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Inelastic tunneling through magnetically anisotropic molecules is studied theoretically in the presence of a
strong magnetic field. Since the molecular orientation is not well controlled in tunneling experiments, we
consider arbitrary angles between easy axis and field. This destroys all conservation laws except that of charge,
leading to a rich fine structure in the differential conductance. Besides single molecules, we also study mono-
layers of molecules with either aligned or random easy axes. We show that detailed information on the
molecular transitions and orientations can be obtained from the differential conductance for varying magnetic
field. For random easy axes, averaging over orientations leads to van Hove singularities in the differential
conductance. Rate equations in the sequential-tunneling approximation are employed. An efficient approxima-
tion for their solution for complex molecules is presented. The results are applied to Mn12-based magnetic
molecules.
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I. INTRODUCTION

Electronic transport through single magnetic molecules
has recently attracted a lot of interest,1–15 partly motivated by
the hope for applications in molecular electronics,16–18 in
particular, for memory devices and quantum computation.
On the other hand, the systems also show fascinating prop-
erties of fundamental interest. Among the effects observed or
predicted for transport through magnetic molecules are the
Kondo effect,1,2 negative differential conductance,5,7,10 large
spin accumulation in the leads controlled by the initial spin
state of the molecule,9 and large current-induced magnetiza-
tion changes in monolayers.15

Molecules with magnetic anisotropy are observed5,8 or
predicted6,7,9,10,15 to show particularly rich physics. Magnetic
molecules based on a Mn12O12 core with organic ligands
�henceforth Mn12� have a large spin S=10 in the neutral state
and strong easy-axis anisotropy.5–8,27 The anisotropy leads to
an energy barrier between states with large positive or nega-
tive spin components along the easy �z� axis. Mn12 has been
studied intensively with regard to quantum tunneling through
this barrier.28,29 Recently, charge transport through Mn12 has
been studied.5–8

Romeike et al.6,7 investigated the effect of quantum tun-
neling on transport through Mn12. They considered small
nonuniaxial second-order anisotropy terms �Sx�2− �Sy�2

= �S+�2 /2+ �S−�2 /2 and higher-order anisotropies, see also
Ref. 5. The nonuniaxial terms are not present for the isolated
Mn12 molecule,27 but are due to the lowering of symmetry by
the leads. These nonuniaxial terms destroy the conservation
of the z component of the molecular spin, Stot

z . The molecular
energy eigenstates are then not simultaneous eigenstates of
Stot

z . Since the nonuniaxial perturbation is small, one can still
work in a basis of Stot

z eigenstates, but incurs weak tunneling
transitions between them, which are at the basis of Refs. 6
and 7. Importantly for the present discussion, they also study
Mn12 in a magnetic field aligned with the easy axis.

The present paper starts from the realization that there is a
much stronger symmetry-breaking effect if an external mag-
netic field is applied. In present-day break-junction and elec-

tromigration experiments, the orientation of the molecule
relative to the laboratory frame is not well controlled. How-
ever, if the angle � between the easy axis and the magnetic
field is not small and the Zeeman and anisotropy energies are
comparable—a case that can be realized for Mn12—there is
no small parameter. The molecular eigenstates are not ap-
proximate eigenstates of the spin component along any axis.
This is the situation studied in the present paper.

In Sec. II, the model Hamiltonian is introduced and the
calculation of the differential conductance is discussed. We
employ a density-matrix formalism, which allows to treat the
strong electronic interaction on the molecule exactly and is
not restricted to low-bias voltages, but treats the tunneling
between molecule and leads as a weak
perturbation.4,7,9,10,15,19–26 An approximation scheme for
solving the resulting rate equations is introduced, which
works excellently at low temperatures and leads to a large
acceleration of the numerics. Results are presented and dis-
cussed in Sec. III, starting with Coulomb-diamond plots of
differential conductance g vs gate and bias voltages. Then g
is shown for varying magnetic field. These results are also
relevant for situations without a gate such as the scanning
tunneling microscope �STM� geometry or monolayers of
molecules with parallel easy axes. Finally, the differential
conductance for monolayers of molecules with random easy-
axis orientations is calculated. The main results are summa-
rized in Sec. IV.

II. MODEL AND THEORY

A magnetic molecule coupled to two conducting leads left
�L� and right �R� is described by the Hamiltonian H=Hmol

+HL+HR+Hhyb. Here, Hmol is the Hamiltonian of the iso-
lated molecule,

Hmol = ��0 − eVg��
�

c�
†c� + Uc↑

†c↑c↓
†c↓ − �K2 + ��

�

c�
†c��

��Sz�2 − H · �s + S� − Js · S , �1�

where c�
† creates an electron in the lowest unoccupied mo-
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lecular orbital �LUMO�, s�����c�
†����� /2�c�� is the spin

operator of electrons in the LUMO, and S is the operator of
the local spin. We also define the total spin Stot�s+S. �0 is
the on-site energy of electrons in the LUMO, which can be
shifted by applying a gate voltage Vg, U is the repulsion
between two electrons in the LUMO, and J is the exchange
interaction between the electron spin and the local spin. A
dependence of the anisotropy energy K2+�n on the electron
number n is taken into account.27

The g factors for the local and electron spins are assumed
to be equal and are absorbed into the magnetic field H, to-
gether with the Bohr magneton �B. We choose the easy axis
of the molecule as the z axis in spin space. Due to the rota-
tional symmetry of Hmol, the magnetic field can be assumed
to lie in the xz plane. We neglect the small nonuniaxial an-
isotropy due to the symmetry breaking by the leads and
small higher-order anisotropies in order to concentrate on the
large effect due to the interplay of anisotropy and Zeeman
terms.

The Hamiltonian explicitly takes the electron in the
LUMO into account, which is nondegenerate for Mn12.

27

Since the next higher energy orbital �LUMO+1� lies about
8 meV above the LUMO,27 this and higher orbitals are ex-
pected to affect the results only weakly at the low-bias volt-
ages discussed here. Excitations to one of the higher-energy
orbitals are presumably responsible for the 14 mV peak ob-
served in Ref. 5.

