)
[ [(B\I/f)* + wa:)(DXWy - Dywx) - C‘C']9 (61)

i [(B)W: + wa;()(wax - D}'Wy)
+ (ByYy — By )(Dxyhry + Dyiy) — c.c.], (62)

respectively. One can show that taking the sum of the first two
terms and using integration by parts generates the third term

plus a field-derivative term proportional to FE(j ) in Eq. (48)
[36].

C. A; and A, pairing in a magnetic field

As noted above, high-precision ARPES results [9] are most
consistent with A, pairing in PtBi, but cannot exclude A;
pairing with accidental (near) nodes and fine-tuned linear
dispersion. It is thus important to find experimental signatures
that distinguish between these possibilities. Therefore, we fo-
cus on the comparison of primary A; and A, superconducting
OPs.

As a reminder, in the absence of a magnetic field, A; pair-
ing is stabilized if the coefficient «; in Fj, Eq. (23), becomes
negative below a certain critical temperature 7., while «; is
still positive. The coefficients B, y;, B2, and y, must be pos-
itive to ensure that the GL functional is bounded from below.
Even if o, also becomes negative at a lower temperature,
A, pairing generically does not set in immediately because
the coupling between A; and A, order in Fj,, Eq. (38), is
expected to be repulsive because the superconducting states
of different symmetry compete for the same electrons. The
case of primary A, pairing is analogous.

First, we consider a uniform magnetic field applied in par-
allel to the surface. A uniform field is indeed expected in this
case if the two surfaces are decoupled. For A, superconduc-
tivity and a magnetic field along the x direction, i.e., parallel
to the I'M lines and to the nodal planes, the relevant terms
containing the magnetic field in the GL functional are

EB = 00 i B, (Wi — Y290), (63)
FY = —&i B (WY — o Vyus). (64)

We have replaced D by V since we treat the magnetic field at
first order. The second term is discussed below in the context
of helical states. The first one implies that a superconducting
OP v, is induced, which, for weak fields, is linear in B, and
in Y. Moreover, since Fz(? contains the imaginary part of
Y5 ¥ the induced OP v, has a phase shift of £ /2 relative
to the primary OP vr,. The sign depends on the sign of &g By.
The induced first component of the £ OP has the symmetry
of sin 2¢, see Table II. Hence, it has nodes at the Fermi-arc

centers at ¢ = 0 and ¢ = 7 but is nonzero on the other four
arcs. It thus preserves the nodes at ¢ = 0, = and removes the
nodes at ¢ = /3, 2 /3,47 /3, and 57 /3 [37].

On the other hand, for A; superconductivity and field along
the x direction, the relevant terms are

F® = —tigi B (W, — ¥iv0), (65)
FY = —£1iB, (Y7 Vyy — Y1 Vyy)). (66)

The OP induced by Fl(g) is ¥, which has the symmetry of
cos2¢. This OP does not have nodes at any arc center. If
the primary A; superconductivity has accidental nodes, as
required by the ARPES results [9], they are all removed by the
applied field. Hence, we find qualitatively different behavior
for A, compared to A superconductivity. It is easy to check
that for magnetic field along the y direction, i.e., between the
Fermi arcs, the results are reversed.

For magnetic field applied in the z direction, the situation
is more complicated because of the formation of vortices. Our
GL functional in principle allows to obtain vortex solutions.
Due to the presence of nonzero derivatives, many of the terms
are activated. Here, we only discuss the case of approximately
uniform field close to but below the upper critical field, when
the magnetic flux associated with individual vortices strongly
overlaps. In this case, the relevant term for both A; and A,
superconductivity is

FP = t12i B, (Wi — v390). 67)

Hence, for both cases the other OP is induced with a
phase difference of 4 /2. For primary A, OP, the induced
A; OP is the same at all arcs and generically nodeless,
and thus removes all nodes. For primary A; OP with ac-
cidental nodes, the induced A, OP has symmetry-imposed
nodes at all arc centers. Hence, all accidental nodes persist.
Again, we find qualitatively different behavior for A; and A,
pairing.

The ideal experiment to probe the persistence or lifting of
the nodes would be ARPES in applied magnetic field. This is
difficult because the magnetic field affects the photoelectrons’
trajectory. However, Ryu et al. [38] have recently made signif-
icant progress by confining the magnetic field to a thin layer
close to the sample surface.

