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Spin excitations in the excitonic spin-density-wave state of the iron pnictides
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Motivated by the iron pnictides, we examine the spin excitations in an itinerant antiferromagnet where a
spin-density wave (SDW) originates from an excitonic instability of nested electronlike and holelike Fermi
pockets. Using the random-phase approximation, we derive the Dyson equation for the transverse susceptibility
in the excitonic SDW state. The Dyson equation is solved for two different two-band models, describing an
antiferromagnetic insulator and metal, respectively. We determine the collective spin-wave dispersions and also
consider the single-particle continua. The results for the excitonic models are compared with each other and
also contrasted with the well-known SDW state of the Hubbard model. Despite the qualitatively different SDW
states in the two excitonic models, their magnetic response shows many similarities. We conclude with a

discussion of the relevance of the excitonic SDW scenario to the iron pnictides.
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I. INTRODUCTION

The recent discovery of superconductivity in iron pnic-
tides has sparked a tremendous research effort.!:> The re-
markably high superconducting transition temperature 7, of
some of these compounds,® their layered quasi-two-
dimensional (2D) structure,* the proximity of superconduc-
tivity and antiferromagnetism in their phase diagrams,>® and
the likely unconventional superconducting pairing state®~!3
are reminiscent of the cuprates.' It is a tantalizing prospect
that the iron pnictides can shed light onto the problem of
unconventional high-T,. superconductivity in general.

For this it is essential to assess the differences between
the cuprates and the iron pnictides. For example, the pnic-
tides have a much more complicated Fermi surface.'> The
antiferromagnetic states in the two families are also qualita-
tively different. In the cuprates, superconductivity appears by
doping an insulating antiferromagnetic parent compound.
The pnictide parent compounds RFeAsO (R is a rare-earth
ion) and AFe,As, (A is an alkaline-earth ion) are also anti-
ferromagnets but there is compelling evidence that they dis-
play a metallic spin-density-wave (SDW) state: the value of
the magnetic moment at the Fe sites is small,%”!¢ the com-
pounds display metallic transport properties below the Néel
temperature T),'®"'® and angle resolved photoemission spec-
troscopy (ARPES) and quantum oscillation experiments find
a reconstructed Fermi surface below Ty.!%%

The electron-phonon interaction in the pnictides is much
too weak to account for the high-T, values.?' Instead, the
most likely candidate for the “glue” binding the electrons
into Cooper pairs are spin fluctuations,''~!* which are en-
hanced by the proximity to the SDW state. A proper under-
standing of the SDW phase is therefore likely the key to the
physics of the pnictides. Intriguingly, ab initio calculations
suggest that the nesting of electron and hole Fermi pockets is
responsible for the SDW,'? indicating that, like the supercon-
ductivity, the antiferromagnetism of these compounds has a
multiband character. The best known material where a SDW
arises from such a nesting property is chromium?>2° and this
mechanism has also been implicated for manganese alloys.”’

The SDW in these compounds belongs to a broader class
of density-wave states. Consider a material with electronlike
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and holelike Fermi pockets separated by a nesting vector Q
in the presence of interband Coulomb repulsion. Performing
a particle-hole transformation on one of the bands, we obtain
an attractive interaction between the particles in one band
and the holes in the other. Within a BCS-type mean-field
theory, the attractive interaction causes the condensation of
interband electron-hole pairs (excitons) with relative wave
vector Q, thereby opening a gap in the single-particle exci-
tation spectrum.?® Although the interband Coulomb repulsion
causes the excitonic instability, additional interband scatter-
ing terms are required to stabilize one of several different
density-wave states, such as a SDW or a charge-density
wave (CDW).?-3!

Several authors have discussed the SDW state of the pnic-
tides in terms of an excitonic instability of nested electron
and hole Fermi pockets without regard to the orbital origin of
these bands.’'3® An alternative school of thought empha-
sizes the importance of the complicated mixing of the iron
3d orbitals at the Fermi energy and of the various interorbital
interactions.?”~% These two approaches are not contradictory,
however, since the excitonic model can be understood as an
effective low-energy theory for the orbital models.3'3* Fur-
thermore, even in an orbital model, the SDW state is still
driven by the nesting of electron and hole Fermi pockets.
Indeed, at the mean-field level all these models yield quali-
tatively identical conclusions. A conceptually different pic-
ture based on the ordering of localized moments has also
been proposed.!!#1=43 Although it is hard to reconcile with
the observed metallic properties'®!” and the moderate inter-
action strengths,*** this picture is consistent with several
neutron-scattering experiments.*>4” At present, it is difficult
to discriminate between the itinerant (excitonic) and local-
ized scenarios, as the dynamical spin response of the itiner-
ant models is unknown. It is therefore desirable to determine
the spin excitations in the excitonic SDW model.

It is the purpose of this paper to examine the transverse
spin susceptibility within the excitonic SDW state of a gen-
eral two-band model. We work within the limits of weak to
moderate correlation strength, using the random-phase ap-
proximation (RPA) to construct the Dyson equation for the
susceptibility. In order to understand the generic features of
the spin excitations in the excitonic SDW state, we calculate
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FIG. 1. (Color online) (a) Band structure and (b) Fermi surface
of the Hubbard model for U=0. In (b), the nesting vector Q
=(m/a,/a) is also shown.

the RPA susceptibilities for the simplest model showing this
instability. We pay particular attention to the spin waves
(magnons) and damped paramagnons. In the simplest model,
however, the SDW state is insulating. We therefore verify the
robustness of our results by applying our theory to a system
where portions of the Fermi surface remain ungapped in the
SDW phase, as in the iron pnictides. We contrast our results
for the excitonic SDW state with those for the SDW phase of
the single-band Hubbard model, which is commonly used to
describe the antiferromagnetic state of the cuprates.

The structure of this paper is as follows. We commence in
Sec. II with a brief review of the RPA-level results for the
transverse susceptibility in the SDW state of the Hubbard
model.*3° We then proceed in Sec. III with a general dis-
cussion of the excitonic SDW state in a two-band model and
present the Dyson equation for the transverse susceptibilities.
The RPA susceptibility and spin-wave dispersion is then cal-
culated for the insulating and metallic excitonic SDW mod-
els in Secs. III A and III B, respectively. All presented results
are calculated in the limit of zero temperature. In order to
properly compare the different models, we choose interaction
strengths such that the zero-temperature SDW gap is the
same. We conclude with a comparison with experimental re-
sults in Sec. IV and a summary of our work in Sec. V.

II. HUBBARD MODEL

The Hamiltonian of the Hubbard model reads

. U .
i T
H=, ekclL‘Uck‘(,+ = > Chrq,1Ck.1Ch_q Ok (1)
k.o k,k',q

where cfw (ck.,) creates (destroys) an electron with momen-
tum k and spin 0. We assume a 2D nearest-neighbor tight-
binding dispersion €,=-21(cos k,a+cos k,a), where a is the
lattice constant. We plot the band structure €, and the result-
ing Fermi surface at half filling in Figs. 1(a) and 1(b), re-
spectively.

