Cotunneling through a magnetic single-molecule transistor based on $N@C_{60}$

Nicolas Roch,¹ Romain Vincent,¹ Florian Elste,² Wolfgang Harneit,³ Wolfgang Wernsdorfer,^{1,*}

Carsten Timm,⁴ and Franck Balestro^{1,†}

¹Institut Néel, associé à l'UJF, CNRS, Boîte Postale 166, F-38042 Grenoble Cedex 9, France

²Department of Physics, Columbia University, 538 West 120th Street, New York, New York 10027, USA

³Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany

⁴Institut für Theoretische Physik, Technische Universität Dresden, D-01062 Dresden, Germany

(Received 29 December 2010; published 15 February 2011)

We present an experimental and theoretical study of a magnetic single-molecule transistor based on N@C₆₀ connected to gold electrodes. Particular attention is paid to the regime of intermediate molecule-lead coupling, where cotunneling effects manifest themselves in the Coulomb-blockade regime. The experimental results for the differential conductance as a function of bias, gate voltage, and external magnetic field are in agreement with our analysis of the tunneling rates and provide evidence of magnetic signatures in single-N@C₆₀ devices arising from an antiferromagnetic exchange interaction between the C₆₀ spin and the nitrogen spin.

DOI: 10.1103/PhysRevB.83.081407

PACS number(s): 73.23.Hk, 73.21.La, 72.80.Rj

Single molecules carrying a magnetic moment, such as Mn₁₂, Fe₈, and N@C₆₀, have been studied intensively for their outstanding quantum properties. Some of these molecules are characterized by a large spin and exhibit macroscopic quantum tunneling^{1,2} and quantum-interference effects.³ The ability to initialize and manipulate the quantum state of a single magnetic molecule could open the road to new strategies for high-density information storage, quantum computing, and molecular spintronics.^{4,5} However, only a few experiments have succeeded in fabricating single-molecule transistors (SMTs) [Fig. 1(a)] based on magnetic molecules.^{6–10} Furthermore, only two experiments^{7,10} on single magnetic molecules in three-terminal geometry have succeeded in obtaining the intermediate molecule-lead coupling regime. In this regime,¹¹ cotunneling processes manifest themselves in the spectra of excited molecular states for a fixed charge state of the molecule, allowing an easier and more precise characterization of magnetic properties of single-molecule devices compared to sequential tunneling. For Mn_{12} clusters, steps in dI/dV have been observed,⁷ but the dependence of the cotunneling steps on an external magnetic field was not investigated. Recently, a characteristic zero-field splitting and its evolution in an external magnetic field have been attributed to the signature of anisotropy in a Fe₄ single-molecule magnet.¹⁰ The aim of our work is then to study exchange-coupling-dependent cotunneling features in a single magnetic molecule.

Previous studies have shown that it is not straightforward to identify the magnetic properties of a SMT since molecular magnetism is usually destroyed during the device fabrication⁷ due to strong interactions with the environment.¹² To conserve the magnetic properties, one option would be to incorporate a molecule whose magnetic moment is retained. In N@C₆₀, the spin of the encapsulated nitrogen atom, which is in the center of the fullerene molecule,¹³ is protected by the C₆₀ cage [Fig. 1(b)]. An exchange interaction between the C₆₀ spin and the nitrogen spin permits an indirect measurement of the magnetic properties of the nitrogen.⁹

Although experimental studies investigating the stability of paramagnetism in N@C₆₀ on a substrate have not been performed so far, it is known from x-ray and ultraviolet photoelectron spectroscopy that C₆₀ changes its charge state when it is adsorbed on noble metal surfaces.^{14,15} This may lead to the formation of N@C₆₀¹⁻ ions, when the number of electrons, $n_{C_{60}}$, added to the C₆₀ cage is 1, or N@C₆₀²⁻ ions when $n_{C_{60}} = 2$. Since covalently functionalized N@C₆₀ is stable,¹⁶⁻¹⁸ various ions of N@C₆₀ are believed to be stable.¹⁹

The total spin of neutral N@C₆₀ is S = 3/2 [Fig. 1(c)]. However, the spin of the singly charged ion N@C₆₀¹⁻ can be S = 1 or 2, depending on whether the C₆₀ spin $S_{C_{60}} =$ 1/2 is antiparallel or parallel to the nitrogen spin [Fig. 1(c)]. N@C₆₀²⁻ has a fixed ground-state spin S = 3/2 since the dianion cage is diamagnetic due to Jahn-Teller distortion.

