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Transport through molecular magnets is studied in the regime of strong coupling to the leads. We consider
a resonant-tunneling model where the electron spin in a quantum dot or molecule is coupled to an additional
local, anisotropic spin via exchange interaction. The two opposite regimes dominated by resonant tunneling
and by Kondo transport, respectively, are considered. In the resonant-tunneling regime, the stationary state of
the impurity spin is calculated for arbitrarily strong molecule-lead coupling using a master-equation approach,
which treats the exchange interaction perturbatively. We find that the characteristic fine structure in the differ-
ential conductance persists even if the hybridization energy exceeds thermal energies. Transport in the Kondo
regime is studied within a diagrammatic approach. We show that magnetic anisotropy gives rise to the appear-
ance of two Kondo peaks at nonzero bias voltages.
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I. INTRODUCTION

Over the past few years the idea of integrating the con-
cepts of spintronics and molecular electronics has developed
into a new research field dubbed molecular spintronics.1,2

Progress has not only been stimulated by technological inter-
ests but has also been accompanied by the realization that
magnetic single-molecule transistors exhibit various funda-
mental quantum phenomena.3–9 Among many promising
ideas discussed in the literature, particular attention has been
paid to current-induced spin reading and writing, spin relax-
ation, entanglement, quantum computation, and Kondo
correlations.10–19

An experimental realization of spintronics devices may be
achieved by using single-molecule magnets in combination
with metallic �nonmagnetic or ferromagnetic� leads. For
molecular-memory applications, long spin-relaxation times
are advantageous, which may be realized in molecules with
large magnetic anisotropy, such as molecules based on Mn12,
Fe4, and Ni4.20–22

Controlling and detecting the molecular spin by means of
electronic tunneling into source and drain electrodes poses a
major challenge. While some approaches rely on break junc-
tions, others are based on a scanning tunneling microscope.
In both cases, the coupling between the molecule and the
leads can vary by several orders of magnitude, thus giving
rise to strikingly different transport regimes.3–6,23–32

In the regime of weak molecule-lead coupling, many ex-
perimental features such as Coulomb blockade, spin block-
ade, sequential tunneling, and cotunneling can be described
within a master-equation or rate-equation approach treating
the electronic tunneling perturbatively.33 However, for strong
coupling, low-order perturbation theory breaks down. It is
then advantageous to treat the electronic tunneling exactly, at
the price of introducing approximations elsewhere.

Recently, the Kondo effect in single-molecule magnets
with easy-axis anisotropy has been studied by Romeike et
al.10 Their model describes an anisotropic spin coupled to
metallic electrodes by an exchange interaction, in the ab-
sence of a bias voltage. This differs from the model studied

here, in which the electronic spin in the relevant molecular
orbital is coupled to an additional local, anisotropic spin via
an exchange interaction J, i.e., charge fluctuations are explic-
itly taken into account. In addition, we include a nonzero
bias voltage. The presence of a Kondo effect for an aniso-
tropic spin is at first glance surprising since it requires two
approximately degenerate low-energy spin states connected
by a term in the Hamiltonian. The simplest Hamiltonian for
an anisotropic spin S with S�1 exchange coupled to an
electronic spin s

H = − K2�Sz�2 + Js · S �1�

does not provide such a term. Using a renormalization-group
approach, Romeike et al.10 could show that quantum tunnel-
ing of the magnetic moment, which is described by higher-
order anisotropy terms not included in Eq. �1�, may give rise
to a Kondo peak in the linear conductance, centered at zero
bias voltage. The Kondo temperature is found to depend
strongly on the ratio of the applied magnetic field and the
anisotropy barrier. Further, González et al.34 have derived a
Kondo Hamiltonian of the type studied in Ref. 10 from an
electronic model. They have shown that a transverse mag-
netic field can induce or quench the Kondo effect. This is due
to Berry-phase interference between different quantum-
tunneling paths of the spin.

Koerting et al.32 consider the nonequilibrium Kondo ef-
fect for a double quantum dot with four leads. By removing
the leads coupled to one of the dots one would obtain a
model similar to ours. The main difference is that we include
charge fluctuations on the dot which is coupled to the leads,
whereas Koerting et al.32 work in the regime of weak tun-
neling and Coulomb blockade, where both quantum dots act
as local spins.

In the present paper, we address the question of spin-
dependent resonant tunneling and Kondo tunneling through
molecular magnets. As noted above, we consider a resonant-
tunneling model where the electron spin on the quantum dot
or molecule is coupled to an additional local, anisotropic
spin via an exchange interaction J. We assume this interac-
tion to be weak, which allows us to employ perturbation

PHYSICAL REVIEW B 81, 024421 �2010�

1098-0121/2010/81�2�/024421�12� ©2010 The American Physical Society024421-1

http://dx.doi.org/10.1103/PhysRevB.81.024421


theory for small J. The stationary current through the left and
right leads is identical and is related to the local electronic
spectral function A���� on the molecule by the Meir-
Wingreen formula35

�IL� =
e

2��
�
�
� d�

�L�R

�L + �R
�fL��� − fR����A���� , �2�

where � is the spin, �� is the broadening of the molecular
level due to the hybridization with lead �=L, R to be defined
below, and f� denotes the Fermi distribution function of lead
�. The spectral function is determined by the imaginary part
of the retarded Green’s function, A����=−2 Im G��

ret ���. If
transport is dominated by a single molecular level of energy
	d, the coupling to the leads gives rise to a Lorentzian form
of the spectral function, A�

0���=� / ���−	d�2+�2 /4� with
�=�L+�R, which manifests itself as a peak in the differen-
tial conductance. For single-molecule devices, the excitation
of additional degrees of freedom due to the electronic tun-
neling is expected to translate into additional characteristic
features in the current.