We assume that the molecule is symmetrically coupled to
the leads 	=L, and R by hybridization terms Hhyb
=�	k��ta	k�

† c�+H.c.�, where a	k�
† creates an electron in lead

	. Asymmetric tunneling rates would affect the magnitude of
the differential conductance g, but not the molecular transi-
tion energies, and thus would not change the results qualita-
tively. The leads are described by noninteracting electrons,
H	=�k���k�−�	�a	k�

† a	k�, initially in equilibrium at differ-
ent chemical potentials �	.4,9,10,15 The bias voltage is as-
sumed to be split symmetrically across the two junctions.
Any deviation from symmetric splitting just leads to a defor-
mation of the differential-conductance plots, since then the
bias voltage contributes to the effective gate voltage.

There are important consequences of the presence of the
transverse field Hx. Since this term does not commute with
the anisotropy term, Stot

z is not conserved and the molecular
eigenstates �of Hmol� are not simultaneous eigenstates of Stot

z .
On the other hand, if the magnetic field is aligned with the
easy axis,9,10,15 the eigenvalue m of Stot

z is a good quantum
number and electron tunneling is governed by selection rules

m= ±1/2 for sequential tunneling. These selection rules do
not apply to our case. The only selection rule still valid stems
from the conservation of charge and states that the electron
number changes by ±1 for sequential tunneling. Apart from
this, all transitions are allowed. For local spin quantum num-
ber S, there are 2S+1 molecular states with n=0 electrons in
the LUMO and 2�2S+1� states with n=1 electrons. Thus
there are 2�2S+1�2 transitions between states with n=0 and
n=1, leading to a much more complex differential conduc-
tance g than for the previous case.9,10,15

The same model can also be used to describe a monolayer
of magnetic molecules sandwiched between conducting elec-

trodes, if the tunneling rate between electrodes and molecule
is sufficiently small to justify the perturbative treatment. This
can, in principle, be achieved by spacer groups in the
molecules37 or by ultrathin oxide layers.38 If the interactions
between the molecules can be neglected, they conduct elec-
trons in parallel, and the differential conductance per mol-
ecule is just the ensemble average we are calculating in any
case. For a single molecule, we have to reinterpret the en-
semble average as a time average over time scales long com-
pared to the characteristic tunneling time.

These remarks only apply if all molecules have their easy
axes aligned in parallel. This is a reasonable assumption for
molecules that are deposited or assembled on the substrate
with a preferred orientation.15 This has been demonstrated
for mixed Mn12 complexes containing different ligands.30

For molecules of approximately spherical shape, one rather
expects the orientation of the easy axis to be random. To
study this case, we average the differential conductance over
all possible orientations. Conversely, measurements of the
differential conductance can be employed to determine the
degree of alignment.

The absence of constants of motion other than particle
number requires to diagonalize Hmol numerically. The eigen-
states typically contain contributions from all spin Stot

z eigen-
states. The hybridization Hhyb is treated as a perturbation,
following Refs. 4, 19, 24, and 25. This leads to a master
equation for the reduced density matrix �mol in the Fock
space of Hmol.

The master equation still contains off-diagonal compo-
nents of �mol, corresponding to superpositions of molecular
eigenstates. However, in the presence of noncommuting Zee-
man and anisotropy terms in the Hamiltonian, any two states
differ in the spin expectation value �Stot�, which leads to
different long-range magnetic fields. Thus the unavoidable
interaction between the molecule and many degrees of free-
dom in the environment �e.g., electron spins� should impart
superselection rules,31 ensuring that the dephasing of super-
positions is rapid. For states with different charges, the Cou-
lomb field also leads to strong superselection rules.31

It is thus sufficient to consider the rate equations for the
probabilities Pm���mol�mm of molecular states 	m�,

Ṗm = �
n�m

�Rn→mPn − Rm→nPm� . �2�

The stationary-state probabilities Pm
�0� are determined by

Ṗm
�0�=0. The transition rates Rm→n are written as a sum over

leads and spin directions, Rm→n=��	Rm→n
�	 , with

Rm→n
�	 =

1

�0

 f��n − �m +

es	V

2
�	Cmn

� 	2

+ f��n − �m −
es	V

2
�	Cnm

� 	2� , �3�

where sL=1, sR=−1, 1 /�0�2
	t	2D�uc/� is the typical tran-
sition rate in terms of the density of states D �for one spin
direction� of the leads and their unit-cell volume �uc, V is the
bias voltage, �m is the energy of state 	m�, f�x� is the Fermi
function, and Cmn

� ��m	c�	n� are transition matrix elements.
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The current I	 through lead 	 can be expressed in terms of
the rates and probabilities,

I	 = − es	 �
mn�

�nm − nn�Rn→m
�	 Pn, �4�

where nm is the number of electrons for state 	m�. We are
interested in the stationary state for which the current
through both leads is equal. Therefore, we drop the subscript
	 and insert the stationary-state probabilities Pn

�0�. We will
mainly analyze the differential conductance g�dI /dV.

In principle, the solution of the equations Ṗm
�0�=0 is

simple: The probabilities Pm
�0� form an eigenvector of a ma-

trix A to zero eigenvalue, where Amn=Rn→m for m�n and
Amm=−�p�mRm→p. However, numerical diagonalization of-
ten fails because the components of A, the rates, vary over
many orders of magnitude due to the Fermi factors in Eq.
�3�. The ratio of very small rates can have a large effect on
the probabilities, in particular, for anisotropic magnetic
molecules.9,10 Consequently, truncation errors in the very
small rates can lead to large errors in the probabilities.

An approach that avoids this problem would be highly
welcome. One such approach relies on the enumeration of all
tree graphs on the network of molecular states connected by
allowed transitions.32–34 However, this approach is not fea-
sible for large molecular Fock spaces, since it requires sum-
mation over the order of NN−2 tree graphs34 for each Pm

�0�,
where N is the dimension of the space.

The solution at T=0 is simpler and less susceptible to
truncation errors because the Fermi factors are all either zero
or unity. Thus there are no exponentially small rates, unless
some matrix elements Cmn

� are exponentially small. This is
not the case for generic angles � between magnetic field and
easy axis. Here, we employ an approximation scheme to find
the Pm

�0� and the current I. The scheme relies on solving the
rate equations and calculating the current exactly at T=0 and
introducing broadening of the steps in Pm

�0� and I to take finite
temperatures into account. Details are presented in the Ap-
pendix. The approximation is excellent at sufficiently low

temperatures. It speeds up the calculation of g for 500
�500 values of Vg and V and spin S=2 by a factor of about
350.

