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A topological superconductor is a fully gapped superconductor that exhibits exotic zero-energy Andreev
surface states at interfaces with a normal metal. In this paper we investigate the properties of a three-
dimensional time-reversal invariant topological superconductor by means of a two-band model with uncon-
ventional pairing in both the interband and intraband channels. Due to the bulk-boundary correspondence the
presence of Andreev surface states in this system is directly related to the topological structure of the bulk
wave functions, which is characterized by a winding number. Using quasiclassical scattering theory we con-
struct the spectrum of the Andreev bound states that appear near the surface and compute the surface density
of states for various surface orientations. Furthermore, we consider the effects of band splitting, i.e., the
breaking of an inversion-type symmetry, and demonstrate that in the absence of band splitting there is a direct
transition between the fully gapped topologically trivial phase and the nontrivial phase whereas in the presence
of band splitting there exists a finite region of a gapless nodal superconducting phase between the fully gapped
topologically trivial and nontrivial phases.
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I. INTRODUCTION

Due to the recent experimental discovery of the quantum
spin Hall effect1–4 and the three-dimensional �3D�, spin-
orbit-induced Z2 topological insulator,5–9 there has been a
surge of interest in the study of topological insulating elec-
tronic phases. Parallel to these developments, many workers
have examined topological superconductors,10–22 which are
fully gapped unconventional superconductors that exhibit ex-
otic gapless Andreev surface states. Both topological insula-
tors and topological superconductors can be described within
a unified mathematical framework,11,15,16,22 which provides a
complete and exhaustive classification of topological phases
of gapped free fermion systems in terms of discrete symme-
tries and spatial dimension. A distinctive property of these
states is the bulk-boundary correspondence, which connects
the presence of delocalized boundary modes to the topologi-
cal structure of the bulk wave functions.

Notable examples of topological superconductors include
the spinless chiral �px+ ipy�-wave superconductor23 and the B
phase of superfluid 3He.11,12,17 Here we focus on another
type of topological superconductor, which has been largely
overlooked so far, namely the three-dimensional supercon-
ductor in symmetry class CI in the terminology adopted by
Ref. 11 �following the Altland-Zirnbauer classification24,25�.
The distinguishing characteristic of the CI topological super-
conductor is that, unlike any of the other three-dimensional
topological states, it possesses a form of SU�2� spin- or
pseudospin-rotation symmetry. In Ref. 14 a tight-binding
model on the diamond lattice was proposed that realizes this
nontrivial topological phase.

In this paper we recast the model of Ref. 14 into a form in
which the topology of the Bogoliubov-de Gennes Hamil-
tonian is completely determined by the phase structure of the
superconducting gaps near the normal-state Fermi surfaces.
That is, we consider a two-band superconductor with exotic

interband and intraband gap functions, whose topological
characteristics do not depend on the full Brillouin zone but
are controlled entirely by the properties of both the interband
and intraband gaps in the neighborhood of the Fermi sur-
faces. The reason for considering this case is twofold: �i� it
provides a clear interpretation of the topological properties in
terms of the phase winding of the superconducting gap func-
tions and �ii� it allows for the straightforward application of
the tools of quasiclassical scattering theory, a technique
which has proven to be extremely useful for the study of the
pairing symmetry in unconventional superconductors.26–31

Within this formalism, both the surface density of states
�SDOS� and the spectrum of the Andreev bound states can be
readily computed. It is known that in some unconventional
superconductors the presence of subgap surface bound states
leads to zero-energy anomalies in the surface density of
states.28–31 We will see that this rule also applies to the CI
topological superconductor.

The remainder of the paper is organized as follows. Sec-
tion II describes the model Hamiltonian and its symmetries.
In Sec. III we introduce a bulk topological invariant and
compute the phase diagram as a function of band width and
chemical potential. Section IV is concerned with the Andreev
bound-state spectrum and the surface density of states for
various surface orientations. We conclude with a summary
and discussion in Sec. V.