We consider two complementary situations. The first is
the case of arbitrary gate and bias voltages but excluding the
region where the Kondo contribution to the current is large.
Within a master-equation approach treating the local ex-
change interaction perturbatively to second order, we calcu-
late the transition rates between local-spin states, showing
that the spin can be driven out of equilibrium even for strong
molecule-lead hybridization. Signatures of inelastic tunnel-
ing such as the fine-structure splitting of the differential-
conductance peaks persist in the regime where the hybridiza-
tion energy exceeds the thermal energy.

The second case concerns the regime of a large
Kondo contribution to the differential conductance, which
only occurs for small bias voltages on the order of
	eV	
K2�2S−1�, as we shall see. Here, transport is studied
using a diagrammatic approach. We consider the case that
the molecular orbital is far from resonance so that the
resonant-tunneling contributions are negligible. In addition,
this allows us to obtain analytical expressions. We find that
the magnetic anisotropy gives rise to the appearance of two
Kondo peaks in the differential conductance at finite bias
voltages 
Vc. This intrinsically nonequilibrium Kondo effect
is quite different from the zero-bias peak studied by Romeike
et al.,10 which relies on higher-order anisotropies absent
from our model. In our case, the magnetic anisotropy acts
like a magnetic field in that it gives rise to a splitting of the
Kondo peak. Furthermore, we find a suppression of the dif-
ferential conductance with 1 /	d

6.
The paper is organized as follows. In Sec. II, we introduce

our model. Section III considers transport within a master-
equation approach, which allows us to study magnetic non-
equilibrium phenomena, whereas Sec. IV considers a dia-
grammatic approach, which applies to the Kondo regime. In
Sec. V we summarize and discuss our results further. Some
detailed calculations are relegated to Appendices.

II. MODEL

We consider a magnetic molecule coupled to two metallic
leads. Electronic tunneling through the junction is assumed

to involve a single orbital with energy 	d and spin s that is
coupled to a local spin S via exchange interaction. The
model is described by the Hamiltonian

H = H0 + HJ + Hmag, �3�

where

H0 = 	d�
�

d�
†d� + �

�k�

��ka�k�
† a�k�

+ �
�k�

�t�a�k�
† d� + t�

�d�
†a�k�� �4�

is the resonant-tunneling Hamiltonian

HJ = Js · S �5�

with s�����d�
†����� /2�d�� is the exchange interaction be-

tween the electrons in the molecular orbital and the local
spin S, and

Hmag = − K2�Sz�2 �6�

describes the easy-axis magnetic anisotropy of the local spin.
We choose the z axis as the easy axis. Here, d�

† creates an
electron with spin � and energy 	d on the molecule while
a�k�

† creates an electron with energy ��k, wave vector k, and
spin � in lead �, which is considered a noninteracting elec-
tron gas. The vector ����x ,�y ,�z� denotes the Pauli matri-
ces. In break junctions produced by electromigration, the on-
site energy 	d can be tuned by applying a gate voltage.3–6

III. MASTER EQUATION FOR THE SPIN

The presence of strong coupling between the molecule
and the leads prevents us from treating the hybridization
term in Eq. �4� perturbatively. However, since the Hamil-
tonian becomes bilinear in the limit of vanishing exchange
coupling, J=0, our strategy is to diagonalize H0+Hmag ex-
actly while treating HJ as a perturbation up to second order.
This approach allows us to study the nonequilibrium dynam-
ics of the molecular spin at finite bias voltages for arbitrary
molecule-lead coupling strengths, provided that Kondo cor-
relations do not lead to a diverging contribution from higher-
order terms in the expansion.

We start by rewriting H0 in terms of new operators36,37

H0 = �
�k�

��kc�k�
† c�k�, �7�

where

a�k� = �
��k�

���k�
�k c��k��, �8�

d� = �
�k


�kc�k� �9�

and

���k�
�k = �����kk� −

t�
��k�

��k − ���k� + i�
, �10�
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�k =
t�

��k − 	d − �
��k�

t��
2

��k − ���k� − i�

. �11�

For simplicity we assume real tunneling amplitudes t�. In
terms of the new operators, the exchange interaction assumes
the form

HJ = J �
���kk����


�k
� 
��k�c�k�

†
����

2
c��k��� · S . �12�

The time evolution of the density matrix � of the full system
is described by the von Neumann equation, �̇=−�i /���H ,��.
The degrees of freedom of the local spin are described by the
reduced density matrix

�J = Trel � , �13�

which is obtained by tracing out all electronic degrees of
freedom. Assuming that the large electronic subsystem,
which acts as a spin reservoir, is weakly perturbed by the
exchange coupling, we replace the full density matrix by the
direct product ���J � �el. We need a further approximation
for the electronic density matrix �el. We assume that different
chemical potentials �L ��R� are imposed for the left �right�
lead far from the junction. It would thus be natural to assume
Fermi distributions f����= f��−��� for the physical elec-
trons created by a�k�

† . However, we need to make a reason-
able assumption on the transformed c fermions appearing in
Eqs. �7� and �12�. Since cLk�

† �cRk�
† � creates an electron in a

state with vanishing probability density far from the junction
in the right �left� lead, we assume the occupation numbers of
these states to be described by f����.

Making use of the Markov approximation that �J changes
slowly on the time scale of electronic relaxation, we obtain

�̇J�t� = −
1

�2�
−�

t

dt�Trel�HJ�t�,�HJ�t��,�J�t� � �el�� .

�14�

Here, operators O�t� with an explicit time argument,
including �J�t�, are in the interaction picture,
O�t�=ei�H0+Hmag�t/�Oe−i�H0+Hmag�t/�. Note that second-order
perturbation theory in the exchange coupling gives the first
nonvanishing correction to the conductance, since the expec-
tation value �S� and thus all first-order terms vanish exactly
due to symmetry.