III. RESULTS AND DISCUSSION

In the following, we discuss results for molecules with
local spin S=2 and S=10. The smaller spin allows to exhibit
the physics more clearly, since the number of relevant tran-
sitions is smaller. As noted above, there are 2�2S+1�2 tran-
sitions between states with zero and one electron, which
gives 50 for S=2 and 882 for S=10. These are the maximum
possible numbers of differential-conductance peaks. For S
=2, we choose parameter values that allow one to discuss the
effects of interest but do not correspond to a specific mol-
ecule.

For S=10, we use realistic parameters for Mn12 calculated
by Park and Pederson27 employing density functional theory
in the generalized-gradient approximation. We take K2
=0.0465 meV, �=−0.008 62 meV �taken from results for
potassium doping�, and J=3.92 meV �from the energy dif-
ference of states with m=21/2 and m=19/2, respectively,
where m is the quantum number of Stot

z �. K2 is close to the
experimental value K2=0.056 meV from Ref. 5.

The on-site energy �0 cannot be inferred from Ref. 27.
The LUMO-HOMO �highest occupied molecular orbital�
gap is Eg=438 meV.27 Since Mn12 is found to be more easily
negatively doped, we can assume �0 to lie closer to the
LUMO. In experiments with a gate, the on-site energy is
shifted to �0−eVg in any case. For single Mn12 molecules, we
will mainly consider the parameter region close to the cross-
ing point, where states with n=0 and n=1 become degener-
ate. Finally, we choose a very large value for U so that
double occupation of the LUMO is forbidden.

A. Gate-voltage scans

We start by presenting a typical differential-conductance
plot as a function of gate voltage Vg and bias voltage V for
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FIG. 1. �Color online� Differential conductance g=dI /dV as a function of gate voltage Vg and bias voltage V. Bright �dark� colors denote
g�0 �g�0�. The parameters are S=2, �0=0, U=10, Hx=Hz=0.05, K2=0.04, �=0, J=0.1, and T=0.002 �all energies in meV�. �a� Results
obtained by exact solution of the rate equations. �b� Results of the approximation in the Appendix.
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spin S=2 in Fig. 1. The magnetic field is applied at an angle
�=45° relative to the easy axis. The comparison of the exact
solution of the stationary-state rate equations with the ap-
proximation in the Appendix shows excellent agreement.

The blue �medium gray� regions to the left and right of
the crossing point in Fig. 1 correspond to Coulomb blockade
�CB� with small current and electron numbers n=0 and n
=1, respectively. The plot would be mirror symmetric for
V�0. The CB regions are delimited by strong peaks at the
CB threshold, where the current increases rapidly to a large
value of order e /�0. In the absence of internal degrees of
freedom of the molecule, this would be the only structure in
the plots. However, the interaction of the tunneling electron
with the local spin leads to inelastic tunneling processes,
which cause the peaks at the CB threshold to split. The ap-
parent differences in width of the lines in all density plots in
this paper are an artifact of the color scheme—bright lines
appear to be broader. The width is always determined by
thermal broadening of the Fermi functions.

The resulting fine structure is much more complex than
for magnetic molecules without anisotropy4 or in the absence
of a strong magnetic field,9,15 since there are many more
allowed transitions in the present model due to noncommut-
ing Zeeman and anisotropy terms. Each peak in g corre-
sponds to one or more allowed transitions becoming ener-
getically possible. The peak at the CB threshold is much
stronger �the current step is much higher� than the peaks at
higher bias voltage, since many additional transitions be-
come available at the CB threshold, as illustrated by Fig. 2.
Since in our model generically all transitions between a state
with n=0 electrons and a state with n=1 are allowed at suf-
ficiently high bias, all states in the cross-hatched parts of the
spectra in Fig. 2 obtain nonzero probabilities �at T=0� and all
transitions between them start to contribute to the current.

Figure 1 also shows a strong asymmetry between the fine
structures on both sides of the crossing point. This is due to
the multiplet of states with n=1 being broader in energy than
the one with n=0. Figure 2 shows that for a ground state
with n=0, not all states with n=1 obtain nonzero probabili-
ties at the CB threshold, whereas for a ground state with n

=1, all state with n=0 become active. Thus, for the first case,
to the left of the crossing point, there are more g peaks where
additional states with n=1 become active.

Why then are there any additional lines to the right of the
crossing point? Here, all n=0 states become active at the CB
threshold. However, the probabilities and the current show
steps when additional transitions become energetically pos-
sible even if the final state of these transitions was already
active. This mechanism leads to g peaks on both sides.

Next, we consider parameters for Mn12. Figure 3 shows
g�Vg ,V� for a strong transverse field �Hz=0� close to the
crossing point between CB with n=0 and n=1. Note that �0
has been set to zero; the zero of Vg is thus arbitrary. Figure
4�a� shows a sketch of special features in Fig. 3.
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� � � �
� � � �
� � � �
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� � � �
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� � � �
� � � �
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= 0n = 1n

eV

2

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
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� � � �
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FIG. 2. Sketch of molecular energy multiplets �a� to the left of the crossing point in Fig. 1 �ground state with n=0 electrons� and �b� to
the right of the crossing point �ground state with n=1�. A few representative transitions are shown as double-headed arrows. Generically, all
transitions between states with n=0 and n=1 have nonzero matrix elements. The bias voltage V is at the CB threshold in both cases. States
that become populated at the CB threshold at T=0 are cross-hatched. In �a� some states with n=1 do not become active at the CB threshold
�white rectangle�.
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FIG. 3. �Color online� Differential conductance g as a function
of gate voltage Vg and bias voltage V for Mn12 in a magnetic field
perpendicular to the easy axis. Bright �dark� colors denote g�0
�g�0�. The parameters are S=10, �0=0, U=10 000, Hx=2.32 �cor-
responding to 20 T�, Hz=0, K2=0.0465, �=−0.008 62, J=3.92, and
T=0.008 63 �0.1 K�, where all energies are in meV. The approxi-
mation in the Appendix has been used.
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The plots show two clear energy scales. For the strong
magnetic field �20 T� in Fig. 3, the Zeeman energy domi-
nates over the anisotropy energy. The molecular states are
nearly eigenstates of Stot

x . In the following, we use Fig. 3 as
an example for the analysis of differential-conductance plots
for complex molecules. We concentrate on the case when the
ground state has n=0 electrons, to the left of the crossing
point.