II. MODEL HAMILTONIAN AND SYMMETRIES

Our starting point is a time-reversal invariant two-band
superconductor on a simple cubic lattice with interband and
intraband pairing, which has the form of a 4�4
Bogoliubov-de Gennes Hamiltonian. The mean-field Hamil-
tonian H=�k�kH�k��k

† is diagonal in momentum space
with
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H�k� = � h�k� ��k�
�†�k� − hT�− k�

� �1a�

and �k= �ak↑ ,bk↑ ,a−k↓
† ,b−k↓

† �T, where ak� and bk� denote
electron annihilation operators with spin � and momentum k
for band one and two, respectively. The normal-state Hamil-
tonian h�k� and the gap matrix ��k� are given by

h�k� = ��1k 0

0 �2k
� and ��k� = ��k �k

�k
� − �k

� , �1b�

respectively. Here, the band dispersions are

� jk = tj�cos kx + cos ky + cos kz� − 	 j �1c�

with j=1,2, the intraband pairing potential is

�k = �d�cos kx − cos ky� + �s, �1d�

and the interband pairing potential takes the form32

�k = �0�sin kx sin ky + i sin kz� . �1e�

We observe that Hamiltonian �1� is closely related to the
model of Ref. 14. Specifically, by performing a particle-hole
transformation the tight-binding Hamiltonian analyzed in
Ref. 14 can be brought into a form in which the momentum
dependence of the gap functions along the Fermi surface
have the same topology as the pairing potentials in Eq. �1a�.
We note, however, that the present model is defined on a
simple cubic lattice whereas in Ref. 14 a diamond lattice was
considered. The energy spectrum of H�k� is composed of
four bands with energies E�k�� �−
1k ,−
2k ,+
1k ,+
2k�
and


1k =��k
2 +

1

4
	�1k − �2k + Bk
2,


2k =��k
2 +

1

4
	�1k − �2k − Bk
2, �2�

where Bk=�4��k�2+ ��1k+�2k�2.
A topological superconductor belonging to the symmetry

class CI satisfies two independent antiunitary symmetries:
time-reversal symmetry T=KUT, with T 2=+1, and particle-
hole symmetry C=KUC, with C2=−1. Here, K denotes the
complex conjugation operator. For the above example, time-
reversal symmetry is expressed as

UTH��− k�UT
† = + H�k� , �3a�

where UT=1 is the 4�4 identity matrix. The particle-hole
symmetry can be expressed as33

UCH��− k�UC
† = − H�k� �3b�

with UC= i�2 � �0. Here, and in the following, �1,2,3 denote
the three Pauli matrices and �0 is the 2�2 unit matrix. By
combining Eq. �3a� with Eq. �3b� we find that the gap matrix
��k� is required to be Hermitian, �†�k�=��k�. Besides
particle-hole and time-reversal symmetry, Hamiltonian �1�
satisfies another symmetry which is given by

S†H�k�S = − H�k� �3c�

with S= iUTUC=−�2 � �0. That is, H�k� anticommutes with
the “chiral” symmetry operator S. The significance of the
above symmetry 	Eq. �3c�
 is that it allows us to bring the
Hamiltonian into block off-diagonal form. Namely, we find

that in the basis in which S is diagonal, S̃=WSW†=diag�
−�0 ,+�0�, the Hamiltonian H�k� takes the form

H̃�k� = WH�k�W† = � 0 D�k�
D†�k� 0

� �4�

with the off-diagonal component

D�k� = h�k� − i��k� , �5�

and the unitary transformation

W =
1
�2

��0 − i�0

�0 + i�0
� . �6�

The block off-diagonal form �4� is particularly useful to un-
cover the topological properties of the ground-state wave
functions, as we will explain below.