At half filling and sufficiently low temperature 7, the
Hubbard model is unstable toward a SDW state with nesting
vector Q=(m/a,w/a), which connects opposite sides of the
Fermi surface. We assume a SDW polarized along the z axis
and decouple the interaction term in Eq. (1) by introducing
the SDW gap
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U
A= _E 0-<CI1;+Q,0'Ck,U> . (2)
Vk,(r

The primed sum denotes summation only over the reduced,
magnetic Brillouin zone. Diagonalizing the mean-field
Hamiltonian, we find two bands in the reduced Brillouin
zone with energies E. == \r’elz(+A2. In the following, we
will assume =1 eV and U=0.738 eV, which gives a criti-
cal temperature for the SDW state of Tgpw=138 K and a
T=0 gap A=21.3 meV.
The dynamical spin susceptibility is defined by

1 (P . . )
Xz:f(q,q’;iwn)=‘—/f dn(T,S'(q, 15 (-q',0))e'"", (3)
0

where T, is the time-ordering operator and

i

. 1 O-s,s’
S(Q D)= =2 2 g (D cipr (7). (4)
VV k 55! 2

Because of the doubling of the unit cell in the SDW state, the
susceptibility in Eq. (3) is nonzero for q=q’ and q=q’+Q,
the latter referred to as the umklapp susceptibility.*® Both
appear in the ladder diagrams for the transverse susceptibil-
ity, yielding the Dyson equation

X—+(q9q’ ,l(l)n) = 5q’q/X(_(l)(q’q’lwn)
+ 8 X Uq.q + Q:iw,)
+ UX(—(?F)(q’q;iwn)X—+(q,q, ;iwn)

+Ux%q,q+ Q;iw)x_.(q + Q.qsiw,),
(5)

where the superscript (0) indicates the mean-field suscepti-
bilities. Explicit expressions for x_.(q,q;iw,) and x_,(q.q
+Q;iw,) can be found in Ref. 50.

We plot the imaginary part of y_,(q,w)=x_.(q,q;)
along the line q=(g,,g,=¢,) in Fig. 2. The calculation of the
mean-field susceptibilities in the Dyson equation (5) was per-
formed over a 10 000 X 10 000 k-point mesh. In the analytic
continuation iw,— w+id we assume a finite width o
=1 meV. Smaller values of ¢ and finer k-point meshes do
not produce qualitative or significant quantitative changes in
our results.

Im y_.(q,w) in Fig. 2 displays very different behavior for
energies w<<2A=42.6 meV and w>2A. In the former re-
gion, the dispersion of the collective spin waves is clearly
visible as the sharp dark line. The finite width of this line is
a consequence of the broadening &. The dispersion is almost
flat for 0.17/a < q,=q,=0.97/a, where it lies very close to
w=2A. The distribution of spectral weight for the spin wave
is asymmetric, with much greater weight close to q=Q than
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FIG. 2. (Color online) Imaginary part of the transverse susceptibility in the Hubbard model for q=(gy,¢,=¢,). The spin-wave dispersion
is visible as the dark line running across the figure at @ <<2A=42 meV. Note the logarithmic color scale.

at q=0, reflecting the suppression of long-wavelength spin
excitations in the SDW state.>!

For w>2A, we find a continuum of excitations. It starts
abruptly at @=2A, corresponding to the minimum energy for
a single-particle excitation across the SDW gap. This mini-
mum is the same at all k points lying on the Fermi surface
shown in Fig. 1(b). By inspection, we see that for every
value of q, there exist points k and k+q lying on the Fermi
surface so that the minimum energy required for any excita-
tion is w=2A. We also see that Im y_,(q, ) tends to de-
crease with increasing w. This can be understood in terms of
the density of states (DOS) in the noninteracting model: the
DOS has a van Hove singularity at the Fermi energy and
decreases monotonically as one moves to higher or lower
energies. For an occupied state with energy w, below the
Fermi energy, the density of unoccupied states with energy
w, above the Fermi energy therefore decreases with increas-
ing w=w,—w, and hence the “density of excitations” con-
tributing to the transverse susceptibility also decreases with
increasing .

Close to q=0, the continuum is bounded from above by
the line w=vy-q, where vy is the Fermi velocity along k
=(k,,k,=k,). The peak in Im y_,(q,w) at this edge of the
continuum is due to single-particle excitations across the
Fermi energy in the same branch of the band structure. A
rather weak dispersing feature also appears within the con-
tinuum near q=Q, as shown in more detail in Fig. 3. This
paramagnon originates from single-particle excitations into
the back-folded band. Like the feature at small ¢, the para-
magnon disperses with the Fermi velocity. The paramagnon
and spin-wave dispersions curve away from one another in
what appears to be an avoided crossing.

Solving Eq. (5) for x_,(q.q;iw,) requires the inversion of
a 2 X 2 matrix. The determinant D(q,iw,) of this matrix is

D(q.iw,) =[1- UxUq.q;io,)]
X[1-Ux"q+Q.,q+Q;iw,)]
-[Uxq.q+Qsiw,)T. (6)

Making the analytic continuation iw,— w+i0*, the solution
of Re D(q,w)=0 yields the spin-wave dispersion. At low
energies, it has a linear dependence upon 6q=Q-q, i.e.,

w=cgqw|8q|, where cqy is the spin-wave velocity. An expres-
sion for cgy is obtained by expanding D(q,w) about q=Q
and 0=0.*39 In agreement with Ref. 49, we find

~ \/— 4(1/U - A2x)iPy -
csw= XU ’
where
w1
x = _? 8
vzk“ Ey ®)
1l )
y==>, —(cos” k,a + cos k.a cos kya)
Vi "
6 — 242
+ E——sin’ ka (. 9)
Ey

The spin-wave velocity is plotted as a function of U in Fig.
4(a) while we compare the low-energy linearized form of the
spin-wave dispersion to the numerically determined result in
Fig. 4(b). As can be seen, the linearized result holds only for
small energies w=0.5A.
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FIG. 3. (Color online) Imaginary part of the transverse spin
susceptibility in the Hubbard model for q=(q,.q,=¢g,) close to Q.
Note the linear color scale.
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FIG. 4. (a) Spin-wave velocity cgy in the Hubbard model as a
function of U for =1 eV. (b) Comparison of the spin-wave disper-
sion and the low-energy linear form as a function of sq=Q-q for
U=0.738 eV.