The most promising idea, in particular if all nodes are
removed, may be to observe a change of the shape of the
tunneling gap in STS upon removal of the nodes by an applied
magnetic field. In fact, the results for zero magnetic field are
consistent with a nodal gap [18].

Next, we address Lifshitz invariants activated by the
applied magnetic field. Besides the terms FI(L) and FZ(L), ad-
ditional terms become nonzero because of the presence of the
induced superconducting OP. However, the induced OP is of
first order in magnetic field so that terms that contain explicit
factors of the field or more than one factor of the induced
OP are of higher order in the field and should be ignored
for consistency. A magnetic field along the z direction does
not activate Lifshitz invariants for primary A; or A, pairing,
to linear order in the field. For a magnetic field along the x
direction, the remaining terms are the Lifshitz invariants F]%)
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TABLE III. Summary of the consequences of a uniform mag-
netic field applied along the x vs. z direction for pairing with A,
symmetry and with A, symmetry. Nodes for A; symmetry are ac-
cidental, while they are required by A, symmetry.

Field A, pairing A, pairing

5 all nodes gapped out two nodes gapped out
' helical state, modulation vector (0, g,) o< By

3 all nodes persist all nodes gapped out

no modulation

and Fz% ) We obtain, for A, pairing,
FP 4+ FE = —&iB, (Y5 Vit — ¥2Vy¥r3)
— e (Ve — UIVn). (68)
The ansatz ¥, = || DY, ¥, = i |1, ] € gives
EY + EE =26B, g, V21> £ 2008 ¢y [¥oll¥l. (69)

In addition, the free energy contains a standard term propor-
tional to q\2 Minimization with respect to g, leads to a helical
state [39] with modulation vector § = (0, g,) proportional to
£ B, |V |* £ n2e ||| ¥ and thus to the applied field, as ex-
pected for Lifshitz invariants [30—34]. For primary A, pairing,
we analogously have to consider

FP + FY = & iB. (V1 — Y1 Vyy))
+ mE(Wl*Vylﬁy - W;Vywl)
= 2& B, qy V1> F 2mE gy [ l1Y ] (70)

Minimization leads to a helical state with modulation vector
proportional to &, B, | 12 F nig |1l |y|. Equations (69) and
(70) show that the two solutions for signs =+ in the ansatz have
different free energies. Which one is stable depends on the
signs of the coefficients and on the direction of the magnetic
field. Hence, we obtain a modulation with a single wave vector
g, i.e., a helical state [34]. For both A, and A; symmetry,
the modulation vector is proportional to the magnetic-field
strength and perpendicular to the field so that it does not help
to distinguish A, from A pairing. For convenience, we sum-
marize the predictions for A; versus A, pairing in Table III.

IV. SUMMARY AND CONCLUSIONS

In this work, we have constructed the GL functional for
trigonal PtBi, including superconducting OPs of all possible
point-group symmetries (irreps A;, A;, and E of point group
C3,) in the presence of a magnetic field. Many unconventional
terms are generated, including Lifshitz invariants, i.e., terms
of first order in gradients of OPs.

As an application, we have studied the behavior of the
nodes in an applied uniform magnetic field. We find that the
results are distinct for A pairing with accidental nodes and
A, pairing with symmetry-imposed nodes. For a uniform field
applied along the x direction, i.e., the direction towards the
Fermi-arc centers, A, pairing is characterized by the nodes
in the direction parallel to the field being preserved whereas

the other four nodes are gapped out. On the other hand, for
A pairing all nodes are gapped out. For an approximately
uniform field applied along the z direction, A, pairing is
characterized by all nodes being gapped out, whereas for A;
pairing all nodes persist.

These predictions could, in principle, be tested by mag-
netoARPES [38], which is technically challenging. It should
also be possible to distinguish between a full and a nodal
gap based on measurements of the tunneling gap in STS. An
in-plane field also generates spatially modulated superconduc-
tivity with a single modulation vector g, i.e., a helical state, for
both A} and A, pairing.

