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Phase diagram of underdoped cuprate superconductors: Effects of Cooper-pair
phase fluctuations

C. Timm,* D. Manske, and K. H. Bennemann
Institut für Theoretische Physik, Freie Universita¨t Berlin, Arnimallee 14, D-14195 Berlin, Germany

~Received 14 February 2002; published 25 September 2002!

In underdoped cuprates fluctuations of the phase of the superconducting order parameter play a role due to
the small superfluid density. We consider the effects of phase fluctuations assuming the exchange of spin
fluctuations to be the predominant pairing interaction. Spin fluctuations are treated in the fluctuation-exchange
approximation, while phase fluctuations are included by Berezinskii-Kosterlitz-Thouless theory. We calculate
the stiffness against phase fluctuations,ns(v)/m* , as a function of doping, temperature, and frequency, taking
its renormalization by phase fluctuations into account. The results are compared with recent measurements of
the high-frequency conductivity. Furthermore, we obtain the temperatureT* , where the density of states at the
Fermi energy starts to be suppressed, the temperatureTc* , where Cooper pairs form, and the superconducting
transition temperatureTc , where their phase becomes coherent. We find a crossover from a phase-fluctuation-
dominated regime withTc}ns for underdoped cuprates to a BCS-like regime for overdoped materials.
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I. INTRODUCTION

For about 15 years cuprate high-temperature super
ductors~HTSC’s! have stimulated significant advances in t
theory of highly correlated systems as well as in soft c
densed matter theory. Nevertheless, we still do not fully
derstand the various phases of these materials. Of partic
interest is the underdoped regime of hole-doped cuprate
which the hole density~doping! x in the CuO2 planes is
lower than required for the maximum superconducting tr
sition temperatureTc . In this regime the superfluid densit
ns decreases with decreasing doping and is found to be
portional toTc .1 Above Tc , one finds a strong suppressio
of the electronic density of states close to the Fermi ene
i.e., apseudogap, which appears to have the same symme
as the superconducting gap.2 Furthermore, there may be fluc
tuating charge and spin modulations~stripes!.3

It has been recognized early on that the small superfl
densityns leads to a reduced stiffness against fluctuations
the phase of the superconducting order parameter.4–6 Phase
fluctuations are additionally enhanced because they are
nonically conjugate to charge density fluctuations, which
believed to be suppressed.4,6 Furthermore, the cuprates con
sist of weakly coupled two-dimensional~2D! CuO2 planes so
that fluctuations are enhanced by the reduced dimension
Phase fluctuations might destroy the long-range super
ducting order, although there is still a condensate of p
formed Cooper pairs. In conventional, bulk superconduc
this mechanism is not relevant, since the large superfl
density leads to a typical energy scale of phase fluctuat
much higher than the superconducting energy gapD, which
governs the thermal breaking of Cooper pairs. Thus in c
ventional superconductors the transition is due to the
struction of the Cooper pairs andTc is proportional toD.7

On the other hand, the observation thatTc}ns in underdoped
cuprates1 indicates that phase fluctuations drive the transit
in this regime. This empirical scaling relation cannot dist
guish between longitudinal and transverse~vortex! phase
0163-1829/2002/66~9!/094515~11!/$20.00 66 0945
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fluctuations, though. Following this picture, the Cooper pa
only break up at a crossover aroundTc* .Tc . If the feedback
of phase fluctuations on the local formation of Cooper pa
is small, Tc* is approximately given by the transition tem
perature one would obtain without phase fluctuations. B
tweenTc andTc* Cooper pairs exist but the order parame
is not phase coherent.4–6,8,9 Recent thermal-expansion ex
periments strongly support this general picture.10 ~There is
no close relation between ourTc* and the mean-field transi
tion temperature of Ref. 10, which is determined by extra
lation from the low-T behavior of the expansivity.! Thermal
phase fluctations have also been invoked to explain the lin
temperature dependence of the superfluid density or, equ
lently, the magnetic penetration depth as an alternative
quasi particle effects expected for a superconducting
with nodes.11,12

Since in superconductors the Cooper pairs are char
the phase of the order parameter couples to the vector po
tial. Due to this coupling, the phase fluctuations obtain
energy gap, which is given by the plasma frequency.13 In
cuprates, the plasma frequency is highly anisotropic. Wit
the CuO2 planes it is large compared to the superconduct
gap amplitude, whereas the Josephson-plasmon energ
only of the order of 10 K.Longitudinalphase fluctuations in
charged superconductors have been studied within a w
coupling BCS approach14,15 as well as employing the
fluctuation-dissipation theorem.16 While these papers find
different analytical results, they agree thatquantumphase
fluctuations lead to a sizable reduction of the superfluid d
sity, whereasthermalphase fluctuations are negligible exce
close to the critical temperature, even though the Joseph
plasmon energy is small. In particular, the linear temperat
dependence of the penetration depth cannot be explaine
longitudinal phase fluctuations. Below, we obtain this beh
ior from quasiparticle effects. At the critical temperature t
Josephson-plasmon energy goes to zero so that thermal
gitudinal phase fluctuations are expected to be impor
here.14,16Transverse phase fluctuations are not considere
©2002 The American Physical Society15-1
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Refs. 14–16. However, we show below that they are imp
tant.