We end this section by discussing the case of degenerate
bands in Eq. �1�, i.e., ��k���1�k�=�2�k�. This condition
leads to an additional symmetry of H�k�,

UpH�− k�Up
† = H�k� �7�

with the unitary matrix Up=�3 � �2. Equation �11� represents
a type of inversion symmetry, as it is a unitary symmetry that
relates Bogoliubov-de Gennes Hamiltonians at +k and −k via
a transformation that interchanges the two bands. With inver-
sion symmetry 	Eq. �7�
 the energy spectrum becomes de-
generate and takes the simple form E�k�� �−
k ,+
k� with

k=��k

2+�k
2+ ��k�2.

III. WINDING NUMBER AND PHASE DIAGRAM

To determine the topological properties of the model un-
der consideration we first introduce an integer topological
invariant, the winding number �.11,15 In order to do so it is
convenient to adiabatically deform H�k� into a flat-band
Hamiltonian. This can be achieved by means of a singular
value decomposition. First of all we note that for the off-
diagonal block D�k�, Eq. �5�, which is in general non-
Hermitian, there exists a factorization of the form D�k�
=U†�k���k�V�k�, where ��k� is a diagonal matrix with posi-
tive real numbers on the diagonal and U�k� and V�k� are
unitary matrices. Direct calculation shows that the eigenval-
ues of ��k� are identical to the positive eigenvalues of the
Bogoliubov-de Gennes Hamiltonian H�k�. For a fully gapped
superconductor, it is possible to adiabatically deform the
spectrum into flat bands with eigenvalues +1 and −1. This
procedure amounts to replacing ��k� by the unit matrix.
Hence, the flat-band Hamiltonian Q�k� in the off-diagonal
basis reads

Q�k� = � 0 q�k�
q†�k� 0

� �8�

with the unitary matrix q�k�=U†�k�V�k�. In terms of the gap
functions and band dispersions of model �1�, the off-diagonal

SCHNYDER et al. PHYSICAL REVIEW B 82, 184508 �2010�

184508-2



block of the flat-band Hamiltonian is given by

q�k� = �
+Bk − 
−�+ − 2i
−�k

+ 2i
−�k
� 
+Bk + 
−�+

� D�k�/2

1k
2kBk

, �9�

where 

=
1k

2k and �+=�1k+�2k. As a consequence
of time-reversal invariance q�k� satisfies qT�−k�=q�k�. The
topological invariant characterizing CI topological supercon-
ductors is defined as the winding number of the off-diagonal
block q�k�,11,14

� =
1

24�2
 d3k�	�� Tr	�q−1�	q��q−1��q��q−1��q�
 ,

�10�

where the integral is over the first Brillouin zone. From the
constraint qT�−k�=q�k� it follows that � is even.

Next we use the topological invariant �10� to analyze the
phase diagram of H�k�, Eq. �1�, as a function of chemical
potential and bandwidth. Fully gapped phases with different
topological properties are separated by regions �or lines� of
nodal superconducting phases �see Fig. 1�. The condition for
the existence of a gapless phase can be expressed in terms of
a vanishing determinant, i.e., det H�k�=−�det D�k��2=0. By
use of Eq. �1b� and Eq. �5� we obtain

�k
2 + ��k�2 + �1k�2k = 0, �k��1k − �2k� = 0. �11�

Let us first focus on the inversion asymmetric case with split
bands, �1k��2k. The above two conditions then reduce to

�k = 0, ��k�2 = − �1k�2k. �12�

Provided sgn �1k=−sgn �2k, Eq. �12� has solutions describ-
ing nodal rings that appear in the gapless phase of Fig. 1�a�
�blue/grey shaded area�. These gap-closing lines in momen-
tum space are topologically stable and are characterized by
an integer topological charge,34 akin to the band touching
points in graphene. That is, the appearance of these nodal
lines is generic and stable against �small� perturbations of the

Hamiltonian, such as, e.g., the inclusion of higher d-wave
gap harmonics in the intraband pairing potential.