The inclusion of gradients also allows to describe both
vortex states and local effects of impurities. We expect that
the activation of many terms in the GL functional leads to a
complex admixture of superconducting OPs. For example, the
Lifshitz invariants containing derivatives but no fields, Fl(EL)

and Fz%), induce a large E OP in the vicinity of vortex cores,
where the primary A; or A, OP changes rapidly. We leave the
study of vortices in PtBi, to future work. It may shed light
on the question why vortices have so far not been observed in
scanning SQUID experiments [18].

Another issue for future study is the interplay between
bulk and surface superconductivity in trigonal PtBi,. As noted
above, bulk superconductivity sets in at a critical temperature
on the order of 1 K [2,10]. The bulk OP could similarly be
decomposed into A, A, and E components and the cou-
pling between bulk and surfaces could be described within
the Ginzburg-Landau framework. We expect that bulk super-
conductivity strongly affects surface superconductivity. For
example, if bulk superconductivity were of (conventional)
A symmetry, whereas surface superconductivity transforms
according to A, the bulk OP would open an A; gap on the
Fermi arcs by proximity effect, which would lower the possi-
ble free-energy gain for surface superconductivity and thereby
suppress it.

Of course, while much can be learned from symmetry-
based phenomenological GL theory, one would also like to
understand the microscopic mechanism of superconductivity
in PtBi,. This requires microscopic modeling. An interesting
aspect is the connection to bulk states. The localization length
of the Fermi-arc states diverges towards the projections of the
Weyl points. Experimentally, the pairing amplitude appears to
vanish in this limit [9]. On the other hand, the band splitting
also goes to zero so that multiband pairing becomes possible.

To conclude, the results from the symmetry-based phe-
nomenological GL theory presented here can help to elucidate
various scenarios for the surface-superconducting state of
trigonal PtBi,, including nodal topological i-wave supercon-
ductivity. However, many fundamental and microscopic open
questions remain, in particular regarding the mechanism that
drives surface superconductivity in PtBij.
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APPENDIX A: SYMMETRIES OF PAIRING STATES

In this Appendix, we give more details on the derivation
of possible symmetries of the superconducting gap function.
In the BdG Hamiltonian 7-[(/2) in Eq. (3), the off-diagonal
block A(k) is a 2 x 2 matrix on spin space. It is useful to
write A(l?) = D(/?)UT, where Uy is the unitary part of the
antiunitary time-reversal operator, here Uy = ioy. One can
show that D(k) transforms like a matrix under point-group
transformations [26], which allows one to decompose DA(I;)
into contributions transforming according to the irreps Ay, A»,
and E (i.e., being irreducible tensor operators belonging to
these irreps).

As stated in Sec. I, fermionic antisymmetry additionally
requires [23-26]

AT(=k) = —A). (A1)
For the matrix ﬁ(E), this condition translates to
UrDT (=k)U0) = 0 0; AT (=k)0; = —AT (=k)0;
= +AK& U = D(k). (A2)

Note that D7 generally differs from D* since D is not Her-
mitian. For a Hermitian matrix, Eq. (A2) would just express
time-reversal symmetry. For the generally non-Hermitian D,
one gets distinct relations containing D7 and D*. The deriva-
tion gives the form with D7 .

As a 2 x 2 matrix, D(I_é) can also be written as a linear
combination of the identity matrix oy and the Pauli matrices
o = (oy, Oy, Uz),

D&) = y(k)op+ d(k) - o. (A3)

Here, ¥ is the pairing amplitude for spin-singlet pairing, while
d describes the strength and spin content of spin-triplet pair-
ing. op is even under time reversal, whereas ¢ is odd. The
condition (A2) thus implies that

Y (—k) = ¥ (k),
d(—k) = —d(k),

(A4)
(AS5)

as is well known.

As noted in Table I, the spin angular-momentum com-
ponent o, transforms according to A,, while (oy, —0y)
transforms as an E doublet. oy of course transforms trivially
according to A;. Choosing functions w(l_é) and d(lz) as basis
functions of the irreps, we can now in principle construct all
contributions to pairing of any symmetry (irrep). The sym-
metries of products of I_é-dependent functions and matrices o;
follow from the usual rules for products of representations.

For our purposes, it is sufficient to consider the simplest
basis functions, i.e., the ones of lowest angular momentum
[. Higher-order basis functions just add modulations to the

gap functions without changing the symmetry. However, ac-
cidental nodes are possible. They can only be obtained from
a microscopic and material-specific theory. Recent ARPES
experiments [9] indicate that the pairing amplitude goes to
zero towards the Weyl points but does not contain further
nodes.