We are interested in the stationary state. The stationary
density matrix �J has to be diagonal in the basis of eigen-
states 	m� of Sz since the full Hamiltonian H is invariant
under rotation about the z axis in spin space. Inserting Eq.
�12� into Eq. �14� we thus obtain a Pauli master equation,
also called rate equations, of the form

Ṗm = Pm+1Rm+1→m + Pm−1Rm−1→m − Pm�Rm→m+1 + Rm→m−1�

= 0 �15�

for the occupation probabilities Pm of spin states 	m� in the
stationary state. The transition rates read

Rm→m
1 = 	�m 
 1	S
	m�	2
J2/4
2��

��
���
� d�	
̃����	2	
̃���� − �
2m + 1�K2�	2

��1 − f�����f���� − �
2m + 1�K2� . �16�

The spectral functions are given by

	
̃����	2 =
��

�� − 	d�2 + �2/4
�17�

with ���L+�R and ���2�t�
2D�. The densities of states for

the leads, D�, are taken as constants. Compared to Eq. �11�
we have approximated the self-energy part of 
�k by a con-
stant and absorbed a factor 2�D�.

At zero temperature, the integrals can be evaluated ana-
lytically. In the limit of large bias voltages, the rates ap-
proach the constant value

Rm→m
1 =
�J2�L�R

2�����2 + �
2m + 1�2K2
2�

	�m 
 1	S
	m�	2.

�18�

On the other hand, at zero bias only the rates involving the
absorption of energy are finite whereas the emission rates
vanish.

Solving Eq. �15� allows us to compute the differential
conductance of the molecular junction. The current operator
of lead � reads

I� = − i
e

�
�
k�

t��a�k�
† d� − d�

†a�k��

= i
e

�
�
k�

�
��k���k�

�t�
��k�
� ���k�

�k c��k��
† c��k�� − H.c.� .

�19�

In order to compute the spin-dependent contribution to the
expectation value �I���Tr I��=Tr I��t���t� of the total cur-
rent, we use the iterative solution of the von Neumann equa-
tion

��t� = −
1

�2�
−�

t

dt��
−�

t�
dt�†HJ�t��,�HJ�t��,��t���‡ . �20�

A term containing ��−�� has dropped out here since it is
linear in HJ and thus vanishes upon taking the trace. Making
use of the Markov approximation we find

�I���2� = −
1

�2�
−�

t

dt��
−�

t�
dt� Tr†�I��t�,HJ�t���,HJ�t��‡��t�

�21�

for the second-order term. Carrying out the time integrals
and evaluating the spin sums as explained in Appendix A, we
obtain
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�IL��2� =
e

2��

J2

4 �
�����

��L − �L���L + �R��

��
m

Pm
1

2
	�m − 1	S−	m�	2I�������− 2m + 1�K2�

+
1

2
	�m + 1	S+	m�	2I�������2m + 1�K2�

+ 	�m	Sz	m�	2I������0�� �22�

with

I������E� � � d�	
̃�����	2

��	
̃����	2	
̃���� − E�	2�1 − f�����f���� − E�

− 	
̃����	2	
̃���� + E�	2f�����1 − f���� + E��� .

�23�

Equations �22� and �23� give the first nonvanishing
correction to the zero-order current �IL��0�, which is
obtained from the Meir-Wingreen formula �Eq. �2�� by in-
serting the spectral function of the unperturbed system,
A�

0���=� / ��	d−��2+�2 /4�. Note that Eq. �2� with A�=A�
0 is

recovered by inserting the equilibrium density matrix �0 and
the current operator from Eq. �19� into �IL�0=Tr IL�0.

A simple interpretation of Eq. �22� is possible for the
special case of a local spin of length S=1 /2, for which the
magnetic anisotropy K2 is irrelevant and can be set to zero.
For this case we obtain

�IL��2� =
e

2��

J2S�S + 1�
4

�L�R

�

�� d�� �

�� − 	d�2 + �2/4�3

�fL��� − fR���� .

�24�

Here, the third power of the spectral function appears since
the current operator and the two exchange-interaction opera-
tors in Eq. �21� are each bilinear in fermionic operators.

If the magnetic anisotropy is large compared to the hy-
bridization energy, K2��, the general expression for the
current in Eq. �22� simplifies to

�IL��2� =
e

2��

J2

4 �
�����

��L − �L���L + �R��I������0�

� �
m

Pm	�m	Sz	m�	2, �25�

since the integrals I�������
2m+1�K2� are negligible com-
pared to I������0�. Assuming symmetric capacitances, one
finds, in the limit of large bias voltages

�IL��0� →
2e

�

�L�R

�
, �26�

�IL��2� →
2e

�

�L�R

�

3S�S + 1�
4

J2

�2 , �27�

for the zero-order and second-order contribution, respec-
tively. Note that the ferromagnetic or antiferromagnetic sign
of J does not affect the results in the present approximation.

We first consider the situation of symmetric molecule-lead
couplings and capacitances, i.e., 	tL	= 	tR	, �L=�R, and
�L=eV /2, �R=−eV /2. Figure 1�a� shows the current-voltage
characteristics up to second order in J for the case of a local
spin of length S=2. The characteristic fine structure of the
current step at the Coulomb-blockade threshold is due to the
second-order contribution, �IL��2�, whereas the main step is
mostly coming from �IL��0�. The fine structure persists as
long as the hybridization energy � remains small compared
to the magnetic anisotropy K2. Note that the broadening of
the steps is due to ��0, and not to the temperature, for
which we assume T��. For bias voltages below 	eV	=2	d,
the current and all magnetic excitations are thermally sup-
pressed. However, as soon as the chemical potential of one
lead aligns with the resonance of the molecule, the current
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FIG. 1. �Color online� �a� Current-voltage characteristics for different hybridization energies, �=K2 /20, �=K2 /10, and �=K2.
The inset shows a closeup of the fine structure at positive bias. �b� Magnetic transition rates R2→1 and R1→0, and occupation probabilities
Pm as functions of bias V for �=K2 /20. We assume symmetric couplings to the leads, �L=�R, and symmetric capacitances, �L=eV /2,
�R=−eV /2, a local molecular spin of length S=2, 	d=4K2, and zero temperature. Further, we set J=� /5. Currents are given in units of
�2e /���L�R /�. Rates are given in units of their maximum values, cf. Eq. �18�.
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increases to its maximum value. The current-induced mag-
netic transitions become energetically accessible at the same
time, as shown in Fig. 1�b�, resulting in nonequilibrium
probabilities Pm of the different spin states. In the limit of
large bias voltages all spin states are equally occupied,
Pm=1 / �2S+1�.