To facilitate the analysis, Fig. 4�b� shows the energy of
low-lying molecular states vs the expectation value �Stot

x �,
which is nearly a good quantum number. Figure 4�c� shows,
for each differential-conductance peak �current step� occur-
ring at low-bias voltage, the spin expectation values �Stot

x � for
the initial �cross� and final �circle� states vs the bias voltage.
Only transitions starting from states with n=0 are included,
these have negative slope in Fig. 3. Several transitions are

marked with the same letters as in Fig. 4�a�. These plots
assume �0−eVg=25 meV, but the conclusions hold, in gen-
eral, far left of the crossing point. In other words, for each
differential-conductance peak at the left edge of Fig. 3, Fig.
4�c� shows a vertical line with the abscissa given by the bias
voltage of that peak. The line connects the initial and final
values of �Stot

x � for the transition becoming active at that bias.
The CB threshold corresponds to transition A in Figs. 4�a�

and 4�c�. Since all matrix elements between states with n
=0 and n=1 are nonzero, nearly all states belonging to the
low-energy ladder in Fig. 4�b� assume nonzero probabilities
even at T=0 as soon as transition A becomes energetically
possible.35 As noted above, this makes the threshold peak
anomalously strong.

The second strong line corresponds to transition B. With-
out anisotropy, A and B would be the only visible transitions
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FIG. 4. �Color online� �a� g peaks corresponding to special transitions in Fig. 3; see text. �b� Molecular energy levels vs spin expectation
value �Stot

x �, for �0−eVg=25 mV. Open �solid� circles correspond to states with n=0 �n=1� electrons in the LUMO. �c� Map summarizing
data for peaks in the differential conductance g in Fig. 3 for �0−eVg=25 meV, belonging to transitions starting from states with n=0. For
each g peak, the spin expectation values �Stot

x � in the initial �crosses� and final �circles� states are plotted vs bias voltage. Transitions
corresponding to prominent g peaks in Fig. 3 are labeled as in �a�.
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from n=0 to n=1, since transition A �B� would correspond to
a change in �Stot

x � by +1/2 �−1/2� and these would be the
only allowed changes. Also, the ladders of n=0 and n=1
levels would be exactly parallel so that all allowed transi-
tions would have one of these two energies. In our case, the
anisotropy leads to additional allowed transitions C ,D , . . .,
etc., corresponding to changes of �Stot

x � by approximately
−3/2 ,−5/2 , . . ., respectively.

The peaks show additional fine structure with a smaller
energy scale coming from the anisotropy. The CB-threshold
peak is accompanied by additional peaks at slightly higher
bias. The first visible one corresponds to transition A1 in Fig.
4�c�. Peaks B, C, and D are accompanied by series of peaks
at lower bias, reaching down to B�, C�, and D�. These peaks
correspond to arc-shaped series of transitions with approxi-
mately the same change in �Stot

x �. There are a few additional
transitions with large changes in �Stot

x � in Fig. 4�c�. These are

not visible in Fig. 3 due to very small transition matrix ele-
ments.

Several peaks, in particular B�, show negative differential
conductance �NDC�. The origin is the following:9 The cur-
rent equals the charge e times a typical tunneling rate. This
tunneling rate is a weighted average over the rates of ener-
getically possible transitions. But transition B� has a small
rate due to small Cmn

� , as numerical calculation shows. There-
fore, the typical tunneling rate and the current decrease at B�.

For comparison, Fig. 5�a� shows the differential conduc-
tance for a smaller transverse field leading to comparable
Zeeman and anisotropy energies. In this case, the molecular
states are no longer approximate eigenstates of Stot

x , cf. Fig.
5�b�. This leads to a more complicated fine structure. It is
still possible to attribute peaks to specific molecular transi-
tions, as comparison with the map of transitions in Fig. 5�c�
shows, but the spectrum and the transition energies look
more random.
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FIG. 5. �Color online� �a� Differential conductance g as in Fig. 3 except for a smaller magnetic field, Hx=0.116 meV �1 T�. The
approximation in the Appendix has been used. �b� Molecular energy levels vs spin expectation value �Stot

x �, for �0−eVg=19.5 mV. Open
�solid� circles correspond to states with n=0 �n=1�. �c� Spin expectation values �Stot

x � of initial �crosses� and final �circles� states vs bias
voltage for the lowest-lying g peaks, for �0−eVg=19.5 meV. Only transitions starting from states with n=0 are shown.
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Note that the fine structure splitting is now broader, where
the ground state has n=1 electrons, opposite to the S=2 mol-
ecule, cf. Fig. 1. This stems from the smaller anisotropy K2
+��K2 in the n=1 case, which makes the multiplet of ac-
cessible n=1 states narrower in energy than the n=0 multi-
plet, as seen in Fig. 5�b�.36

B. Magnetic-field scans

Our main topic is the interplay of magnetic field and an-
isotropy. Since the Zeeman and anisotropy terms in the
Hamiltonian do not commute and are assumed to be compa-
rable in magnitude, we expect the differential conductance g
to depend significantly on the field. The natural way to study
this is to plot g as a function of quantities characterizing the
magnetic field and possibly of bias voltage. Such magnetic-
field scans could, in principle, also be done experimentally.

Since a gate electrode is not required, magnetic-field
scans could also be taken for monolayers of molecules sand-
wiched between conducting electrodes15 or with a STM for
single molecules or monolayers. For the theory to be appli-
cable, the tunneling between molecule and electrodes must
be made sufficiently weak to justify the sequential-tunneling
approximation, e.g., by molecular spacer groups37 or a thin
oxide layer.38 The present section thus applies to single mol-
ecules and to monolayers of molecules with aligned easy
axes.

