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The collective properties of spin-crossover chains are studied. Spin-crossover compounds contain ions with
a low-spin ground state and low lying high-spin excited states and are of interest for molecular memory
applications. Some of them naturally form one-dimensional chains. Elastic interaction and Ising exchange
interaction are taken into account. The transfer-matrix approach is used to calculate the partition function, the
fraction of ions in the high-spin state, the magnetization, susceptibility, etc., exactly. The high-spin–low-spin
degree of freedom leads to collective effects not present in simple spin chains. The ground-state phase diagram
is mapped out and compared to the case with Heisenberg exchange interaction. The various phases give rise to
characteristic behavior at nonzero temperatures, including sharp crossovers between low- and high-temperature
regimes. A Curie-Weiss law for the susceptibility is derived and the paramagnetic Curie temperature is calcu-
lated. Possible experiments to determine the exchange coupling are discussed.
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I. INTRODUCTION

Motivated in part by the search for molecular memory
devices,1–3 spin-crossover compounds �SCCs� have been in-
vestigated quite intensively in recent years. These com-
pounds are characterized by magnetic ions that can be either
in a low-spin �LS� or high-spin �HS� state, where the HS
state is slightly higher in energy and can be thermally
populated.4–8 An ion in the HS �LS� state has the spin quan-
tum number SHS �SLS�, where SHS�SLS. Most SCCs consist
of metal-organic complexes involving transition-metal ions,
in many cases Fe2+. Spin crossover involving charge transfer
between two different ions is observed in Prussian Blue
analogues.9–11 SCCs are promising for molecular memory
applications due to long lifetimes of the HS state. Applica-
tions require to deposit SCCs on substrates as thin films or
one-dimensional �1D� chains. Many SCCs consist of weakly
interacting chains or plains even in the bulk.3,12–14 A typical
quasi-1D material is Fe2+ with 4–R–1,2,4–triazole
ligands.3,13

SCCs are also interesting from the point of view of basic
physics. The additional LS/HS degree of freedom leads to
collective effects not present in pure spin models, which are
most pronounced for a diamagnetic LS state, SLS=0, as in
the case of Fe2+ ions. Then, in the LS state the spin is
switched off. This reminds one of diluted spin models,15–17

but with fluctuating dilution.
Most of the theoretical literature on SCCs omits the ex-

change interaction. The only interaction in this case is of
elastic origin and determines whether neighboring ions pre-
fer to be in the same �LS or HS� state or in different
ones.14,18 However, typical values for the exchange interac-
tion J in transition-metal complex salts are of the order of
�J � /kB=10 to 20 K.19–21 The interaction is due to superex-
change and is typically antiferromagnetic. In ferrimagnetic
Prussian Blue analogs the exchange interaction is typically
similar9,10 but values of the order of room temperature have
also been reported.22

If magnetic anisotropies are small, the exchange interac-
tion is of Heisenberg type. For strong easy-axis anisotropy
we can instead consider an Ising exchange interaction. For
isolated 1D chains deposited on a surface strong easy-axis
anisotropy is expected due to shape anisotropy. Another im-
portant source of anisotropy is the ligand field acting on the
magnetic ions. Nishino et al.23–25 and Boukheddaden et al.26

study a three-dimensional model with nearest-neighbor Ising
exchange, SLS=0, and SHS=1/2 �the high spins have two
possible orientations� employing mean-field theory and
Monte Carlo simulations. On the other hand, Timm and
Schollwöck27 consider a 1D model with nearest-neighbor
Heisenberg exchange, SLS=0, and SHS=2. The zero-
temperature phase diagram is investigated using the density
matrix renormalization group.28

In this paper, we study the behavior of a 1D spin-
crossover chain with and without Ising exchange interaction
at all temperatures. We will argue that its solution also pro-
vides a good approximation for the Heisenberg case for
small exchange interactions. In Sec. II we present the model
and discuss the transfer-matrix calculations. We mostly re-
strict ourselves to the case SLS=0 and SHS=2, which is ap-
propriate for Fe2+ compounds. The results are presented in
Secs. III and IV for the ground-state and finite-temperature
properties, respectively.

