
PHYSICAL REVIEW B 83, 115416 (2011)

Time-convolutionless master equation for quantum dots: Perturbative expansion to arbitrary order
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The master equation describing the nonequilibrium dynamics of a quantum dot coupled to metallic leads is
considered. Employing a superoperator approach, we derive an exact time-convolutionless master equation for
the probabilities of dot states, i.e., a time-convolutionless Pauli master equation. The generator of this master
equation is derived order by order in the hybridization between dot and leads. Although the generator turns out to
be closely related to the T-matrix expressions for the transition rates, which are plagued by divergences, in the time-
convolutionless generator all divergences cancel order by order. The time-convolutionless and T-matrix master
equations are contrasted to the Nakajima-Zwanzig version. The absence of divergences in the Nakajima-Zwanzig
master equation due to the nonexistence of secular reducible contributions becomes rather transparent in our
approach, which explicitly projects out these contributions. We also show that the time-convolutionless generator
contains the generator of the Nakajima-Zwanzig master equation in the Markov approximation plus corrections,
which we make explicit. Furthermore, it is shown that the stationary solutions of the time-convolutionless and
the Nakajima-Zwanzig master equations are identical. However, this identity neither extends to perturbative
expansions truncated at finite order nor to dynamical solutions. We discuss the conditions under which the
Nakajima-Zwanzig-Markov master equation nevertheless yields good results.
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I. INTRODUCTION

Electronic transport through small quantum systems, such
as quantum dots or single molecules, has been intensively stud-
ied in recent years.1–3 Apart from the envisioned applications,
such devices address fundamental questions of nonequilibrium
quantum statistics. Quantum dots coupled to electronic leads
under a bias voltage generically relax toward a stationary
state. Unless the number of relevant degrees of freedom of
the quantum dot is very small, the relaxational dynamics is
complex, including broadly distributed time scales and damped
oscillatory behavior. The stationary state that is eventually
approached typically depends on the physical parameters in a
complicated way and can, in particular, be very different from
the equilibrium state of the isolated dot.

The descriptions of transport through quantum dots or
molecules far from equilibrium have so far followed three
broad approaches. In the first, the focus is on an electron
tunneling through the device. Its dynamics is described by a
nonequilibrium Green’s function (NEGF). The current through
the dot can be expressed in terms of the local NEGF on
the dot, which contains self-energies due to the tunneling
or hybridization between dot and leads.4 This hybridization,
which is described by a bilinear component Hhyb of the
Hamiltonian, can, in principle, be incorporated exactly. On the
other hand, interactions with other electrons, with vibrational
modes, or with local spins, which all are particularly important
for small dots or single molecules, require approximations.5–15

The second approach revolves around the nonequilibrium
Keldysh generating function.16,17 It is most naturally
expressed as a functional integral and, with suitable source
terms, contains the full information on the system. This
formulation is particularly suitable for numerical calculations.
When errors due to Trotter discretization and a cutoff time
for the memory kernel are properly controlled, the results are
numerically exact.

The third approach focuses on the dynamics of the small
system. An equation of motion for the reduced density operator

in the Fock subspace of the small system is derived by
integrating out the lead degrees of freedom. The result is a
master equation (ME).9,18–26 If the small system is sufficiently
simple, the interactions within this system can be treated
exactly. However, integrating out the lead states naturally leads
to a perturbative series in the hybridization Hhyb.

Master equations can be either nonlocal or local in time.
A nonlocal ME, for example, of Nakajima-Zwanzig (NZ)
type,27,28 contains a memory kernel, which relates the rate of
change of the reduced density operator at a time t to the reduced
density operator at all previous times t ′ < t . On the other hand,
a local [“time-convolutionless,” (TCL)] ME (Refs. 29–31)
expresses the rate of change of the reduced density operator at
time t in terms of the reduced density operator at time t only.