Interestingly, the presence of magnetic anisotropy leads to
negative differential conductance in the vicinity of
	eV	=2	d. The underlying mechanism shall be explained
briefly. According to Eq. �25�, the magnetic states with maxi-
mum quantum numbers m= 
S dominate the current since
the current is proportional to the average �mPm	�m	Sz	m�	2.
Each decrease in P
S thus causes a decrease in the
current. Therefore, the spin-dependent contribution to the
current is large at low bias voltages, where P
2=1 /2 and
�mPmm2=4, and small at high bias voltages, where
P
2=1 /5 and �mPmm2=2.

We next consider the situation of strongly asymmetric
molecule-lead couplings and capacitances, i.e., 	tL	� 	tR	,
�L��R, and �L�eV, �R�0. Note that this regime is natu-
rally realized in many experimental setups whereas perfectly
symmetric couplings are in general more difficult to achieve.
The current-voltage curves and the bias dependence of the
magnetic excitation rates are shown in Fig. 2. Due to the
asymmetric coupling and 	d�0, the current is suppressed for
negative bias voltages. However, the characteristic steps cor-
responding to excitations of the molecular spin reappear at
positive bias. Only their abscissas are reduced by a factor of
2 since the chemical potential of the left lead is now
�L=eV instead of �L=eV /2. The device thus acts as a rec-
tifier. Note the small ohmic contribution with constant slope
for large coupling � in Fig. 2�a�. We return to this point
below.

We finally turn to the full bias and gate-voltage depen-
dence of the current. In both the symmetric and the asym-
metric case, selection rules for the spin require changes in
the magnetic quantum number by �m=0 or �m= 
1, where
�m=0 corresponds to elastic and �m= 
1 to inelastic scat-
tering events, cf. Fig. 3�a�. Inelastic scattering processes ap-
pear as additional steps in the current and give rise to the
magnetic fine structure in the two-dimensional density plots

of the second-order contribution to the current as a function
of bias and gate voltages shown in Figs. 3�b� and 3�c�. We
can now understand the origin of the weak ohmic conduction
seen in Fig. 2�a� for �=K2. What we are seeing is the tail of
the current step at �d=0 in Fig. 3�c�, which is considerably
broadened for �=K2. Note that we here have
�d=4K2=4�, i.e., we are only 4� away from the step. Since
this distance does not depend on the bias voltage, the con-
ductivity is essentially constant, leading to ohmic behavior.

IV. KONDO TRANSPORT

Second-order perturbation theory in the exchange interac-
tion J fails, even for small J, if the prefactors of higher-order
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FIG. 2. �Color online� �a� Current-voltage characteristics for different hybridization energies, �=K2 /20, �=K2 /10, and �=K2. The inset
shows a closeup of the fine structure at positive bias. �b� Magnetic transition rates R2→1 and R1→0, and occupation probabilities Pm as
functions of bias V for �=K2 /20. We assume strongly asymmetric couplings to the leads, �L��R, and strongly asymmetric capacitances,
�L=eV, �R=0, a local molecular spin of length S=2, 	d=4K2, and zero temperature. Further, we set J=� /5. Currents are given in units of
�2e /���L�R /�. Rates are given in units of their maximum values, cf. Eq. �18�.
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FIG. 3. �Color online� �a� Level scheme showing all spin tran-
sitions to order J2. ��b� and �c�� Two-dimensional density plots of
the absolute value of the second-order current contribution �IL��2� as
a function of bias voltage V and gate potential 	d for �=K2 /20. 	d

is controlled by the gate voltage. We choose the same parameters as
in Fig. 1. Bright �dark� colors correspond to high �low� currents. In
�b� we assume symmetric couplings, �L=eV /2, �R=−eV /2, and
�L=�R while in �c� we assume asymmetric couplings, �L=eV,
�R=0, and �R��L.
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terms diverge. This is the case in the Kondo regime. Loga-
rithmic divergences of the conductance first appear in terms
of third order in J.38–43 �In this section, we assume antifer-
romagnetic exchange, J�0.� Studying the emergence of
Kondo correlations thus requires to go beyond the second-
order master-equation approach discussed in Sec. III. For
sufficiently small J and sufficiently large thermal energies,
the conductance is dominated by the third-order contribution,
which we calculate in this section. At lower temperatures, it
would become necessary to resum the divergences to all or-
ders in J.39–43

The total current through the molecule is related to the
local electronic spectral function A����=−2 Im G��

ret ���
by the Meir-Wingreen formula, Eq. �2�, where G���

ret ���
=�d�t− t��ei��t−t��G���

ret �t− t�� denotes the Fourier transform of
the retarded single-particle Green’s function

G���
ret �t,t�� � − i��t − t����d��t�,d��

† �t���� . �28�

Making use of the transformation defined in Eqs. �8�–�11�
requires to compute the finite-temperature time-ordered
Green’s function

G���kk������,��� � − �T�c�k����c��k���
† ����� . �29�

Our strategy is to expand G���kk���� in powers of J.
In order to obtain the current from the Meir-Wingreen

formula, we need the imaginary part of the electronic
Green’s function

Im�
�

G��
ret ��� = Im �

���kk��


�k
��k�
� G���kk���

ret ��� , �30�

where G���kk���
ret ��� denotes the retarded Green’s function.