There is a third temperature scaleT* .Tc* , below which
a pseudogap starts to open up as seen in nuclear mag
resonance, tunneling, and transport experiments.17–21 It has
been suggested that this high-energy scale is due to l
superconductivity and thus essentially identical toTc* . It has
indeed been shown22 that various observables, e.g., the tu
neling conductance, can be fitted in the pseudogap reg
from a BCS-type model containing a phenomenologi
short-range Cooperon correlation function. The idea of sp
charge separation has also been invoked in this conte23

The pseudogap may also be due to the presence of two t
of electrons:24,25 Those in the ‘‘hot’’ regions close to the
(0,p) and (p,0) points in the Brilloin zone, where the Ferm
energy is close of a van Hove singularity and the dispers
is essentially flat, and those from the remaining arcs of
Fermi surface. The pseudogap then stems from prefor
Cooper pairs from the hot regions, whereas supercondu
ity is due to additional pairing of the other electrons due
their interaction with the hot ones.24,25 Our microscopic ap-
proach should take band-structure effects like this into
count automatically. On the other hand, it is a strong assu
tion that the pseudogap at these high temperatures is du
local superconductivity. Alternatively, it is thought to b
caused by spin fluctuations~as in Ref. 9 and in the presen
work!, which are strong due to the proximity of the antife
romagnetic transition, or the onset of strip
inhomogeneities.26–28 Recent experiments on the Hall effe
in GdBa2Cu3O72d films29 also support the existence o
two crossover temperaturesTc* and T* . In this work we
are mostly concerned with the strong pseudogap reg
Tc,T,Tc* .

Due to the layered structure of the cuprates, they beh
like the 2D XY model except in a narrow critical rang
around Tc , where they show three-dimensional~3D! XY
critical behavior.30,31 The standard theory for the 2DXY
model, the Berezinskii-Kosterlitz-Thouless~BKT! renormal-
ization group theory,32–36 should thus describe these mate
als outside of the narrow critical range.23,37–42Also, recent
transport measurements for a gate-doped cuprate43 with only
a single superconducting CuO2 plane show essentially th
same doping dependence ofTc as found for bulk materials
In BKT theory, the phase transition is due totransverse
phase fluctuations~vortices!. It predicts a transition due to
the unbindung of fluctuating vortex-antivortex pairs at a te
peratureTc,Tc* , where the renormalized phase stiffne
jumps to zero. Thermallongitudinal phase fluctuations hav
been found to be weak14–16 except close to a higher trans
tion temperature obtained neglecting vortices~given byTc* if
only Gaussian longitudinal phase fluctuations are taken
account!. SinceTc is significantly smaller thanTc* , thermal
longitudinal phase fluctuations can be neglected forT&Tc .

In the early days of HTSC’s, BKT theory was invoked
interpret a number of experiments on bulk samples.44–49Re-
cently, two experiments have lent strong additional supp
to the BKT description: First, Corsonet al.50 have measured
the complex conductivity of underdoped Bi2Sr2CaCu2O81d
09451
r-

etic

al

-
e
l
-

.
es

n
e
ed
iv-

-
p-
to

e

ve

-

to

rt

and extracted the frequency-dependent phase stiffness
the data. The authors interpret their data in terms of dyna
cal vortex-pair fluctuations51,34 and conclude that vortices—
and thus a local superconducting condensate—exist up
least 100 K. We discuss this assertion in Sec. III. Second,
et al.52 have found signs of vortices at temperatures mu
higher thanTc in underdoped La22xSrxCuO4 in measure-
ments of the Nernst effect. A recent reanalysis of the da53

yields an onset temperature of vortex effects of 40 K for
extremely underdoped sample (x50.05) and of 90 K forx
50.07.

So far, we have not said anything about the supercond
ing pairing mechanism. There is increasing evidence t
pairing is mainly due to the exchange of spin fluctuatio
The conserving fluctuation-exchange~FLEX! approx-
imation54–58,9 based on this mechanism describes optima
doped and overdoped cuprates rather well. In particular,
correct doping dependence and order of magnitude ofTc are
obtained in this regime. On the other hand, the FLEX a
proximation does not include phase fluctuations and we
lieve this to be the main reason why it fails to predict t
downturn of Tc in the underdoped regime. Instead,Tc is
found to approximatetly saturate for small dopingx. How-
ever, the FLEX approximation is able to reproduce two oth
salient features of underdoped cuprates: namely, the decr
of ns and the opening of a weak pseudogap atT* , as we
show below.

This encourages us to apply the following description. W
employ the FLEX approximation to obtain the dynamic
phase stiffnessns(v)/m* , wherens(v) is the generalization
of the superfluid density for finite frequencies. The sta
densityns(0) starts to deviate from zero at the temperatu
where Cooper pairs start to form and which we identify w
Tc* . Then, transverse phase fluctuations are incorporate
using the phase stiffness from FLEX as the input for BK
theory, which leads to a renormalizedns

R,ns and predicts a
reducedTc . Longitudinal phase fluctuations are not cons
ered here, since the thermal ones are weak and the qua
ones, while leading to a sizable renormalization of the ph
stiffness,14–16 are temperature independent. What is mo
below we obtain most of the observed reduction of the
perfluid density at low temperatures from quasiparticle
fects alone, suggesting that quantum phase fluctuations
be less important. Then, we consider the dynamical casv
.0 and use dynamical BKT theory51,34 to find the renormal-
ized phase stiffnessns

R(v)/m* and compare the results wit
experiments.50

II. STATIC CASE

Transport measurements for a gate-doped cuprate43 show
that the superconducting properties are determined b
single CuO2 plane. The simplest model believed to conta
the relevant strong correlations is the 2D one-band Hubb
model.59 We here start from the Hamiltonian