II. MODEL AND METHOD

This section outlines the theory for general SHS, unless
stated otherwise. We start from the Hamiltonian

H = − V�
i

�i�i+1 − ��
i

�i − J�
i

mimi+1 − h�
i

mi, �1�

where mi�Si
z with mi=0 for �i=1 �LS state� and

mi=−SHS, . . . ,SHS for �i=−1 �HS state�. Here, V describes
the elastic interaction between neighboring spins.18 For
V�0 �V�0� homogeneous �alternating� arrangements of LS
and HS are favored.14 2� is the energy difference between
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HS and LS and h is the magnetic field with a factor g�B
absorbed. J�0 �J�0� is a ferromagnetic �antiferromagnetic�
exchange coupling. For J=0 this model is equivalent to the
one of Ref. 29 and for J=h=0 it is the model introduced by
Wajnflasz and Pick30 and by Doniach.31

We apply the transfer-matrix approach. To focus on the
essential physics we assume that the vibrational frequencies
of a complex do not change between the LS and HS state.
Then the degeneracy of the HS state is only due to its spin.
The main effects of different vibrational frequencies would
be to renormalize the energy splitting 2� and to change the
effective degeneracies of the LS and HS states.2,29 These
effects do not change the qualitative results and can easily be
reintroduced.

The total partition function is Z=���i,mi�
e−�H, where

�=1/T �we set kB=1�. We write −�H��iK�imi,�i+1mi+1
with

K�m,��m� = �V��� +
��

2
�� + ��� + �Jmm� +

�h

2
�m + m�� .

�2�

The partition function then reads

Z = �
��i,mi�

eK�1m1,�2m2 eK�2m2,�3m3 ¯ eK�NmN,�1m1. �3�

This can be written as Z=Tr MN where the symmetric matrix
M has the components M�m,��m�=exp�K�m,��m��. For N→�
the partition function becomes the maximum eigenvalue of
M to the power N and the Gibbs’ free energy per site is

g = − T lim
N→�

1

N
ln Tr MN. �4�

For J=0 the eigenvalue equation can be solved in closed
form. For SLS=0 we obtain

g = −
1

�
ln�e�Vcosh ��̃ + �e2�Vsinh2 ��̃ + e−2�V� −

ln gHS

2�

�5�

with �̃��−ln gHS/2� and29

gHS � �
m=−SHS

SHS

e�hm =
e�h�SHS+1/2� − e−�h�SHS+1/2�

e�h/2 − e−�h/2 . �6�

For h=0 one has gHS=2SHS+1.
For J�0, SLS=0, SHS=2 the calculation of the partition

function has been reduced to the eigenvalue problem of the
6�6 matrix M. An important quantity describing SCCs is
the fraction 	 of ions in the HS state. It is given by
	= �1− 	�
� /2 so that, with Eq. �5�,

	 =
1 + �g/��

2
=

1

2
−

T

2
lim
N→�

Tr MN−1 � M/��

Tr MN . �7�

If �n
, n=1, . . ., 6 are the orthonormalized eigenvectors of M
with eigenvalues m1
m2
 ¯ 
m6, then

	 =
1

2
−

T

2

	1��M/���1

m1

. �8�

Similarly, the magnetization is

	m
 = −
�g

�h
= T

	1��M/�h�1

m1

�9�

and the probability of any two neighbors being in the same
�LS or HS� state is

weq =
1 − �g/�V

2
=

1

2
+

T

2

	1��M/�V�1

m1

. �10�

This quantity describes nearest-neighbor correlations.
For the special case J=0 we find the HS fraction

	 =
1

2
−

1

2

e�Vsinh ��̃

�e2�Vsinh2 ��̃ + e−2�V
. �11�

In this case the magnetization is determined by 	 through
	m
=	SHSBSHS

��hSHS�, where BS�x� is the Brillouin func-
tion. This leads to a simple result for the susceptibility
�=�	m
 /�h for vanishing magnetic field:

� = 	
SHS�SHS + 1�

3T
. �12�

Thus the susceptibility is just the paramagnetic expression
weighted by the concentration of high spins.