Following theoretical predictions,²⁰ transport measurements on SMTs with N@C₆₀ in the weak-coupling regime showed signatures of an antiferromagnetic exchange interaction between the C_{60} spin and the nitrogen spin,⁹ in contradiction with the ferromagnetic exchange coupling obtained, for singly and triply ionized anions of N@C60, using multiconfigurational self-consistent-field methods.²¹ Therefore, we first present results that confirm the interpretation of the previous experiment⁹ in the weak-coupling regime. As the field of molecular electronics in general and of molecular spintronics in particular has been plagued by a lack of reproducibility, it is essential that we have been able to reproduce the results for the prototypical single-molecule transistor based on N@C₆₀ using independently fabricated devices. However, since we succeeded in reaching the intermediate molecule-lead coupling regime, our results go beyond the sequential-tunneling regime. In the second part, we present results in the cotunneling regime. In agreement with our theoretical analysis, our experimental results provide evidence for an antiferromagnetic exchange interaction between the C₆₀ spin and the nitrogen spin.

The SMT was fabricated by using the electromigration technique.²² The experiment was carried out in a dilution refrigerator at a base temperature of 35 mK. Our procedure and details of the measurement system are described in Ref. 23.

Figure 2(a) shows a color- (gray-) scale plot of the differential conductance dI/dV as a function of bias voltage V_{sd} and gate voltage V_g over the entire accessible gate range, performed during a first run of measurements. We emphasize that we observe only one charge-degeneracy point (at gate voltage V_g^D),

FIG. 1. (Color online) (a) Colorized electron beam microscopy photography of an SMT consisting of a gold nanowire over an Al/Al_2O_3 gate after electromigration. (b) Schematic picture of $N@C_{60}$. (c) Spin states of neutral and charged $N@C_{60}$.

where the energy of the $n_{C_{60}} = 1$ state aligns with the energy of the $n_{C_{60}} = 2$ state. Figure 2(b) shows results for dI/dVin the vicinity of V_g^D . Analyzing the slopes of the stability diagram, we obtain $C_g:C_R:C_L = 1:3.09:2.96$ for the ratio of the capacitances, where C_g , C_R , and C_L denote the capacitances of the gate, the source, and the drain with respect to the molecule. Thus the effective gate voltage is reduced by a factor of $C_g/(C_g + C_R + C_L) = 0.142$. From this we infer that the energy spacing between the relevant charge-degeneracy points is at least larger than 230 meV and conjecture that the measurement was performed for a single N@C₆₀ in the junction.²⁴

FIG. 2. (Color online) Color- (gray-) scale plot of the differential conductance dI/dV as a function of bias voltage V_{sd} and gate voltage V_g (a) on the entire accessible V_g range and (b) in the vicinity of $V_g^{\rm D}$. (c) Numerical results obtained from Eqs. (4) and (5) for $\varepsilon_d = -3.1625$ eV, U = 3.0 eV, J = -0.4 meV, $C_g:C_R:C_L = 1:3.09:2.96$, and $\Gamma_R/\Gamma_L \simeq 10$.

PHYSICAL REVIEW B 83, 081407(R) (2011)

When the energy level spacing between the molecular states is large compared to the thermal energy, the hybridization energies Γ_R and Γ_L can be estimated by an analysis of the current amplitudes at different gate voltages.²⁵ We find $\Gamma_L \simeq 1.65 \ \mu\text{eV}$ and $\Gamma_R \simeq 16.5 \ \mu\text{eV}$ ($\Gamma_R / \Gamma_L \simeq 10$). The assumption of asymmetric molecule-lead couplings explains the different peak heights in dI/dV at negative and positive bias [Fig. 2(b)] and is taken into account in the theoretical treatment discussed below [Fig. 2(c)].

We compare the bias- and gate-voltage dependences of the measured differential conductance to numerical results obtained from a rate-equation approach. The system is described by a Hamiltonian of the form $H = H_{N@C_{60}} + H_{leads} + H_t$, where

$$H_{N@C_{60}} = \varepsilon_d \, n_{C_{60}} + \frac{U}{2} n_{C_{60}} \left(n_{C_{60}} - 1 \right) - J \, \mathbf{S}_{C_{60}} \cdot \mathbf{S}_{N} - g \mu_B B \left(S_{C_{60}}^z + S_{N}^z \right)$$
(1)

describes the molecular degrees of freedom,

Ì

$$H_{\text{leads}} = \sum_{\alpha = L, R} \sum_{\mathbf{k}\sigma} \epsilon_{\alpha \mathbf{k}} a^{\dagger}_{\alpha \mathbf{k}\sigma} a_{\alpha \mathbf{k}\sigma}$$
(2)

