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Spin-crossover molecules having a low-spin ground state and a low-lying excited high-spin state are prom-
ising components for molecular electronics. We theoretically examine one-dimensional spin-crossover chain
molecules of the type of Fe2+ triazole complexes. The existence of the additional low-spin/high-spin degree of
freedom leads to rich behavior already in the ground state. We obtain the complete ground-state phase diagram,
taking into account an elastic nearest-neighbor interaction, a ferromagnetic or antiferromagnetic exchange
interaction between the magnetic ions, and an external magnetic field. Ground-state energies are calculated
with high numerical precision using the density-matrix renormalization group. Besides pure low-spin, high-
spin, and alternating low-spin/high-spin phases we obtain a number of periodic ground states with longer
periods, which we discuss in detail. For example, for antiferromagnetic coupling there exists a dimer phase
with a magnetic unit cell containing two high-spin ions forming a spin singlet and a single low-spin ion, which
is stabilized by the energy gain for singlet formation.
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I. INTRODUCTION

One of the most active fields of materials science to
emerge in recent years ismolecular electronics,1,2 which pro-
poses to use individual molecules as electronic components.
A related idea is to use a single quantum spin, say of an ion,
to store information. Kahn and co-workers3–5 have empha-
sized thatspin-crossover compounds6–10 sSCCsd are particu-
larly promising for molecular memory devices. These com-
pounds consist of complexes involving transition-metal ions
and organic ligands.7–10 The magnetic ions can be either in a
low-spin sLSd or high-spinsHSd state, i.e., for the spin op-
eratorSi at sitei the eigenvalues ofSi ·Si areSLSsSLS+1d and
SHSsSHS+1d in the LS and HS state, respectively. The energy
difference between HS and LS states is due to the competi-
tion between the crystal field splitting, which prefers doubly
occupiedd orbitals and, hence, LS, and Hund’s first rule,
which favors the HS state.7–10 In SCCs the LS state is the
ground state and the HS state is at a moderatesthermald
excitation energy. SCCs show a characteristic crossover from
the LS ground state to dominantly HS behavior at higher
temperatures6 due to the higher degeneracy of the HS state.
This crossover is typically sharper than expected for nonin-
teracting magnetic ions and is even replaced by a first-order
transition in several compounds.7–10 Spin-crossover phenom-
ena are also observed in organic radicals11 and certain inor-
ganic transition-metal compounds.12

Of the large number of known SCCs some naturally form
one-dimensional chains, for example Fe2+ with 4-R-1,2,4-
triazole ligands.4,13 Three ligands form bridges between two
adjacent iron ions. Other SCCs consist of two-dimensional
layers, for example TlSr2CoO5.

12,14

Besides possible applications,3–5 SCCs are also interesting
from a statistical-physics point of view. Compared to con-
ventional local-moment systems they introduce an additional
Ising degree of freedomsi, which destinguishes between the
LS ssi = +1d and HSssi =−1d states. In the case of adiamag-

neticLS statesSLS=0d the low spins are essentially switched
off. These SCCs are thus related to site-diluted spin
models,15–17but in our case the presence or absence of a spin
is a dynamicalvariable and not a type of quenched disorder.
Also related are recent studies of magnetic models with mo-
bile vacancies18 and of insulating phases of atoms with spin
in optical lattices.19 We show below that there is also a close
relation to finite antiferromagnetic spin chains.