III. EXCITONIC MODEL

In this section we discuss the excitonic SDW in a general
two-band model with Fermi-surface nesting. We begin by
outlining the known results for the mean-field SDW
state.?#2%28-30 We write the Hamiltonian as

H=H,+H,, (10)

where the noninteracting system is described by

H0=EE[(fﬁ—ﬂ)clacka"'(€{<—M)f11¢fka] (11)
k o

and cLU (fi‘;‘g) creates an electron with spin o and momen-
tum Kk in the electronlike ¢ band (holelike f band). The sec-
ond term in Eq. (10) describes the interactions in the model
system. Following Refs. 31 and 34, we take this to consist of
five on-site terms H;=H..+H+H s+ Hr,+Hyr, that arise
naturally in the low-energy effective theory of a multiorbital
model. These correspond to intraband Coulomb repulsion,

8 T +
HCL,Zﬁ E Ck+q,Tck,Tck’—q,LCk',l’ (12)
kk',q
8 i
Hy= “éf > qu,Tfk,Tfkr_q,lfk',p (13)
kk’,q

interband Coulomb repulsion,

cf_ V E Eck+qo-cka'fk’ qgfk’a'7 (14)
kk',q o0
and two distinct types of correlated interband transitions,

82 t
Hir,= 0 2 (Chig g firifig +He), (1)
kk',q

=23 3 cqdiqrciofir  (16)
kk'.q o0
The interband interaction terms are responsible for a density-
wave instability when the electron and hole Fermi pockets
are sufficiently close to nesting. A number of different
density-wave states are possible:** a CDW with effective
coupling constant gcpw=8.—8&2.~ 2820, @ SDW with cou-
pling gspw=8,+8&2> @ charge-current-density wave
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(CCDW) with gecpw=8cr+82a—282, and a spin-current-
density wave (SCDW) with gscpw=gcr—g2.- In order to
model the iron pnictides, we henceforth assume that the
SDW state has the largest coupling constant.

In the presence of a SDW polarized along the z axis and
with nesting vector Q, the effective mean-field Hamiltonian
is written as

Hyp=Hy+ 2 E O-A(Clt,(xfk+Q’o'+ H.c.), (17)
k o

where the excitonic gap

2=50 S S ot e (18)

is assumed to be real. The precise relationship between A
and the magnetization is somewhat complicated.?>° To elu-
cidate it, we define the field operator,

,y(r) = /—2 [ercek o+ e D) fic o e*r, o (19)

where ¢ ,(r) is a Bloch function for the band . The local
magnetization M(r) is then

M) =-S5 5 S b (Mg ,(1)

4 s’ kk! ab=c.f

. ' . Oy
X gilkk >-r<a,g’s 2 bk,,s,>, (20)

where g is the g-factor and up is the Bohr magneton. Only in
the limit when ¢y ,(r) is constant do we find A to be simply
related to the magnetization,

2gupA

8spw

M(r)=————(cos Q- r)e. (21)

For simplicity, we follow Refs. 13, 23, 27, and 52 in assum-
ing constant Bloch functions.

In calculating the susceptibilities, we make use of the
single-particle Green’s functions of the mean-field SDW
state. The two normal (diagonal in band indices) Green’s
functions are defined by

B
f(fa(iwn) =_f dT<TTCk,0'(T)C]'Lg—(0)>elwnT
0

— iwn - 6{(+Q (22)
(i, = EyQ)iw, — E_ji0)

B
GYf (iw,) =~ f AT fio oD o (0))en
0

O.)n - 6§+Q (
= X 23)
(lwn - E+,k)(lwn - E—,k)
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while the anomalous (band-mixing) Green’s functions are

B
Glf(.c,-a(iwn) == J dT<TIfk,a(T)C£+Q,0(O)>eiwn7
0

B oA (24)
(iw, - E+,k)(iwn - E—,k) '

Glc({a(lwn) == f dT<TTCk ()'(T)fk+Q 0(0)>elw T= G£+Q g-(lw )

(25)

The functions E- y are the dispersion relations for the recon-
structed bands,

Erp==-leo+e * \/(€§+Q - ) +4A%.  (26)

1
2
For energies much larger than A we have E, =~ €, and
E—,k = 6{(.

The total spin operator is written as

aba'b’ abba(0)

abee(0) . cca'b’ abee(0)  cca'b’

+ 8200 X0 + X200 XEio) + & X 00

b b b b’
+gcf(X¢—l+C(])CO Xicfoo + Xl—lféQ)Af 4

abcf(0) . cfa’b’ abcf(0) _ cfa’b’

+ 82200 X0 + X2k XiQo + X

ubcc(O)X/‘fa b’ abee(0)  ffa'b'

+ g2b(X—+ 00

where we have adopted the short-hand notation

Xt =X O(q+ mg+niio,),  (30)
= g emio). G
Note that Xaia mbn(o does not depend on q'. We have also

introduced the notation a=c(f) when a=f(c). The first line
of Eq. (29) gives the mean-field susceptibilities, obtained by
using Wick’s theorem to contract the correlation function in
Eq. (28) into products of two mean-field Green’s functions.
The first two terms on the right-hand side of Eq. (29) are the
correlators resulting from the product of two normal Green’s
functions,

1 1 . . ;
Xo = - ‘72 =2 G (i1,)Gily (v, ~ iw,)
k iv,

and from the product of two anomalous Green’s functions,

_ bba(0
X200 = 0q.q'(Bar 50 X200 + Oar 50 X2y, 5‘3 )

bfe(0)
+Qo0 T Xi+ff)0 X=+.00 T X=+,0Q X-+,Q0

bfe(0) , fea'b'
i+ff)0 X500 + X240 XK Qo

abff(0)

+00 T X4 OQ X-+ Q0 T X=£00 X-+,00 T X-5£0Q X-+,Q0/>
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S(r) =2 w*(r)—wy (r)

S‘S'

2 Ezak+qy vs’bkv'e ‘ar

2Va b=c.f k,q 55"
1 .
== 2 2S,qe, (27)

where S, ,(q) is a generalized spin operator. The dynamical
spin susceptibility is then defined by

1 L : ,
Xij(q’q, ;iwn) = ‘_/2 E <TTS;,;,((1» T)Sl]lr’bf(_ q/’0)>elw,,7'

a,ba’b’ 0
=2 2 X (0.9 siw,). (28)
“ba’b’

The generalized susceptibilities x; aba’b! (q.9";iw,) are calcu-
lated using the RPA. We are only concerned with the trans-
verse susceptibility, which is obtained by summing the lad-
der diagrams. This yields the Dyson equation

abba(O)

bba(
) + 844+Q.q' (Our O aXf+3QO)+ Sar 5% X100 )

abff(0 b bFF(0) b
A )Xﬁ:foo +Xi+f{)(Q X@Q )

cfa'b’ abfc(0) _ cfa’b’ )
abfc(0) _ fea'b' )

cca'b’

abff(0) _ cca'b’ ) (29)

bba(0 . a . .
X = - E LS Gl (i,)GE4, (i, - iw,).
k iv,

The next two terms are the umklapp susceptibilities which,
as in the Hubbard model, are the product of a normal and an
anomalous Green’s function,

bba
=13

e E Gk T(ZV )Gkﬂ”(zv iw,),

abha 0)

