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In diluted magnetic semiconductors, the carrier concentration and the magnetization of local moments are
strongly coupled, since the magnetic interaction is mediated by the carriers. It is predicted that this coupling
leads to an electric polarization due to an applied magnetic-field gradient and to the appearance of a magnetic-
field-dependent voltage. An expression for this voltage is derived within Landau theory and its magnitude is
estimated for �Ga,Mn�As. Furthermore, a large contribution to the thermopower based on the same mechanism
is predicted. The role of fluctuations is also discussed. These predictions hold both if the magnetization is
uniform and if it shows stripelike modulations, which are possible at lower temperatures.
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I. INTRODUCTION

Among magnetically ordered materials, diluted magnetic
semiconductors1–3 �DMS� are unique in the possibility of
tuning the interaction between local moments in situ. Several
groups4–6 have demonstrated that the magnetization and Cu-
rie temperature Tc in a DMS can be changed by applying a
gate voltage in a field-effect-transistor geometry. The gate
potential affects the concentration of carriers, usually holes,
in the DMS sample, which leads to a change of the magnetic
interactions, since these are mainly mediated by the carriers.
A strong dependence of the magnetization on carrier concen-
tration is also seen in experiments on series of samples with
different dopand concentrations.7–9

On a microscopic level, each local moment magnetically
polarizes the carriers in its vicinity due to the exchange in-
teraction between carriers and localized �usually d-shell�
electrons of impurity ions. The other local moments are af-
fected by these carrier spin polarizations, leading to an effec-
tive magnetic interaction between local moments. This is the
essence of the Ruderman-Kittel-Kasuya-Yosida �RKKY�
interaction.10 It is here complicated by band-structure effects
and spin-orbit coupling in p-type DMS,11–14 screening due to
disorder,15 the small Fermi energy compared to the effective
Zeeman splitting,16 and competing short-range interactions.
The RKKY-type interaction depends on carrier concentration
essentially through the density of states at the Fermi energy.
This dependence can be expanded to linear order in the con-
centration, in agreement with experimental observations.

The present author has recently suggested that this cou-
pling may stabilize an equilibrium state in DMS with peri-
odic but strongly anharmonic modulations of carrier concen-
tration and magnetization below a certain temperature T*

�Tc.
17 The temperature T* strongly depends on ���Tc /�n,

the relative change of Tc with carrier concentration. In Lan-
dau theory we find Tc−T*�1/�2. While some experimental
results8 are consistent with a small value of Tc−T*�10 K,
which would make the effect observable, it is not clear
whether this value is typical for DMS. In the present paper
we put the main emphasis on the uniform phase. While these
results apply to the case of weak spin polarization of the
carriers, valid sufficiently close to Tc, Korenblit18,19 had ear-
lier studied the case of a half-metallic ferromagnet, i.e., com-

plete spin polarization of the holes. Interestingly, this system
also shows an instability toward a modulated state, but, in
addition, a reentrant transition back to the homogeneous state
at low temperatures.

In the present paper, we explore the reverse effect, com-
pared to the gate control of magnetism: Can a change in
magnetization lead to a change in carrier concentration? Or,
if the sample is electrically isolated, can it lead to the appear-
ance of a voltage? Microscopically the dependence of the
effective spin interaction on the carrier concentration means
that there is an additional contribution to the carrier energy
depending on spin orientations. In particular, if the impurity
spins are partially aligned, there is an attractive potential for
carriers. This effect is discussed and its magnitude is esti-
mated in Sec. II. In addition, the magnetization of course
also changes with temperature, which should generate a con-
tribution to the thermopower. This possibility is discussed in
Sec. III. The paper is summarized in Sec. IV.

II. MAGNETIC-FIELD-INDUCED VOLTAGE

Let us consider the setup sketched in the inset in Fig. 1: A
metallic DMS sample is placed in an inhomogeneous mag-
netic field and the voltage between opposite surfaces is mea-
sured. We assume the temperature to be close to Tc so that
the magnetization is far from saturation. The magnetization
is larger in the region with strong magnetic field. This region
thus attracts carriers due to the mechanism discussed above.
An electric current will flow for only a short time until the
accumulated charge produces an electric field that prevents
further charge accumulation. For positive �negative� carrier
charge the electric potential in the strong-field region will be
higher �lower� than in the weak-field region. The voltage
measured between the two regions divided by the magnetic
field difference will thus have the same sign as the carrier
charge.