If one has a practical method for generating all terms in
the perturbation series for the transition rates or memory
kernel in orders of Hhyb, one can hope to resum the series
or at least a subseries. This idea has been very fruitful for
many-particle physics, from the Dyson equation to the theory
of the Kondo effect. For the nonlocal ME of NZ type, Schoeller,
Schön, and König have developed a real-time diagrammatic
scheme that generates all terms.18–20,25 For a large class
of systems, including a quite general coupling Hamiltonian
Hhyb, Schoeller25 has presented a compact superoperator
formulation in Laplace space. This formulation is particularly
suitable for a nonequilibrium renormalization-group approach,
which, in principle, includes all orders in Hhyb.25

Apart from the NZ ME, the T-matrix approach from time-
dependent perturbation theory has been used to calculate the
transition rates in the ME.22,32–37 It has the advantage of being
relatively straightforward but is known to produce divergences
beyond second order in Hhyb, the nature of which has recently
been clarified.23,26,38 The superoperator derivation of the
T-matrix ME will make their origin transparent.

The TCL ME has the obvious advantage of being an exact
ME describing the full dynamics that is nevertheless local in
time. However, so far a method for generating all terms in the

115416-11098-0121/2011/83(11)/115416(17) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.115416


CARSTEN TIMM PHYSICAL REVIEW B 83, 115416 (2011)

perturbation series for the TCL ME has been lacking, which
has limited its usefulness.

The main purpose of this paper is to derive an iterative
scheme for constructing all orders in the perturbative ex-
pansion of the generator of the TCL ME. The results are
valid for the exact ME describing the full dynamics. Only
at the end will we discuss the implications for the stationary
state. Furthermore, a surprising connection between the TCL
generator and the T-matrix transition rates is uncovered. This
connection introduces the divergences of the T-matrix rates
into the expansion terms of the TCL generator. We will show
that these divergences cancel order by order. In this paper, we
concentrate on master equations for the diagonal components
of the reduced density matrix, i.e., for the probabilities. We
will call these the Pauli master equations or rate equations.

In the remainder of this paper, the theoretical development
is presented in Sec. II. After a brief review of the super-
operator formalism and the TCL ME, we derive the Pauli
version thereof, i.e., the TCL rate equations. Then, we derive
the T-matrix formula for the transition rates within the
same formalism and exhibit the relation between the rates
derived within the two approaches. After that, we organize
the perturbative expansion of the rates derived within both
approaches in a way that makes all divergent terms explicit,
and then show that all the divergences cancel in the TCL rates.
Finally, additional insight is gained by a discussion of the
Nakajima-Zwanzig ME and of the stationary state. The results
are summarized in Sec. III, where we also draw a number of
conclusions. Several proofs are relegated to appendices.

II. THEORY

A. Superoperators and the TCL master equation

Since we will make extensive use of the superoperator
formalism, we briefly review the superoperator derivation of
the TCL ME.23,29–31,39 To make contact with the T-matrix
approach and to allow for the analysis of divergences, we
consider a time-dependent hybridization between dot and
leads. The Hamiltonian reads as

H (t) = H0 + Hhyb eηt , (1)

where η is small and positive. H0 = Hdot + Hleads describes
the decoupled dot and leads. For convenience, we assume that
the eigenstates |m) of Hdot are nondegenerate.40 As usual, the
leads are represented by noninteracting Fermi seas.

The density operator ρ of the full system satisfies the von
Neumann equation

ρ̇ = −i[H (t),ρ] =: −iL(t) ρ, (2)

where we have defined the Liouvillian L. The resulting unitary
time evolution of ρ can be expressed as

ρ(t) = T← exp

(
−i

∫ t

t0

dt ′ L(t ′)
)

ρ(t0), (3)

where T← is the time-ordering directive.
Projection superoperators P and Q are defined by

Pρ(t) := [trleads ρ(t)] ⊗ ρ0
leads (4)

and Q := 1 − P . Here, ρ0
leads describes the leads in generally

separate equilibrium—each lead is in equilibrium at its own
chemical potential and possibly temperature. We write L(t) =
L0 + Lhybe

ηt with obvious definitions and note the identities23

PL0 = L0P, (5)