—+0Q == E E GkT(lV) iﬂ—ql(lv wn)

The remaining lines of Eq. (29) give the ladder sums for the
various interactions: on the second line we have the intra-
band Coulomb interactions, on the third line the interband
Coulomb interaction, and on the last two lines the two types
of correlated transitions. In Figs. 5(a) and 5(b), we show a
diagrammatic representation of the Dyson equation for X"Z 00

and X', respectively. Note that the Dyson equation is also
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FIG. 5. Diagrammatic representation of the Dyson Eq. (29) for (a) x‘_{fcoo and (b) x2{- The curved lines are the mean-field Green’s
functions in the SDW state. When the label b=c, f follows the label a=c,f in the direction of the arrow, the corresponding Green’s function

is G,

valid in the normal state in which case the Xfibgéo)

only nonzero mean-field susceptibilities.
From the structure of the Dyson equation, we see that
aha P is only nonzero for q=q’ and m, ne{0,Q}. We
observe that Eq. (29) may then be written as four indepen-

dent sets of coupled equations for

are the

D00 X 50 XS 0 X ol (32a)
{ q{)o’)(icfj(f)o’)(f{[{)o» Cf,{)o}» (32b)
{Xf + oo’Xijjf](c)o,Xiiq(c)o’ erCQO} (32¢)
{Xi?%o,xf icoo’Xc—?cQo’ ’Y,‘Qo}. (32d)

Note that this includes X_}i“nfn for mn=QQ and mn=0Q by
symmetry; all other possible transverse susceptibilities van-
ish. The first two sets contain the contributions to the intra-
band susceptibility, which involve spin-flip transitions within
the ¢ and f bands,

X" q,iw,) = — E

ab c.f

B
dﬁm;,u(q, 7S} 5(= q,0))e'

= Xiff)o + X5 Iy 00 Xf 00t Xffffoo (33)

The last two sets contain the contributions to the interband
susceptibility, which involve spin-flip transitions between the
¢ and f bands,

leer(q,za) _ 2

ah c.f
cffe cfef
“to0t —+00+Xf+00+Xf+00

We note that the Dyson equation for the interband suscepti-
bilities has been previously obtained in Refs. 23 and 52 for
the case where only the interband Coulomb interaction Eq.
(14) is nonzero. From Eq. (28) we see that the total trans-
verse susceptibility is the sum of the intraband and interband
contributions,

dr<TTSa 2@, 7S, (- q,0)e

(34)

intra

X" (q,i,) + X" (q, iw,). (35)

X—+(q’ iwn) =
Since the interband and intraband susceptibilities involve
qualitatively different types of excitations, considering these
separately offers greater physical insight into the magnetic
response than the total susceptibility.

In the following sections we discuss the transverse sus-
ceptibility for two different models of the band structure. For
simplicity, we restrict ourselves to the case g..=g=g2»=0,
as these interactions do not drive the SDW instability. We
emphasize, however, that the preceeding results are valid for
any choice of couplings in both the normal and SDW states.
Except where stated otherwise, we furthermore set g,,=0, as
at reasonable coupling strengths we find very little change in
the transverse susceptibility upon varying g.r and g,, while
keeping gspw=gcr+82, fixed. Unless explicitly mentioned,
we have used a 10 000X 10 000 k-point mesh and a width
0=1 meV to calculate the mean-field susceptibilities.
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FIG. 6. (Color online) (a) Band structure and (b) Fermi surface
of the noninteracting insulating excitonic model. In (b), the nesting
vector Q=(7/a,m/a) is also shown.

A. Insulating SDW state

We first examine an excitonic model with perfect nesting
between the electron and hole bands, i.e., 5§=_€{<+Q for all k.
Although hardly realistic, at the mean-field level it exactly
maps onto the BCS model after particle-hole
transformation.”® It is therefore useful for obtaining physi-
cally transparent results and is frequently encountered in the
literature.?82%31:34.35 We assume the 2D band structure

&, = 2t(cos k.a + cos k,a) + €, (36a)

e{( =2t(cos k,a + cos kya) - €, (36b)
where we set =1 eV and €y=3 eV. The band structure and
Fermi surface at half filling are shown in Figs. 6(a) and 6(b),
respectively. Below we will take ggpw=1.8 eV, for which
the mean-field equations yield a SDW with nesting vector
Q=(m/a,m/a), critical temperature Tspw=138 K, and T
=0 gap A=21.3 meV. The system is insulating at T=0, with
the SDW gap completely removing the Fermi surface.

We plot the imaginary parts of the interband, intraband,
and total transverse susceptibilities for q=(q,.q,=¢,) in
Figs. 7(a)-7(c), respectively. We consider first the interband
contribution. For q sufficiently close to Q, we find a con-
tinuum of single-particle excitations. In contrast to the results
for the Hubbard model (Fig. 2), the magnitude of the trans-
verse susceptibility in this region tends to increase with in-
creasing w. This can again be explained in terms of the DOS
of the noninteracting model, which now increases as the en-
ergy is raised (lowered) away from the Fermi energy up
(down) to a van Hove singularity at 3 eV (=3 eV) in the
electronlike (holelike) band. The density of excitations con-
tributing to the susceptibility therefore also increases with .
As the SDW state is insulating, with a minimum energy of
2A required to excite a quasiparticle across the gap, the con-
tinuum is sharply bounded at w=2A=42.6 meV. The con-
tinuum is also bounded by a dispersing V-shaped feature
with minimum at q=0.54Q, which is not seen for the Hub-
bard model. The absence of any weight at small q is antici-
pated from the band structure in Fig. 6, which shows that the
minimum wave vector for an interband transition with en-
ergy w<400 meV is q=0.5Q. The V-shaped feature is
plotted in detail in Fig. 8(a). As shown in Fig. 8(b), it is due
to the weak nesting of the hole band at k=0.23Q with the
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electron band at k=0.77Q. For the energies considered here,
to excellent approximation the interband susceptibility de-
pends only on |5q|=|Q-q|.

For q near Q, Fig. 7(a) shows a spin-wave dispersion
which appears to intersect the continuum and continue as a
paramagnon. Figure 9 reveals, however, that the situation is
more complicated: the spin-wave dispersion does not inter-
sect the continuum but instead flattens out as it approaches
®w=2A and disappears at q=0.985Q. As in the Hubbard
model, the paramagnon and spin-wave dispersions appear to
avoid one another. The paramagnon nevertheless seems to
connect to significant weight lying just inside the continuum
region at the intersection point with the spin-wave disper-
sion.