Following Ref. 17 we start from a Landau theory for the
coupled magnetization and carrier density, defined by the
Hamiltonian H=Hm+H�n with

Hm =� d3r��

2
m2 +

�

4
m4 +

�

2
�im · �im − Bmz� , �1�
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H�n =
1

2
� d3r d3r�

e2

4	
0

�n�r��n�r��

e−�r−r��r0

�r − r��

+� d3r q�n�r�V . �2�

The first part is the usual Landau functional for a Heisenberg
ferromagnet in a magnetic field B directed along the z axis.
Summation over i=x ,y ,z is implied. The second part con-
tains the screened Coulomb interaction and an applied elec-
tric potential. The carriers are assumed to have charge q
= ±e. We impose the constraint 	d3r �n�r�=0. The two parts
are coupled through the coefficient � in Hm, which depends
on temperature and vanishes at the Curie temperature. We
write, to leading order, �=���T−Tc−��n�, where Tc is now
the Curie temperature for �n=0.

The equilibrium states can be found from the Euler equa-
tions �H /�m=0 and �H /���n�=0.17 We find a paramagnetic
phase for T�Tc, a uniform ferromagnetic phase for T*�T
�Tc, and a phase with periodic modulation of m and �n for
T�T*, where T*�Tc−e2�� /
0
��3�2. By rescaling of
length, magnetization, and energy it is possible to reduce the
number of parameters. For example, the magnetization can
be written in the scaling form

m�r�
ms

= M
g,t,
B

Bs
;

r

r0
� , �3�

where

ms �
1

r0
��

�
, Bs �

1

r0
3��3

�
�4�

are the natural units of magnetization and magnetic field,
respectively,

t �
���T − Tc�r0

2

�
�5�

is a dimensionless reduced temperature, and

g �
����
0


��r0e
�6�

is a dimensionless measure of the coupling � between carrier
concentration and magnetization. M is a dimensionless vec-
tor scaling function.

A. Uniform phase

In the uniform ferromagnetic and paramagnetic phases,
we can drop the gradient term in Hm. We obtain the energy
density h=hm+h�n with

hm =
�

2
m2 +

�

4
m4 − Bmz, �7�

h�n =
e2r0

2

2
0

�n2 + q�nV − q�nV0. �8�

The last term implements the constraint of charge conserva-
tion with the Lagrange multiplier −qV0. From the Euler
equation �h /���n�=0 we obtain

�n = −

0


qr0
2 �V − V0� +


0


e2r0
2

���

2
m2. �9�

The constraint �n=0 leads to

V − V0 =
���

2q
m2. �10�

Here, V0 is a reference potential, which is irrelevant for the
measured voltages. From �h /�m=0 together with �n=0 we
obtain mx=my =0 and the standard result ���T−Tc�mz+�mz

3

−B=0. The elementary solution for both T�Tc and T�Tc is

mz

ms
=

− 2  31/3t + 21/3�9b + �81b2 + 12t3�2/3

62/3�9b + �81b2 + 12t3�1/3
, �11�

where b�B /Bs. For weakly inhomogeneous magnetic fields
we obtain the linear response of the voltage to the magnetic
field gradient by expanding Eq. �10�,

�V

�B
=

���

q
mz

�mz

�B
. �12�

An analytical expression can be obtained from Eq. �11�. Us-
ing dimensionless quantities, we find

�V

�B

Vs

Bs
�−1

= ± g
mz

ms

�

�b

mz

ms
�13�

with Vs�� / �r0
��
0
�. The sign is given by the sign of the

carrier charge. Results for different magnetic fields are
shown in Fig. 1. In the limit of vanishing magnetic field
we obtain, in the ferromagnetic phase, �V /�B�Vs /Bs�−1

= ± �g /2�1/�−t. The linear-response coefficient thus diverges
as Tc is approached from below.