Antiferromagnetic spin chains have attracted a lot of in-
terest since Haldane’ssin the meantime firmly establishedd
conjecture of a fundamental difference betweensisotropicd
half-integer and integer quantum spin chains.20 Among other
things, the latter always show an excitation gap, while the
former are critical. The valence-bond-solid modelsAKLT
modeld,21 in which each spin of lengthS is replaced by 2S
fully symmetrized spin-1/2 objects that are then linked by
singlet bonds between sites, was found to explain all main
features of integer quantum spin chains. One peculiarity of
the AKLT model is that at each end ofopenspin chainsS of
the spin-1/2 objects find no singlet partner and form a free
spinS/2. For integer spins this leads in the AKLT model for
evenchain lengths to af2sS/2d+1g2=sS+1d2-fold degener-
ate ground state instead of the nondegenerate ground state
found for periodic boundary conditions. This observation
carries over to antiferromagnetic Heisenberg chains. There,
one finds a group ofsS+1d2 low-lying states that become
degenerate exponentially fast for long open chains. The low-
est lying of these states has total spin 0; above this state there
follows a spin-1 triplet, etc. The maximum total spin in this
group of states is given bySand is concentrated at the edges.
The lowest-lying excitation above them is a true bulk
excitation and corresponds to the lowest-lying state with
M =S+1. This phenomenon has been observed
experimentally,22 and generates a wealth of low-lying exci-
tations if there are segments of spin chains of various lengths
like in SCCs withSLS=0. Foroddchain lengths, the situation
is different as the lowest-lying states of the magnetization
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sectorsM øS are strictly degenerate both in the AKLT and
Heisenberg models. However, the ground state of the mag-
netizationS+1 sector again contains the lowest-lying bulk
excitation. This observation points to a special role of mag-
netizationM =S, as will be seen throughout this paper.

In the present paper we focus on the ground-state proper-
ties of one-dimensional SCCs, for which we obtain essen-
tially exact results. In particular, we treat the case of a dia-
magnetic LS state appropriate for Fe2+ ions. We mostly
consider antiferromagnetic coupling between the spins,
which is probably the more common situation.

II. THEORY

We start from the Hamiltonian23

H0 = − Vo
ki j l

sis j − B0o
i

si − ho
i

Si
z. s1d

The sum overki j l counts all nearest-neighbor bonds once
and the eigenvalues ofSi

z are mi =−Si ,−Si +1, . . . ,Si, where
Si =SLS sSHSd for si =1 s−1d. V describes an interaction that
for V.0 sV,0d favors homogeneoussalternatingd arrange-
ments of LS and HS. At least in a subset of known SCCs this
interaction is ofelasticorigin24 and can be of either sign.14

We approximate this interaction by a nearest-neighbor term.
2B0.0 describes the energy difference between HS and LS
andh is the physical magnetic field withg factor and Bohr
magneton absorbed.H0 is diagonal in the basis of eigenstates
of all Si ·Si andSi

z. In this basis25

H0 = − Vo
ki j l

sis j − B0o
i

si − ho
i

mi . s2d

For h=0 we reobtain the Ising-type model introduced by
Wajnflasz and Pick26 for magnetic molecular compounds and
by Doniach27 for lipidic chains. Here, each site can be in two
states characterized bysi like in the Ising model, but the
states are degenerate with degeneracies 2SLS+1 and 2SHS
+1.28 The model can be rigorously mapped onto an Ising
model in a temperature-dependent effective fieldB23,27,29and
has been treated in the mean-field approximation and with
Monte Carlo simulations.5 A related model with next-
nearest-neighbor elastic interactions has recently been stud-
ied by Monte Carlo simulations and a number of stripe
phases have been found.14 The one-dimensional model suit-
able for triazole compounds has not been treated before.

We are interested in a model with an additional exchange
interaction JÞ0 between the magnetic ions. The Hamil-
tonian s1d is generalized to

H = H0 − Jo
ki j l

Si ·Sj , s3d

whereJ.0 sJ,0d corresponds to a ferromagneticsantifer-
romagneticd coupling between the spins.J has not been mea-
sured in SCCs, but it has been determined in similar metal-
organic complexes.uJu /kB is typically of the order of
10–20 K and is antiferromagnetic,30–32as expected for a ki-
netic superexchange interaction.33 In compounds based on
Prussian blue, larger exchange interactions have been ob-

served, leading to ferrimagnetic order at room temperature.34

The full Hamiltonian H commutes with the operators
Si ·Si. Thus the total spinat each siteis a constant of motion.
On the other hand,H does no longer commute withSi

z. In the
case of Fe2+, which is the most common magnetic ion in
SCCs, we haveSHS=2 andSLS=0 and a significant simplifi-
cation ensues, since any low spin partitions the chain into
finite segments that do not interactmagnetically. Thus there
is a close relation to the physics of finite spin chains. In more
than one dimensionSLS=0 leads to a less trivial percolation
problem—for long-range order to be present it is necessary
for the high spins to percolate.