We now turn our attention to the intraband contribution to
the transverse susceptibility in Fig. 7(b). Apart from a for-
bidden region close to q=0, this appears almost like a mirror
image of the interband susceptibility, albeit much reduced in
weight. In particular, we note a V-shaped dispersing feature
at q=0.46Q, the tendency of Im x""(q, ) to increase with
increasing w, and a dispersing feature at the edge of the q
=~ () forbidden region, which resembles the paramagnon close
to q=Q. The presence of the V-shaped feature is particularly
interesting, as the discussion above indicates that it is due to
interband excitations. Thus we find that interband excitations
give a significant contribution to the intraband susceptibility.
This is confirmed by examining the Dyson equation for
X500r cf. Fig. 5(b): for g..=g=8,=g2,=0, as assumed
here, the intraband susceptibilities do not appear on the right-
hand side of the equation so that the RPA enhancement of
X500 stems only from the umklapp susceptibilities Xﬂizo
and Xf Lfféo. The coupling to these terms in the Dyson equa-
tions is through the anomalous Green’s functions G¢ and
G’¢, which reflect the mixing of the states in the electronlike
and holelike bands separated by the nesting vector Q in the
SDW phase. Consequently, the intraband susceptibility is
similar to the interband susceptibility but shifted by Q.

The total transverse susceptibility in Fig. 7(c) clearly
shows the partial symmetry of the response about q=Q/2
but also the asymmetric distribution of weight. Im y_,(q, ®)
for |q|<|Q|/2 is roughly one order of magnitude smaller
than at q'=Q—-q.

Spin-wave velocity

The calculation of the spin-wave velocity proceeds as for
the Hubbard model. For g..=g;=g,,=0, solving the Dyson
equations for the interband susceptibilities in Egs. (32¢) and
(32d) again involves the inversion of a 2 X2 matrix, which
has the determinant

. 0 . 0 0
D(q,0) =[1 - g X755 = 22X 7001 = gex 45
~ 82X L5~ Lo L5 + gaax )]
0 0
X (g i’iﬁ’&%) + gzaXiJj{,%(o)]- (37)

Expanding this determinant about w=0 and 5q=Q-q=0,
we obtain the low-energy linear form w=cgy|dq| of the spin-
wave dispersion. For the band structure considered here, the
spin-wave velocity is given by
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FIG. 7. (Color online) Imaginary part of (a) the interband, (b) the intraband, and (c) the total transverse susceptibility in the insulating
excitonic model for q=(g,.q,=q,). The spin-wave dispersion is visible as the dark line at w<<2A close to Q in (a) and (c). Note the

logarithmic color scale.

2t2a3[a0(g§a - ng) - 82

Csw = \/ >
(@} +2a0a,)(g5, - 8?f) — 20582,

where
Ly
W gy @

(38)

(39)

(40)

1 €
ay=—— ﬂit cos k.a

2V | 4B,
2A4+A2 EC 2_ EC 4

+ ( "*‘3) (Gs) sinfka(,  (41)

Ey
and
Ex= (e, o) + A% (42)

We plot cgy as a function of ggpy for different values of g.,
in Fig. 10(a). The behavior of the spin-wave velocity for
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=(qy-9y=4,) close to 0.54Q. Note the linear color scale. (b) Band
structure along the Brillouin-zone diagonal, showing the nesting
responsible for the dispersing feature in (a).

gspw>1 is included as an inset. For ggpw=g. we always
find cé >0; for sufficiently large g.,> gspw, however, we
have cgy <O which indicates that the system becomes un-
stable toward a different ground state. This is not surprising,
as for g.,>gspw>0>g,, the effective coupling ggpw is
smaller than that for the CDW or SCDW. In the opposite
case g, gspw - 0> g, the coupling constants for the SDW
and CCDW states are equal and always greater than those for
the CDW and SCDW, and so the SDW remains stable. In
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FIG. 9. (Color online) Imaginary part of the interband transverse
susceptibility in the insulating excitonic model for q=(q,,q,=¢.)
close to Q. The spin-wave dispersion is visible as the thick black
line in the lower left-hand corner. Note the linear color scale.
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FIG. 10. (Color online) (a) Spin-wave velocity cgy as a function
of gspw=8cs+ 824 in the insulating excitonic model. Inset: cgy for a
larger range of gspw. (b) Spin-wave dispersion in the excitonic
model and its low-energy linear form for gspw=1.8 eV as a func-
tion of dq=q—Q. Shown for comparison is the spin-wave disper-
sion in the Hubbard model from Fig. 4(b) for the same T=0 gap.

Fig. 10(b) we plot the spin-wave dispersion in the excitonic
model as a function of &q. Compared to a Hubbard model
with identical 7=0 gap, the spin-wave dispersion has both a
higher low-energy velocity and remains approximately linear
up to higher energies [see Fig. 4(b)].

Although Eq. (38) is a rather complicated function of g,
and g,,, for gspw <3 eV the spin-wave velocity in the exci-
tonic model shows remarkably little dependence upon the
interaction constants, in contrast to the Hubbard model re-
sults in Fig. 4(a). Instead, the value of cgy is fixed by the
band structure: for an excitonic gap A <t (the weak-coupling
limit) we have to excellent approximation cgw=0x/\2
where U is the average Fermi velocity. This is anticipated by
the results of Refs. 22 and 23 for chromium, where it was
found that cgw=\v,v,/3, where v, is the electron (hole)
Fermi velocity and the factor of 1/v3 arises because a three-
dimensional Fermi surface is considered. It is also consistent
with our observation that y_,(q,w) is rather insensitive to
the choice of g.r and g5, for small ggpy:-

The behavior of cgy in the strong-coupling regime of the
Hubbard and excitonic models is also qualitatively different.
In the former, the U>t limit of Eq. (7) gives cqw=v2J
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where J=42/U is the exchange integral of the corresponding
effective Heisenberg model.¥° In the excitonic model,
however, the inset of Fig. 10(a) reveals that cqw has only
weak dependence upon the interaction strength for ggpw>1.
A strong-coupling expansion of Eq. (38) gives the limiting
value cswzvita. The interpretation of the strong-coupling
limit in the excitonic model is not straightforward: as
gspw — %, simultaneous occupation of the ¢ and f states on
the same site is forbidden but double occupation of the ¢ and
f states is allowed. Since we work at half filling, one might
expect a checkerboard orbital ordering with filled ¢ states on
one sublattice and filled f states on the other, which is in-
compatible with SDW order. However, it has been shown in
a spinless two-band model that such a state is unstable to-
ward an excitonic insulator or a phase with either the ¢ or f
states fully occupied for €,# 0.>> How this result would
change in the presence of spin is not clear. In any case, the
gspw >t limit seems somewhat unphysical without also con-
sidering g.. and g to be large and so we do not further
discuss the strong-coupling regime here.

The evaluation of the intraband susceptibilities proceeds
similarly but here the denominator is D(q+Q,w). This
yields an identical spin-wave dispersion but shifted to q=0.
As in the Hubbard model, however, the spin wave has van-
ishing weight close to the zone center and is barely visible as
it exits the continuum in the lower right-hand corner of Fig.
7(b).