FIG. 1. Linear response of the voltage for a weakly nonuniform
magnetic field, �V /�B�mz�mz /�B, as a function of reduced tem-
perature for various magnetic fields, assuming positive carrier
charge. Scaling factors and reduced temperature are defined in Eqs.
�4�–�6�. Inset: Sketch of DMS sample in a nonuniform field.
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We next estimate the order of magnitude of �V /�B. While
the Landau theory does not apply down to T=0, extrapolat-
ing to T=0 results in a magnetization of the correct order of
magnitude. For a rough estimate we thus write

 �V

�B


B=0
�

�

2q

m0�T = 0�
�Tc�Tc − T�

. �14�

Here, ��5.4105 K Å3 has been estimated17 from Ref. 8,
for the magnetization we take the maximum value for 5%
Mn in �Ga,Mn�As, m0�T=0��5.13104 A/m, and Tc is set
to 110 K. This gives a typical scale of �V /�B�B=0�7.9
10−4 V/T at low temperatures and the coefficient increases
like �Tc−T�−1/2 as the temperature is increased. This result
suggests that the effect should be clearly measurable.

The coupling strength � can in principle be determined by
measuring Tc and the carrier concentration simultaneously
for a series of samples with varying doping level7,8 or, even
better, for a single sample in the field-effect-transistor
geometry.5 For �Ga,Mn�As, one can infer ��5.4
105 K Å3 from Ref. 8 and ��1.5105 K Å3 from Ref. 7.
The growth procedure evidently strongly affects this param-
eter, probably because the underlying RKKY-type interaction
is sensitive to disorder in both the hole and spin systems.
From gate doping of a II-VI DMS sample,5 one infers a
significantly larger value of ��6.2106 K Å3, but Tc is
low. It should be noted that � only changes prefactors and
does not affect the qualitative results regarding temperature
and field dependance.

In the paramagnetic phase, the magnetization m is, to
leading order, linear in magnetic field. Thus the voltage Eq.
�10� is quadratic in B and there is no linear response at zero
field. Right at the critical point the Landau-theory result for
the magnetization is mz= �B /��1/3, leading to V= ���� /2q�
�B /��2/3.

Next, we briefly discuss the voltage due to a large change
in magnetic field. It may be possible to measure this voltage
by first grounding a metallic DMS sample in zero magnetic
field, removing the ground connection, and then applying a
strong, uniform field. Since higher magnetization attracts
carriers, a negative �positive� potential difference between
sample and ground is expected for positive �negative� carrier
charge. Equation �10� gives for vanishing magnetic field
−V0= ����� / �2q�m0

2, where m0 is the �uniform� magnetiza-
tion in zero magnetic field, which is m0=�−���T−Tc� /� in
the ferromagnetic phase and m0=0 in the paramagnetic
phase. Consequently,

V =
���

2q
�m2 − m0

2� . �15�

V is the potential that would be necessary to maintain �n
=0 if the sample were still connected to a charge reservoir. If
the sample is isolated, a voltage −V with the reverse sign is
measured. In terms of dimensionless quantities we obtain

−
V

Vs
= �

g

2

m2

ms
2 −

m0
2

ms
2� , �16�

where the upper �lower� sign applies to positive �negative�
carrier charge. For small magnetic fields we get the same
linear-response result as above. The full nonlinear response
is obtained by inserting Eq. �11� into Eq. �15�. The resulting
voltage is plotted as a function of magnetic field for various
temperatures in Fig. 2. In the ferromagnetic phase, the volt-
age crosses over from a linear B dependence to B2/3 at
B /Bs� t3/2 �see Eq. �11��. In the paramagnetic phase there is
a crossover from B2 to B2/3 at the same scale. The inset in
Fig. 2 shows the dependence of �V� on temperature at a finite
magnetic field. The cusp at T=Tc stems from the zero-field
magnetization m0 in Eq. �15�.

All results up to this point have been obtained from Lan-
dau mean-field theory. The question arises whether the re-
sults survive if fluctuations are taken into account. After all,
the average square magnetization m2 becomes an analytical
function of temperature through Tc.