In the presence of inversion symmetry �7�, with �k
��1k=�2k, the gap closing condition �11� becomes �k

2

+ ��k�2+�k
2=0. Hence, there are in general four conditions

that need to be satisfied for the gap to be zero, which exceeds
the number of free parameters �kx ,ky ,kz�. In other words, if
we consider tuning a single parameter, e.g., the bandwidth t,
to drive a transition from a topologically nontrivial phase to
a topologically trivial phase, a gap closing can only occur at
isolated points in the �k , t� parameter space 	see Fig. 1�b�
.
Thus, the presence of inversion symmetry �7� leads to a di-
rect quantum phase transition between two distinct gapped
phases �i.e., there is no intervening gapless phase�. The phase
boundaries in the �t ,	� plane are given by 	= 
 t and 	
= 
3t, as shown in Fig. 1�b�. The fact that direct transitions
from one gapped phase to another are only possible in the
presence of inversion symmetry is a feature which is com-
mon to three-dimensional topological phases.34 In particular,
it also occurs in Z2 topological insulators.35

To determine the topological nature of the eight gapped
phases in Fig. 1 �white and dotted areas�, we computed the
winding number � numerically, by discretizing the integral
�10� over the Brillouin zone. It turns out that four phases are
topologically nontrivial with winding number �= 
2. In
these nontrivial phases, there appear linearly dispersing, mid-
gap surface states when the system is placed next to a normal
metal or insulating state. These exotic Andreev bound states
are robust against localization from random impurities. We
will study these surface states in more detail in Sec. IV. In
passing, we note that for the inversion symmetric case of
model �1�, there exists an intimate connection between the
topological properties of the Bogoliubov-de Gennes wave
functions, as characterized by the winding number �, and the
Fermi-surface topology in the normal state. In particular, the
transition from a topologically trivial to a nontrivial phase in
Fig. 1�b� coincides with a change in Fermi-surface topology.
A similar relationship has been previously reported for
fully gapped time-reversal invariant spin-triplet super-
conductors.18

Fermi-surface topological invariant

An important property of Hamiltonian �1� is that in the
presence of inversion symmetry its topological characteris-
tics are completely determined by the momentum depen-
dence of the superconducting gap functions along the
normal-state Fermi surface. To demonstrate this, we give an
illustration of the topological properties of H�k� in terms of
the phase structure of the gap functions on the Fermi surface.

For definitiveness we consider a Fermi surface of spheri-
cal topology which is centered around the � point, k=0, i.e.,
we focus on the region t�	�3t in the �t ,	� plane of Fig.
1�b�. In the following we will hold the band-structure param-
eters t and 	 fixed and use the ratio between s- and d-wave
components in the intraband pairing 	Eq. �1d�
 to tune the
system form a topologically trivial to a nontrivial phase. Pro-
jected onto the Fermi surface, we find that ��k� has four
first-order zeroes at momenta k1
= �
kF ,0 ,0� and k2


µ
=
µ
1
=
µ
2

-4
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0

1

2

3

4
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ν
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=
+2

t

(a) (b)

FIG. 1. �Color online� Phase diagram for the CI topological
superconductor, Eq. �1�, as a function of bandwidth and chemical
potential with �0=0.4, �d=0.4, and �s=0. The gapped phases are
characterized by the even-numbered winding number �, Eq. �10�.
Blue �grey in print� areas are bulk gapless phases. �a� Inversion
asymmetric case with split bands, t1= t, t2=0.9t, and 	1=	2. �b�
Inversion symmetric case with degenerate bands, t1= t2 and
	1=	2.
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= �0, 
kF ,0�, with associated singularities in arg��k� 	see
Fig. 2�a�
. In other words, the real vector field �k over the
Fermi surface exhibits vortices at k1
 and antivortices at k2


with winding number +1 and −1, respectively. The appear-
ance of vortices in ��k� is a necessary but not sufficient
condition for the nontriviality of the model. What is required
in addition is that ��k� reverses sign between vortices of
��k� with opposite winding number. Figures 2�b� and 2�c�
display the variation of the sign of ��k� over the Fermi sur-
face for two different parameter choices, which both lead to
a nontrivial state. For �d cos�kF���s the sign of �k reverses
between k1
 and k2
, and the system is in the topologically
nontrivial phase. If �d cos�kF���s, on the other hand, the
sign of �k is the same across the Fermi surface, and so we
have a topologically trivial state.