PLhybP = 0. (6)

We assume that the system was in a product state at time
t0 with the leads in equilibrium, i.e., Qρ(t0) = 0. Dropping
this assumption would lead to additional terms describing the
propagation ofQρ(t0) from time t0 to t . Since we are interested
in the case t0 → −∞, we do not expect the initial state to be
relevant. We then obtain

Pρ(t) =P T← exp

(
− i

∫ t

t0

dt ′ [L0 + Lhyb eηt ′ ]

)
Pρ(t0). (7)

The time-ordered exponential is expanded as

Pρ(t) = P
∞∑

ν=0

(−i)ν
∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tν−1

t0

dtν

× e−iL0 (t−t1)Lhybe
ηt1e−iL0 (t1−t2)Lhybe

ηt2 · · ·
×Lhybe

ηtν e−iL0 (tν−t0)Pρ(t0). (8)

Equations (7) and (8) simply represent the time evolution of
the density operator, projected with P at time t .

The TCL ME is derived by splitting the von Neumann
equation (2) into two parts:

dPρ(t)/dt = −iPL(t)Pρ(t) − iPL(t)Qρ(t), (9)

dQρ(t)/dt = −iQL(t)Pρ(t) − iQL(t)Qρ(t). (10)

The second equation is solved by

Qρ(t) = T← exp

(
− iQ

∫ t

t0

dt ′L(t ′)

)
Qρ(t0) − i

∫ t

t0

dt ′T←

× exp

(
−iQ

∫ t

t ′
dt ′′L(t ′′)

)
QL(t ′)Pρ(t ′), (11)

where the first term vanishes under our assumption of
Qρ(t0) = 0. The main idea of the TCL approach29,30 is to
express ρ(t ′) by propagating the full density operator backward
in time:

ρ(t ′) = T→ exp

(
i

∫ t

t ′
dt ′′ L(t ′′)

)
ρ(t), (12)

where T→ is the anti-time-ordering directive. Insertion into
Eq. (11) gives

Qρ(t) = −i

∫ t

t0

dt ′T← exp

(
−iQ

∫ t

t ′
dt ′′L(t ′′)

)
QL(t ′)P

× T→ exp

(
i

∫ t

t ′
dt ′′L(t ′′)

)
[Pρ(t) + Qρ(t)]. (13)

Solving for Qρ(t) yields

Qρ(t) = [1 − �(t,t0)]−1�(t,t0)Pρ(t) (14)
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with

�(t,t0) := −i

∫ t

t0

dt ′T← exp

(
−iQ

∫ t

t ′
dt ′′L(t ′′)

)

×QL(t ′)PT→ exp

(
i

∫ t

t ′
dt ′′L(t ′′)

)
. (15)

Inserting Qρ(t) into Eq. (9) results in an equation of motion
for Pρ alone,

dPρ(t)/dt = −iPL(t) [1 − �(t,t0)]−1 Pρ(t). (16)

This is the TCL ME for the case Qρ(t0) = 0. Using Eq. (5)
and noting that �(t,t0) contains a projection Q to the left, we
can rewrite this more specifically as

dPρ(t)/dt

= −iPL0Pρ(t) − iPLhybe
ηt [1 − �(t,t0)]−1 Pρ(t) (17)

with

�(t,t0)

= −iQ
∫ t

t0

dt ′T← exp

(
−i

∫ t

t ′
dt ′′[L0 + QLhybe

ηt ′′Q]

)

×Lhybe
ηt ′PT→ exp

(
i

∫ t

t ′
dt ′′[L0 + Lhybe

ηt ′′ ]

)
. (18)

The first term in Eq. (17) describes the unperturbed time
evolution, while the second stems from the hybridization.