In the following we restrict ourselves toSLS=0. The
Hamiltonian can be written as

H = − Vo
i

ssisi+1 − 1d − B0o
i

ssi − 1d − Jo
i

Si ·Si+1

− ho
i

Si
z, s4d

where we have added a constant so that the energy of the
pure LS state vanishes. The Ising operatorssi all commute
with the HamiltonianH. Their eigenvalues are thus good
quantum numbers and the Hilbert space is a direct product of
subspaces for givenh. . . ,si ,si+1, . . .j.25

In each sectorh. . . ,si ,si+1, . . .j the system consists of
chains of high spins separated by chains of low spins. The
pure HS and LS states are obtained as the obvious limits.
Since the LS chains do not contribute to the energy, the total
energy in a sector can be written as a sum over the energies
of HS chains of various lengths, including a contribution
from their ends. These HS chains do not interact magneti-
cally sinceSLS=0.

We are interested in the ground state and thus consider the
lowestenergy in each sector. The lowest energy in a sector
can be written as the sum over the ground-state energies of
noninteracting finite HS chains. SinceH commutes with the
total spin of each HS chain separately, thez-componentsM
of the total spins of the finite chains are good quantum num-
bers. Let us denote the lowest energy of a HS chain of length
n with magnetic quantum numberM by en

0sMd, where uMu
ønSHS. We write

en
0sMd = 4V + 2nB0 − hM + Den

0sMd, s5d

where the first term comes from the extra energy of the
change from HS to LS at the ends. The final term is the
lowest eigenenergy of the finite HS Heisenberg chain with
open boundary conditions and the HamiltonianHn

=−Joi=1
n−1Si ·Si+1.

III. RESULTS AND DISCUSSION

A. Ferromagnetic coupling

For ferromagnetic coupling,J.0, and magnetic fieldh
.0 both the exchange interaction and the Zeeman term favor
ferromagnetic alignment. The lowest-energy state thus has
the maximum magnetic quantum numberM =nSHS for each
chain. ForJù0 we haveDen

0snSHSd=−sn−1dJSHS
2 and thus
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en
0snSHSd = 4V + 2nB0 − nhSHS − sn − 1dJSHS

2 . s6d

Now let us consider a sectorh. . . ,si ,si+1, . . .j for which the
state consists ofvolume fractions pn of HS chains of length
n. The HS chains have to be separated by at least one low
spin. When counting this low spin with each HS chain, the
volume fractions becomesn+1d /npn. They must satisfy the
constraint

o
n=1

`
n + 1

n
pn ø 1. s7d

The energy per site is

e0 = o
n

pn

en
0snSHSd

n

= o
n

pnS4V + JSHS
2

n
+ 2B0 − hSHS − JSHS

2 D . s8d

We have to solve the linear optimization problem of mini-
mizing e0 under the constraints7d. In the space of vectors
sp1,p2, . . .d the region allowed by Eq.s7d is a hyperpyramid
with apex at zero and the other corners at points withpm
=m/ sm+1d for one m and pn=0 for nÞm. These are the
points for which only chains of one single length are present
and have the maximum volume fraction. This means that the
finite HS chains are separated bysingle low spins. Since the
allowed region is convex, the only possible solutions are its
corners, except for special choices of parameters. Thus either
pn=0 for all n sLS stated or pm=m/ sm+1d for onem and all
otherpn=0. For the LS state we havee0=0, whereas for the
state with nonzeropn,

e0 =
4V − 2B0 + 2JSHS

2 + hSHS

n + 1
+ 2B0 − hSHS − JSHS

2 . s9d

Examination shows that there are only three possible phases:
sid If 4V−2B0+2JSHS

2 +hSHS.0 and 2B0−hSHS−JSHS
2 .0 or

4V−2B0+2JSHS
2 +hSHS,0 and 2V+B0−hSHS/2.0 the

ground state is the LS state.sii d If 4V−2B0+2JSHS
2 +hSHS

.0 and 2B0−hSHS−JSHS
2 ,0 the ground state haspn.0 and

all other pm=0, for n→`, which corresponds to the HS
state, and the energy ise0=2B0−hSHS−JSHS