IV. ANDREEV BOUND STATES AND SURFACE DENSITY
OF STATES

A physical consequence of the nonzero winding number �
is the appearance of gapless Andreev bound states at the
surface of a CI topological superconductor or at an interface
between a normal metal and a CI topological superconductor.

The bulk-boundary correspondence relates the number of
Andreev bound states to the topological number �. In this
Section we derive the energy spectrum of the bound states
and the surface density of states using quasiclassical scatter-
ing theory. For simplicity, we focus on the inversion sym-
metric case of model �1� and assume a spherically symmetric
Fermi surface. But the results we obtain are expected to re-
main qualitatively unchanged upon inclusion of anisotropic
Fermi velocities or inversion asymmetric perturbations.

As we have seen in Sec. III the topological characteristics
of the inversion symmetric model �1� are fully determined by
the phase structure of the pairing functions on the Fermi
surface. This implies that we can capture the key topological
structure of the superconducting state by adopting an effec-
tive low-energy quasiclassical description as long as the gap
functions ��r� and ��r� are slowly varying over length
scales on the order of the inverse Fermi momentum kF

−1.
Hence, we proceed by approximating the momentum depen-
dence of the gap functions in the vicinity of the Fermi sur-
face by

�k = �	��kx
2 − ky

2�/kF
2 + �1 − ��
 , �13�

x a /πk

y a /πk

z
a

/π
k

x a /πk

y a /πk

z
a

/π
k

z
a

/π
k

x a /πk

y a /πk

Φ
π

(a)

(b) (c)

ar
g
(

)/
2

k

FIG. 2. �Color online� Panel
�a�: variation of arg��k� over the
Fermi surface. The argument of
�k shows four distinct singulari-
ties on the Fermi surface. The lo-
cations of these singularities are
related by a fourfold rotational
symmetry about the z axis. Panels
�b� and �c�: variation in sgn��k�
over the Fermi surface. Red indi-
cates sgn��k�=+1 while blue is
sgn��k�=−1. The ratio between s-
and d-wave components is �s /�d

=0 and �s /�d=3 /7 in panels �b�
and �c�, respectively. The normal-
state band-structure parameters
are t1= t2=1 and 	1=	2=1.75.
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�k = ��kxky/kF
2 + ikz/kF� = ��k�ei�k. �14�

Here we have introduced the parameter � to tune �k from
dx2−y2-wave symmetry ��=1, topologically nontrivial� to
s-wave symmetry ��=0, topologically trivial�.

We can now apply standard methods to obtain the surface
bound states.27 We describe the system in terms of coordi-
nates parallel �r�� and normal �x�� to the interface. We as-
sume that the superconductor occupies the region defined by
x��0. We solve the Andreev equations using the ansatz

��k�,r� = �
j=1

4

� j� j�k�,r� �15�

for the wave functions of a bound state of energy E, where
the spinors are written as