B. The TCL Pauli master equation

We here derive an exact TCL ME for the diagonal
components of the reduced density operator. Since we are
assuming nondegenerate dot states, this is equivalent to an
equation for the secular part of the reduced density operator.26

A ME for the diagonal components of the density operator,
albeit nonlocal in time, has been derived by Zwanzig28 and
rediscovered, in the context of transport, by Leijnse and
Wegewijs.24

We introduce new projection operators by

P̃ρ(t) :=
[ ∑

m

|m)(m|trleads ρ(t)|m)(m|
]

⊗ ρ0
leads, (19)

where the |m) are the unperturbed dot eigenstates, and Q̃ :=
1 − P̃ . P̃ evidently projects the density operator onto a product
form with diagonal reduced density operator.28 We will call
P̃ρ the diagonally projected density operator. It is easy to
show that

P̃L0 = L0P̃ = 0, (20)

which goes beyond Eq. (5) for P . Since Hhyb changes the
electron number in the leads by ±1, we have

P̃LhybP̃ = 0. (21)

We now assume that the system was in a product state at time t0
with the leads in generally separate equilibrium and diagonal
reduced density operator Q̃ρ(t0) = 0.

Repeating the derivation in Sec. II A with the new projec-
tions P̃ , Q̃, we obtain

dP̃ρ(t)/dt = −iP̃Lhybe
ηt [1 − �̃(t,t0)]−1 P̃ρ(t) (22)

with

�̃(t,t0)

:= −iQ̃
∫ t

t0

dt ′T← exp

(
−i

∫ t

t ′
dt ′′[L0 + Q̃Lhybe

ηt ′′Q̃]

)

×Lhybe
ηt ′P̃T→ exp

(
i

∫ t

t ′
dt ′′[L0 + Lhybe

ηt ′′ ]

)
. (23)

Due to Eq. (20), the unperturbed time evolution has dropped
out of Eq. (22). We can now write

dP̃ρ(t)/dt = S̃(t,t0) P̃ρ(t) (24)

with the generator

S̃(t,t0) = −iP̃Lhybe
ηt [1 − �̃(t,t0)]−1P̃. (25)

Equation (24) is an exact ME for the diagonally projected
density operator under the condition Q̃ρ(t0) = 0. It is evidently
local in time. Since it only involves the diagonal components,
we call it the TCL Pauli ME. A Pauli ME in the reduced Fock
space of the dot is, of course, obtained by taking the trace over
the lead degrees of freedom:

dρdot/dt = trleadsS̃(t,t0)ρdot(t) ⊗ ρ0
leads =: S̃dotρdot(t). (26)

The reduced generator S̃dot written in the dot eigenbasis is the
transition-rate matrix. Ensembles of such matrices are studied
in Ref. 41 within random matrix theory.

We have now eliminated the off-diagonal components
of the reduced density matrix ρdot from the equations of
motion, similar in spirit to Zwanzig’s work28 and also to
Refs. 24 and 26. We are therefore able to determine the
dynamics of the probabilities of dot states exclusively from
the knowledge of these probabilities at a given time. This does
not mean that we assume the off-diagonal components to be
small, which is not generally true.

The knowledge of the probabilities is sufficient for the
calculations of dot observables that commute with the dot
Hamiltonian Hdot. To see this, we denote the operator for such
an observable by A in the Fock space of the dot. Then, the
operator in the Fock space of the whole system is A ⊗ 1leads

in an obvious notation. The average of the observable is

〈A〉(t) = Tr ρ(t)A ⊗ 1leads = trdot ρdot(t) A

=
∑
mn

ρdot
mn(t) Anm, (27)

writing matrix elements of dot states |m), |n) as ρdot
mn =

(m|ρdot|n), etc. If A commutes with the dot Hamiltonian, we
can choose A to be diagonal in the dot eigenbasis {|m)} so that

〈A〉(t) =
∑
m

ρdot
mm(t) Amm = Tr P̃ρ(t) A. (28)

Thus, the knowledge of P̃ρ(t) is sufficient to calculate the
average. Examples are the charge on the dot, the vibrational
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energy of a molecule, or the component of its spin parallel
to an applied magnetic field, assuming vanishing transverse
anisotropy. On the other hand, the current does not com-
mute with Hdot and thus does depend on the off-diagonal
components.42 However, it is possible to reconstruct the full
density operator from P̃ρ(t),

ρ(t) = P̃ρ(t) + Q̃ρ(t) = [1 − �̃(t,t0)]−1 P̃ρ(t) (29)

[compare Eq. (14)].