describes the conduction electrons in the leads, and

$$H_t = \sum_{\alpha = L, R} \sum_{\mathbf{k}\sigma} (t_\alpha a^{\dagger}_{\alpha\mathbf{k}\sigma} d_\sigma + t^*_\alpha d^{\dagger}_\sigma a_{\alpha\mathbf{k}\sigma})$$
(3)

describes the tunneling of electrons between the C₆₀ cage and the leads. Here, d_{σ}^{\dagger} creates an electron with spin σ and energy ε_d in the lowest unoccupied molecular orbital of the C₆₀ molecule, while $a_{\alpha k\sigma}^{\dagger}$ creates an electron in lead α with spin σ , momentum **k**, and energy $\varepsilon_{\alpha k}$. Tuning the gate voltage V_g allows one to shift the orbital energy ε_d . The number and spin operators of the C₆₀ electrons are $n_{C_{60}} = \sum_{\sigma} d_{\sigma}^{\dagger} d_{\sigma}$ and $\mathbf{S}_{C_{60}} = \sum_{\sigma\sigma'} d_{\sigma}^{\dagger} (\boldsymbol{\sigma}_{\sigma\sigma'}/2) d_{\sigma'}$, respectively, with σ the vector of the Pauli matrices. The exchange interaction with the nitrogen spin \mathbf{S}_N is denoted by J and the external magnetic field applied along the z axis by B, where g is the g factor and μ_B is the Bohr magneton.

The leading contribution to the tunneling rates (corresponding to sequential tunneling) is of second order in H_t and can be obtained from Fermi's golden rule,

$$R_{n \to n',\alpha}^{(\text{seq})} = \Gamma_{\alpha} \sum_{\sigma} \left(f(\epsilon_{n'} - \epsilon_n - \mu_{\alpha}) \left| C_{nn'}^{\sigma} \right|^2 + \left[1 - f(\epsilon_n - \epsilon_{n'} - \mu_{\alpha}) \right] \left| C_{n'n}^{\sigma} \right|^2 \right).$$
(4)

Here *n* and *n'* denote the initial and final many-particle states of N@C₆₀, and *f* is the Fermi function. The matrix element with $C_{nn'}^{\sigma} \equiv \langle n | d_{\sigma} | n' \rangle$ denotes the net overlap of the initial and final states of the molecule. The typical sequential-tunneling rate is given by $\Gamma_{\alpha} = 2\pi t_{\alpha} 2v_{\alpha}$, where v_{α} denotes the lead density of states ($\hbar = 1$). To mimic the finite lifetime broadening of the sequential-tunneling peaks, we used an effective temperature of 250 mK in Eq. (4).

COTUNNELING THROUGH A MAGNETIC SINGLE

The next-to-leading-order contribution to the tunneling rates (including cotunneling) is of fourth order in H_t and can be computed using a *T*-matrix formalism.^{26,27} We find

$$R_{n \to n', \alpha \to \alpha'}^{(\text{cot})} = \frac{\Gamma_{\alpha} \Gamma_{\alpha'}}{2\pi} \sum_{\sigma \sigma'} \int d\epsilon \left\{ \left| \sum_{n''} \frac{C_{n'n'}^{\sigma^*} C_{n''}^{\sigma'}}{\epsilon_{n'} - \epsilon_{n''} - \epsilon + i\eta} \right|^2 + \left| \sum_{n''} \frac{C_{n'n'}^{\sigma} C_{nn''}^{\sigma^*}}{\epsilon_n - \epsilon_{n''} + \epsilon + i\eta} \right|^2 \right\} \times f(\epsilon - \mu_{\alpha}) \left[1 - f(\epsilon_n - \epsilon_{n'} + \epsilon - \mu_{\alpha'}) \right].$$
(5)

The divergences arising from the energy denominators are regularized by replacing η by a finite lifetime broadening $\Gamma = \Gamma_L + \Gamma_R$. In the Coulomb-blockade regime far from the sequential-tunneling threshold, the Fermi functions suppress the integrand in Eq. (5) outside of a narrow energy interval. If we replace ϵ in the energy denominators by its mean on these intervals, we can perform the integral. Close to the sequential-tunneling threshold, where this approximation becomes invalid, the cotunneling contribution is overwhelmed by the sequential tunneling in any case.

The good qualitative agreement between Figs. 2(b) and 2(c) suggests that the Hamiltonian [Eqs. (1)–(3)] contains the crucial ingredients to explain both sequential and cotunneling features revealed in the experiment. We find that a calculation under the assumption of $J \simeq -0.4$ meV gives the best agreement with the experiment.