�1�k�,r� = �1, 0, uk, vk�Teik·re−�kx�, �16a�

�2�k�,r� = �1, 0, uk̃, vk̃�Teik̃·re−�k̃x�, �16b�

�3�k�,r� = �0, 1, vk, − uk�Teik·re−�kx�, �16c�

�4�k�,r� = �0, 1, vk̃, − uk̃�Teik̃·re−�k̃x� �16d�

with

up =
�p

�p
2�E − i

p�

�p��
��p

2 − E2� , �17a�

vp =
�p

�p
2�E + i

p�

�p��
��p

2 − E2� , �17b�

�p =
1

�vF
x��

��p
2 − E2, �17c�

and vF=��p /�p denotes the Fermi velocity. We define the

wave vectors k= �k� ,k�� and k̃= �k� ,−k�� with the require-

ment that �k�= �k̃�=kF.
The energy of the bound states is obtained by the condi-

tion that the equation ��k� ,r� �x�=0=0 has a nontrivial solu-
tion for the coefficients � j. Although in general this yields a
rather complicated expression for the bound-state energies,
we can simplify matters considerably if we assume that
��k�= ��k̃� and ��k�= ��k̃�, which holds for certain high-
symmetry reflection planes. We hence find the bound-state
energies

Ek�

2 =
1

2
	�k

2 + �k�k̃ + ��k�2 cos��k − �k̃�
 . �18�

This expression is valid in both the topologically trivial and
nontrivial cases. A zero-energy state is possible whenever the
following two conditions are both satisfied:

�i� ��k� = 0 or cos��k − �k̃� = − 1,

�ii� ��k� = 0 or sgn �k sgn �k̃ = − 1. �19�

We shall illustrate different possible combinations of these
conditions for the appearance of the zero-energy states by
examining three distinct cases: the �100� surface, the �110�
surface, and the �001� surface.

The surface bound states in unconventional superconduct-
ors can be observed by scanning tunneling spectroscopy of
the SDOS. It is therefore interesting to consider the SDOS
for our three surfaces, in order to determine the experimen-
tally relevant signatures of the topologically nontrivial phase.
To obtain the SDOS we must first calculate the quasiclassical
retarded Green’s function Gk�

r �r ,r� ;E�. This will not be ex-
plicitly constructed here as it is rather laborious; for a de-
tailed discussion see Ref. 30 and references therein. Because
we are dealing with a two-band system, the quasiclassical
Green’s function G will be a 4�4 matrix in the Nambu-band
space. The SDOS is simply the local DOS at the surface of
the superconductor, where the local DOS at the point r is
defined as

��E,r� = −
1

�
�
k�

Im�Gk�

r,11�r,r;Ẽ� + Gk�

r,22�r,r;Ẽ�� . �20�

Here Gr,11 and Gr,22 are the electronlike Green’s functions for

bands one and two, respectively, and Ẽ=E+ i� contains the
phenomenological broadening parameter �. In all our calcu-
lations we set �=0.01�.

A. (100) surface

We consider first the appearance of zero-energy states at
the �100� surface for �=1. From the conditions in Eq. �19�
on the intraband pairing we have sgn �k sgn �k̃=1 for all k
but �k=0 along the lines defined by k= �kx , 
kx ,kz�. The
interband potential is always nonzero for these momenta but
we do have cos��k−�k̃�=−1 �i.e., a sign reversal of �k upon
reflection� whenever kz=0. We hence obtain two zero-energy
states at k1= �kF /�2,kF /�2,0� and k2= �kF /�2,−kF /�2,0�.
These arguments still hold if we decrease � toward 0.5 but
the momenta k1 and k2 will move toward one another, even-
tually merging at �=0.5 where we have a gapless state.

In Fig. 3�a� we plot the �=1 surface states in units of �k.
The energy of the surface states only deviates significantly
from the bulk gap close to the nodal lines of �k; this is
clearly visible in the kz=0 cut through the surface states
shown in Fig. 3�b�.