C. Superoperator derivation of the T-matrix formula

In the following, the T-matrix formula for the transition
rates is rederived within the superoperator formalism to allow
a direct comparison with the exact TCL ME. Moreover, we
show that this derivation relies on a single straightforward, but
generally unjustified, approximation.

To start with, note that the exponential time dependence
of the perturbation in Eq. (1) is exactly the case considered
by Bruus and Flensberg22 in their derivation of the T-matrix
formula. The analog of Eqs. (7) and (8) for diagonal projection
reads as

P̃ρ(t) = P̃T← exp

(
−i

∫ t

t0

dt ′[L0 + Lhyb eηt ′ ]

)
P̃ρ(t0)

= P̃
∞∑

ν=0

(−i)ν
∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tν−1

t0

dtνLhybe
ηt1

× e−iL0 (t1−t2)Lhybe
ηt2 · · ·Lhybe

ηtν P̃ρ(t0), (30)

where we have used Eq. (20). This is the time evolution of the
full density operator under the condition Q̃ρ(t0) = 0, projected
with P̃ at time t .

Taking the time derivative of Eq. (30), we obtain

dP̃ρ(t)/dt = R̃(t,t0) P̃ρ(t0) (31)

with

R̃(t,t0) : = −iP̃Lhybe
ηt

∞∑
μ=0

(−i)μ
∫ t

t0

dt1

∫ t1

t0

dt2 · · ·

×
∫ tμ−1

t0

dtμe−iL0 (t−t1)Lhybe
ηt1e−iL0 (t1−t2)

×Lhybe
ηt2 · · ·Lhybe

ηtμP̃, (32)

where the new summation index is μ = ν − 1 and the
integration variables are now counted by μ. The terms in this
series are of order μ + 1 in Lhyb. In the limit t0 → −∞, it is
straightforward to evaluate the time integrals at nonzero η,

R̃(t,−∞) = −i

∞∑
ν=1

eνηt P̃Lhyb [−L0 + (ν − 1)iη]−1 Lhyb

× [−L0 + (ν − 2)iη]−1 Lhyb · · ·
×Lhyb (−L0 + iη)−1 LhybP̃. (33)

The terms are of order ν in Lhyb. Due to the trace over
lead states coming from the leftmost P̃ and the equilibrium
lead density operator ρ0

leads contained in the rightmost P̃ , this
expression contains equilibrium averages of products of lead
electron creation operators a

†
αkσ and annihilation operators

aαkσ . To obtain a nonzero contribution, these operators must
be paired. Since the hybridization Hamiltonian Hhyb is linear
in these operators, only terms of even order ν contribute to
R̃(t,−∞).

We will now show that the central approximation of the
T-matrix approach consists of taking R̃(t,t0) to be the
generator of a Pauli ME that is local in time,

dP̃ρ(t)/dt ≈ R̃(t,t0) P̃ρ(t). (34)

To that end, we show that this ME indeed leads to the usual
T-matrix formula.22

Expressing the Liouvillians in Eq. (32) in terms of the
corresponding Hamiltonians, we obtain

R̃(t,t0)• = −iP̃
{ ∞∑

μ=0

(−i)μ
∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tμ−1

t0

dtμ[Hhybe
ηt ,e−iH0 (t−t1) [Hhybe

ηt1 ,e−iH0 (t1−t2)

×[Hhybe
ηt2 , . . . [Hhybe

ηtμ ,e−iH0 (tμ−t0) P̃•eiH0 (tμ−t0)] · · ·]eiH0 (t1−t2)] eiH0 (t−t1)]

}
. (35)