We restrict ourselves to temperatures T�Tc and to small
magnetic fields. Let us assume that charge fluctuations are
fast compared to fluctuations in the magnitude of m. This
seems reasonable since charge density fluctuations have a
typical timescale of the inverse plasma frequency. In this
case the carrier concentration instantaneously follows the
magnetization fluctuations. Equation �12� then becomes

�V

�B
=

���

2q

�m2

�B
. �17�

Equation �1� shows that the averages of mz and m2 are ob-
tained from the exact free energy density f by mz=−�f /�B
and m2=2� f /��. This implies the Maxwell relation

FIG. 2. �Color online� Magnitude of voltage −V between sample
and ground as a function of magnetic field for various temperatures
for a DMS sample in the uniform ferromagnetic or paramagnetic
phase. Here, t=���T−Tc�r0

2 /� is the dimensionless reduced tem-
perature. If the voltage is scaled with 1/g, as it is plotted here, the
curves do not depend on g. Inset: Voltage as a function of t for
B /Bs=1.
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�m2

�B
= − 2

�mz

��
. �18�

For vanishing magnetic field and T�Tc, one finds mz
� �Tc−T��, where � is the usual critical exponent �not to be
confused with the coefficient � in the Landau functional� and
Tc is the true Curie temperature, taking fluctuations into ac-
count. Since � is a linear function of T we obtain

 �V

�B


B=0
� �Tc − T��−1. �19�

This quantity still diverges as Tc is approached from below.
Note that for the three-dimensional Heisenberg model,
��0.37.23 Fluctuations thus make the divergence stronger.
In the paramagnetic phase, mz of course vanishes for B=0
and we still do not find a linear response.

B. Stripe phase

Below T* the Landau theory predicts an equilibrium state
with periodic modulations of magnetization and carrier
concentration.17 We briefly review the pertinent properties of
this state. The first two terms in the Landau functional Hm,
Eq. �1�, can be interpreted as a potential for a fictitious par-
ticle with coordinates m. The uniform equilibrium states are
determined by the minima of this potential. In the stripe
phase the coefficients are renormalized,17 leading to the en-

ergy density h0= ��̃ /2�m2+ ��̃ /4�m4 with

�̃ � ���T − Tc� +
��2�2
0


2e2r0
2 m2, �20�

�̃ � � −
��2�2
0


2e2r0
2 , �21�

where m2 has to be calculated self-consistently. It turns out
that a modulation of m about the minimum of h0 is stable and
energetically favorable for m�msing, where msing
���e /����
0
=ms /g. Modulations occur between two
magnetizations with equal potential h0�m�. For weak cou-
pling, i.e., small � or g, msing is larger than the magnetization
at the minimum of h0�m� and stable modulations are not
possible. For larger coupling, msing is smaller than m at the
minimum, allowing modulations to occur. The minimum-
energy solution is obtained for the maximum possible modu-
lation amplitude. In this case the lower turning point of the
modulation approaches msing.

17

In the present case we add the Zeeman term −Bmz to the
energy density, which tilts the effective potential, as shown
in the right inset in Fig. 3. Numerical integration shows that
at any temperature the modulation with maximum amplitude
still has the lowest energy. Figure 3 shows a typical phase
diagram in the temperature-magnetization plane. A typical
minimal-energy solution is shown in the left inset.

The field-dependent transition temperature T*�B� to the
stripe phase is determined by the condition m=msing, where
m is the uniform magnetization, Eq. �11�. The solution is

T* = Tc −
��e2

��3�2
0

+

��
0


��e
B = T*�B = 0� +

��
0


��e
B .

�22�

Using Eqs. �4�–�6�, this is equivalent to

t* �
���T* − Tc�r0

2

�
= −

1

g2 + g
B

Bs
. �23�

Thus the transition temperature depends linearly on B for
arbitrary B. Of course, for large magnetic fields Landau
theory becomes inapplicable. Note that while there is no
sharp paramagnet-ferromagnet transition in nonzero field, the
transition to the stripe phase remains sharp. The reason is
that translational symmetry is preserved by the applied field
and thus can be spontaneously broken at this transition. The
inset in Fig. 4 shows the resulting phase diagram.