The SDOS is shown in Fig. 4�a� for fixed �=1 and vari-
ous values of �. At �=0 we recover the SDOS for a 3D
dx2−y2 superconductor. For nonzero � we observe that at low
energies the SDOS is linear with a slope that is controlled by
the velocity of the two-dimensional �2D� linearly dispersing
surface states. The minimum energy of the bulk gap is lo-
cated at E=0.5�, which is visible in the SDOS as the point
where the energy dependence becomes superlinear. The lin-
ear slope of the low-energy SDOS does not change with
increasing �, indicating that the velocity of the linear-
dispersing surface states is mainly determined by �. We note
that the finite SDOS at E=0 is an artifact of the broadening
parameter.
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As shown in Fig. 4�b�, the SDOS is qualitatively different
in the topologically trivial ���0.5� and the nontrivial ��
�0.5� regimes. In the former the low-energy SDOS is van-
ishing within the gap while in the latter there is the charac-
teristic linear energy dependence. Note that the sharp spike at
E=� in the �=0 curve is the DOS peak associated with the
purely s-wave intraband gap.

B. (110) surface

We now examine the bound states at the �110� surface.
Again setting �=1, we see that the condition
sgn��k�sgn��k̃�=−1 on the intraband potential is satisfied for
all k. A zero-energy state thus only requires that �k vanishes
for some k or that cos��k−�k̃�=−1. The former holds for
k1= �kF ,0 ,0� and k2= �0,kF ,0� while the latter is never real-
ized. Compared to the �100� surface the roles of �k and �k
are reversed: the zero-energy states are realized because �k
vanishes at momenta where �k has a sign change upon re-
flection. Furthermore, the position of the zero-energy states
do not change for 1���0.5, as the sign change of �k at k1
and k2 survives while the zeros of �k remain the same.

The energy of the �=1 surface states is shown in units of
the bulk gap in Fig. 3�c�. In contrast to the �100� surface,

most of the interface states have energies differing signifi-
cantly from �k. This can be understood as being due to the
sign reversal upon reflection of �k, which for �k=0 would
give dispersionless zero-energy states for all k.27,30 In Fig.
3�d� we show a kz=0 cut of the interface states and bulk gap.

In Fig. 4�c� we show the change in the SDOS upon vary-
ing � at fixed �=1. Similarly to the �100� surface, at �=0
we recover the results for a 3D dxy superconductor; note that
the divergence of the SDOS at E=0 is due to the zero-energy
state for all k�. As � is increased from zero, the SDOS be-
comes finite at E=0 and increases linearly with E up to a
maximum at the edge of the bulk gap. The low-energy linear
slope of the SDOS decreases with increasing �, revealing
that the velocity of the Dirac states increases with �. This is
anticipated by the result that for this geometry the surface
bound states appear about the zeroes of �k.

The change in the SDOS as � is tuned through the topo-
logical transition is more subtle than for the �100� surface. As
can be seen in Fig. 4�d�, there is relatively little change in the
low-energy SDOS, with the main feature being that the peak
at E=0.5� becomes sharper as � is decreased. At ��1 we
note a drop in the SDOS at E=0.5�; in the topologically
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FIG. 3. �Color online� Panels �a�, �c�, and �e�: energy of the
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 as a fraction of
the gap amplitude �k for �a� the �100� interface perpendicular to êx,
�c� the �110� interface perpendicular to 1

�2
�êx+ êy�, and �e� the �001�

interface perpendicular to êz. The color scale is such that blue cor-
responds to Ek /�k=0 while gray is Ek /�k=1. Panels �b�, �d�, and
�f�: comparison of the Andreev state dispersion Ek and the bulk gap
�k for the same interface configurations as in panels �a�, �c�, and
�e�, respectively. In all panels we take �d=1, �s=0, and �0=0.2.
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nontrivial state, the SDOS is finite on both sides of the drop,
while in the trivial state it is zero on the higher-energy side.
That is, the large feature in the SDOS at E�0.5� in the
topologically trivial state is due to surface bound states with
nonzero energy.