We now consider unequal initial and final eigenstates, |i〉 and |f 〉, respectively, of H0. Pure initial and final states are described
by the density operators |i〉〈i| and |f 〉〈f |, respectively. Expanding the nested commutators, except for the outermost one, we
obtain, for the matrix element of R̃(t,t0) between these pure states,

�f i := 〈f |{R̃(t,t0)|i〉〈i|}|f 〉 = −i 〈f |
∞∑

μ,ν=0

(−i)μiν
∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tμ−1

t0

dtμ

∫ t

t0

dt ′1

∫ t ′1

t0

dt ′2 · · ·
∫ t ′ν−1

t0

dt ′ν

×{Hhybe
ηt ,e−iH0 (t−t1)Hhybe

ηt1e−iH0 (t1−t2)Hhybe
ηt2 · · · Hhybe

ηtμe−iH0 (tμ−t0) |i〉〈i| eiH0 (t ′ν−t0)Hhybe
ηt ′ν · · ·

×Hhybe
ηt ′2eiH0 (t ′1−t ′2)Hhybe

ηt ′1eiH0 (t−t ′1)}|f 〉. (36)

It is helpful to rewrite this expression as a derivative

�f i = d

dt

∣∣∣∣∣〈f |
∞∑

μ=0

(−i)μ
∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tμ−1

t0

dtμeiH0t1 Hhybe
ηt1e−iH0 (t1−t2)Hhybe

ηt2 · · · Hhybe
ηtμe−iH0tμ |i〉

∣∣∣∣∣
2

. (37)
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Next, the initial time t0 is sent to −∞ at finite η. With τ1 = t − t1 and τμ = tμ−1 − tμ for μ > 1, we obtain

�f i = d

dt

∣∣∣∣∣〈f | eiH0t

∞∑
μ=1

(−i)μ
∫ ∞

0
dτ1

∫ ∞

0
dτ2 · · ·

∫ ∞

0
dτμe−iH0τ1Hhybe

−iH0τ2Hhybe
−iH0τ3 · · · e−iH0τμHhyb

×e−iH0(t−τ1−τ2−···−τμ) eη[μt−μτ1−(μ−1)τ2−···−τμ] |i〉
∣∣∣∣∣
2

= d

dt

∣∣∣∣∣〈f |
∞∑

μ=1

eμηt 1

Ei − Ef + iμη
Hhyb

1

Ei − H0 + i(μ − 1)η
Hhyb · · · 1

Ei − H0 + iη
Hhyb |i〉

∣∣∣∣∣
2

. (38)

We have used that the μ = 0 term vanishes for |f 〉 
= |i〉. The fractions are to be understood as inverse ordinary operators. The
time derivative can now be evaluated:

�f i =
∞∑

μ=1

∞∑
ν=1

(μ + ν) η eμηt eνηt

(Ei − Ef − iμη)(Ei − Ef + iνη)
〈i|Hhyb

1

Ei − H0 − iη
. . . Hhyb

1

Ei − H0 − i(μ − 1)η
Hhyb|f 〉

×〈f | Hhyb
1

Ei − H0 + i(ν − 1)η
Hhyb · · · 1

Ei − H0 + iη
Hhyb |i〉. (39)

We notice that the limit η → 0+ can be taken in the factors
(Ei − H0 ± iκη)−1 independently from the first factor under
the sum. In the former, η > 0 indicates in which complex
half-plane the poles are located. In the latter, the limit η → 0+
leads to a δ function implementing energy conservation,

�f i =
∞∑

μ=1

∞∑
ν=1

2π δ(Ei − Ef )〈i|
(

Hhyb
1

Ei − H0 − i0+

)μ−1

×Hhyb |f 〉〈f | Hhyb

(
1

Ei − H0 + i0+ Hhyb

)ν−1

|i〉.
(40)

Since Hhyb changes the electron number in the leads by ±1,
�f i can only be nonzero if μ and ν are both even or both odd.