III. GROUND STATES

We now derive the ground-state phase diagram to lay the
ground for the discussion of finite-temperature properties.
For the case without exchange interaction Fig. 1 shows the
phase diagram in terms of the two dimensionless ratios V /�
and h /�. From Eq. �5� we find 	=0, 	m
=0, and weq=1 for
�h � /��2/SHS and V /��−1/2+ �h �SHS/4�. This is the LS

FIG. 1. �Color online� Ground-state phase diagram of the spin-
crossover chain without exchange interaction and with SLS=0, in
terms of elastic interaction V and Zeeman energy h in units of �,
where 2� is the LS/HS energy splitting. The solid lines denote
discontinuous transitions.
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state. For �h � /��2/SHS and V /��1/2− �h �SHS/4� we
find 	=1, 	m
=SHS sgn h, and weq=1. This is the fully
polarized HS state. In all other cases we find 	=1/2,
	m
=SHS sgn h /2, and weq=0, corresponding to an alternat-
ing state of LS and HS ions.

In the general case with Ising exchange interaction we
have three dimensionless parameters V /�, J /�, and h /�.
The ground state is found by determining the largest compo-
nent�s� of the matrix M, since for T→0 these components
become exponentially larger than the others. For sufficiently
large J /��0 we obtain a ferromagnetically aligned HS
phase for any V, h. For SHS=2 and h
0 this phase becomes
unstable at

J

�
=�

−
h

2�
+

1

2
for

h

�
� 2 and

V

�
�

h

2�
−

1

2
,

−
V

2�
−

h

4�
+

1

4 �for
h

�
� 2 and

V

�
�

h

2�
−

1

2
,

for
h

�
� 2 and

V

�
�

1

2
,

−
h

4�
for

h

�
� 2 and

V

�
�

1

2
.

�13�

For large −J /��0 we find a HS phase with Néel order,
which does not exist for J=0. It becomes unstable at

J

�
=�

−
1

2
for

h

�
� 2 and

V

�
�

h

2�
−

1

2
,

V

2�
−

h

4�
−

1

4 �for
h

�
� 2 and

V

�
�

h

2�
−

1

2
,

for
h

�
� 2 and

V

�
�

1

2
,

−
h

4�
for

h

�
� 2 and

V

�
�

1

2
.

�14�

Finally, for small �J /�� the LS and alternating phases are
separated by a boundary at

V

�
=

h

2�
−

1

2
for −

1

2
�

J

�
�

1

2
−

h

2�
. �15�

The resulting T=0 phase diagram is shown in Fig. 2. Figure
3 shows the V=0 cut of the phase diagram and compares the
results to the case of Heisenberg exchange interaction from
Ref. 27. In the Heisenberg-type model several more complex
phases are found, which are absent in the Ising case. These
consist of arrangements of 2, 3, 5, 7, or 9 consecutive ions in
the HS state followed by a single ion in the LS state. This
pattern is periodically repeated.27 These phases are stabilized
in the Heisenberg case by the energy gain for antiferromag-
netically coupled spins due to quantum effects. This energy
gain also stabilizes the antiferromagnetically aligned HS
state, which displaces the other phases, as seen in Fig. 3.

On the other hand, for all positive and small negative J /�
the phase boundaries coincide. This is because the LS, alter-

nating, and ferromagnetic HS ground states of the Ising-type
model remain eigenstates, with the same energy, of the
Heisenberg-type model. �The LS and alternating states
do not contain nearest-neighbor HS pairs so that the ex-
change interaction does not enter. The ferromagnetically
fully aligned state is an eigenstate for any—even
antiferromagnetic—Heisenberg-type model.� In addition, all
ground states that appear at larger �J� have nonzero energy

FIG. 2. �Color online� Ground-state phase diagram of the spin-
crossover chain with Ising exchange coupling J. In this and the
following graphs SLS=0 and SHS=2 are assumed. The planes denote
discontinuous transitions. The heavy solid lines show their intersec-
tions with the J=0 plane, cf. Fig. 1.