C. (001) surface

As there is no sign change of �k upon reflection from the
�001� surface, the zero-energy states must be located along
the nodal lines of �k. The interband pairing potential �k
does not vanish for these values of k but the condition
cos��k−�k̃�=−1 is fulfilled when the real part of �k van-
ishes, i.e., for k= �kx ,0 ,kz� and �0,ky ,kz�. For �=1 this im-
plies a single zero-energy bound state at k= �0,0 ,kF�. As for
the �100� surface, the origin of this state is due to a zero in
�k and the sign change of �k upon reflection. Upon reducing
�, the single zero-energy state at �0,0 ,kF� splits into two
zero-energy states at the intersection of the plane �0,ky ,kz�
with the nodal lines of �k.

The energies of the surface state deviate most signifi-
cantly from the bulk along the nodal lines of �k, see Fig.
3�e�. Unlike the other two surfaces, the zero-energy state has
quadratic dispersion at low energy, as shown by the cut along
kx=0 in Fig. 3�f�. For 0.5���1, however, the two zero-
energy states have linear dispersion at low energies.

The SDOS at �=1 is qualitatively different to the other
cases because the 2D quadratic surface states contribute a
constant DOS, see Fig. 4�e�. The height of this constant re-
gion increases with increasing �, so that at �=� the gap is
completely filled. The edge of the bulk gap at E=0.5� is
signaled by the cusp feature. The constant SDOS within the
bulk gap is only found at �=1: as shown in Fig. 4�f�, for
0.5���1 we find the low-energy linear SDOS characteris-
tic of linearly dispersing zero-energy states. In the topologi-
cally trivial state the SDOS is vanishing within the gap.

V. CONCLUSIONS AND OUTLOOK

In this paper we have discussed the three-dimensional CI
topological superconductor introduced in Ref. 11. We con-
structed a concrete realization of this topological phase in
terms of a two-band Bogoliubov-de Gennes Hamiltonian
with unconventional interband and intraband pairing poten-
tials. This lattice Hamiltonian is just one example of a wider
class of models that all share the same topological properties.
Quite generally, one is free to add arbitrary small deforma-
tions to the Hamiltonian without changing its topological
characteristics, as long as the perturbations do not close the
bulk superconducting gap. While we do not know in which

specific material the considered tight-binding Hamiltonian
could be realized, it is a convenient canonical model that
gives valuable insight into interesting properties shared by
general CI topological superconductors. In the presence of
inversion symmetry, the topological characteristics of this
two-band superconductor are fully determined by the mo-
mentum dependence of the gap functions along the Fermi
surface. That is, the topological properties are independent of
the electronic band structure away from the Fermi surface.
We have demonstrated that the topological invariant � �wind-
ing number� can be related to the sign reversal of the intra-
band gap between vortices in the interband gap with opposite
winding number. This simple criterion could be used in the
search for CI topological superconductors in real materials.
Our results suggest to consider time-reversal invariant sys-
tems with orbital degrees of freedom, i.e., multiband super-
conductors.

The CI topological superconductor has exotic Andreev
bound states at its surface or at an interface with a normal
metal. These gapless modes are due to the bulk topological
invariant �, which cannot change as long as the supercon-
ductor remains fully gapped in the bulk. We have used qua-
siclassical scattering theory to study the energy spectrum of
these Andreev bound states for various surface orientations.
An important measurement technique to observe Andreev
bound states in unconventional superconductors is scanning
tunneling spectroscopy. We therefore computed the surface
density of states and demonstrated that the presence of An-
dreev bound states leads to pronounced anomalies at low
energies in the scanning tunneling spectra. These features
provide key experimental signatures of the nontrivial topo-
logical character of the system.

Furthermore, it would be interesting to investigate the ef-
fects of the topological nontriviality of the superconductor
on other experimental probes, such as tunneling conductance
or Josephson current. In particular, since our model lends
itself to the application of quasiclassical scattering tech-
niques, one could examine the proximity effects in a junction
involving a CI topological superconductor and a normal
metal or a ferromagnet, for example, or alternatively exam-
ine vortex structures. We leave these interesting questions for
future work.
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