Defining the T-matrix as

T :=
∞∑

μ=1

Hhyb

(
1

Ei − H0 + i0+ Hhyb

)μ−1

, (41)

we obtain the well-known result22

�f i = 2π δ(Ei − Ef ) |〈f |T |i〉|2. (42)

Note that we have obtained this result explicitly for the
exponential time dependence of the hybridization. It was
not necessary to consider a different time dependence at
intermediate steps, as in Ref. 22.

We now use a product basis of unperturbed eigenstates |m),
|n) of the dot and |i〉〉, |f 〉〉 of the leads. Summing over all
initial lead states |i〉〉 and final lead states |f 〉〉, we obtain the
T-matrix expression for the transition rate from dot state |n) to
dot state |m) 
= |n):

R̃n→m =2π
∑
i,f

Wi |〈〈f |(m|T |n)|i〉〉|2δ(En + εi − Em − εf ).

(43)

Here, Em (εi) are eigenenergies of dot (lead) states and Wi

is the equilibrium probability to find the leads in state |i〉〉.

The sums over lead states are understood as integrals if their
spectrum is continuous.

We have shown that the T-matrix formula (43) for the
transition rates is what one gets if one takes the exact time
evolution of the density operator, projects onto diagonal
density operators of product form with the leads in equilibrium,
and then by hand replaces the projected density operator at
the initial time P̃ρ(t0) by the projected density operator at
the present time P̃ρ(t). This confirms the statement made in
Ref. 23 that the T-matrix approach to transport misinterprets
the transition rates between dot states |n) at time t0 → −∞
and |m) at time t as transition rates between |n) and |m) both
at time t .

D. Relation between TCL Pauli and T-matrix generators

We derive two simple relations between the generators S̃
and R̃. The defining equations (24) and (31) read as

dP̃ρ(t)/dt = S̃(t,t0) P̃ρ(t),

dP̃ρ(t)/dt = R̃(t,t0) P̃ρ(t0).

The first equation is solved by

P̃ρ(t1) = T← exp

( ∫ t1

t2

dt ′ S̃(t ′,t0)

)
P̃ρ(t2), (44)

where t1 � t2. Choosing t1 = t and t2 = t0 and taking the time
derivative we obtain

d

dt
P̃ρ(t) = S̃(t,t0) T← exp

(∫ t

t0

dt ′S̃(t ′,t0)

)
P̃ρ(t0). (45)

Comparison with Eq. (31) yields the identity

R̃(t,t0) = S̃(t,t0) T← exp

( ∫ t

t0

dt ′ S̃(t ′,t0)

)
. (46)
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Conversely, to represent S̃ in terms of R̃, we integrate Eq. (31)
from time t0 to t :

P̃ρ(t) = P̃ρ(t0) +
∫ t

t0

dt ′ R̃(t ′,t0) P̃ρ(t0). (47)

Comparison with Eq. (44) yields

T← exp

( ∫ t

t0

dt ′ S̃(t ′,t0)

)
= 1 +

∫ t

t0

dt ′ R̃(t ′,t0). (48)

Inserting this equation into Eq. (46), we finally obtain

S̃(t,t0) = R̃(t,t0)

[
1 +

∫ t

t0

dt ′ R̃(t ′,t0)

]−1

. (49)

This remarkable expression allows us to obtain the generator
of the TCL Pauli ME from the T-matrix generator, in
principle. This result is potentially useful since we have an
explicit expression for the transition rates in the T-matrix
approach in terms of ordinary operators. It will also allow
us to derive the perturbative expansion of S̃(t,t0) in the
following.

The derivation also goes through for the full nondiagonal
ME. The corresponding expressions can be obtained by
removing the tilde from all symbols. The result is equivalent
to an identity found by Bužek.43

E. Perturbative expansion in the hybridization

In this section, we derive expansions of the TCL Pauli and
T-matrix generators in powers of Hhyb orLhyb. In the following,
we send t0 → −∞ and suppress the arguments (t,−∞). The
expansion of the T-matrix generator is obtained from Eq. (33),
i.e., R̃ = ∑∞