B. Metallic SDW state

It is more generally the case that the nesting condition
ef(%—e{( +q is only approximately satisfied. Furthermore,
there may be portions of the Fermi surface that do not par-
ticipate in the excitonic instability, as is the case in
chromium.?*-26 The pnictides also have a complicated Fermi
surface involving several bands. Although the numerous
models for the band structure differ in their
details,'>!31536-40 there is general agreement that in the “un
folded” Brillouin zone corresponding to the 2D iron sublat-
tice the nesting of hole pockets at k=(0,0) with electron
pockets at (7/a,0) or (0,7/a) is primarily responsible for
the SDW. In the physical, tetragonal Brillouin zone, both
(7/a,0) and (0, 7/ a) are folded back onto the M point, lead-
ing to two electron pockets around that point.3®*? The wave
vectors in the present paper refer to the unfolded zone. Ap-
parently only one of the electron pockets undergoes the ex-
citonic instability, yielding a SDW with ordering vector Q
=(m/a,0), say. The other electron pocket at Q' =(0,/a)
remains ungapped. We can capture the basic features of this
scenario within a two-band model by including one hole
pocket around (0,0) and treating the two electron pockets as
belonging to the same band. We thus assume the band struc-
ture

€ =21 cos k,a cos kya + €, (43a)

ek = 2t(cos k,a + cos kya) + €. (43b)

We take 1=1 eV, €.=1.5 eV, &=-3.5 eV, and fix the dop-
ing at n=1.916, which gives electron and hole pockets of
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FIG. 11. (Color online) (a) Band structure and (b) Fermi surface
of the noninteracting metallic excitonic model. In (b), the nesting
vectors Q=(7/a,0) and Q'=(0, 7/a) are also shown.

identical area. The band structure and Fermi surface are il-
lustrated in Figs. 11(a) and 11(b), respectively. Note that the
hole pocket is nearly but not quite perfectly nested with both
electron pockets. We impose a single-Q SDW with ordering
vector Q=(m/a,0). For gspw=1.873 eV we find a mean-
field state with critical temperature Tgpw=132 K and 7=0
gap A=21.3 meV. In the 7=0 SDW state both the hole
pocket at the zone center and the electron pocket at (7/a,0)
are completely gapped while the electron pocket at (0, 7/a)
remains intact.

The imaginary parts of the interband, intraband, and total
transverse susceptibilities for q=(g,,0) are shown in Figs.
12(a)-12(c), respectively. Our results are very similar to
those for the insulating SDW model in Fig. 7. The slightly
higher magnitude of the transverse susceptibility is due to the
greater density of states in the electronlike band. The simi-
larity is not surprising, as the relevant excitations in both
models have identical origin, i.e., excitations between states
close to two Fermi pockets which are gapped by an excitonic
SDW instability. The states close to the ungapped Fermi
pocket do not contribute to the interband susceptibility for
the plotted range of (q,w). Although these states do contrib-
ute to the intraband susceptibility for small values of q, they
are only negligibly mixed with states in the holelike band
and thus are not RPA enhanced by the interband interactions.

In contrast to the insulating SDW state studied in Sec.
1T A, here the interband susceptibility does not just depend
on although it is identical for q=(g,,0) and
(m/a, 77/ a—gq,) by tetragonal symmetry, and quantitatively
very similar along q=(m/a—q,/\2, *q,/\2), away from
these high-symmetry lines in q space we find that the con-
tinuum can extend to significantly lower energies. This
is shown in Fig. 13, where we plot Im "{(q,w) for q
=(m/a—q cos 6,g sin ) with #=7/8. Although the re-
sponse for o> 100 meV is very similar to that in Fig. 12(a),
we see that the lower edge of the continuum is not constant
at w=2A but instead shows higher and lower thresholds
which coincide only at special values of q.

The origin of this threshold behavior is the imperfect nest-
ing of the Fermi pockets. Consider Fig. 14(a), which shows
the superimposed hole and back-folded electron Fermi pock-
ets: along k=(k,,0) or (0,k,), the width of the hole Fermi
pocket is greater than that of the electron one while the re-
verse is true for k=(k,,k,=k,) or (k,,k,=—k,). In the former
case, the intersection of the noninteracting electronlike and
holelike dispersions therefore occurs above the Fermi energy
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FIG. 12. (Color online) Imaginary part of the (a) interband, (b) intraband, and (c) total transverse susceptibility in the metallic excitonic
model for q=(g,,0). The spin-wave dispersion is visible as the dark line at w <2A close to Q in (a) and (c). Note the logarithmic color scale.

[Fig. 14(c)] while in the latter it occurs below the Fermi
energy [Fig. 14(d)]. In the reconstructed bands of the exci-
tonic model, the SDW gap is always centered at the point of
intersection of the original bands, as can be seen from Eq.
(26) and in Figs. 14(c) and 14(d). In general, the difference
between the Fermi energy and the bottom of the recon-
structed electronlike band, A, \, and the difference between
the Fermi energy and the top of the reconstructed holelike
band, A_j, will be unequal. The minimum energy for an
interband excitation with wave vector Q+dq is therefore
ming(A+ +Ax v 5). For 8q along the high-symmetry direc-
tions mentioned above, the tetragonal symmetry of the Fermi
pockets ensures that this minimum energy is 2A. Away from
these directions, however, the energy difference depends

on o6q. For example, the states near the Fermi surface
in Fig. 14(a) at k=(0,k,) and (k,,k,=k,) are connected
by 8q=[q cos(m/8),~g sin(7/8)] with g=0.17m/a; from
Figs. 14(c) and 14(d) we see that the minimum energy for
single-particle excitations with this wave vector is 1.2A
=25.6 meV, which marks the lowest edge of the continuum
in Fig. 13. The upper threshold originates from the maximum
energy connecting the top of the holelike band and the bot-
tom of the electronlike band, which for this q is 2.8A
=59.6 meV. For the remainder of this paper we shall restrict
ourselves to high-symmetry directions.

Since only one-electron pocket is gapped, the directions
(9x,0) and (0,g,) are not equivalent. The imaginary part of
the interband transverse susceptibility along q=(0,q,) is
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FIG. 13. (Color online) Imaginary part of the interband transverse susceptibility in the metallic excitonic model for q=(7/a
—g cos 0,q sin 0) for 6=m/8. The spin-wave dispersion is visible as the dark line at w<<2A close to Q. Note the logarithmic color scale.

shown in Fig. 15. This is the direction toward the second
nesting vector Q' =(0, 7/a), which was not selected by the
SDW instability. For q sufficiently close to Q’, we thus find
the response generated by transitions between states near the
(gapped) hole Fermi pocket and states near the ungapped
electron Fermi pocket. At w=2A, this is very similar to the
interband susceptibility near Q [Fig. 12(a)], reflecting the
small changes to the band structure at high energies upon
opening of the SDW gap. The differences are more striking
at lower energies. In particular, comparing Fig. 15 to Fig.
12(a), we see that the continuum extends to lower energies
close to Q' than close to Q. The minimum energy required
for a single-particle excitation between the states near the
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FIG. 14. (Color online) (a) Electron and hole Fermi pockets
superimposed upon one another. (b) Density of states close to the
Fermi energy. (c) Comparison of the band structure near the inter-
section of ei’HQ and e{( in the normal and SDW phases for k
=(k,,0). (d) Same as in (c) but for k=(k,,k,=k,).

ungapped electron pocket and the gapped hole pocket is
smaller than 2A, thus giving a lower threshold for the con-
tinuum near Q.