Figure 6�a� shows g as a function of magnetic-field com-
ponents Hx and Hz for the case of spin S=2 for fixed gate and
bias voltages, �0−eVg=0.2 meV and V=0.8 mV, respec-
tively. This plot shows g if one fixes Vg and V in Fig. 1 and
varies the magnetic field. A peak in g appears whenever an
allowed and energetically possible transition crosses the en-
ergy eV /2. Figure 6�a� can be extended to all values of H
using the rotational symmetry of g around the z �easy� axis
and the reflection symmetry in the xy plane.

Clearly, the symmetry of g�H� allows one to determine
the orientation of the molecule�s� from a transport measure-

ment in a magnetic field. This is useful since the orientation
is typically poorly controlled and is not easy to determine in
break-junction and electromigration experiments.

The structure in Fig. 6�a� is richer than that in Fig. 1:
Curves of large g are not straight and they vary in intensity
�height of the current step� and can even vanish. They are not
straight because they correspond to differences of two
eigenenergies of Hmol and the eigenenergies are complicated
functions of H, since the Zeeman term does not commute
with the anisotropy term. Nevertheless, it is remarkable that
the relatively simple model with spin S=2 generates this
complex structure.

The g peaks in Fig. 6�a� change in intensity with magnetic
field since the transition matrix elements Cmn

� change. In the
limiting case of Hx=0, i.e., field parallel to the easy axis, the
Zeeman and anisotropy terms do commute. In this case, Stot

z

is conserved, and transitions changing Stot
z by values other

than ±1/2 are forbidden. Curves belonging to these transi-
tions vanish for Hx→0.

Figure 6�b� shows g as a function of bias voltage V and
the angle � between field and easy axis. Note again that
several peaks vanish for �→0, where the transitions become
forbidden. The plot shows that the strong peak at the CB
threshold also depends on the magnetic-field direction. It is
thus possible to switch the molecule between CB, with very
small current due to cotunneling,15 and a state with large
current, leading to a large and anisotropic magnetoresistance
at low temperatures.

Figure 7�a� shows g�� ,V� for Mn12. On first glance, simi-
lar features as in Fig. 6�b� are seen. There is a pronounced
region of NDC appearing dark in the figure. However, an
important additional effect is at work here: Analysis of the
�=0 case shows that the CB threshold for �=0 corresponds
to the transition from m=10 to m=21/2, where now m is the
quantum number of Stot

z . The corresponding bias voltage is
VCB=1.41 mV. However, Fig. 7�a� does not show a strong
peak at this bias for small ��0. Rather, the threshold ap-
pears to be at about V=1.64 mV.
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FIG. 6. �Color online� �a� Differential conductance g as a function of the magnetic-field components Hx �perpendicular to easy axis� and
Hz �parallel to easy axis�. Bright �dark� colors denote g�0 �g�0�. The parameters are S=2, �0−eVg=0.2, U=10, K2=0.04, �=0, J=0.1,
T=0.002 �all energies in meV�, and V=0.8 mV. The rate equations have been solved exactly. �b� g as a function of the angle � between
magnetic field and easy axis and bias voltage V for the S=2 model in a magnetic field 	H 	 =0.1 meV. The other parameters are as in Fig. 1.
The approximation in the Appendix has been used.
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The molecular levels shown in Fig. 7�b� help to under-
stand this situation: the first possible transition at T=0 is the
one from �Stot

z ��10 to �Stot
z ��21/2, denoted by a solid curve

in Fig. 7�a� and a solid arrow in Fig. 7�b�. For �=0, this leads
to a large current associated with repeated transitions be-
tween these two states, which are the only allowed ones until
the transition to �Stot

z ��19/2 becomes possible at higher
bias. However, for ��0, there are nonzero matrix elements
for transitions that decrease �Stot

z � by about 3 /2 �dashed ar-
rows�. Consequently, the molecule can reach the states with
�Stot

z ��0. From there, it can relax to states with negative
�Stot

z � through transitions with large rates, in particular, to the
state with �Stot

z ��−10. However, this is essentially a blocking
state, since the transitions to �Stot

z ��−21/2 and −19/2 are
energetically impossible and the only transitions that are en-
ergetically possible correspond to very large changes of �Stot

z �
�dotted arrows� and have extremely small matrix elements.

This is thus an example of spin blockade. Note that cotun-
neling transitions out of the blocking state to �Stot

z ��−9 are
possible, since the full potential difference eV is available for
excitations. This leads to a very small current dominated by
cotunneling, which would still be invisible in Fig. 7�a�.

To summarize, while transitions from positive to negative
�Stot

z � happen only with a small rate, transitions in the oppo-
site direction occur with a still much smaller rate. Conse-
quently, the molecule is nearly always in the �Stot

z ��−10
state and the current is extremely small.39 Thus there is no
visible differential-conductance peak at the CB threshold.

We conclude with two remarks: �i� The discontinuity of g
at �=0 is irrelevant in practice, since it is impossible to per-
fectly align the molecular easy axis with the field. �ii� Figure
7�a� shows that the CB threshold coincides with the strong g
peak for �=
 /2. In this case, Fig. 7�b� would be symmetric
under spin inversion so that the states with �Stot

z �� ±10 be-
come degenerate ground states and there is no blocking state.
This case was studied in Figs. 3 and 4.

C. Orientational disorder

So far, we have considered tunneling through single mol-
ecules or through monolayers of molecules with parallel easy
axes.30 Depending on the ligands, Mn12 can be nearly spheri-
cal. In that case, the distribution of orientations in a mono-
layer will be closer to random.

To describe tunneling through a monolayer of randomly
oriented magnetic molecules, we have to average the current
and differential conductance over all orientations. Equiva-
lently, here we average over all magnetic-field directions
relative to the molecular easy axis. One might expect that
this smears out most of the fine structure. As we shall see,
this is not the case. The averaged differential conductance ḡ
as a function of bias voltage V is rather complex due to van
Hove singularities coming from extrema and crossings in the
transition energies as functions of magnetic-field direction.