2 . Note that the
HS state appears for any values ofV and h for sufficiently
large exchange interactionJ. This is reminicent of the
exchange-induced Van-Vleck ferromagnetism in rare-earth
compounds.35 siii d If 4V−2B0+2JSHS

2 +hSHS,0 and 2V
+B0−hSHS/2,0 the ground state hasp1=1/2 and allother
pm=0. This corresponds to analternating state of low and
high spins. The energy ise0=2V+B0−hSHS/2. By using the
LS/HS splittingB0 as our unit of energy, we obtain the phase
diagram inV/B0, h/B0, andJ/B0 shown as theJù0 part of
Fig. 8, below.

B. Antiferromagnetic coupling

In the case of antiferromagnetic coupling,J,0, there is a
competition between the exchange and Zeeman terms in Eq.
s4d. Thus in principle finite HS chains of lengthn can occur

with any magnetic quantum numberM. The energyen
0sMd of

such a chain is given by Eq.s5d. We introduce volume frac-
tions pn,M of HS chains of lengthn with magnetic quantum
numberM. They must satisfy the constraint

o
n=1

`

o
M=−nSHS

nSHS n + 1

n
pn,M ø 1. s10d

The energy per site is

e0 = o
n,M

pn,MS4V − hM + Den
0sMd

n
+ 2B0D . s11d

The ground state for certain parameter values is determined
by the minimum ofe0 under the constraints10d. This is again
a linear optimization problem. Except for accidental degen-
eracies, the minima occur at the corners of the allowed pa-
rameter region. Thus eitherpn,M =0 for all sn,Md sLS stated
or pn,M =n/ sn+1d for one sn,Md and pn,M =0 for all others.
In the latter case the energy per site is

e0 =
4V − 2B0 − hM + Den

0sMd
n + 1

+ 2B0. s12d

Den
0sMd / uJu is the lowest energy of the finite antiferromag-

netic Heisenberg chain with open boundary conditions and
the HamiltonianHn8=oi=1

n−1Si ·Si+1 in the sector with totalSz

quantum numberM. It is not possible to find these energies
in analytical form. For sufficiently smalln, the Hamiltonian
Hn8 can be diagonalized numerically. We have calculated the
energies up ton=8 for all M using the Lanczos algorithm.
The results forDen

0sMd / uJu / sn+1d are shown in Fig. 1 as

FIG. 1. sColor onlined The lowest energiesDen
0sMd / uJu of anti-

ferromagnetic Heisenberg chains of lengthn for spin SHS=2 in
sectors with open boundary conditions for fixed totalSz quantum
numberM. The energies are normalized by a factor 1/sn+1d and
shown as a function of 1/sn+1d, wheren+1 is the period of the
LS/HS pattern. Circles: Results from exact Lanczos diagonaliza-
tion. Squares: Results from DMRG. Equal colors correspond to
equalM. For oddn the energies forM =0, 1, and 2 are degenerate,
as noted in Sec. I. The cross at 1/sn+1d=0 denotes the extrapolated
energy density −4.761248s1d of an infinite chainssee Ref. 36d.
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colored circles, where identical colors denote the same val-
ues ofM.

The energies for longer chains can be calculated with ex-
cellent precision with a finite-chain density-matrix renormal-
ization groupsDMRGd algorithm;37,38 for a detailed explana-
tion of the algorithm and its applications see Refs. 39 and 40.
To obtain typically seven-digit precision for the ground state
energy per site, we have kept up toM =300 states in the
reduced DMRG Hilbert spaces and carried out three finite-
system sweeps which was enough to ensure convergence.
Note that DMRG prefers open to periodic boundary condi-
tions. In standard DMRG applications to integer-spin chains,
end spins of lengthS/2 sa spin 1 at each end for our cased are
attached to eliminate the peculiar boundary degrees of free-
dom and access bulk physics directly.37,41 In the present cal-
culation, these boundary degrees of freedom are physical

and, hence, no end spins are attached. The energies for
lengthsn=9 throughn=49 as well asn=99 are shown in
Fig. 1 by squares.42