Another significant difference concerns the spin-wave dis-
persion. The spin-wave dispersion near Q is visible in the
lower left-hand corner of Fig. 12(a), and it intersects the
continuum and appears to continue as a paramagnon. From
Fig. 15, we see that there is also a gapless Goldstone mode at
q=Q’. This mode is gapless since it rotates the single-Q
SDW into a superposition of Q and Q' SDWs, which is
degenerate with the single-Q SDW in our tetragonal model.
Although there appears to be a spin-wave branch around Q’,
it is not as distinct as in Fig. 12(a) due to the lower threshold
of the continuum. We therefore plot the interband transverse
susceptibilities for a finer q resolution near Q and Q in Figs.
16(a) and 16(b), respectively. As expected from the discus-
sion above, the former is qualitatively identical to Fig. 9. The
latter, in contrast, shows several different features: the spin-
wave dispersion does not curve away from the edge of the
continuum but rather intersects it with little change in veloc-
ity and the spin-wave and paramagnon features approach
much closer to one another than for q = Q. Although it is not
clear from Fig. 16(b), the spin-wave and paramagnon disper-
sions do not intersect, and the spin waves become damped at
w=1.7A.

To obtain the spin-wave dispersion, we must again solve
Re D(q,w)=0 with D(q, w) given by Eq. (37). We have not
been able to obtain analytical expressions for the spin-wave
velocity, however, as the Fermi distribution functions appear-
ing in the mean-field susceptibilities cannot be expanded as a
Taylor series in 8q due to the ungapped electron Fermi
pocket. Plotting the dispersions at q=Q and q~Q’ in Fig.
17, we see that the velocity at Q is roughly 25% higher than
at Q'. Despite the variation in A y, there is no anisotropy of
the low-energy spin-wave velocity. The difference between
the results for =0 and 6=/8 at higher energies is due to
the lower edge of the continuum in the latter case. Whereas
the spin waves close to Q have a very similar dispersion
compared to the insulating model [Fig. 10(b)], the dispersion
close to Q' has two noticeable kinks at w=0.65A and w
=1.25A. As shown in the inset, these kinks coincide with
abrupt changes in Im D(q, w): Im D(q, w) becomes finite at
®w=0.65A and starts to sharply increase at w=1.25A. The
first feature corresponds to the onset of Landau damping as
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FIG. 15. (Color online) Imaginary part of the interband transverse susceptibility in the metallic excitonic model for q=(0,qy). The
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the spin-wave branch enters the continuum. The second fea-
ture is a result of the DOS, as discussed in the following
paragraph.

Examining the lower edge of the continuum in both pan-
els of Fig. 16, we see that whereas the continuum disappears
sharply at w=2A near Q, it appears to vanish more smoothly
near Q’. In the latter case there are two distinct thresholds,
which are particularly visible around ¢,=0.997/a. To exam-
ine this more closely, we plot Im y_,(q, w) as a function of @
for fixed q near Q and Q’ in Figs. 18(a) and 18(b), respec-
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FIG. 16. (Color online) Imaginary part of the interband trans-
verse susceptibility in the metallic excitonic model for (a) q
=(q,.0) close to Q and (b) q=(0,¢,) close to Q. In both panels the
spin-wave dispersion is visible as the thick black line in the bottom
left-hand corner. Note that in (b) that the continuum region starts at
®=0.6A. In both panels we use a linear color scale.

tively. In the former case, we see the steplike start of the
continuum at w=2A. The peak at this energy is due both
to the remnant of the spin-wave branch (at least for g,
=0.987/a) and to the enhancement of the DOS at the edge
of the SDW gap. The finite value of Im y_,(q,w) for w
<2A is an artifact of the finite width 6. The susceptibility
near Q' is qualitatively different: the lower threshold of the
continuum is at w;=0.65A and immediately above this the
susceptibility increases continuously as Vo—w;. At w,
=1.3A, the susceptibilility abruptly starts to increase more
steeply. The locations of these two thresholds correspond to
the kinks in the spin-wave dispersion. The rapid increase in
Im x_,(q,w) above w, accounts for the strong increase in the
damping (see inset of Fig. 17).

As for the interband susceptibility near Q, the origin of
the lower threshold is the variation in A . The difference is
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FIG. 17. (Color online) Spin-wave dispersion in the metallic
excitonic model close to Q for 8q=(-g cos 6, sin ) with =0
(solid red line) and 6=7/8 (thin dotted red line). The dispersion for
6=1/4 is indistinguishable from the =0 case. We also plot the
spin-wave dispersion close to Q' (dashed black line). Inset: imagi-
nary part of D(q,w) for each dispersion. We have used a 20 000
X 20 000 k-point mesh and a width 6=0.1 meV to calculate the
mean-field susceptibilities. Note that the finite value of Im D(q, w)
for the spin waves close to Q for w<<2A is an artifact of the finite
width 6.
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FIG. 18. (Color online) Imaginary part of the transverse suscep-
tibility as a function of w at various values of q near (a) Q and (b)
Q’ in the metallic excitonic model. We have calculated the mean-
field susceptibilities using a 30 000X 30 000 k-point mesh and a
width 6=0.2 meV.

that here the threshold originates from the minimum energy
required for a single-particle excitation between the states
near the gapped hole pocket and the states near the ungapped
electron pocket, w;=miny(A, \,A_y). From Figs. 14(c) and
14(d) we deduce w;=0.6A, closely matching the lower
threshold in Fig. 18(b). The strong increase in Im x_,(q, ®)
above w, is due to the peaks in the DOS located at *w, on
either side of the Fermi energy, shown in Fig. 14(b) because
of this DOS enhancement, the density of excitations between
states close to the gapped and ungapped Fermi pockets is
increased above w,.

IV. EXPERIMENTAL SITUATION

This work ultimately aims to shed light upon the nature of
the antiferromagnetism in the iron pnictides, in particular, the
extent to which it is itinerant or localized in character. There
are several published results of inelastic neutron scattering
examining the spin excitations in the antiferromagnetic state
of CaFe,As,,*’*% SrFe,As,,® and BaFe,As,.* In these
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experiments, only transverse excitations contribute to the
neutron-scattering cross section, allowing us to write it as

o

dQdE

« |[F(@)[ng(w) + 11Im x_,(q, ), (44)

where F(q) is a form factor and ngz(w) is the Bose-Einstein
distribution function. A direct, quantitative comparison be-
tween theory and experiment would require a more realistic
model for the low-energy band structure than the one we are
using. We nevertheless make several general remarks relat-
ing what we have learnt about the spin excitations in the
excitonic SDW state to the experimental results.