FIG. 3. �Color online� Solid lines: Intersection of the T=0 phase
diagram Fig. 2 with the V=0 plane �vanishing elastic interaction�.
Dashed curves: The phase boundaries for Heisenberg exchange in-
teraction �Ref. 27�. Long-dashed �short-dashed� curves correspond
to discontinuous �continuous� transitions. The alternating phase is
reduced to two finite lobes by quantum effects. Note that the phase
boundaries for the Ising- and Heisenberg-type models are identical
for positive and small negative J.

COLLECTIVE EFFECTS IN SPIN-CROSSOVER CHAINS… PHYSICAL REVIEW B 73, 014423 �2006�

014423-3



gaps to the ground state at small �J�. Thus for small �J�, which
are expected for most SCCs, no new phases appear for either
the Ising or the Heisenberg case and both have the same
ground states.

IV. FINITE-TEMPERATURE BEHAVIOR

We now turn to the finite-temperature properties. The par-
tition function is analytic for T�0 so that the phase transi-
tions are replaced by crossovers. These can become very
sharp, however.

While the assumption of Ising exchange is appropriate in
the presence of strong easy-axis anisotropy, it also provides a
reasonable approximation for the Heisenberg case for small
J. In this case the ground state is found exactly and the
energies of low-lying excited states above the LS and alter-
nating ground states are also identical for both cases so that
the behavior at low temperatures will be very similar. Devia-
tions will appear when a significant fraction of nearest neigh-
bors are both in the HS state since then the exchange inter-
action becomes relevant. We will come back to this at the
end of this section. On the other hand, in the ferromagnetic
HS state the low-energy excitations are different but gapped
in both cases. Thus only qualitatively similar behavior is
expected.

Note that for solving the Heisenberg-type model, mapping
onto and solving an Ising-type model is superior to the
mean-field approximation, which neglects all fluctuations. In
the Ising approximation we treat fluctuations of �i and lon-
gitudinal fluctuations of Si exactly and neglect only trans-
verse fluctuations of Si.

A. Low-spin phase

Typical SCCs are in the LS phase for T→0. Figure 4
shows the HS fraction as a function of temperature for J=0
and various elastic interaction strengths V. For V=0 we ob-
serve the well-known smooth crossover to the HS
state, which comes from its higher degeneracy. For T→� the
HS fraction is only determined by the degeneracies,
	→ �2SHS+1� / �2SHS+2�=5/6, for any V. For V�0 the in-
teraction favors a homogeneous state and the crossover be-

comes sharper. In mean-field theory we would eventually
reach a critical point V=Vc and find a discontinuous transi-
tion for V�Vc.

3 However, the exact solution for 1D shows
that 	 develops a discontinuity only for V→�. For larger
V /� the curves overshoot and exhibit a maximum. This is
due to the energy gain from the homogeneous HS state out-
weighing the entropy gain from populating all states equally.
For V�0 the interaction favors a mixed state with 	�1/2
and thus broadens the crossover.

All curves for fixed h in Fig. 4 cross at 	=1/2. The equa-
tion 	�T	�=1/2 is equivalent to 	�
=0 and, using Eq. �11�,
to �− �T /2� ln gHS=0. This leads to the implicit equation
T	 /�=2/ ln gHS�h ,T	�, which is indeed independent of the
interaction V so that all curves cross at T	. For h=0 we
obtain T	 /�=2/ ln�2SHS+1�.

The magnetization 	m
 and probability weq for equal
neighbors are shown in Fig. 5 for h /�=0.8. For V=0 we see
a broad crossover in 	m
 from the LS phase to a maximum
and then a decay 
1/T at high temperatures. The Curie-
Weiss law is discussed further in Sec. IV C. For V�0
�V�0� the crossover becomes sharper �broader�. Similar be-
havior is found for J�0. The nonmonotonic temperature de-
pendence can be interpreted as the 1D analog of the reentrant
transition to ferromagnetic order found in three
dimensions.26

The probability weq starts from weq=1 at T=0 and ap-
proaches a universal value of 13/18 for T→�. weq shows a
broad minimum for small V, which is best understood in the
case without interactions. Then weq=	2+ �1−	�2 so that
	=1/2 implies weq=1/2, which is smaller than the limits for
low and high T.