We first consider the case ofvanishing magnetic field, h
=0. Figure 1 shows that the state withM =0 has the lowest
energy for anyn. Then e0=f4V−2B0+Den

0s0dg / sn+1d+2B0
is a sum ofDen

0s0d / sn+1d and alinear function in 1/sn+1d.
The minimum of e0 can only occur forn=1, n=2, or n
→`, since all other points lie above the dotted straight lines
connecting the corresponding points in Fig. 1snot obvious
on this scaled. The relevant energies per site are thus deter-
mined by De1

0/2=0, De2
0/3=2J, and limn→` Den

0/ sn+1d
=4.761248J and have to be compared to the LS energye0
=0. The resulting phase diagram is shown in Fig. 2. Note the
appearance of adimer sn=2d phase. In this phase the energy
increase due to the HS-HS pairssV,0 favors HS-LS neigh-
borsd is overcompensated by the large negative singlet for-
mation energy of Heisenberg spin pairs.

For general magnetic field hwe have to take all possible
magnetic quantum numbersM of the chains into account.
This is obviously impossible for the pure HS phase. Instead,
we have performed DMRG calculations for chain lengthn
=99 for all possible magnetizationsM =0, . . . ,198 and use
them as a caricature of the HS state. The resulting errors are
discussed below.

For each set of parameterssV/B0,J/B0,h/B0d we calcu-
late the minimum energy densities for all states withnø49
as well asn=99 from Eq.s12d. The energy density of the LS
state is zero. Then the ground state is obtained by finding the
minimum energy. Figure 3 shows a series of phase diagrams
for fixed exchange interactionJ. Note that the lower edges of
each diagram, i.e.,h=0, are consistent with Fig. 2. We ob-
serve that the dimersn=2d phase present ath=0 is sup-
pressed by the field, as is expected since this phase is stabi-
lized by the singlet formation energy.

For J&−0.6 the phase diagrams remain qualitatively the
same. The features are shifted to lowerV and expanded lin-
early in both theV andh directions. LettingV, J, andh go to
infinity while keeping their ratios fixed corresponds to the
limit B0→0, i.e., vanishing energy difference between LS
and HS states. In this limit we chooseuJu as our unit of

FIG. 2. sColor onlined Ground-state phase diagram of the one-
dimensionals1Dd spin-crossover model withSLS=0 andSHS=2 for
vanishing magnetic field,h=0, and antiferromagnetic exchange in-
teraction,J,0. The dimersn=2d phase case is highlighted. The
heavy solid lines denote discontinuous transitions. The various spin
structures are indicated by cartoonsssolid symbols: HS state, open
symbols: LS stated; these should not be overinterpreted—there is no
magnetic long-range order.

FIG. 3. Zero-temperature phase diagrams for
the same model as in Fig. 2, but in a magnetic
field, for antiferromagnetic exchange interactions
J/B0=0.0,−0.2,−0.4,−0.41,−0.42,−0.6. The
white area corresponds to the LS phase, the black
to the HS phase, approximated by a phase with
n=99, and the gray areas correspond ton
=1,2,3,5sfrom light to darkd. All transition are
discontinuous, the purely magnetic continuous
transition discussed below is not shown.
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energy, leaving two dimensionless parametersV/ uJu and
h/ uJu. The resulting phase diagram is shown in Fig. 4.

Interesting behavior is seen in the triangular region sur-
rounded by phases withn=1, n=2, and the HS phase, as
shown in Fig. 4sbd. Here, phases with HS chain lengths
n=3, 5, 7, and 9 are found. We do not observe any further
phases. To understand why onlyodd nappear, we refer to the
energy densities in Fig. 1: The energy of the singletsM =0d
state islower for evenn than expected from a linear fit, at
least for the smalln relevant here, while for oddn it is
higher. Thus at zero magnetic field, even-n states are pre-
ferred. On the other hand, the energy of states withM ù2 is
higher for evenn than a linear fit, while for oddn it is lower.
Thus in a sufficiently large magnetic field odd-n states are
preferred. The fact that the series of oddn is cutoff atn=9 is
a result of the detailed numerical values of energies in
Fig. 1—for largern, the HS state happens to have the lower
energy. While we expect the appearance of only odd HS
chain lengths to be a robust feature of spin-crossover chains
with strong antiferromagnetic interaction, the restriction to
nø9 should thus be model dependent. For example, inclu-
sion of a next-nearest-neighbor elastic interaction or a differ-
ent integer value ofSHS may change this result.