We first review the experimental situation. Despite con-
siderable variation in the Néel temperature within the
AFe,As, (A=Ca, Sr, or Ba) family, the static magnetic prop-
erties of these compounds are rather similar. In particular,
antiferromagnetism only occurs in the presence of an ortho-
rhombic distortion, which fixes the ordering vector Q. Ex-
periments on the low-energy spin dynamics are also in broad
agreement: there is a strongly dispersing spin wave close to
Q,46:4754-57 the spin-wave velocity is anisotropic,*’>*-7 and
the spin-wave dispersion has a gap of energy 6-10
meV.#047:34-57 At present, however, there is considerable dis-
agreement over the high-energy excitations. For CaFe,As,, it
was reported® that the spin wave is strongly damped at en-
ergies above 100 meV, suggesting the presence of a particle-
hole continuum. On the other hand, although Zhao et al¥
found similar spin-wave velocities, they did not observe any
significant jump in the damping of the spin wave below 200
meV, which would indicate the intersection of the spin-wave
dispersion with the continuum. The results for BaFe,As,
show greater inconsistency, with reports*® of strong spin ex-
citations possibly up to 170 meV in stark disagreement with
claims of spin-wave damping by continuum excitations at
energies as low as 24 meV.”’

The results of Refs. 57 and 55 are most consistent with
itinerant antiferromagnetism, as the existence of a particle-
hole continuum is a key feature of this scenario. Interpreting
the latter experiment® in terms of the excitonic model, we
deduce a SDW gap of A=50 meV. This is nearly twice the
estimate A=30 meV of the T=0 gap based on ARPES for
SrFe,As,.2° Although a SDW gap of only 12 meV for
BaFe,As,, which we could infer from Ref. 57, seems low, we
have seen above that spin-wave damping sets in at energies
much smaller than 2A, depending upon the details of the
reconstructed band structure. In order to fit the results of Ref.
47 into the excitonic picture, however, we require a SDW
gap of at least 100 meV implying a rather high value of the
ratio A/kzTspw=7. These results instead support a local-
moment picture.'#1=43 The absence of the continuum is nev-
ertheless surprising since ARPES shows clear evidence for
quasiparticle bands at low energies, which suggests a pos-
sible resolution:>>>% the imperfect nesting of the elliptical
electron pockets with the circular hole pocket is expected to
yield incompletely gapped Fermi surfaces in the SDW state,
which implies that continuum excitations are present down
to zero energy. As such, the spin waves would be damped at
all energies and the jump in the damping characteristic of the
entry into the continuum is absent. Such an explanation is of
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course at odds with Ref. 55, indicating the need for further
work to clarify the experimental situation.

The reported 40% anisotropy of the spin-wave velocity
within the ab plane*’ is quite remarkable. Although this
effect is absent from our results due to the tetragonal sym-
metry of the Fermi pockets, it nevertheless seems rather too
large to be accounted for by the expected elliptical shape of
the electronlike Fermi pockets in the pnictides.*’ Experimen-
tal results also do not show a second spin-wave branch at Q’,
as found here for the metallic SDW model. Both observa-
tions are likely due to the orthorhombic distortion in the
SDW phase, which lifts the degeneracy of the (7,0) and
(0,77) SDW,* and do not imply a failure of the excitonic
scenario.

We finally remark upon the gap in the spin-wave disper-
sion in the pnictides. Due to the absence of magnetic aniso-
tropy is our model, we always find Goldstone modes in the
SDW phase. As demonstrated in Fishman and Liu’s study of
manganese alloys,?” a gap is possible in an excitonic SDW
state in the presence of magnetoelastic coupling. The mag-
netoelastic coupling in the pnictides is indeed strong, as evi-
denced by the role of the orthorhombic distortion in fixing
the polarization and the ordering vector of the SDW,%757
suggesting that it might be responsible for the spin-wave
gap.

In summary, the neutron-scattering data for the antiferro-
magnetic state in the pnictides are currently unable to decide
upon the origin and character of the magnetism. We have
shown that the excitonic SDW scenario gives spin-wave ex-
citations in qualitative agreement with experiments. An ob-
vious direction of future work is therefore to examine the
spin excitations based on more realistic band structures. Con-
sidering the imperfect nesting of the electron and hole pock-
ets in the pnictides, it will be particularly interesting to ad-
dress the possibility of incommensurate SDW order.>* The
effects of the interactions not directly contributing to the
SDW instability should be included. Comparison of our re-
sults with those obtained within a model explicitly account-
ing for the orbital character of the bands is also important.
Furthermore, the orthorhombic distortion and a magnetoelas-
tic coupling should be implemented for greater realism. Al-
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though the spin excitations in more sophisticated models will
differ in their details from those presented here, we never-
theless think that our results will remain qualitatively correct
and will thus be valuable in interpreting future experiments.

V. SUMMARY

We have presented an analysis of the zero-temperature
transverse spin excitations in the excitonic SDW state of
two-band 2D models with nested electronlike and holelike
Fermi pockets. Using the RPA, we have derived the Dyson
equation for the spin susceptibility and have shown that the
total spin susceptibility can be divided into contributions
from interband and intraband excitations. We have solved the
Dyson equation in the special case when only the interac-
tions responsible for the SDW are nonzero. While the inter-
band excitations are then directly enhanced by the interac-
tions, the intraband excitations are still indirectly enhanced
due to the mixing of the electronlike and holelike states in
the SDW phase. The susceptibility exhibits collective spin-
wave branches close to the SDW ordering vector Q and also,
with much smaller weight, close to q=0, as well as a con-
tinuum of single-particle excitations at energies above a
threshold on the order of the SDW gap.

Depending upon the noninteracting band structure, the
opening of the excitonic gap can result in qualitatively dif-
ferent SDW states. This has been illustrated by considering
two models, one which becomes insulating in the SDW state
and another which remains metallic due to the presence of an
ungapped portion of the Fermi surface. For comparison, we
have also performed the corresponding calculations for a 2D
Hubbard model with the same mean-field SDW gap. Differ-
ences in the spin excitations between the insulating and me-
tallic models occur only at low energies and mainly close to
the nesting vector Q' between the (gapped) hole pocket and
the ungapped electron pocket, which is essentially unaffected
by the SDW formation. We have also discussed data from
neutron-scattering experiments in light of our results. We
conclude that the available data do not yet allow us to dis-
tinguish between an excitonic SDW and a local-moment sce-
nario for the antiferromagnetic order in the pnictides.

*brydon @theory.phy.tu-dresden.de
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