All nonvanishing diagrams of the local Green’s function up
to third order in J are shown in Fig. 4, following the notation
of Ref. 44. We again consider the case of strongly asymmet-
ric couplings, i.e., 	tL	� 	tR	, �L��R, and �L�eV, �R�0.
As we shall see, Eq. �30� is then dominated by the contribu-
tion from the right electrode, �=��=R. This allows us to
describe the molecular degrees of freedom by a thermal-
equilibrium distribution function that is independent of the
applied bias voltage and to obtain an analytical expression.

The evaluation of Eq. �30� is shown in Appendix B. We
obtain

Im�
�

G��
ret ��� � −

�/2
	d

2 + �2/4
+ � 	d

	d
2 + �2/4�

2

Im �ret���

�31�

with

Im �ret��� = −
�

2
J2
0�	d��

mnl

Pm
1 − f�� + Em − El�

1 − f��� 
�nl�
i

	�m	Si	n�	2

− iJ
0�	d��
ijk

�ijk�m	Si	n��n	Sj	l��l	Sk	m��ln� x
��� + Em − En�2 + T2� + ln� x

��� + En − El�2 + T2��� , �32�

where


0�	d� =
�/2�

	d
2 + �2/4

. �33�

In the derivation we have assumed the molecular level to be
far from resonance, i.e., 		d	 to be large compared to K2S, T,
and � but still small compared to the band width x of the
leads. Details are discussed in Appendix B. We have also
assumed 	�	� 		d	, the significance of which will become
clear in the following step. Under these conditions, the
resonant-tunneling contribution to the differential conduc-
tance, which we have studied in Sec. III, is negligible com-
pared to the Kondo contribution.

In the low-temperature limit T��, derivatives of the
Fermi functions with respect to the bias voltage become delta
functions and the differential conductance simplifies to

G �
e2

2��

�L�R

�

 �

	d
2 + �2/4

− 2� 	d

	d
2 + �2/4�

2

Im �ret�eV�� .

�34�

Note that the argument � of �ret��� is eV. The assumption
	�	� 		d	 made above thus corresponds to 		d	 also being
large compared to the bias, 	eV	. The spectral function has
logarithmic divergences for T→0 at the transition energies
of the molecule, Em−En, corresponding to virtual transitions
between two magnetic states 	m� and 	n�. One recovers the

= +

SS

SS S
+

FIG. 4. Nonvanishing diagrams of the impurity Green’s function
up to third order in J, following Ref. 44. Diagrams including fer-
mion loops vanish exactly and are not shown. Spin averages are
denoted by dotted lines.
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prefactor 3�J2D0 /8, see Ref. 44, for the case of spin
S=1 /2 and the �then irrelevant� anisotropy set to K2=0.

Numerical results for nonzero temperatures are shown in
Fig. 5. The differential conductance G diverges logarithmi-
cally for T→0 at critical bias voltages V= 
Vc with
eVc=ES−1−ES=K2�2S−1� since the emergence of Kondo
correlations requires the bias voltage to exceed the energy of
the transition from the ground states, m= 
S, to the first
excited states, m= 
 �S−1�. Note that G�V� is symmetric for
positive and negative bias, in spite of the highly asymmetric
coupling since it is probing the electronic spectral function.
The situation is quite different from the case considered by
Romeike et al.,10 which concerns a zero-bias peak resulting
from quantum tunneling between the two states 	S�
and 	−S�. In our case, the splitting of the Kondo peak as a
consequence of magnetic anisotropy is more similar to the
situation of a quantum dot in an external magnetic field with
Zeeman energy B, where a Zeeman splitting of the energy
levels leads to the occurrence of two conductance peaks at
eV� 
B in the Kondo regime.45,46 At higher temperatures,
T�K2, the two Kondo peaks merge into a single peak cen-
tered at zero bias due to the thermal excitation of spin states
with higher energy.

We now turn to the Kondo temperature TK. Poor man’s
scaling for the equilibrium case results in TK=0 because the
matrix elements of S
 between the two degenerate ground
states of the local spin vanish for our model if S�1 /2.10

Since a Kondo effect evidently does occur at nonzero bias,
this result is clearly not sufficient. A rough estimate of the
Kondo temperature TK can be obtained as the temperature for
which the second-order and third-order terms become equal
in Eq. �32�. We find TK
exp�−1 /�
0�	d�J�, where � is a
number of the order of unity. In the limit K2→0, where the
two peaks in Fig. 5 would merge, we recover the result
�=2 for an isotropic spin.

Since we focus on the case of strongly asymmetric cou-
plings, where the molecular degrees of freedom are in equi-
librium with one of the two leads, the logarithmic diver-
gences are cut off by temperature or the applied bias voltage,

respectively, in our perturbative approach, see Eq. �32�. The
divergence for T→0 is unphysical and would likely be re-
moved by a resummation of higher-order terms. By analogy
to Ref. 45, we conjecture that the divergence is ultimately cut
off by a voltage-dependent spin-relaxation rate.

While we have so far discussed the dependence on the
bias voltage, see Fig. 5, we now turn to the gate voltage. The
gate voltage shifts the on-site energy 	d and thus enters the
expression for the current through the square of the spectral
function � / �	d

2+�2 /4� and the square of the factor
	d / �	d

2+�2 /4�. In particular, we obtain a suppression of
G�1 /	d

6 in the limit of strong detuning, 	d��.

V. CONCLUSIONS

We have studied the spin-dependent electronic transport
through magnetic molecules for strong coupling to the leads.
Our discussion has focused on two complementary regimes.