Next, we consider the effect of the exchange interaction,
see Fig. 6. For vanishing magnetic field the effect of moder-
ate �J /�� is rather weak due to the scarcity of nearest-
neighbor HS pairs. For J�0 the crossover temperature with
	�T	�=1/2 depends on both J and V. 	 increases symmetri-
cally for ferromagnetic antiferromagnetic J for all V, due to

FIG. 4. �Color online� Solid curves: HS fraction 	 as a function
of temperature for various values of the elastic interaction V and
J=h=0. Dashed curves: 	 for h /�=0.8 and J=0. The ground state
is in the LS phase.

FIG. 5. �Color online� Solid curves: Magnetization 	m
 /SHS as a
function of temperature for various values of the elastic interaction
V, Zeeman energy h /�=0.8, and exchange J=0. Dashed curves of
same color: Probability weq of neighboring ions being in the same
�LS or HS� state for the same parameters. The ground state is in the
LS phase.
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the invariance of the Hamiltonian under mi→ �−1�imi and
J→−J for h=0. The T=0 transitions to the ferromagnetic
and antiferromagnetic HS phases take place at J /�= ±1/2,
respectively. For h�0 the transition to the ferromagnetic
phase shifts to lower values of J, whereas the antiferromag-
netic transition remains fixed, see Fig. 3, so that the mini-
mum of 	�J� shifts to lower J, as seen in the inset of Fig. 6.

B. Other phases

The alternating LS/HS phase is stabilized by a strongly
negative elastic interaction V.14 This can be expected for
SCCs grown on a substrate, where the transition of an ion to
the HS state increases its radius, which should favor a

smaller ionic radius �LS state� of its neighbors.
Figure 7 shows the HS fraction and the probability of

neighbors in the same state for J=h=0. 	 first decreases with
temperature and shows a universal crossing at 	=1/2 and
T=T	 as in the LS phase �T	 /�=2/ ln�2SHS+1� for h=0�.
The HS fraction first decreases since the alternating order is
partially destroyed �weq increases� and the energy of spins
having one LS and one HS neighbor is only determined by
�, which favors the LS state. Since the effect of J�0 is
weak as long as the ground state is not changed, we do not
show the J dependence here. At zero field 	 is an even func-
tion of J, as for the LS phase.

While the exchange interaction has only a weak effect in
the LS and alternating phases, the situation changes for the
HS phases. The ferromagnetically aligned phase appears at
�very strong� magnetic fields and for strong ferromagnetic
exchange interaction—both might not be realized in SCCs.
Typical results for the field-induced ferromagnetic HS state
are shown in Fig. 8. 	 goes through a minimum since the
ground state of a single ion would be the lowest state of the
HS quintet, while the first exited state is the LS singlet.
Therefore for increasing temperature the LS state contributes
first. The magnetization for J=0 is determined by 	 and a
Brillouin function containing the external field, as noted in
Sec. II.

For the ferromagnetic phase induced by strong exchange
at small field, Fig. 9 shows typical results for the HS fraction
and magnetization. 	 and 	m
 now depend strongly on J. The
HS fraction behaves similarly to the case of J=0 and large
field but now the simple relation between 	 and 	m
 no
longer holds—it would predict a tiny magnetization at
h /�=10−2. Instead, the magnetization shows a rather sharp
crossover from nearly full polarization to low magnetization.
Figure 9�b� shows the dependance of 	 and 	m
 on magnetic
field. At small h /� � 10−2 the HS fraction hardly depends
on h, but the magnetization shows a strong field dependence.
There is a strong tendency towards ferromagnetic order even
at very small h, whereas the magnetization vanishes for
h=0. We return to this crossover in Sec. IV D.