H52 (
^ i j & s

t i j ~cis
† cj s1cj s

† cis!1U (
i

ni↑ni↓ . ~1!
5-2
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Here,cis
† creates an electron with spins on sitei, U denotes

the on-site Coulomb interaction, andt i j is the hopping inte-
gral. Within a conserving approximation, the one-electr
self-energy is given by the functional derivative of a gen
ating functionalF, which is related to the free energy, wit
respect to the dressed one-electron Green functionG, S
5dF@H#/dG.60 On the other hand, the dressed Green fu
tion is given by the usual Dyson equationG 215G 0

212S in
terms of the unperturbed Green functionG0 of the kinetic
part of H alone. These equations determine the dres
Green function.60

The T-matrix61 or FLEX approximation9,54–58 is distin-
guished by the choice of a particular infinite subset of lad
and bubble diagrams for the generating functionalF. The
dressed Green functions are used to calculate the charge
spin susceptibilities. From these a Berk-Schrieffer-typ62

pairing interaction is contructed, describing the exchange
charge and spin fluctuations. In a purely electronic pair
theory a self-consistent description is required because
electrons not only form Cooper pairs, but also mediate
pairing interaction. The quasiparticle self-energy compone
Xn (n50, 3, 1) with respect to the Pauli matricestn in the
Nambu representation,7,63 i.e., X05v(12Z) ~renormaliza-
tion!, X35j ~energy shift!, andX15f ~gap parameter!, are
given by

Xn~k,v!5
1

N (
k8

E
0

`

dV @Ps~k2k8,V!6Pc~k2k8,V!#

3E
2`

`

dv8 I ~v,V,v8! An~k8,v8!. ~2!

Here, the plus sign holds forX0 andX3 and the minus sign
for X1. The kernelI and the spectral functionsAn are given
by

I ~v,V,v8!5
f ~2v8!1b~V!

v1 id2V2v8
1

f ~v8!1b~V!

v1 id1V2v8
, ~3!

An~k,v!52
1

p
Im

an~k,v!

D~k,v!
, ~4!

wherea05vZ, a35ek1j, a15f, and

D5~vZ!22@ek1j#22f2. ~5!

Here,f andb are the Fermi and Bose distribution function
respectively. We use the bare tight-binding dispersion re
tion for lattice constanta5b51,

ek52t ~22coskx2cosky2m!. ~6!

The band filling n51/N(knk is determined with the
help of the k-dependent occupation numb
nk52*2`

` dv f (v)N(k,v), which is calculated self-
consistently.n51 corresponds to half filling. The interac
tions due to spin and charge fluctuations are given byPs
5(2p)21U2 Im (3xs2xs0) with xs5xs0 (12Uxs0)21 and
Pc5(2p)21U2 Im (3xc2xc0) with xc5xc0 (11Uxc0)21.
In terms of spectral functions one has
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p

NE2`

`

dv8 @ f ~v8!2 f ~v81v!#

3(
k

@N~k1q,v81v! N~k,v8!

6A1~k1q,v81v! A1~k,v8!#. ~7!

Here, N(k,v)5A0(k,v)1A3(k,v), and the real parts are
calculated with the help of the Kramers-Kronig relation. T
substracted terms inPs and Pc remove double counting
which occurs at second order. The spin fluctuations are fo
to dominate the pairing interaction. The numerical calcu
tions are performed on a square lattice with 2563256 points
in the Brillouin zone and with 200 points on the realv axis
up to 16t with an almost logarithmic mesh. The full momen
tum and frequency dependence of the quantities is kept.
convolutions ink space are carried out using fast Four
transformation. The superconducting state is found to h
dx22y2-wave symmetry.Tc* is determined from the linearize
gap equation.

A field-theoretical derivation of the effective action o
phase fluctuations8,64–66 shows that the phase stiffness f
frequencyv50 is given by the 3D static superfluid densi
divided by the effective mass,ns(x,T)/m* . This quantity is
given by

ns

m*
5

2

pe2
~ I N2I S!, ~8!

with

I N,S5E
0

`

dv s1
N,S~v!, ~9!

where s1
N (s1

S) is the real part of the conductivity in th
normal ~superconducting! state. Here we utilize thef-sum
rule *0

`dv s1(v)5pe2n/2m* where n is the 3D electron
density. The interpretation of Eq.~8! is that the spectra
weight missing from the quasiparticle background ins(v)
for T,Tc* must be in the superconductingd-function peak.

s(v) is calculated in the normal and superconducti
states using the Kubo formula67,68

s~v!5
2e2

\c

p

vE2`

`

dv8@ f ~v8!2 f ~v81v!#

3
1

N (
k

~vk,x
2 1vk,y

2 ! @N~k,v81v! N~k,v8!

1A1~k,v81v! A1~k,v8!#, ~10!

wherevk,i5]ek /]ki are the band velocities within the CuO2
plane andc is thec-axis lattice constant. Vertex correction
are neglected.

The superfluid density~phase stiffness! ns /m* obtained
in this way is shown in Fig. 1 for the three doping valuesx
50.091 ~underdoped!, x50.155 ~approximately optimally
doped!, andx50.222~overdoped!. The figure also shows fits
to the data at a given doping level, where we assume
form lnns(T)/m*>a01a1ln(Tc*2T)1a2 ln2(Tc*2T)1•••, i.e.,
5-3
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a power-law dependence close toTc* with logarithmic cor-
rections. We use the fits to extrapolate toT50. The results
show thatTc* depends onx only weakly in the underdoped
regime but decreases rapidly in the overdoped. We co
back to this below. Furthermore,ns /m* increases much
more slowly belowTc* in the underdoped regime and e
trapolates to a smaller value atT50.