The angle-averaged differential conductance per molecule
is ḡ= �1/4
�
d�d��sin ��g, where � and � are the polar
angles of the field. g shows peaks at bias voltages V corre-
sponding to molecular-transition energies that depend on the
angles. Compared to the conventional van Hove singularities
of band theory, ḡ corresponds to the density of states, V to
the energy, and �� ,�� to the wave vector. If the transition
energies depended on both � and �, they would form a two-
dimensional band structure in a “Brillouin zone,” that is, the
surface of a sphere. Extrema in the transition energies would
then lead to typical two-dimensional, steplike van Hove sin-
gularities. However, in our model, the transition energies are
independent of �, so that ḡ= �1/2�
d��sin ��g. We obtain a
one-dimensional band structure with an additional weight
factor sin �.

For an extremum at 0���
, this leads to a one-sided
singularity of the form 1/�	V−Vc	, typical for one-
dimensional systems. If the extremum is at �=0 �and �=
�
and the transition is allowed there, the factor sin � reduces
the singularity to a step. If the transition is forbidden for �
=0, the peak height in g is found to vanish as �2, which leads
to an even weaker singularity linear in 	V−Vc	. There are
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FIG. 7. �Color online� �a� Differential conductance g as a func-
tion of the angle � between magnetic field and easy axis and bias
voltage V for Mn12 in a magnetic field 	H 	 =0.116 meV �1 T� at
temperature T=0.008 63 meV �0.1 K�. The other parameters are as
in Figs. 3 and 5. The approximation in the Appendix has been used.
The solid �green� curve denotes the CB threshold, which is invisible
in g for ��0 due to the presence of a blocking state. �b� Molecular
energy levels vs spin expectation value �Stot

z � for �=0.3. Open
�solid� circles correspond to states with n=0 �n=1� electrons. The
blocking state has n=0 and �Stot

z ��−10. Transitions discussed in the
text are marked by arrows �most allowed transitions are not
marked�.
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other cases of van Hove singularities, which are not present
in normal band structures and will be discussed below.

It is the calculation of angle-averaged quantities for
which the approximation scheme in the Appendix becomes
crucial in reducing the computational effort. All averaged
quantities are calculated with this method. To approximate

ḡ =
1

2
�

0




d��sin ��g = �
0

1

dug�u,V� , �5�

where u=cos �, we first calculate g for fixed u at T=0. We
obtain a set of bias voltages Vi�u� and delta-function weights
gi�u�, which depend on u. We replace the integral by a sum
over typically N=5000 terms,

ḡ �
1

N
�
n=1

N

�
i

gi� n

N
��
V − Vi� n

N
�� . �6�

To obtain approximate results for T�0, we broaden the delta
functions �or current steps� as described in the Appendix.

For orientation, we first show ḡ�Vg ,V� for S=2 in Fig. 8.
The plot should be compared to Fig. 1 for the same param-
eters except for fixed �=45° in Fig. 1. Figure 8 shows that a
lot of the fine structure survive the angular averaging. Plots
of this type cannot be obtained experimentally due to the
lack of a gate electrode for a monolayer. What can be mea-
sured is the differential conductance ḡ as a function of bias
voltage for a given on-site potential �0. Large signals are
expected if the particular molecule allows one to reach the
CB threshold with accessible bias voltages V.

Figure 9�a� shows ḡ�V� for a monolayer of spin S=2 mol-
ecules in a magnetic field of magnitude 	H	=0.1 meV. This
plot corresponds to Fig. 6�b� averaged over � with the weight
factor sin �. We again see that the averaged differential con-

ductance retains a lot of structure, in particular, at very low
temperatures. In the following, we analyze this structure in
terms of van Hove singularities.

To help with this analysis, Fig. 9�b� shows the bias volt-
ages of g peaks �current steps� as a function of magnetic-
field angle �. These are the “bands” that lead to van Hove
singularities. This is simply a map of g peaks occurring in
Fig. 6�b�. The first, strong peak in Fig. 9�a� corresponds to
the CB threshold. Figures 6�b� and 9�b� show that the CB
threshold is angle dependent. Singularity A stems from the
minimum of the transition energy and B from the maximum
at �=
 /2. These are both of the typical one-dimensional
form 1/�	V−Vc	. The maximum at �=0 leads to singularity
D, which is only a step, due to the weight factor sin �. As
noted above, the presence of a step shows that the transition
is allowed for �=0. The 1/�	V−Vc	 singularity E stems from
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FIG. 8. �Color online� Differential conductance per molecule
averaged over all magnetic-field directions, ḡ, as a function of gate
voltage Vg and bias voltage V. Bright �dark� colors denote ḡ�0
�ḡ�0�. The parameters are identical to Fig. 1, except that the
magnetic-field direction is not held fixed but is averaged over, and
the same color scheme is used.
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FIG. 9. �a� Differential conductance per molecule averaged over
all magnetic-field directions, ḡ, as a function of bias voltage V at
three temperatures. ḡ is plotted on a logarithmic scale. The param-
eters are as in Fig. 6�b�, in particular, S=2. The inset shows ḡ in the
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singularities are marked. �b� Upper part: bias voltage of g peaks as
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corresponding to the van Hove singularities in �a� are marked by the
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the maximum of a transition not at the CB threshold.
In addition, there is a weaker step C, which cannot be

attributed to an extremum at �=0. Figure 9�b� shows that a
transition can suddenly vanish when it intersects another one.
This is a typical property of inelastic sequential tunneling
through molecules, which is due to the initial state of one of
the transitions being populated �at T=0� only on one side of
the crossing. One can show that the sum of weights �current
step heights� of the transitions is analytic through the cross-
ing, as a function of Hx, Hz, �, or Vg.40 This means that a
three-way crossing can be viewed as the superposition of a
band for which the energy and the weight are analytic func-
tions of � and another band for which the weight is analytic
but the energy shows a kink �change of slope�. This kink
leads to a type of van Hove singularity not present in band
structures for weakly interacting electrons in solids. It shows
up as a kink in the current and thus as a step in ḡ. Singularity
C in Fig. 9�a� is of this type, coming from the three-way
crossing marked in Fig. 9�b�. If both transitions have nonzero
weight on both sides, part of the weight is also typically
transferred from one band to the other, leading to the same
type of singularity.