FIG. 6. �Color online� HS fraction 	 as a function of tempera-
ture for various values of the exchange interaction J and V=h=0.
The ground states are always in the LS phase. Inset: HS fraction 	
as a function of exchange interaction J /� for various values of the
Zeeman energy h for T /�=1 and V=0. The T=0 transition between
LS and antiferromagnetic HS phases it at J /�=−1/2, the positions
of the transitions to the ferromagnetic HS phase are marked by
triangles of the same color as the corresponding curves.

FIG. 7. �Color online� HS fraction 	 �solid curves� and prob-
ability weq of neighbors in the same state �dashed curves of same
color� as functions of temperature for various values of the elastic
interaction V and J=h=0. The ground state is in the alternating
phase.

FIG. 8. �Color online� HS fraction 	 �solid curves� and magne-
tization 	m
 �dashed curves of same color� as functions of tempera-
ture for various values of the elastic interaction V, J=0, and
h /�=1.5. The state at T=0 is in the HS phase.
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Finally, the antiferromagnetically aligned HS phase only
exists for strong antiferromagnetic exchange J /��−1/2.
Figure 10 shows the HS fraction and the magnetization for
fixed J /�=−1 in a magnetic field. 	 behaves very similarly
to the ferromagnetic phase, Fig. 8. The field induces a non-
zero magnetization only for T�0 because of the energy gap
for spin flips. For Heisenberg exchange the temperature de-
pendence would be quite different: The ground state in that
case still has 	=1 but no long-range order due to transverse
spin fluctuations. However, it is also gapped since SHS is an
integer.32

C. High-temperature limit

In the present subsection we consider the high-
temperature expansion of thermodynamic quantities. We dis-

cuss the Curie-Weiss law for the susceptibility and possible
experiments to determine the exchange coupling.

In Sec. II the partition function z for a single site has been
obtained as the largest eigenvalue of the matrix M. We write
M =M�+�M with �M���m,��m�� limT→�M�m,��m�=1 and
calculate z perturbatively for small �M. M� has an eigen-
state �1
0= �1,1 ,1 ,1 ,1 ,1� /�6 with eigenvalue 2SHS+2=6
and all other eigenvalues vanish. Using standard perturbation
theory for z and the corresponding eigenstate �1
 and expand-
ing in 1/T we obtain

z � 6 +
8V − 12�

3T
+

121V2 − 168V� + 81�2 + 225J2 + 135h2

27T2

+ �148V3 − 846V2� + 774V�2 + 2925VJ2 + 1080Vh2

− 162�3 − 2700�J2 − 1215�h2 + 4050Jh2�/�243T3�

+ O�1/T4� . �16�

The Gibbs’ free energy per site is then g=−T ln z and the
susceptibility is

� = −
�2g

�h2 �
5

3T
+

5�4V − 3� + 30J�
27T2 + O�1/T3� . �17�

Expanding the Curie-Weiss law �=C / �T−
� we find

� �
5

3

1

T − 

�18�

with the paramagnetic Curie temperature


 =
4V − 3� + 30J

9
. �19�

Figure 11 shows the approach of the exact result for 1 /� to

FIG. 9. �Color online� �a� HS fraction 	 �solid curves� and mag-
netization 	m
 �dashed curves of same color� as functions of tem-
perature for various values of the exchange interaction J, V=0, and
small h /�=10−2. �b� The same for fixed J /�=1 and various Zee-
man energies. The state at T=0 is in the ferromagnetic HS phase.

FIG. 10. �Color online� High-spin fraction 	 �solid curves� and
magnetization 	m
 �dashed curves of same color, scaled by 10� as
functions of temperature for various values of the elastic interaction
V, h /�=0.1, and J /�=−1. The state at T=0 is in the antiferromag-
netic HS phase.