We have also calculatedns in units of the total hole den
sity n, shown in Fig. 2, finding thatns /n is significanly re-
duced below unity, in agreement with experiments but
contradiction to BCS theory. The reduction is strongest
the underdoped case. Our results show that spin fluctuat
can explain most of the observed reduction ofns , without
invoking longitudinal phase fluctuations. Also note thatns is
linear in temperature forT→0 because of the nodes in th
gap. This is a quasiparticle effect independent of phase fl
tuations. The inset in Fig. 2 showsl3(0)/l3(T), where the
penetration depth is7 l}ns

21/2, as a function ofTc* 2T. The

FIG. 1. Static superfluid density as a function of temperature
three values of the dopingx ~symbols!. The solid curves are fits o
power laws with logarithmic corrections as explained in the te
The intersection ofns(T)/m* with the dashed line represents
simplified criterion for the BKT transition temperatureTc .

FIG. 2. Ratio of superfluid density to total hole density for t
same doping valuesx as in Fig. 1. The inset showsl3(T
50)/l3(T)5ns

3/2(T)/ns
3/2(T50), wherel is the London penetra

tion depth, as a function of (Tc* 2T).
09451
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FLEX approximation yields l3(0)/l3(T)}Tc* 2T. The
same power law has been found experimentally by Kamaet
al.69 It has been attributed to critical fluctuations starti
about 10 K below the transition temperature,69,70 since it co-
incides with the critical exponent expected for the 3DXY
model. We here obtainthe samepower law from the FLEX
approximation, which is purely 2D and does not conta
critical fluctuations. Instead this rapid increase ofns}1/l2

below Tc* is due to the self-consistency, which leads to
more rapid opening of the gap than in BCS theory. We th
conclude that, while critical 3DXY fluctuations are expecte
in a narrow temperature range,30,31 they are not the origin of
the observed power law on the scale of 10 K.

Now we turn to the renormalization ofns due to phase
~vortex! fluctuations. The BKT theory describes the unbin
ing of thermally created pancake vortex-antivortex pairs.32,34

The relevant parameters are the dimensionless stiffnesK
and the core energyEc of vortices. The stiffness is related t
ns by71

K~T!5b\2
ns~T!

m*

d

4
, ~11!

where b is the inverse temperature andd is the average
spacing between CuO2 layers. Since we use a 2D model
describe double-layer cuprates, we setd to half the height of
the unit cell of the typical representative YBa2Cu3O61y . The
stiffnessK is also a measure of the strength of the vorte
antivortex interactionV52pkBTK ln(r/r0). Here, r 0 is the
minimum pair size, i.e., twice the vortex core radius, whi
is of the order of the in-plane Ginzburg-Landau coheren
lengthjab . For the core energy we use an approximate re
by Blatteret al.,31 Ec5pkBT K lnk, wherek is the Ginzburg
parameter. Starting from the smallest vortex-antivortex pa
of size r 0, the pairs are integrated out and their effect
incorporated by an approximate renormalization ofK and the
fugacity72 y5e2bEc. This leads to the Kosterlitz recursio
relations

dy

dl
5~22pK ! y, ~12!

dK

dl
524p3y2K2, ~13!

wherel 5 ln(r/r0) is a logarithmic length scale. ForT.Tc , K
goes to zero forl→`, so that the interaction is screened
large distances and the largest vortex-antivortex pairs
bind. The unbound vortices destroy the superconducting
der and the Meißner effect and lead to dissipation.73 For T
,Tc , K approaches a finite value,KR[ lim l→`K, andy van-
ishes in the limitl→` so that there are exponentially fe
large pairs and they still feel the logarithmic interactio
Bound pairs reduceK and thusns , but do not destroy super
conductivity. AtTc , KR jumps from a universal value of 2/p
to zero. The values ofTc shown below are obtained by nu
merically integrating Eqs.~12! and ~13! with ns taken from
an interpolation between the points in Fig. 1. It turns out t

r

.
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the renormalization ofK for T,Tc is very small so that one
obtainsTc from the simple criterion

K~Tc!5
2

p
or

ns~Tc!

m*
5

2

p

4kBTc

\2d
~14!

for the unrenormalizedstiffness with an error of less tha
1%. Equation~14! is satisfied at the intersection of th
ns(T)/m* curves with the dashed straight line in Fig. 1.

From BKT theory we obtain two important quantities: th
transition temperatureTc and the renormalized stiffnessKR ,
which determines the renormalized superfluid density~phase
stiffness!

ns
R

m*
5

4

b\2d
KR . ~15!

In Fig. 3 we plot the transition temperatureTc and the tem-
peratureTc* where Cooper pairs form. For decreasing dop
x, Tc* becomes nearly constant and decreases slightly for
lowest doping level, consistent with the strong decrease
the onset temperature of vortex effects at even lower dop
found by Xu et al.52,53 On the other hand,Tc turns down
again in the underdoped regime. This reduction ofTc relative
to Tc* by vortex fluctuations is reminiscent of the reducti
found by Babaev and Kleinert,75 starting from a BCS-type
Hamiltonian, for the crossover from weak to strong couplin
We have also calculated der superconducting gapD0 ex-
trapolated toT50 ~not shown!. D0 is here defined as half th
peak-to-peak separation in the density of states. We find
proximatelyD0}Tc* .