For the first regime, we have presented a description of
transport in terms of a master equation that keeps the elec-
tronic tunneling exactly, holds for arbitrary bias and gate
voltages, and treats the local exchange interaction J pertur-
batively at second order. This approach is thus applicable for
small J. We have derived the bias-dependent magnetic tran-
sition rates showing that the tunneling current can be used to
drive the molecular spin out of equilibrium. Further, we have
shown that the characteristic fine structure of the differential-
conductance peaks persists for strong molecule-lead cou-
pling, where the broadening of the peaks is determined by
the hybridization energies.

The perturbative expansion in J fails if Kondo correla-
tions contribute significantly to the transport. In this case,
prefactors of the third- and higher-order terms in J diverge
for T→0. The Kondo correlations can become important for
small bias voltages on the order of 	eV	
K2�2S−1�. Here,
transport is described by the Meir-Wingreen formula in com-
bination with a diagrammatic calculation of the local elec-
tronic spectral function of the molecule. We have assumed
the molecular level to be far from resonance, which on the
one hand makes sure that the resonant-tunneling contribu-
tions to the conductance are small and which on the other
allows us to obtain analytical results. We have shown that
Kondo peaks appear at finite bias voltages proportional to the
anisotropy energy of the molecular spin.

Our results leave several avenues for future research.
First, it would be interesting to include a local Coulomb
interaction U between the electrons on the molecule. How-
ever, due to the large hybridization there are no states with
large probability on the dot and the effect of U is expected to
be relatively weak. We expect that for very large U an equi-
librium Kondo resonance could occur as a zero-bias peak in
the differential conductance in addition to the nonequilib-
rium Kondo effect described in this paper. Second, the pres-
ence of an external magnetic field might lead to an interest-
ing interplay with the splitting of the Kondo peaks due to the
magnetic anisotropy. Finally, it would be desirable to com-
bine the two cases studied here and to analyze the Kondo
effect in magnetic molecules in the resonant-tunneling re-
gime, where resonant-tunneling contributions to the conduc-

T = 0.1 K2

T = 0.5 K2
T =K2

T = 5 K2

-10 -5 5 100
V (K /e)2

G (e /h)0.6

0.5

0.4

0.3

2

FIG. 5. �Color online� Differential conductance G in units of
e2 /h for different thermal energies T �in units of K2� obtained from
Eq. �34� as a function of bias voltage V in units of K2 /e. Here we
assume a local molecular spin of length S=2 and choose
J
0�	d�=1, x=100K2, and �R=100�L. Note that the parameters �,
	d, and J leave the curves for G �in arbitrary units� invariant except
for changing the constant offset.
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tance are not negligible and the spin is driven out of equilib-
rium by the current.
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APPENDIX A: CALCULATION OF THE CURRENT

In this appendix we give details on the derivation of Eqs.
�22� and �23�. We start from Eq. �21�

�I���2� = −
1

�2�
−�

t

dt��
−�

t�
dt� Tr��I��t�,HJ�t���,HJ�t�����t� .

�A1�

Inserting the expressions for the current operator I�, Eq. �19�,
and for the exchange interaction HJ, Eq. �12�, we find

�IL��2� = i
e

�

tLJ2

4�2�
−�

t

dt��
−�

t�
dt� Tr�

k�
�

123456
���1

��1�2
��1

Lk�
2
3
�
4
5

�
6 − 
1
��2

Lk
3
�
4
5

�
6�

���c1
†�t�c2�t�,c3

†�t��c4�t����3�4
· S�t���c5

†�t��c6�t����5�6
· S�t�����t� , �A2�

where we have assumed tL to be real. Here, the shorthand notation j=1,2 ,3 ,4 ,5 ,6 stands for �� j ,k j ,� j�.
Introducing �= t− t� and ��= t�− t� and assuming a product state gives

�IL��2� = i
e

�

tLJ2

4�2�
0

�

d��
0

�

d���
k

�
123456

��1
Lk�
2
3

�
4
5
�
6 − 
1

��2
Lk
3

�
4
5
�
6�

����23�45�16f2f4�1 − f6�ei��6−�2��/�ei��6−�4���/� − �14�25�36f2�1 − f4��1 − f6�ei��4−�2��/�ei��6−�2���/�

− �14�25�36f2f4�1 − f6�ei��4−�2��/�ei��6−�2���/� + �23�45�16�1 − f2�f4�1 − f6�ei��6−�2��/�ei��6−�4���/��

�TrJ 2S�0� · S�− ����J − ��23�45�16f2�1 − f4�f6ei��6−�2��/�ei��6−�4���/� − �14�25�36�1 − f2��1 − f4�f6ei��4−�2��/�ei��6−�2���/�

− �14�25�36�1 − f2�f4f6ei��4−�2��/�ei��6−�2���/� + �23�45�16�1 − f2��1 − f4�f6ei��6−�2��/�ei��6−�4���/��TrJ 2S�0� · S�����J� .