The analog of Eq. �10� in the stripe phase is

V − V0 =
���

2q
m2. �24�

If fluctuations are neglected, the average is a spatial average
over the static modulation. The linear response �V /�B
= ���� /2q��m2 /�B is calculated numerically and the result
for B=0 is shown in Fig. 4. The linear-response coefficient
shows a discontinuity at T* within Landau theory. This phe-

FIG. 3. �Color online� Diagram showing the equilibrium phases
as a function of reduced temperature g2t in a nonzero magnetic field
B /Bs=1. For t� t*=���T*−Tc�r0

2 /� the equilibrium state is uniform
with the magnetization given by the heavy solid line. For t� t* the
magnetization shows periodic modulations spanning the cross-
hatched magnetization interval. The lower limit of the modulations
is m=msing. The heavy dashed line shows the magnetization of the
uniform solution for t� t*, which exists but has higher energy. The
thin lines denote the uniform magnetization and upper limit of
modulations for B=0, for comparison. The left inset shows the
magnetization as a function of position for g2t=−2 and B /Bs=1.
The right inset shows the effective potential h0 as a function of
magnetization for the same parameter values. The double-headed
arrow denotes the magnetization modulation. The detailed numeri-
cal values depend on the choice of g �g=1 in this plot� and of B /Bs,
but the topology of the diagram does not.
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nomenon is accompanied by a similar jump in the suscepti-
bility at T* �not shown�. Physically, the system is more easily
polarizable in the stripe phase, since it has an additional pa-
rameter, the wavelength �, that can be adapted to the applied
field. In agreement with this interpretation, the inset in Fig. 4
shows that the stripe phase is stabilizedby a magnetic field.

III. THERMOPOWER

Since the magnetization changes with temperature and is
coupled to the carrier concentration, there should also be a
change in carrier concentration or potential with temperature.
In the case of an electrically isolated sample one expects a
nonzero thermopower

Q � −  �V

�T


I=0
. �25�

Consider the following setup. One end of a DMS sample is
kept at a temperature T1, the other at temperature T2�T1. A
discussion of the standard origin of the thermopower can be
found in textbooks.24 The result is that Q has the same sign
as the carrier charge q. For this reason the thermopower is
often measured to obtain the sign of this charge in semicon-
ductors, including DMS.20,21

Here, we predict an additional contribution in DMS. In
the same setup, with T1�T2�Tc, the magnetization m is
larger in the cool region. Carriers are attracted to high-
magnetization regions, leading to a current which results in
the accumulation of positive �negative� charge in the cool
region for positively �negatively� charged carriers. This
charge generates an electric field that prevents further charge
flow. The electric potential � is higher �lower� in the cool

region for positive �negative� carrier charge q. With the ex-
plicit minus sign in Eq. �25� this leads to a thermopower of
the same sign as the normal contribution. Proceeding as in
Sec. II we obtain

V = ��T2� − ��T1� =
���

2q
�m2�T2� − m2�T1�� . �26�

We restrict ourselves to vanishing magnetic field. In the uni-
form phase we can write, neglecting fluctuations, m2=m2. In
Landau theory, Eq. �26� gives

Q � Quni =
��2�

2q�
. �27�

Thus the thermopower is independent of temperature for T*

�T�Tc. On the other hand, for T�Tc there is no magneti-
zation and this contribution to the thermopower vanishes. We
thus find a jump at Tc.

In the stripe phase, for T�T*, we find numerically that
the thermopower increases in magnitude with temperature.
At T* it shows a downward jump, since the average square
magnetization m2 changes slope as a function of tempera-
ture at the transition. Thermopower and m2 are shown in
Fig. 5.