C. Magnetic properties

We now discuss the magnetic properties in more detail. In
the ferromagnetic case all high spins are fully aligned with a
nonzero magnetic fieldh. For the antiferromagnetic case Fig.
5 shows the magnetic quantum numberM of the finite HS
chains and the magnetizationm in the ground states in the
limit of large V, J, h. The magnetization is defined as the
magnetic quantum numberM divided by the period,
m=M / sn+1d. Interestingly, the phases with oddn all have
M =SHS=2, including then=7 andn=9 phases not resolved
in Fig. 5. This of course corresponds to differentmagnetiza-
tions m. To understand the special significance of the value
M =SHS, we plot in Fig. 6 the local expectation values of the
spins,kSi

zl, for each site of a HS chain of lengthn=9, ob-
tained with DMRG. The plot shows that for 0,M øSHS the
oddchain can accomodate the finite spin by forming a Néel-
type state. For higherM this is no longer possible and spins
pointing in the “wrong” direction are reducedsa bulk mag-
non is excitedd. Due to the cost in exchange energy such
states are always higher in energy than competing phases.
Compare also the discussion in Sec. I.

FIG. 4. sad Zero-temperature phase diagrams as in Fig. 3 in the
limit B0→0 sor V,J,h→` with their ratios fixedd. The gray scale is
the same as in Fig. 3.sbd Enlargement of the left figure on adiffer-
ent gray scale. The values ofn in the various ground states are
indicated.

FIG. 5. Left: Density plot of the magnetic quantum numberM
of the finite chains in the same parameter region as in Fig. 4sad.
Black corresponds toM =0, white to maximumM. The phases with
odd n all have M =2. Right: Magnetizationm=M / sn+1d derived
from the data in the left plot. Blackswhited corresponds tom=0
sm=1d. The magnetization of the fully polarized HS state, which
does not appear in the plot, would bem=SHS=2.

FIG. 6. sColor onlined Local expectation valueskSi
zl from

DMRG for each site of a HS chain of lengthn=9 for various total
magnetic quantum numbers of the chain,M.

GROUND-STATE PHASES IN SPIN-CROSSOVER CHAINS PHYSICAL REVIEW B71, 224414s2005d

224414-5



The dimer sn=2d phase always consists of singlets,M
=0. This shows that it is energetically favorable to replace
the dimer state by a state with oddn or the HS state, instead
of havingM .0 for the dimers.

Finally, we turn to the pure HS phase. AtT=0 the system
is equivalent to an infinite antiferromagneticS=SHS chain.
We thus expect the magnetization to rise continuously with
increasing magnetic fieldh and to reach its maximum value
m=SHS, i.e., full spin alignment, at acontinuous phase
transition. Since we approximate the HS phase by the
n=99 phase, the continuous increase is replaced by
small steps. The position of this transition is determined
by equating the energies per site forM =nSHS and M
=nSHS−1. From Eq.s12d we thus obtain the critical field
hc=Den

0s2nd−Den
0s2n−1d, which is proportional toJ and in-

dependent ofB0 and V. For n=99 exact diagonalization
yields hc<−7.9980J, compared to the exact result for an
infinite chain,hc=−4JSHS=−8J. To find the critical behavior
close to this transition we define the deviation of the magne-
tization from its maximum byDm;SHS−m. PlottingDm2 vs
h snot shownd we find thatDm2 is linear inhc−h so that the
critical exponent ofDm with respect to the fieldh is
mean-field-like,b=1/2.

The previous discussion shows that by restricting the
DMRG calculations ton,100 we make an error for the
transition to full spin alignment of the order of 0.03%. As
another way to estimate the errors, we have determined the
triple point between LS, HS, and dimer phases in zero field
and compared the result to the “exact” triple point shown in
Fig. 2. The error is of the order of 0.2% forV and 0.1%
for J.