Finally, we turn to a monolayer of Mn12 molecules �S
=10� with random easy axes. We consider the case corre-
sponding to averaging g in Fig. 7�a� over angles. The result
is the differential conductance plotted in Fig. 10. The most
prominent features are the steplike singularities A and B. B
stems from the maximum of the transition energy of the
strong low-bias peak in Fig. 7�a� at about V=1.64 mV. It is a
step since the maximum occurs at �=0. However, singularity
A is also a step, although it clearly results from the minimum
of that transition energy at �=
 /2 so that we expect a pole,
1 /�	V−Vc	. This can be understood by extending Fig. 7�a� to
angles ��
 /2 using reflection symmetry. The minimum is,
in fact, a crossing between the transitions from �Stot

z �= ±10 to
±21/2, i.e., the transitions out of the respective ground state
and blocking state. Therefore singularity A is not of the form
of a band extremum but of a band crossing, i.e., a step. The
anomalous exponent of singularity A is thus closely related
to the spin blockade discussed earlier.

The sharp peak X in Fig. 10 is an artifact coming from
molecules with �=0, for which the CB threshold formally
occurs at VCB=1.41 mV. Finally, the extended region of
NDC in Fig. 7�a� leads to NDC even in the angle-averaged
differential conductance, as seen in the inset of Fig. 10.

IV. SUMMARY AND CONCLUSIONS

In summary, we have studied inelastic electron tunneling
through molecules with a local magnetic moment and large
uniaxial anisotropy in a strong magnetic field. Since the ori-
entation of the molecules is often not well controlled in tun-
neling experiments, we consider arbitrary angles between
easy axis and field. Then the anisotropy and Zeeman terms in
the Hamiltonian do not commute so that no component of
the molecular spin is conserved. This lifts all spin selection
rules for electron tunneling, leading to large numbers of al-
lowed molecular transitions and, consequently, to many
peaks in the differential conductance g=dI /dV. The resulting
complex fine structure of Coulomb-diamond plots is already
apparent for the relatively simple case of a local spin S=2.

As a concrete example, Mn12 molecules are studied. The
large spin S=10 leads to even more complex fine structure.
However, one can still attribute differential-conductance
peaks to individual molecular transitions. It should be pos-
sible to analyze experimental results in terms of specific mo-
lecular transitions if one has a model for guidance. Even
without detailed attribution of observed peaks, measurement
of g in magnetic fields of various directions should allow to
determine the orientation of the molecule relative to the
leads, which is not directly accessible in break-junction or
electromigration experiments.

We have considered three cases: Single molecules, mo-
lecular monolayers with aligned easy axes, and molecular
monolayers with random easy axes. For monolayers, one
does not have the advantage of a gate electrode. However,
one can extract similarly detailed information by varying the
magnetic field. For randomly oriented molecules, we have
found that the averaging of transition energies over orienta-
tions leads to van Hove singularities in g. Besides the normal
singularities from extrema of “bands,” a different type arises
from crossings of transition energies. Analysis of the singu-
larities can give rather detailed information on allowed vs
forbidden transitions in the limit of the easy axis aligned
with the magnetic field and on the presence of blocking
states �spin blockade�.

Detailed calculations of g for Mn12 with its many molecu-
lar states and, in particular, for monolayers with random ori-
entation are made feasible by an approximation scheme for
solving the rate equations. As further results, we predict large
and highly anisotropic magnetoresistance at low tempera-
tures, if the bias voltage is tuned close to the CB threshold,
and negative differential conductance, which survives even
for randomly oriented monolayers of Mn12.
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APPENDIX: APPROXIMATE SOLUTION OF THE RATE
EQUATIONS

We start by solving the rate equations for T=0. For our
model, generically all transitions between states with n=0
and n=1 are allowed. Thus even at T=0 and zero bias the
stationary state is unique, namely, the ground state, unless
more than one state with n=0 is lower in energy than the
lowest state with n=1, or vice versa. If that is the case or if
some transitions are forbidden, we note that there are slow
relaxation processes not included in the description that lead
to the relaxation to the ground state. Therefore, the system is
in the ground state at T=0 and V=0, and the current van-
ishes. If the ground state is degenerate, the approximation
assumes that the probabilities of all the ground states are
equal and the current is still zero. This is valid if they are
related by symmetry. If the degeneracy is accidental, this
breaks down, but this only happens at isolated points in pa-
rameter space.

For increasing V, the current remains zero in the
sequential-tunneling approximation until eV /2 reaches the
energy 
� of the first allowed transition starting from a
ground state. Above this value, all states obtain nonzero
probabilities that can be reached from a ground state directly
or indirectly by allowed and energetically possible transi-
tions. The network of these states is constructed by testing all
possible transitions. Then the matrix A above the threshold
eV /2=
� is obtained from Eq. �3�, taking into account that
the Fermi factors are f =0 or 1. A is then diagonalized. This
is faster and more robust than in the general case because �a�
the dimension of A is smaller since it only contains active
states and �b� A does not contain exponentially small
components—all components are either exactly zero or given
by matrix elements. The resulting current is calculated from
Eq. �4�. The value of 
� and the change �step height� in the
current are recorded. Then we go over to the next bias for
which eV /2 equals a transition energy, extend the network of
states by all states that can now be reached, obtain A, diag-

onalize it, and calculate the new current. These steps are
repeated.

Note that we only diagonalize Hmol once to obtain the
transition energies and matrix elements. Furthermore, we
only diagonalize A once for each transition energy, since the
current at T=0 is constant between steps. The result is a list
of bias voltages Vi and associated heights gi of current steps.
The gi are also the weights of delta-function peaks in g
=dI /dV.

To obtain approximate results at finite, but low, tempera-
tures, we broaden the current steps so that their width is of
the order of kBT. We write the current as

I � e�
i

gi
 f� eVi − eV

2kBT
� − f� eVi + eV

2kBT
�� , �A1�

where i enumerates the current steps. This particular
broadening function is chosen since Eq. �A1� is exact �as-
suming sequential tunneling� for the simplest possible
model, i.e., a single orbital for a spinless fermion. The form
of the broadened delta functions in g follows trivially. The
approximation is good if the separation in eV /2 between
current steps is large compared to kBT.