�A3�

This result can be rewritten as

�IL��2� = i
e

�

tLJ2

4�2�
0

�

d��
0

�

d���
k

�
123456

��1
Lk�
2
3

�
4
5
�
6 − 
1

��2
Lk
3

�
4
5
�
6�

����23�45�16f4�1 − f6�ei��6−�2��/�ei��6−�4���/� − �14�25�36f2�1 − f6�ei��4−�2��/�ei��6−�2���/��TrJ 2S�0� · S�− ����J

− ��23�45�16�1 − f4�f6ei��6−�2��/�ei��6−�4���/� − �14�25�36�1 − f2�f6ei��4−�2��/�ei��6−�2���/��TrJ 2S�0� · S�����J� . �A4�

The sums over spin indices are simplified by making use of
the identities

�
���

���� · S1���� · S2 = 2S1 · S2,

�
���

���� · S1���,−� · S2 = 0. �A5�

In the coefficients 
�k in Eq. �11�, we approximate the self-
energy part by a constant, as we did in Sec. III


�k = 
����k� �
t�

��k − 	d − i�/2
. �A6�

Noting that Eqs. �10� and �11� imply

�
k

�1
Lk = �L�1

+ i�DLtL
�1
��1� �A7�

and


���� − 
����� = i
�

t�

	
����	2 �A8�

we arrive at the following expression for the tunneling cur-
rent:
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�IL��2� = i
e

�

tLJ2

4�2�
0

�

d��
0

�

d�� �
123456

���L�1
− i�DLtL
1

��
2
3
�
4
5

�
6 − 
1
���L�2

+ i�DLtL
2�
3
�
4
5

�
6�

����23�45�16f4�1 − f6�ei��6−�2��/�ei��6−�4���/� − �14�25�36f2�1 − f6�ei��4−�2��/�ei��6−�2���/��TrJ 2S�0� · S�− ����J

− ��23�45�16�1 − f4�f6ei��6−�2��/�ei��6−�4���/� − �14�25�36�1 − f2�f6ei��4−�2��/�ei��6−�2���/��TrJ 2S�0� · S�����J� . �A9�

Since we have assumed �J to be diagonal in the stationary state, we finally obtain Eqs. �22� and �23�.

APPENDIX B: CALCULATION OF THE IMPURITY GREEN’S FUNCTION

In order to use the Meir-Wingreen formula for the conductance, we have to compute the imaginary part of the Green’s
function in Eq. �30�. We consider the situation of strongly asymmetric molecule-lead couplings and capacitances, i.e., 	tL	
� 	tR	, �L��R, and �L�eV, �R�0.

Since Wick’s theorem does not apply to spin operators, averages of products of spin operators do not factorize into averages
of pairs. We follow Ref. 44 in evaluating the spin averages. Expanding the electronic Matsubara-Green’s function in powers
of J and organizing the expansion in terms of topologically distinct diagrams, one obtains44

G���kk������,��� = �
n=0

� �−
J

�
�n�

0

�

d�1¯�
0

�

d�n �
i1,. . .,in

�
�1,. . .,�n,�1�,. . .,�n�

�T��Si1��1� ¯ Sin��n���0

��T��B�1

† ��1�
��1�1�

2
B�1�

��1� ¯ B�n

† ��n�
��n�n�

2
B�n�

��n�c�k����c��k���
† ������

0
, �B1�

where ��1 /T denotes the inverse thermal energy. For con-
venience, we have defined B����k
�kc�k�. All nonvanish-
ing diagrams up to third order in J are shown in Fig. 4. The
linear term vanishes since �S�=0. Diagrams with fermion
loops are zero for the following reasons:44 a loop with a
single fermion line results in taking the trace of the Pauli
matrix in the vertex, which yields zero. A loop with two
fermion lines appearing in the third-order diagrams gives rise
to a trace over two Pauli matrices, Tr �i� j =2�ij. The result-
ing spin average �T��Si1��1�Si2��2�Si3��3���0 with at least two
of i1, i2, and i3 equal, vanishes.

Splitting off the zero-order term, the Green’s function in
Eq. �B1� can be written as44

G���kk������,��� = G�k�
0 ��,��������kk�����

+ �
0

�

d�1�
0

�

d�2G�k�
0 ��,�1�

�����kk����
��1,�2�G��k���

0 ��2,��� ,

�B2�

where the unperturbed Matsubara-Green’s function in the
imaginary-time domain is given by

G�k�
0 ��,��� = − ���� − ��� − f���k��e−��k��−���/� �B3�

with ��k���k−��. In the frequency domain we have

G�k�
0 �i�n� =

1

i�n − ��k
, �B4�

where i�n is a fermionic Matsubara frequency. Note that we
are only interested in the spin trace of the self-energy,
������kk���

ret , which enters in the Meir-Wingreen formula.
The second-order term of the self-energy yields

�
�

����kk���
�2� ��1,�2� =

J2

2�2 �
�1k1�1

�
m,n

G�1k1�1

0 ��1,�2�

� 
�k
� 
��k�	
�1k1

	2

� �
i

	�m	Si	n�	2e�Em−En���1−�2�/�Pm,

�B5�

where we have used that Tr �i� j =2�ij. Here, Em�−K2m2

denotes the magnetic anisotropy energy in the spin state 	m�
with occupation probability Pm. The spin averages in Eq.
�B1� are to be evaluated for the unperturbed Hamiltonian
Hmag,

44 leading to Pm�e−�Em. We restrict ourselves to the
off-resonance situation, i.e., the dark region in Fig. 3�c� with
negligible resonant-tunneling differential conductance,
where the spin essentially remains in equilibrium. This is
certainly satisfied if 		d	 is large compared to the energy
scales relevant for the Kondo contributions, K2S and T.

Equation �B5� contains a sum over leads, �1=L ,R, and a
factor of t�1

2 under the sum. Since we have assumed strongly
asymmetric couplings, 	tL	� 	tR	, the sum is dominated by the
contribution from the right lead, �1=R. Dropping the term
with �1=L, we note that the Green’s function GRk�

0 �� ,��� in
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Eq. �B3� only contains the Fermi distribution function for the
right lead, which is fR��Rk�= f��Rk�=1 / �e��Rk +1� since
�R=0. Importantly, the resulting expression is independent
of the bias voltage.

Furthermore, we see that Eq. �B5� contains a factor t�t��.
From Eq. �30� we obtain the same factor so that the contri-
bution from leads � and �� is proportional to t�

2 t��
2 . Since we

have assumed 	tL	� 	tR	, we can neglect all contributions ex-
cept for �=��=R. We will keep only these contributions
from now on.