In order to verify that the charge-degeneracy point involves the two states $n_{C_{60}} = 1$ and $n_{C_{60}} = 2$, we investigated the dependence of dI/dV on an external magnetic field *B*. These measurements were performed for the same sample but during a different run. Results of dI/dV for a fixed gate voltage greater than V_g^D are shown in Fig. 3. The conductance peaks at positive and negative bias voltage first move apart until the magnetic field assumes a critical value. Then they change slope, approaching each other again. Here the best fit to experimental data is obtained for a calculation that assumes $J \simeq -0.3$ meV. The other parameters are also changed somewhat; see the caption of Fig. 3. The microscopic

FIG. 3. (Color online) Color- (gray-) scale plot of the differential conductance dI/dV as a function of bias voltage and magnetic field *B*. (a) shows experimental results while (b) shows numerical results in the regime where the ground state is $n_{C_{60}} = 2$, with $\varepsilon_d = -3.1722$ eV, U = 3.0 eV, J = -0.3 meV, $C_g:C_R:C_L = 1:3.29:3.43$, and $\Gamma_R/\Gamma_L \simeq 6.7$.

PHYSICAL REVIEW B 83, 081407(R) (2011)

mechanism behind the change in the exchange interaction is not yet clear. The characteristic pattern revealed in Fig. 3 allows us to deduce the charge and spin of the relevant molecular states to the left and to the right of the degeneracy point, in agreement with the results reported by Grose *et al.*⁹

We now turn to the cotunneling regime where transport is dominated by the coherent tunneling of electrons through the source-molecule-drain structure.^{28,29} This regime is characterized by a fixed molecular charge state and by the occurrence of steps in dI/dV. The positions of these steps are independent of the molecular charging energies and the gate voltage but do depend on the magnetic excitation energies. As a consequence, measurements in this regime can be more easily interpreted than in the sequential-tunneling regime, where two different charge states are involved.

For N@C₆₀¹⁻, the ground state is a degenerate spin S = 1multiplet while the excited state, having an energy J compared to the ground state, is a spin S = 2 multiplet at zero magnetic field. Turning on a magnetic field leads to a Zeeman splitting of the spin multiplets as indicated in Fig. 4(a). Selection rules for the cotunneling processes require $|\Delta S^z| = 0$ or 1. This condition is used to determine all possible transitions that we expect to observe as steps in dI/dV [Fig. 4(b)]. Our measurement presented in Fig. 4(c) is in qualitative agreement with our theoretical analysis presented in Fig. 4(d), obtained with the same exchange coupling J = -0.3 meV, confirming in another tunneling process the antiferromagnetic exchange coupling between the C₆₀ spin and the nitrogen spin.

The discussion for the case $V_g > V_g^D$, where the ground state is a doubly charged N@C₆₀²⁻ anion, proceeds in an analogous way and is included in the supplemental

FIG. 4. (Color online) (a) Zeeman diagram of the multiplets S = 1 and 2 for N@C₆₀^{1–} ($n_{C_{60}} = 1$). (b) Schematic showing the expected cotunneling steps. (c) Experimental and (d) numerical results, with J = -0.3 meV, of dI/dV for a fixed gate voltage $V_{\rm g} < V_{\rm g}^{\rm D}$. Colored (different grayscale) lines indicate the positions of the magnetic excitations illustrated in (a) and (b).

information.³⁰ The most striking difference is the presence of a cotunneling step at very low bias, for zero magnetic field [Fig. 2(b)]. This feature might be due to magnetic anisotropy of the molecular spin,¹⁰ caused by the spin-orbit coupling of the nitrogen, which we expect to be enhanced by the hybridization with the gold leads.

In summary, we have presented an experimental and theoretical analysis of an SMT based on N@C₆₀. Our results in the sequential-tunneling regime are in agreement with the findings previously reported,⁹ and are a step toward achieving the high degree of reproducibility necessary for progress in the field of molecular spintronics. Furthermore, we have investigated the cotunneling regime, where transport is dominated by the coherent transfer of electrons through the molecular junction. Since measurements in this regime can be more easily interpreted than in the sequential-tunneling regime, the characteristic two-dimensional plots of dI/dV as a function

of bias voltage and magnetic field serve as a characteristic fingerprint of the magnetic state. In particular, cotunneling data obtained as a function of magnetic field corroborate the antiferromagnetic exchange interaction between the C_{60} spin and the nitrogen spin.