We also obtain spin correlations from the DMRG. Figure
7 shows spin-spin correlation functions forn=99 for two

spins close to the center of the chain, where the infinite chain
should be well approximated. We first notice the anomaly at
M =2. This is of the same origin as the stabilization of
M =2 for small odd chain lengths, discussed above. It is thus
a finite-size effect not present for the true HS phase. Apart
from this anomaly, thetransversecorrelationskSi

+Sj
−l first

grow with magnetic fieldh or magnetization. This is the
one-dimensional analog of the spin-flop state in ordered an-
tiferromagnets, where the staggered magnetization is ori-
ented perpendicularly to the applied field. For large fields,
the correlations decrease again since the spins are more and

FIG. 7. sColor onlined Expectation value of thez component of
the spins,kSzl, and spin-spin correlation functions at the separation
of ui − j u=4 as functions of the total magnetic quantum numberM
for chain lengthn=99. Inset: Correlation functionkSi

+Sj
−l as a func-

tion of separation for three values of the total magnetic quantum
numberM.

FIG. 8. sColor onlined Zero-temperature
phase diagram of the spin-crossover chain with
SLS=0 and SHS=2. Positivesnegatived J corre-
sponds to ferromagneticsantiferromagneticd ex-
change interaction.V denotes the elastic interac-
tion, h the applied magnetic field in units of
energy, and 2B0 is the energy difference between
HS and LS states in the absence of interactions.
The solid surfaces denote phase transitions be-
tween different phases, which are indicated. The
phases with HS chain lengthsn=3,5, . . . arehid-
den in this view. All transitions are discontinuous,
except for the continuous transition to full spin
alignment in the HS phase, shown as the mono-
chromesblued surface.
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more forced into the field direction. In the fully polarized
state forhùhc the transverse fluctuations vanish.

IV. SUMMARY AND CONCLUSIONS

To conclude, we have studied a model for spin-crossover
compounds forming one-dimensional chains. We consider
spin quantum numbers appropriate for Fe2+ ions, which have
a spin-0 LS and a spin-2 HS state. The model includes elastic
and exchange interactions and an applied magnetic field. The
most important effect left out here is probably the dipole-
dipole interaction, which is of long range for an isolated
chain, but becomes screened if the chain is deposited on a
conducting substrate. We obtain the ground-state phase dia-
gram analytically for ferromagnetic or zero exchange inter-
action and using the DMRG for antiferromagnetic exchange.
As a summary, Fig. 8 shows the full phase diagram. The
continuous transition to full spin alignment is indicated by
the solid blue surface. All other surfaces are discontinuous
transitions between states with different chain lengthn. Hori-
zontal cuts correspond to the plots in Fig. 3, the vertical cut
at h=0 to Fig. 2. Besides a diamagnetic LS phase and a HS
phase equivalent to the usual Heisenberg chain we find a
number of more complex phases. For sufficiently negative
elastic interactionV we find an alternating phase of low and
high spins. In quasi-two-dimensional SCCs the correspond-
ing checkerboard state has been observed experimentally.12

For antiferromagnetic coupling we find a robust dimer
sn=2d phase, which consists of spin singlets formed by two

high spins separated by single low spins. Since this phase
appears at zero and low magnetic fields, it should be acces-
sible experimentally. As the magnetic field is increased, the
dimers remain in the singlet state until states with an odd
number of HS ions or the pure HS state become lower in
energy, whereupon the dimer phase is destroyed in a discon-
tinuous transition. At higher magnetic fields we find a num-
ber of phases consisting of finite chains of lengthn
=3,5,7,9 of HSions with totalSz quantum numberM =2
separated by single LS ions. We suggest that the succession
of odd chain lengths is a general feature of spin-crossover
chains.

We thus find that a model that contains the most important
ingredients of one-dimensional spin-crossover systems
shows a rich ground-state phase diagram. The model is re-
lated to various systems studied in recent years, such as site-
diluted spin models and finite antiferromagnetic Heisenberg
chains. Questions for the future concern the behavior at non-
zero temperature and of higher-dimensional models, in
which percolation plays an important role. New physics
comes into play since the dilution by LS ions is not quenched
disorder but a dynamical degree of freedom.
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