The basis functions up to [ = 6, expressed in terms of
the polar angle ¢ of k, are given in Table II. According to
Egs. (A4) and (AS), only the basis functions for / =0, 2,4, 6
(Il =1, 3,5) can occur in w(l_é) (d(l?)). Thus the lowest-order
spin-singlet contributions to pairings belonging to the three
irreps are

Ay : D(k) o o, (A6)

Ay i D(k)  sin6¢ oy, (A7)
AT sin 2¢ oy

E: D) x { c0s 2 0. (A8)

The lowest-order spin-triplet contributions with spin compo-
nents o, are

A D(K) x cos3¢ o, (A9)

Ay D(k) «xsin3¢ o, (A10)
oAz sin¢ o,

E: D) {—Cos¢ o.. (A11)

and the lowest-order spin-triplet contributions with in-plane
spin components are

Ay i D(k) o —sin¢ o, + cos d oy, (A12)

Ay i D(k) o cos ¢ o, +sing o, (A13)
AT —cos¢ o, +sing o,

E: D)o { sin¢g o, + cos ¢ o,. (Al4)

Generically, all contribution of the same symmetry (irrep)
coexist [40]. Note that all pairing matrices in Eqs. (A6)—
(A14) are even under time reversal, which inverts ¢ and shifts
¢ — ¢ + 7 modulo 2. They thus belong to the irreps A},
Ay, and E .

Since oy has full symmetry the Iz—dependent prefactors
in Egs. (A6)-(A8) already give the A, Ay, and E pairing
amplitudes shown in Fig. 1. The next step is to show that
the triplet contributions lead to momentum dependence of the
same symmetry when projected onto the low-energy band.

To obtain the low-energy Hamiltonian, we first perform a
unitary transformation into the band basis. The BdG Hamilto-
nian to the band basis is given by

. Hy (k) Ak) o

= N I (Al
H(k) (AT(k) _ng(_k)) UR)YHE)UK)', (A1S)
with

- (Uk) 0 \_(U® 0
u(k)_( 0 0*(—/’5))‘( 0 U(l?)UT)’ (Al6)

where the final form makes use of the time-reversal symmetry
of H N-
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In the band basis, the normal-state Hamiltonian is diagonal,

Hy (k) = (é(k) o ) (A17)
0 &u(k)

where &_(k) is the dispersion of the band forming the Fermi

arcs, without loss of generality. The states with dispersion

S+(£) are then high-energy states [40]. The projected BdG

Hamiltonian for the low-energy band forming the Fermi arcs

is obtained from 7 (k) by taking only the matrix elements

pertaining to the “—” band,
A(k)
—5 (k)

£_(k)

A* (k)
We use & (I_é) =& (I_é) in Sec. II. We have checked numerically
(not shown) that the triplet contributions indeed lead to mo-
mentum dependence of A(k) of the same symmetry as the
singlet contributions belonging to the same irrep.

However, we actually do not need to perform this unitary
transformation and projection to determine the symmetries of
the gap functions A(E), as stated in Sec. II. A(I;) is a real
function of & (it can be chosen real because the system does
not break time-reversal symmetry). It must transform like the
pairing matrix D(k) under the point group and under time
reversal since the unitary transformation to the band basis
must not change the symmetry. This means that A(K) must be
areal basis function of the same irrep, i.e., Aj4+, Axy, or E, as
D(E). The lowest-order basis functions are the ones given in
the manuscript, 1 for A, sin 6¢ for A, , and (sin 2¢, cos 2¢)
for the two components of E. These functions are plotted in
Fig. 1.