FIG. 3. Temperature scales of the cuprates as functions of
ing x. HereTc ~solid circles! is the transition temperature obtaine
from the FLEX approximation with phase fluctuations included
means of BKT theory. AtTc* ~open circles! Cooper pairs start to
form locally; this temperature is given by the transition temperat
obtained from the FLEX approximation with spin fluctuatio
alone. The long-dashed curve showsTc resulting from a criterion
appropriate for the 3DXY model ~Ref. 6 and 74!; see text. The
crosses show the superfluid density~phase stiffness! ns(T50)/m*
for comparison. This curve has been scaled so that it agrees wiTc

in the underdoped regime.
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Phase fluctuations lead to a downturn ofTc in the under-
doped regime. However, this reduction is not as large
experimentally observed and our valuex'0.14 for the opti-
mal doping is accordingly smaller than the experimental o
of x'0.16.76 We suggest that one origin of this discrepan
is the neglect of the feedback of phase fluctuations on
electronic properties. Another expected effect is the ren
malization of the stiffness by longitudinal quantum pha
fluctuations.14–16While the effect of quantum fluctuations i
in itself temperature independent, a uniform reduction
ns /m* would move the intersection with the straight line
Fig. 1 to the left and thusTc to lower temperatures, in par
ticular in the underdoped regime.

Figure 3 also shows the superfluid densityns(0)/m* ex-
trapolated toT50, scaled such that it approachesTc in the
underdoped regime. The density increases approximately
early with doping except for the most overdoped poi
where it turns down again. This behavior agrees well w
angle-resolved photoemission~ARPES! results of Fenget
al.77 and with recentmSR experiments of Bernhardet al.78

In Ref. 78 a maximum inns at a unique doping value o
xmax'0.19 is found for various cuprates, while we obta
xmax'0.20. Our results are consistent with the Uemu
scaling1 Tc}ns(0) in the heavily underdoped regime an
with the BCS-like behaviorTc'Tc* }D0 in the overdoped
limit. Tc interpolates smoothly between the extreme cas
We findTc,Tc* even for high doping, sincens(T) andK(T)
continuously go to zero atTc* so that Eq.~14! is only satis-
fied at a temperatureTc,Tc* . The results for the overdope
case may be changed if amplitude fluctuations of the or
parameter and their mixing with phase fluctuations79 are
taken into account. Amplitude fluctuations are governed
D, which becomes smaller than the energy scale of ph
fluctuations in the overdoped regime.

The situation is complicated by the Josephson coup
between CuO2 layers. This coupling leads to the appearan
of Josephson vortex lines connecting the pancake vort
between the layers.31 They induce alinear component in the
energy of vortex-antivortex pairs connected by a Joseph
vortex. This contribution becomes relevant at separati
larger than L5d/e, where e,1 is the anisotropy
parameter.31 L acts as a cutoff for the Kosterlitz recursio
relations and eventually leads to an increase ofTc relative to
the BKT resultTc

BKT and to the breakdown of 2D theor
close to the transition.31,37–39 The experiments of Corson
et al.50 also show that the BKT temperatureTc

BKT extracted
from the data is significantly smaller than the actualTc .
Thus within our modelTc as calculated above is a lowe
bound of the true transition temperature.

We can obtain an indication of the importance of Jose
son coupling by considering the extreme opposite case o
isotropic model. The long-dashed curve in Fig. 3 corr
sponds to values ofTc obtained for the three-dimensiona
XY model.6,74 They result from ns(Tc)/m*
5(1/2.2) 4kBTc /\2d, which should be compared to Eq
~14!. This expression follows from a high-temperature e
pansion for the isotropic three-dimensionalXY model.74 This
gives only an approximate upper bound, since theXY model

p-

e

5-5



m

th

e
r
e

n
s

k.
io

re

a
P
in

-
ak
o

in

n

in
f t
m
e
an
d

n.
e

The

en-

his
tion

of a

he

se

g. 5,
s
this
,
her-
ust
oid

ase
en-
in-

e

t

tate
e

p is

solid
ase
ent.
ut

rite-
gap
se of

C. TIMM, D. MANSKE, AND K. H. BENNEMANN PHYSICAL REVIEW B 66, 094515 ~2002!
is not fully equivalent to a superconductor, quite apart fro
the coupling to the electromagnetic field: TheXY model only
contains a single energy scale, which is proportional to
stiffnessK. The vortex core energy is thus fixed byK. But
the core energy in superconductors is an independent en
scale different from this value.31 This approximate uppe
bound indicates that Josephson coupling does not chang
qualitative results.

The feedback of phase fluctuations on the electrons is
included in our approach. We expect the phase fluctuation
this regime to lead to pair breaking.8 However, simulations
of theXY model suggest that this feedback is rather wea80

Neglecting the feedback, the electronic spectral funct
shows the unrenormalized superconducting gap forTc,T
,Tc* . Since there is no superconducting order in this
gime, we identify this gap with the~strong! pseudogap,
which thus is automaticallydx22y2-wave like and of the
same magnitude as the superconducting gap forT,Tc . Thus
in this picture the pseudogap is due to local Cooper p
formation in the absence of long-range phase coherence.
breaking due to phase fluctuations should partly fill
this gap.