FIG. 11. �Color online� Inverse susceptibility 1 /� as a function
of temperature for vanishing magnetic field h=0. �a� For J=0 and
various values of V /�. �b� For V=0 and various values of J /�. The
solid curves show the exact results, while the dashed curves of the
same color give the Curie-Weiss law ��5/ �3�T−
�� with 
 given
by Eq. �19�.
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the Curie-Weiss form.
We see that the high-temperature behavior of the suscep-

tibility not only depends on the exchange interaction J but
also on the elastic interaction and the LS/HS energy splitting.
Interestingly, the paramagnetic Curie temperature 
 is non-
zero even without any interaction, in which case 
=−� /3.
Thus there is a deviation from the Curie law for the suscep-
tibility of noninteracting spin-crossover ions. The reason is
that the ground state is diamagnetic and thermal activation
with T
� is required to make an ion paramagnetic. Obvi-
ously, 
�0 does not imply an antiferromagnetic ground
state. Similarly, the ground state is not always ferromagnetic
if 
�0—the tendency towards ferromagnetism can be pre-
empted by the crossover to the LS state. This is seen for
J /�=0.2 and 0.4 in Fig. 11�b�.

Since it is difficult to infer the value or even the sign of J
from the paramagnetic Curie temperature, we propose an-
other route to extract J. For J=h=0 we have �=2	 /T, cf.
Eq. �12�. This identity does not hold for nonzero J so that the
deviation from it might be a good measure of J. We thus
consider the ratio ���T /2	 at vanishing magnetic field.
From Eq. �16� we obtain

	 =
1 + �g/��

2
�

5

6
+

5�4V − 3��
54T

+ O�1/T2� �20�

and, at h=0,

� =
− T�2g/�h2

1 + �g/��
� 1 +

10J

3T
+ O�1/T2� . �21�

The leading high-temperature behavior of � is entirely deter-
mined by J. This implies that the effect of V and � on the
high-temperature susceptibility only comes from the HS
fraction. Numerical results suggest that ��1 ���1� for
J�0 �J�0� at all temperatures. � can be measured by stan-
dard methods, while the HS fraction can be obtained inde-
pendently from optical transmission experiments3 or x-ray-
absorption near-edge structure13 �XANES�. The first method
makes use of the change in electronic structure between the
LS and HS states, while the second relies on the change of
atomic distances. Since � and 	 are measurable, � is a prom-
ising quantity for the determination of the exchange cou-
pling.

D. Finite-temperature crossovers

The finite-temperature crossovers found in the preceding
subsections are now studied in more detail. Regardless of the
specific ground state, for high temperatures the system ap-
proaches a limit with 	=5/6, 	m
=0, and weq=	2+ �1−	�2

=13/18. If one starts from the LS ground state, 	 has to go
from zero to 5/6. Figures 4 and 6 suggest that 	�T	�=1/2 is
a good definition for a crossover temperature T	. Starting
from the alternating phase with 	=1/2, 	 first drops and
then recrosses 	=1/2, at least for small J, see Fig. 7. A
measure for the crossover from the alternating phase is
weq�Tw�=1/2 since weq vanishes in the alternating phase and

is close to unity in the HS state at high temperatures.
We first consider the case J=0. Figure 12 shows the

crossover temperatures. From Eq. �11�, 	�T	�=1/2 is

equivalent to �̃=0. T	 becomes zero for �h � /�=2/SHS=1. A
nontrivial solution exists for �h � /��1, i.e., for ground states
in the LS and part of the alternating phase. Note that T	 is
independent of V. The equation weq�Tw�=1/2 has two solu-
tions �reentrance� if V�0 and the ground state is in the LS
phase, cf. Fig. 5, whereas it has only one solution if the
ground state is in the alternating phase and none for V�0.
Tw vanishes at the phase boundaries of the alternating ground
state. The LS state is destroyed by temperatures T
2�, the
energy per ion for going from the LS to the HS state. On the
other hand, the alternating state is stable up to T
2 �J�, the
energy cost for breaking LS/HS pairs.

For J�0 the typical behavior can already be seen for
V=0. Figures 13�a� and 13�b� show the crossover tempera-
tures defined by 	=1/2 and weq=1/2 as functions of h /�
and J /�. This should be compared to the phase diagram in
Fig. 3. The reentrant behavior in weq is seen both in Figs. 12
and 13�b�.