We thank E. Eyraud, C. Hoarau, R. Haettel, and D. Lepoittevin for technical support, T. Crozes and T. Fournier for help with the lithographic methods, S. Florens, V. Bouchiat, C. Winkelmann, and L. Udvardi for fruitful discussions, and C. Thirion, E. Bonet, and R. Piquerel for help with the software development. Samples were fabricated in the NANOFAB facility of the Néel Institute. This work is financially supported by ANR-PNANO Project MolNanoSpin No. ANR-08-NANO-002, ERC Advanced Grant MolNanoSpin No. 226558, STEP MolSpin-QIP, Cible, and the Deutsche Forschungsgemeinschaft.

- *wolfgang.wernsdorfer@grenoble.cnrs.fr
- [†]franck.balestro@grenoble.cnrs.fr
- ¹J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo, Phys. Rev. Lett. **76**, 3830 (1996).
- ²L. Thomas *et al.*, Nature (London) **383**, 145 (1996).
- ³W. Wernsdorfer and R. Sessoli, Science **284**, 133 (1999).
- ⁴W. Harneit, Phys. Rev. A **65**, 032322 (2002).
- ⁵L. Bogani and W. Wernsdorfer, Nature Mater. **7**, 179 (2008).
- ⁶H. B. Heersche, Z. de Groot, J. A. Folk, H. S. J. van der Zant, C. Romeike, M. R. Wegewijs, L. Zobbi, D. Barreca, E. Tondello, and A. Cornia, Phys. Rev. Lett. **96**, 206801 (2006).
- ⁷M. H. Jo *et al.*, Nano Lett. **6**, 2014 (2006).
- ⁸J. J. Henderson, C. M. Ramsey, E. D. Barco, A. Mishra, and G. Christou, J. Appl. Phys. **101**, 09E102 (2007).
- ⁹J. E. Grose *et al.*, Nature Mater. **7**, 884 (2008).
- ¹⁰A. S. Zyazin *et al.*, Nano Lett. **10**, 3307 (2010).
- ¹¹K. Moth-Poulsen and T. Bjørnholm, Nature Nanotechnol. 4, 551 (2009).
- ¹²M. Mannini et al., Chem. Eur. J. 14, 7530 (2008).
- ¹³H. Mauser *et al.*, Angew. Chem., Int. Ed. Engl. **36**, 2835 (1997).
- ¹⁴S. Modesti, S. Cerasari, and P. Rudolf, Phys. Rev. Lett. **71**, 2469 (1993).
- ¹⁵N. Swami, H. He, and B. E. Koel, Phys. Rev. B **59**, 8283 (1999).
- ¹⁶E. Dietel et al., J. Am. Chem. Soc. **121**, 2432 (1999).
- ¹⁷B. Goedde et al., Chem. Phys. Lett. **334**, 12 (2001).

- ¹⁸L. Franco et al., Chem. Phys. Lett. 422, 100 (2006).
- ¹⁹P. Jakes et al., in Electronic Properties of Novel Materials— Molecular Nanostructures, edited by H. Kuzmany et al., AIP Conf. Proc. No. 544 (AIP, Melville, NY, 2000), p. 174.
- ²⁰F. Elste and C. Timm, Phys. Rev. B **71**, 155403 (2005).
- ²¹L. Udvardi, in *Electronic Properties of Novel Materials*—Molecular Nanostructures (Ref. 19), p. 187.
- ²²H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen, Appl. Phys. Lett. **75**, 301 (1999).
- ²³N. Roch, S. Florens, V. Bouchiat, W. Wernsdorfer, and F. Balestro, J. Low Temp. Phys. **153**, 350 (2008).
- ²⁴D. R. Ward, G. D. Scott, Z. K. Keane, N. J. Halas, and D. Natelson, J. Phys. Condens. Matter **20**, 374118 (2008).
- ²⁵E. Bonet, M. M. Deshmukh, and D. C. Ralph, Phys. Rev. B **65**, 045317 (2002).
- ²⁶H. Bruus and K. Flensberg, *Many-Body Quantum Theory in Condensed Matter Physics* (Oxford University Press, Oxford, 2004).
- ²⁷F. Elste and C. Timm, Phys. Rev. B **75**, 195341 (2007).
- ²⁸D. V. Averin and Y. V. Nazarov, in *Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures*, edited by H. Grabert and M. H. Devoret (Plenum Press and NATO Scientific Affairs Division, New York, 1992), p 217.
- ²⁹S. De Franceschi S. Sasaki, J. M. Elzerman, W. G. van der Wiel, S. Tarucha, and L. P. Kouwenhoven, Phys. Rev. Lett. 86, 878 (2001).
- ³⁰See supplemental material at [http://link.aps.org/supplemental /10.1103/PhysRevB.83.081407] for a discussion of the case of the doubly charged anion ground state.