Figure 4 showsTc , Tc* , andT* on a different tempera
ture scale.T* is the highest temperature where a we
pseudogap is obtained from FLEX, i.e., where the density
states at the Fermi energy starts to be suppressed. The
shows this suppression forx50.155. The temperatureT*
becomes much larger thanTc in the underdoped regime, i
agreement with experiments.21

To conclude this section, we discuss the effect of
normal-state pseudogap due to a mechanism other than
herent Cooper pairing. Let us assume a suppression o
density of states close to the Fermi surface in the nor
state, e.g., due to the formation of a charge density wav27

This decreases the number of holes available for pairing
should thus reduceTc . To check this, we have performe
FLEX calculations with a pseudogap of the formDk

FIG. 4. TemperatureT* at which a small suppression of th
density of states at the Fermi energy~weak pseudogap! appears.
The temperaturesTc* andTc from Fig. 3 are also shown. The inse
shows the suppression of the density of states~in arbitrary units! for
x50.155 andT54.5Tc* ~solid line!, T52.3Tc* 'T* ~dashed line!,
andT51.01Tc* ~dotted line!.
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5D0 (coskx2cosky) included in the normal-state dispersio
The doping-dependent amplitudeD0 is chosen in accordanc
with ARPES experiments by Marshallet al.81 and by Dinget
al.82 The results are shown by the open squares in Fig. 5.
curve merges with theTc* curve without pseudogap~open
circles! at x50.155, since here the pseudogap is experim
tally found to vanish.81,82 It is apparent thatTc* is indeed
strongly reduced in the underdoped regime. Thus t
density-of-states effect is a possible alternative explana
for the observed downturn ofTc .

Next, we consider phase fluctuations in the presence
normal-state pseudogap. TheTc values naively obtained
from BKT theory for this case are shown in Fig. 5 as t
solid squares. Phase fluctuations reduceTc even more, in
particular forx50.122. This is due to the fact that the pha
stiffnessns /m* increases much more slowly belowTc* in
the presence of a pseudogap, as shown in the inset of Fi
even if Tc* is only slightly reduced. The small stiffnes
makes phase fluctuations more effective. However, in
picture the reduction ofTc is probably overestimated: Above
we have explained the pseudogap as resulting from inco
ent Cooper pairing. This contribution to the pseudogap m
not be incorporated into the normal-state dispersion to av
double counting. This would increase the result forTc . It is
clearly important to develop a theory that incorporates ph
fluctuations, spin fluctuations, and possibly the charge d
sity wave on the same microscopic level. However, the

FIG. 5. Transition temperatures in the presence of a normal-s
pseudogap. The open squares show the transition temperaturTc*
obtained from the FLEX approximation with ad-wave pseudogap
in the normal-state dispersion. The amplitude of the pseudoga
taken from experiments~Refs. 81 and 82!. The open circles show
the corresponding values without a pseudogap; see Fig. 3. The
squares denoteTc in the presence of the pseudogap and with ph
fluctuations included, assuming the two effects to be independ
The solid circles show the corresponding results witho
pseudogap. The inset gives the phase stiffnessns /m* for the dop-
ing x50.122 with ~lower curve! and without ~upper curve! the
pseudogap. Intersections with the dashed line give the simple c
rion ~14! for Tc . One clearly sees that a normal-state pseudo
increases the effect of phase fluctuations due to the slow increa
ns /m* below Tc* .
5-6
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clusion of vortex fluctuations in a FLEX-type theory o
equal footing with spin fluctuations would be a formidab
task.8

III. DYNAMICAL CASE

In this section, we calculate thedynamicalphase stiffness
which is the quantity obtained by Corsonet al.50 We first
note that the superfluid density can also be obtained from
imaginary part of the conductivity,

ns

m*
5

1

e2
lim

v→0
v s2

S~v!, ~16!

as can be shown with the help of Kramers-Kronig relatio
We have recalculatedns /m* in this way and find identica
results compared to Eq.~8!.

The phase stiffness has also been obtained at nonzero
quencies using field-theoretical methods.8,64–66 For small
wave vectorq→0,

ns~v!

m*
5

1

e2
v s2

S~v!. ~17!

The imaginary parts2
S(v) of the dynamical conductivity is

obtained from the FLEX approximation for the dynamic
current-current correlation function using the Kub
formula.67 For v.0 one should not interpretns(v) as a
density. Note also thatns

21/2(v) is no longer proportional to
the penetration depth of a magnetic field—forv.0 there is
also a contribution from thereal part of the conductivity, i.e.,
the normal skin effect.

The resulting phase stiffnessns(v)/m* is shown in Fig. 6
for x50.122~underdoped! at various temperatures. At highe
doping the results~not shown! are similar, only the typical

FIG. 6. Frequency-dependent phase stiffnessns(v)/m* for dop-
ing x50.122 ~underdoped! and temperatures kBT/t
50.012,0.015,0.016,0.017,0.018, 0.019, 0.0195, 0.02, 0.0
0.021, 0.0215, 0.022, 0.0225, 0.023@with decreasingns(0)/m* ].
Heret5250 meV is the hopping integral. The frequency is given
units of t (\51). At Tc* '0.023t/kB566.5 K, Cooper pairs start to
form. BelowTc* there is a marked transfer of weight from energ
above 2D0 to energies below, whereD0 is the maximum gap at low
temperatures as obtained from the FLEX approximation.
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frequency scale, which turns out to be the low-temperat
superconducting gapD0, is reduced. We find a finite phas
stiffness atv.0 even for T>Tc* . At first glance this is
surprising, since the phase is not well defined forD50.
Indeed, using a Ward identity one can show that the Gaus
part of the phase action vanishes forT>Tc* .83 However, the
phase action contains a contribution from the time derivat
of the phase besides the stiffness term. While the total ac
vanishes, each term on its own does not. Thus the stiffne
finite but has no physical significance forT>Tc* .