Taking the Fourier transform of Eq. �B2� and performing
the analytic continuation, we obtain the retarded Green’s
function

GRRkk���
ret ��� = GRRkk���

ret,0 ��� + �P
1

� − �Rk
− i���� − �Rk��

��RRkk���

ret
���

��P
1

� − �Rk�
− i���� − �Rk��� , �B6�

where P denotes the principal value. We assume 		d	 to be
large not only compared to K2S and T but also to �. One can
then show that the delta-function terms are negligible com-

pared to the principal-value terms. Including the factors of

Rk

� and 
Rk, we obtain expressions of the form

�
k

	
Rk	2P
1

� − �Rk
� −

�R

�

	d − �

�	d − ��2 + �2/4

� −
	d − �

�	d − ��2 + �2/4
. �B7�

For the imaginary part of the Green’s function in Eq. �30� we
then only require the imaginary part of ���RRkk���

ret,�2� in Eq.
�B6�. Taking the imaginary part of the Fourier transform of
Eq. �B5� we obtain

Im�
�

�RRkk���
ret,�2� ��� = −

�J2D0

2 �
m,n

�
i

	�m	Si	n�	2Pm

�
Rk
� 
Rk�	
R�� + Em − En�	2

�
1 − f�� + Em − En�

1 − f���
, �B8�

where we assume constant densities of states for the leads,
D0�DL=DR, and an energy band ranging from −x to x,
where x is the largest energy scale in our model.

The third-order term gives

�
�

�RRkk���
�3� ��1,�2� = −

J3

�3�
�

�
k1�1,k2�2


Rk
� 
Rk�	
Rk1

	2	
Rk2
	2�

0

�

d�3GRk1�1

0 ��1,�3�GRk2�2

0 ��3,�2�

��
ijk

�T��Si��1�Sj��3�Sk��2���0

���1

i

2

��1�2

j

2

��2�
k

2
. �B9�

Here, the average involving spin operators depends on the time arguments �1, �2, and �3, since i, j, and k can be different.
However, since the self-energy only depends on the differences �1−�2 and �3−�1, we may set �2=0 and distinguish the two
possibilities �1��3 and �3��1. Using that Tr��i� j�k�=2i�ijk, inserting GRk�

0 ��1 ,�3�=−����1−�3�− f��Rk��e−�Rk��1−�3� and
GRk�

0 ��3 ,0�=−����3�− f��Rk��e−�Rk�3, and evaluating the integral over �3, we obtain for 0��1��

�
�

�RRkk���
�3� ��1,0� = −

iJ3

4�2 �
k1k2


Rk
� 
Rk�	
Rk1

	2	
Rk2
	2�

ijk

�ijk�
mnl

�m	Si	n��n	Sj	l��l	Sk	m�Pm

�
 1 − f��Rk1
�

�Rk1
− �Rk2

+ En − El
�1 − f��Rk2

��e−�Rk2
�1/�e�Em−El��1/� −

1 − f��Rk2
�

�Rk1
− �Rk2

+ En − El
�1 − f��Rk1

��

�e−�Rk1
�1/�e�Em−En��1/� −

f��Rk1
�

�Rk1
− �Rk2

+ Em − En
�1 − f��Rk2

��e−�Rk2
�1/�e�Em−El��1/�

+
f��Rk2

�e��Em−En�

�Rk1
− �Rk2

+ Em − En
�1 − f��Rk1

��e−�Rk1
�1/�e�En−El��1/�� . �B10�

With �m	Si	n���n	Sj	l���l	Sk	m��=−�m	Si	n��n	Sj	l��l	Sk	m� under the sum over i, j, and k, Eq. �B10� simplifies to
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�
�

�RRkk���
�3� ��1,0� = −

iJ3

2�2 �
k1k2


Rk
� 
Rk�	
Rk1

	2	
Rk2
	2�

ijk

�ijk�
mnl

�m	Si	n��n	Sj	l��l	Sk	m�Pm

�
 1 − f��Rk1
�

�Rk1
− �Rk2

+ En − El
�1 − f��Rk2

��e−�Rk2
�1/�e�Em−El��1/�

−
f��Rk1

�

�Rk1
− �Rk2

+ Em − En
�1 − f��Rk2

��e−�Rk2
�1/�e�Em−El��1/�� . �B11�

Computing the Fourier transform yields

�
�

�RRkk���
ret,�3� ��� = −

iJ3

2 �
ijk

�ijk�
mnl

�m	Si	n��n	Sj	l��l	Sk	m�Pm �
k1k2


Rk
� 
Rk�	
Rk1

	2	
Rk2
	2

� 
 1 − f��Rk1
�

�Rk1
− �Rk2

+ En − El

1

� − �Rk2
+ Em − El + i�

1 − f��Rk2
�

1 − f��Rk2
− Em + El�

−
f��Rk1

�

�Rk1
− �Rk2

+ Em − En

1

� − �Rk2
+ Em − El + i�

1 − f��Rk2
�

1 − f��Rk2
− Em + El�

� . �B12�

The sum over k2 can be evaluated to give

Im 
Rk
Rk�
� �

�

�RRkk���
ret,�3� ��� =

i�D0J3

2 �
ijk

�ijk�
mnl

�m	Si	n��n	Sj	l��l	Sk	m�Pm�
k1

	
Rk	2	
Rk�	
2	
Rk1

	2	
R�� + Em − El�	2

�
 1 − f��Rk1
�

�Rk1
− � + En − Em

1 − f�� + Em − El�
1 − f���

−
f��Rk1

�

�Rk1
− � + El − En

1 − f�� + Em − El�
1 − f��� � .

�B13�

Finally, the sum over k1 leads to Eq. �32� for the self-energy. Here we assume x� 	�d	��, En for all states n and only keep
the terms that diverge at �=En−Em and low temperatures.
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