To estimate the order of magnitude of the thermo-
power, we again replace �� /� by m2�T=0� /Tc, leading to
Q=−��m4�T=0� /2qTc

2. The only additional parameter
needed beyond those given in Sec. II is �. By comparing the
mean-field result for the gain in energy density due to mag-
netic ordering of the Heisenberg model on a simple cubic
lattice to the corresponding gain for the Landau theory, we
obtain

� �
1

�g�B�4

6kBTc

S3�S + 1�nMn
3 � 2.1  10−12 J m/A4, �28�

where g�2 is the g factor for the impurity spins with
S=5/2 and nMn is the concentration of impurities, again as-
sumed to be 5% of cation sites. This gives Q�2.0

FIG. 4. �Color online� Linear response �V /�B for small mag-
netic field, as a function of reduced temperature. The jump in
�V /�B at t= t* is discussed in the text. For t� t*, the result for the
unstable uniform state would continue along the dashed line. The
numerical calculation has been performed for the coupling g=1.
Inset: Phase diagram in the temperature–magnetic-field plane. The
heavy solid line denotes the first-order transition of the ferromagnet,
ending in a critical point at Tc �i.e., t=0�. The thin solid lines ema-
nating from t= t*�B=0� denote the second-order transition between
uniform and stripe phases.

FIG. 5. �Color online� Left axis: Thermopower Q in units of the
constant thermopower Quni in the uniform phase for vanishing mag-
netic field, as a function of reduced temperature. Also shown is the
average square magnetization m2 �right axis�. The numerical calcu-
lation for t� t* has been performed for g=1.
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10−3 V/K. In nonmagnetic semiconductors showing ther-
mally activated conduction, the magnitude of the ther-
mopower is of the order of 10−5–10−4 V/K. In metals it is a
few times 10−6 V/K. Thus the thermopower generated by
the carrier-magnetization coupling is expected to be larger
than the normal contribution.

The thermopower has been measured for various
DMS,20,21 but usually only to infer the sign, which is not
changed by the physics discussed here. A study of the ther-
mopower in �Ga,Mn�As is under way.22 It would be worth-
while to look for an anomalously large thermopower in
DMS. However, the main signature of the magnetization-
induced effect would be a downward jump at Tc.

Finally, we briefly turn to the qualitative effect of fluctua-
tions. The average square magnetization becomes analytic in
temperature through Tc so that we expect the jump in Q to be
replaced by a continuous crossover. Its width should be
given by the Ginzburg criterion for the fluctuation-dominated
temperature interval. In real DMS, disorder plays an impor-
tant role,25 which may lead to additional broadening. How-
ever, for high-quality metallic samples of �Ga,Mn�As, the
magnetization curves close to Tc show a sharp decrease7,26–29

similar to the Heisenberg model on a regular lattice, suggest-
ing that disorder is not dominant.

IV. SUMMARY AND CONCLUSIONS

The strong coupling between carrier concentration and
magnetization in ferromagnetic DMS has been found to lead
to a dependence of the electric potential on the magnetiza-
tion. If the magnetization is controlled by an applied mag-
netic field, a magnetic-field-induced voltage is expected. Two
possible setups are discussed in this paper, which allow one

to study the linear response for weakly nonuniform magnetic
fields and the nonlinear voltage induced by a strong field.
The linear-response coefficient in the limit of small field is
estimated to be of the order of 10−3 V/T for �Ga,Mn�As at
low temperatures. It diverges as Tc is approached from be-
low. This singularity persists if fluctuations are taken into
account.

On the other hand, if the magnetization is changed by
varying the temperature, the same physics leads to a varia-
tion of electric potential with temperature, i.e., a ther-
mopower. Within Landau theory, the thermopower is tem-
perature independent in the uniform ferromagnetic phase and
shows a discontinuity at the Curie temperature Tc, which is
smeared out by fluctuations. For �Ga,Mn�As the estimate for
this contribution to the thermopower is of the order of
10−3 V/K, which is what one would have guessed from the
magnitude of the magnetic-field-induced voltage. All these
results are obtained for a uniform equilibrium magnetization.

A nonuniform, stripelike equilibrium magnetization is
possible in DMS at lower temperatures T�T*.17 The phase
diagram of uniform and stripe phases is obtained within Lan-
dau theory. If the stripe phase were realized, the magnetic-
field-induced voltage would be qualitatively similar to that in
the uniform case, but the linear response �V /�B would show
a discontinuity at T*. The effect is larger in the stripe phase
because the magnetization can adapt more easily to the ap-
plied magnetic field by varying the wavelength of the stripe
pattern. The thermopower in the stripe phase is temperature
dependent, unlike in the uniform phase, and shows a down-
ward jump at T*.
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