Even slightly belowTc* , ns(v50)/m* obtains a signifi-
cant finite value, leading to the Meißner effect, and there
considerable redistribution of weight from energies roug
above twice the low-temperature maximum gap, 2D0, to en-
ergies below 2D0. This redistribution increases with decrea
ing temperature. Also, a peak develops slightly belowD0
followed by a dip around 2D0, this structure being mos
pronounced in the underdoped case. SinceD0 is smaller in
the overdoped regime,ns(v)/m* changes more rapidly fo
smallv in this case. It is of course not surprising that 2D0 is
the characteristic frequency of changes inns(v)/m* related
to the formation of Cooper pairs.

We now turn to the question of how phase fluctuatio
affect the dynamical phase stiffnessns(v)/m* . This requires
a dynamical generalization of BKT theory, which was fir
developed by Ambegaokaret al.34,51 Here, we start from a
heuristic argument for the dynamical screening of the vor
interaction:51 An applied electromagnetic field exerts a for
on the vortices mainly by inducing a superflow, which lea
to a Lorentz force on the flux carried by the vortices. On t
other hand, moving a vortex leads to dissipation in its c
and thus to a finite diffusion constantDv ,84 which impedes
its motion. If one assumes a rotating field of frequencyv,
small vortex-antivortex pairs will rotate to stay aligned wi
the field. Large pairs, on the other hand, will not be able
follow the rotation and thus become ineffective for th
screening. A pair can follow the field if its component vorte
and antivortex can move a distance 2pr during one period
Tv52p/v. During this time a vortex can move a distance
about the diffusion lengthADvTv5A2pDv /v, so that the
critical scale for the pair size is

r v[A Dv

2pv
. ~18!

Only vortex-antivortex pairs of sizer &r v contribute to the
screening. Hence, we cut off the renormalization flows at t
length scale. To avoid an unphysical kink inns

R(v)/m* we

use the smooth cutoffr̄ 2 5r v
2 1r 0

2 .
The diffusion constant of vortices is not easy to calcul

accurately. In the absence of pinning, the theory of Bard
and Stephen84 yields

Dv
05

2pc2jab
2 rn kBT

f0
2 d̃

, ~19!

where c is the speed of light,jab;r 0/2 is the coherence
length, rn is the normal-state resistivity,f05hc/2e is the

5,
5-7
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superconducting flux quantum, andd̃ is an effective layer
thickness. In the renormalization the quantityDv

0/r 0
2 enters,

which according to Eq.~19! is linear in temperature. In the
presence of a high density of weak pinning centers the
fusion constant becomes85 Dv5Dv

0 exp(2Ep /kBT), whereEp

is the pinning energy. Matters are complicated by the ob
vation that Ep depends on temperature. Rogerset al.86

find Ep(T)'Ep
0 (12T/Tc* ) with Ep

0/kB'1200 K for
Bi2Sr2CaCu2O81d . Absorbing the constant term in the e
ponent into the prefactor, the result for the diffusion const
in natural units is

Dv

r 0
2

'Cv

kBT

\
expS 2

Ep
0

kBTD , ~20!

whereCv is a dimensionless constant. However, such a la
value of Ep

0 would lead to a sharp, steplike dependence
ns(v)/m* on temperature, in contradiction to the smoo
behavior shown in Fig. 4 of Ref. 50. In view of these dif
culties we treatDv /r 0

2 as a constant parameter and discu
the dependence onDv below.

To find the effect of phase~vortex! fluctuations on the
phase stiffness, the recursion relations~12! and~13! are now
integrated numerically up to the cutoffl̄ 5 ln(r̄/r0), which de-
pends onDv /r 0

2. The resulting renormalized phase stiffne
ns

R(v)/m* for constantDv /r 0
251017 s21 and x50.122 is

plotted in Fig. 7. Other values ofDv give similar results. Of
course, faster vortex diffusion shifts the features at giv
temperature to higher frequencies. The dashed lines de
the unrenormalized stiffness, i.e., the same data as in Fi
albeit on an expanded frequency scale. The highest
quency used in Ref. 50 (600 GHz) corresponds tov/t
'0.01, also indicated in Fig. 7.

FIG. 7. Phase stiffnessns
R(v)/m* renormalized by vortex fluc-

tuations forx50.122 at temperatureskBT/t50.016, 0.017, 0.018
0.019, 0.0195, 0.02, 0.0205, 0.021, 0.0215, 0.022, 0.0225~heavy
solid lines!. The vortex diffusion constant has been chosen
Dv /r 0

251017 s21. The unrenormalized stiffness is shown as dash
lines; these are the same data as in Fig. 6. Note the expande
quency scale. The highest frequency used by Corsonet al. ~Ref. 50!
is indicated by the vertical dotted line.
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For T,Tc ~the upper six curves! the static renormaliza-
tion has been found to be small; see Sec. II. The renorm
ization at finitev is even weaker so that the renormaliz
stiffness is in practice identical to the unrenormalized o
which has only a weak frequency dependence for lowv, in
agreement with Ref. 50.

When T is increased aboveTc ~the lower five curves in
Fig. 7!, a strong renormalization of the stiffness due to pha
fluctuations sets in starting at very low frequencies. T
Meißner effect is thus destroyed for allT.Tc by the com-
paratively slow vortex diffusion. With increasing temper
ture the onset of renormalization shifts to higher frequenc
At frequencies above this onset, the vortices cannot foll
the field and thus do not affect the response, as discu
above. The onset frequencies are always much smaller
2D0. The features at the energy scale 2D0 shown in Fig. 6,
which are due to Cooper-pair formation, are unaffected
phase fluctuations and show no anomality atTc . They vanish
only at Tc* .