For the alternating ground state we find that there is �at
least� one nonzero temperature with 	=1/2 for some param-
eter values, as in the J=0 case. The parameter range where
this is the case narrows and vanishes for fields above
h /��2.27, as seen in Fig. 13�a�. As noted above, we expect
significant differences between models with Ising and
Heisenberg exchange if nearest-neighbor pairs in the HS
state appear. This is the case if both 	�1/2 and weq�1/2,
i.e., above the crossovers in Figs. 13�a� and 13�b�. For the
HS ground states there will be deviations already at small T
since the spin excitations are different in the Ising and
Heisenberg models.

The crossover from the ferromagnetic HS ground state to
the high-temperature HS state with 	m
=0 is characterized

FIG. 12. �Color online� Crossover temperatures for J=0. The
T=0 plane corresponds to Fig. 1. The surfaces indicate solutions of
	=1/2 and weq=1/2, respectively.
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by the condition 	m
=SHS/2. The crossover becomes very
sharp at low magnetic field, cf. Fig. 9. �In the Heisenberg
case it might be broadened by transverse spin fluctuations.�
Figure 13�c� shows the crossover temperature for V=0,

which depends logarithmically on magnetic field for small h.
This result is known from the 1D Ising model and can be
understood from the formation energy of droplets of reduced
spin polarization.

V. SUMMARY

The thermodynamic properties of 1D SCCs with nearest-
neighbor elastic and Ising exchange interactions have been
investigated using the exact transfer-matrix approach. This is
motivated by SCCs naturally forming 1D chains, such as
Fe2+ with 4–R–1,2,4–triazole ligands, and by possible artifi-
cal 1D structures for molecular electronics. The Ising model
is appropriate for strong easy-axis magnetic anisotropy, for
example shape anistropy in 1D chains. For simplicity, the
ratio of the degeneracies of the LS and HS state of an ion is
assumed to be only due to their spin, corresponding to the
assumption of equal vibrational frequencies.2,29

The HS fraction, magnetization, and spin susceptibility
are calculated, as well as the probability of neighboring ions
being in the same �LS or HS� state. These quantities allow
one to map out the T=0 phase diagram. A strong magnetic
field or a ferromagnetic exchange interaction can drive the
system into a ferromagnetic HS ground state, whereas an
antiferromagnetic exchange interaction can lead to an anti-
ferromagnetic HS ground state. A negative elastic interaction
can drive the system into an alternating LS/HS ground state.
These phases give rise to characteristically different behavior
at finite temperatures. Nonmonotonic temperature depen-
dence of HS fraction and magnetization are ubiquitous.
While there are no phase transitions at T�0, the crossovers
between the low-temperature behavior and the HS-
dominated high-temperature limit can become very sharp.
Spin crossover chains show 1D analogs of interesting effects
found in the bulk, such as reentrant transitions26 and stripe
phases.14

The susceptibility follows the Curie-Weiss law at high
temperatures for all ground-state phases. The paramagnetic
Curie temperature is found to depend not only on the ex-
change interaction but also on elastic interaction and LS/HS
energy splitting. It is nonzero even for noninteracting com-
plexes. The exchange coupling J could be determined experi-
mentally from the susceptibility � and HS fraction 	 using
that the high-temperature behavior of the ratio �T /2	 de-
pends only on J.

The typical energy scale in all results is �, half the LS/HS
energy splitting for a single ion. It would thus be desirable to
tune this scale to small values by a suitable choice of ligands
so that large values of the dimensionless parameters V /�,
J /�, and h /� can be reached. This would allow to test the
rich temperature-dependent effects predicted here.
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FIG. 13. �Color online� Crossover temperatures for V=0, de-
fined by �a� 	=1/2, �b� weq=1/2, �c� 	m
 /SHS=1/2. The T=0
plane corresponds to Fig. 3. Phase boundaries at T=0 are marked
by heavy solid lines.
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