The approximation becomes questionable if not only the
widths but also the positions of current steps depend strongly
on temperature. This behavior has been predicted by Golo-
vach and Loss41 and Romeike et al.7 for situations when an
intermediate state is populated by a transition with very
small matrix element but depopulated by a transition with
large matrix element but higher transition energy. In this
case, the bias voltage at which the peak in g appears shifts
linearly with temperature.7,41

Very different matrix elements appear if some transitions
are only allowed due to small symmetry-breaking perturba-
tions in the Hamiltonian7 or are of higher order in perturba-
tion theory.41 For our model with a large magnetic field
forming a general angle with the easy axis, there are generi-
cally no extremely small matrix elements and we do not
expect pronounced linear shifts. It should be kept in mind,
though, that the approximation is least valid for small angles
� between the field and the molecular easy axis. In any case,
our approximation is valid at sufficiently low temperatures.

*ctimm@ku.edu
1 J. Park et al., Nature �London� 417, 722 �2002�.
2 W. Liang, M. P. Shores, M. Bockrath, J. R. Long, and H. Park,

Nature �London� 417, 725 �2002�.
3 J. Paaske and K. Flensberg, Phys. Rev. Lett. 94, 176801 �2005�.
4 F. Elste and C. Timm, Phys. Rev. B 71, 155403 �2005�.
5 H. B. Heersche et al., Phys. Rev. Lett. 96, 206801 �2006�.
6 C. Romeike, M. R. Wegewijs, W. Hofstetter, and H. Schoeller,

Phys. Rev. Lett. 96, 196601 �2006�; 97, 206601 �2006�.
7 C. Romeike, M. R. Wegewijs, and H. Schoeller, Phys. Rev. Lett.

96, 196805 �2006�.
8 M.-H. Jo et al., Nano Lett. 6, 2014 �2006�.
9 C. Timm and F. Elste, Phys. Rev. B 73, 235304 �2006�.

10 F. Elste and C. Timm, Phys. Rev. B 73, 235305 �2006�.
11 M. N. Leuenberger and E. R. Mucciolo, Phys. Rev. Lett. 97,

126601 �2006�.
12 A. Donarini, M. Grifoni, and K. Richter, Phys. Rev. Lett. 97,

166801 �2006�.
13 M. Misiorny and J. Barnas, Phys. Rev. B 75, 134425 �2007�.
14 G. Gonzalez and M. N. Leuenberger, arXiv:cond-mat/0610653

�unpublished�.
15 F. Elste and C. Timm, Phys. Rev. B 75, 195341 �2007�.
16 C. Joachim, J. K. Gimzewski, and A. Aviram, Nature �London�

408, 541 �2000�.
17 W. Harneit, Phys. Rev. A 65, 032322 �2002�.
18 Y. Xue and M. A. Ratner, in Nanotechnology: Science and Com-

TUNNELING THROUGH MAGNETIC MOLECULES WITH… PHYSICAL REVIEW B 76, 014421 �2007�

014421-11



putation, edited by J. Chen, N. Jonoska, and G. Rozenberg
�Springer-Verlag, Berlin, 2006�.

19 K. Blum, Density Matrix Theory and Applications �Plenum, New
York, 1981�.

20 H. Schoeller and G. Schön, Phys. Rev. B 50, 18436 �1994�.
21 J. König, H. Schoeller, and G. Schön, Europhys. Lett. 31, 31

�1995�.
22 M. Turek and K. A. Matveev, Phys. Rev. B 65, 115332 �2002�.
23 H. Bruus and K. Flensberg, Many-body Quantum Theory in Con-

densed Matter Physics �Oxford University Press, Oxford, 2004�.
24 A. Mitra, I. Aleiner, and A. J. Millis, Phys. Rev. B 69, 245302

�2004�.
25 J. Koch, F. von Oppen, Y. Oreg, and E. Sela, Phys. Rev. B 70,

195107 �2004�.
26 J. Koch and F. von Oppen, Phys. Rev. Lett. 94, 206804 �2005�.
27 K. Park and M. R. Pederson, Phys. Rev. B 70, 054414 �2004�.
28 J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo, Phys.

Rev. Lett. 76, 3830 �1996�.
29 K. M. Mertes, Y. Suzuki, M. P. Sarachik, Y. Myasoedov, H. Sh-

trikman, E. Zeldov, E. M. Rumberger, D. N. Hendrickson, and
G. Christou, Solid State Commun. 127, 131 �2003�.

30 B. Fleury et al., Chem. Commun. �Cambridge� 2005, 2020.
31 W. H. Zurek, Phys. Rev. D 26, 1862 �1982�.
32 T. L. Hill, J. Theor. Biol. 10, 399 �1966�.
33 J. Schnakenberg, Rev. Mod. Phys. 48, 571 �1976�.

34 R. K. P. Zia and B. Schmittmann, J. Phys. A 39, L407 �2006�.
35 The higher-energy multiplet of states with n=1, which is split

from the lower multiplet by an energy of order JS, also becomes
occupied due to tiny matrix elements between n=0 states with
large negative �Stot

x � and n=1 states with large positive �Stot
x �.

However, the probabilities are negligible for the present discus-
sion.

36 There is another multiplet of n=1 states at higher energies, split
from the low-energy multiplet by a large energy of the order of
JS. These states are not populated for the bias voltages consid-
ered here.

37 M. Schunack, F. Rosei, Y. Naitoh, P. Jiang, A. Gourdon, E. Lægs-
gaard, I. Stensgaard, C. Joachim, and F. Besenbacher, J. Chem.
Phys. 117, 6259 �2002�.

38 X. H. Qiu, G. V. Nazin, and W. Ho, Phys. Rev. Lett. 92, 206102
�2004�.

39 A significant number of electrons have to tunnel through the mol-
ecule for it to get from the ground state to the state with �Stot

z �
�−10, but after that, it is essentially trapped and the stationary
current is very small.

40 This follows because the current at T=0 is analytic, as long as no
transition is crossed, since the Fermi functions are then constant
and the matrix elements are analytic functions of magnetic field
and gate voltage.

41 V. N. Golovach and D. Loss, Phys. Rev. B 69, 245327 �2004�.

CARSTEN TIMM PHYSICAL REVIEW B 76, 014421 �2007�

014421-12