Finally, in Fig. 8 we plot the renormalizedns
R(v)/m* for

x50.122 as a function of temperature for various freque
cies. This graph should be compared to Figs. 2 and 4 of R
50—note that the quantityTu given there is proportional to
ns

R/m* . We note that Corsonet al.50 assume a thermally
activated density of free vortices,nf}exp(2Ef /T), for T not
too close to the BKT transition temperature, and
temperature-independent diffusion constant.87 Here, we in-
stead integrate the recursion relations~12! and~13! explicitly
up to the dynamical length scaler̄ so that we do not have to
make an assumption onnf . One sees that even atf
5600 GHz the broadened BKT transition is still much na
rower than found by Corsonet al.50 From Eqs.~19! and~20!
it is clear that the diffusion constantDv /r 0

2 increases with
temperature. In the presence of pinning it increases rap
around kBT;Ep

0 . Since a larger diffusion constant, i.e
more mobile vortices, leads to stronger renormalization,

s
d
fre-

FIG. 8. Renormalized phase stiffnessns
R(v)/m* for x50.122 as

a function of temperature for frequenciesf 5100 GHz, 200 GHz,
600 GHz~heavy solid lines!. The unrenormalized stiffness is show
as dashed lines. The dotted line represents the approximate
rion, Eq. ~14!, for the (v50) BKT transition.
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transition in Fig. 8 would becomeeven sharperif Dv /r 0
2

were an increasing function of temperature.
Our results show that dynamical BKT theory togeth

with Bardeen-Stephen theory for vortex diffusion and natu
assumptions on pinning doesnot agree quantitatively with
the experimental results.50 We conclude that the finite-siz
effect apparent in the experimental data is not only due to
finite diffusion length. Another possible source is the int
layer Josephson coupling, which leads to the apperanc
the Josephson lengthL as an additional length scale, as di
cussed above.31 This length scale leads to a cutoff of th
recursion relations atl; ln(L/r0), which becomes small clos
to Tc* due to the divergence ofr 0;jab ~neglecting the feed-
back of phase fluctuations on the quasiparticles!. This broad-
ens the transition but cannot easily explain the observed
quency dependence. On the other hand, the experime
observation that the curves for various frequencies50 start to
coincide where the phase stiffness agrees with the unive
jump criterion ~14! supports an interpretation in terms o
vortex fluctuations. We suggest that a better description
the interplay of vortex dynamics and interlayer coupling
required to understand the data.

Note that the origin of the discrepancy may also lie in t
FLEX results forns(v)/m* , which do not include all effects
of temperature-dependent scattering on the conductivitys,88

and in the omission of the feedback of phase fluctuations
the electronic properties. Another effect neglected here is
possible coupling to a charge-density wave perhaps tak
the form of dynamical stripes.

IV. SUMMARY AND CONCLUSIONS

In the present paper we have obtained the character
energy scales of hole-doped cuprate superconductors fro
theory that includes both spin and Cooper-pair phase fluc
tions. The former are described by the FLEX approximati
whereas the latter are included by means of the Berezins
Kosterlitz-Thouless theory, taking the FLEX results as inp
Phase fluctuations mainly take the form ofvortex fluctua-
tions, since Gaussian phase flucuations have a large en
gap. Vortices lead to the renormalization of the phase s
nessns(v)/m* to ns

R(v)/m* . The stiffness atT→0 shows a
maximum at a doping level ofx'0.2, in good agreemen
with experiments.78 At the transition temperatureTc the
ro
.
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ys
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renormalized static phase stiffnessns
R(v50)/m* vanishes,

leading to the disappearance of the Meißner effect. The id
conductivity is also destroyed by free vortices.Tc is signifi-
cantly reduced compared to the transition temperatureTc*
that would result from spin fluctuations alone. TheTc deter-
mined from spinand transverse phase~vortex! fluctuations
shows the experimentally observed downturn in the und
doped regime and shows a maximum at optimum dop
Still, our approach does not explain the full reduction ofTc .
We believe that a further reduction ofTc results from~a!
longitudinal quantum phase fluctuations,~b! the breaking of
Cooper pairs by scattering with phase fluctuations, and~c!
competing instabilities that reduce the density of states in
normal state, for example a charge-density wave. Since
latter effect also suppressesns /m* , phase fluctuations ca
become even more effective and reduceTc further. It would
be desirable to include the pair-breaking effect of phase fl
tuations and the possible formation of a charge-density w
on the same microscopic level as the spin fluctuations.8

For Tc,T,Tc* , where phase-coherent superconductiv
is absent, phase fluctuations lead to a strong renormaliza
of ns /m* at frequencies much smaller than 2D0. Our results
show the same trends as found in conductiv
measurements.50 However, a three-dimensional descriptio
of vortex dynamics might be required to obtain a more qu
titative agreement. Local formation of Cooper pairs s
takes place in this regime. This leads to a strong pseudo
of the same magnitudeD0 and symmetry as the superco
ducting gap belowTc . We also find a frequency dependen
of nS

R(v)/m* at higher frequencies,v*D0, which is very
similar to the superconducting phase. These features va
only aroundTc* . Finally, for Tc* ,T,T* there is a weak
suppression in the density of states at the Fermi energy.
results reproduce several of the main features common t
hole-doped cuprate superconductors. We conclude that
exchange of spin fluctuations, modified by strong superc
ducting phase~vortex! fluctuations in the underdoped re
gime, is the main mechanism of superconductivity in c
prates.
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