Hoproj (K) = ( (A18)

APPENDIX B: ENUMERATION OF FULL-SYMMETRY
PRODUCTS

It is possible to use symbolic algebra to generate all terms
with n factors out of {A{, A,, g, 2E} that have full symmetry,
i.e., that transform according to A;. For n = 2, the results are
clear,

Al ® A, (BD)
Ay ® Ay, (B2)
'EQ'E+’ER®E. (B3)

For n = 3, the terms are

Al® A ® Ay, (B4)
A® A Q Ay, (B5)
AQR'E®R'E+A ®EQE, (B6)
A® A ® A, (B7)
A ® A ® A, (B8)
AR'EQRE—ARER'E, (B9)

'E®AIQ'E+’E® A ®E, (B10)
'E®AQE-E®RAR'E, (B11)
'EQRE® A —E®'EQ® A,, (B12)
'ER'E® A +’E®*E® Ay, (B13)
'E®'E®’E+'E®R’E®'E
+’E®R'E®R'E-’E®’EQ’E. (B14)
For n = 4, the terms are

Al® A ® A ® A, (B15)

Al® Al ® A ® Ay, (B16)

AA® AR EQRE+A® A QERE, (B17)
A® A® Al ® A, (B18)

A® AR AR A, (B19)

A® AR'ERE—-A® ARQER®'E,  (B20)
AQRERA Q'E+A ®E®RA ®°E, (B21)
AR EQRARE-AREQAQ'E, (B22)
A®'EQE®A — AI®’EQ'E® A, (B23)
AQR'E®R'E®A + A ®ERE® A, (B24)

A®R'EQ'E®RE+AIR'E®RER'E

+ A®EQRER'E-A®ERER’E, (B25)
AH®A® A A, (B26)

AR A® AR A, (B27)

AH® ARERE-A® AI®E®R'E,  (B28)
Ay ® A2 ®@ A1 ® Ay, (B29)

AR AR A ® A, (B30)

AH® AR'EQ'E+A® A ®ER®E,  (B31)
AQ'EQARE-AR®E®A Q'E, (B32)
AHR'E®RAR'E+A®E®A ®E, (B33)
AR'ERE®RA - AAREQ'E® A, (B34)
AMR'ERE®A+ A ®’ERE® A, (B35)

AR'EQRE®E-AR®'EQRERE

- AR®ER®RE®RE-ARERER'E, (B36)
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'EQAI® AIQ'E4+’EQRA ® A QE, (B37)
'EQA® AAQE-’EQA ® A Q'E,  (B38)
'E®QAQ®ERA —’E®A ®'E®A,, (B39)
'EQRAQ'EQA +’EQ®A ®°E® A, (B40)
1 1 2 1 2 1
ERA Q' EQE+'EQA Q’EQ'E
+’EQAQ'EQR'E-’EQA ®2EQ’E, (B4l)
'E®RA® AIQRE-’EQRA® AIQ'E,  (B42)
'EQA® AQ'E+’E®A Q A ®%E,  (B43)
'E®QARERA —E®RAR'E® A, (B44)
'EQAQEQA+’EQ A ®E® As, (B45)
'EQAQER'E-'E® A ®’E®’E
“E®AR®'E®RE-EQA,Q’EQ'E, (B46)
'EQE®AI ® A)—"ER'E®R A, ® A, (B47)
'EQRE®QRA® A —’ER'E®R A, ® A, (B43)
'E®REQREQ’E-'E®R’EQR’EQ'E
—EQ'EQ'E®RE+’EQR'E®R’EQ'E, (B49)

'EQE®A ® A\ +’EQR’E® A ® A, (B50)
1 1 2 1 2 1
EQRE®RA QR E+'EQ’EQRA Q'E
+EQ'EQA Q'E-’EQ’EQ A, ®2E, (B51)
'EQE®A® A+’EQ’E® A ® A, (B52)
'EQRE®RAR'E-'EQ’E® A ®’E
—-EQ'E®RA®’E-’EQR’E® A Q®'E, (B53)
'EQE®R'E®A -'E®R’EQ’E® A,
—ER'EQ’E®A —’EQ’ER'E®A,, (B54)
1 1 2 1 2 1
EREQREQRA +'EQREQ'E® A,
+’EQ'EQR'E®A —*ER’ER®’E®A;, (B55)
'ER'E®R'EQ'E-'E®R'E®R’E®’E
+'EQEQR'E®RE+'EQ’E®R’ER®'E
+2EQ'EQ'E®E+’EQ'E®RE®'E
—’EQ’EQ'E®'E+’E®’EQ’E®’E, (B56)
'EQEQ'EQ'E+'EQ'EQ’E®E
+EQ’EQ'E®R'E+’EQ’E®E®’E. (B57)

Analogously, high-order terms and also terms of A», 'E, or 2E
symmetry can be generated.
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