μ=1 R̃(2μ) with

R̃(2μ) = −ie2μηt P̃Lhyb[−L0 + (2μ − 1)iη]−1Lhyb

× [−L0+(2μ − 2)iη]−1Lhyb · · ·
×Lhyb(−L0 + iη)−1LhybP̃. (50)

We have used that all odd orders vanish.
The TCL generator is obtained from R̃ using Eq. (49). The

time integral is easily performed,

S̃ ≡
∞∑

μ=1

S̃ (2μ) =
∞∑

μ=1

R̃(2μ)

[
1 +

∞∑
μ=1

R̃(2μ)

2μη

]−1

. (51)

Expanding the inverse and comparing the two sides order by
order, we obtain

S̃ (2μ) =
μ−1∑
q=0

(−1)q
∑

μ0+μ1+···+μq=μ

R̃(2μ0) R̃(2μ1)

2μ1η
· · · R̃

(2μq )

2μqη
, (52)

where the second sum is over q + 1 positive integers μi adding
up to μ. We note in passing that Eq. (52) can also be obtained
from the expansion of the TCL generator in terms of ordered
cumulants, following van Kampen.39,44 The first few terms
read explicitly as

S̃ (2) = R̃(2), (53)

S̃ (4) = R̃(4) − R̃(2) R̃(2)

2η
, (54)

S̃ (6) = R̃(6) − R̃(4) R̃(2)

2η
− R̃(2) R̃(4)

4η
+ R̃(2) R̃(2)

2η

R̃(2)

2η
.

(55)

The first equation shows that, in the sequential-tunneling
approximation, the TCL and T-matrix expressions for the
transition rates agree.23

The problem in exploiting the expansion (52) is that the
R̃(2μ) diverge for η → 0+ for all 2μ � 4. This is in addition to
the explicit divergences due to negative powers of η in Eq. (52).
We would much prefer a representation of S̃ (2μ) in terms of
expressions that remain finite. To obtain one, we first simplify
the notation by setting t = 0 since, in the limit η → 0+, the
value of t does not matter. We then define

R̃(2μ,2μ′) = −i P̃Lhyb [−L0 + (2μ − 1)iη]−1Lhyb

× [−L0 + (2μ − 2)iη]−1Lhyb · · ·Lhyb

× [−L0 + (2μ′ + 1)iη]−1 Lhyb P̃, (56)

where μ > μ′. Note the identity R̃(2μ,0) = R̃(2μ).
Divergences of the type of negative powers of η arise

whenever L0 in the inverse superoperators (−L0 + iκη)−1

can be replaced by zero. These divergences are singled out
by inserting 1 = P̃ + Q̃ between each pair of Lhyb. We note
that, under the assumption of nondegenerate dot states, the
projection P̃ projects out the secular reducible contributions.26

These are thus removed by Q̃. Since the lead-electron creation
and annihilation operators must be paired between any two
P̃ , all expressions with an odd number of Lhyb superoperators
between two P̃ projections vanish. Thus, at the odd-numbered
positions between the Lhyb, Q̃ = 1 − P̃ does not do anything
and Q̃ is redundant. This also means that divergences can
not arise from the inverse superoperators at odd-numbered
positions. We therefore only insert 1 = P̃ + Q̃ at the even-
numbered positions

R̃(2μ) = −iP̃Lhyb[−L0 + (2μ − 1)iη]−1Lhyb(P̃ + Q̃)

× [−L0 + (2μ − 2)iη]−1Lhyb · · · (P̃ + Q̃)

×Lhyb(−L0 + iη)−1LhybP̃. (57)

We denote the regular parts of R̃(2μ,2μ′) by

R̃(2μ,2μ′)
reg := −iP̃ Lhyb[−L0 + (2μ − 1)iη]−1Lhyb Q̃

× [−L0 + (2μ − 2)iη]−1 Lhyb · · · Q̃ Lhyb

× [−L0 + (2μ′ + 1)iη]−1 Lhyb P̃, (58)

where a projection Q̃ is inserted at every even-numbered po-
sition between the Lhyb. We also define R̃(2μ)

reg := R̃(2μ,0)
reg . The

finiteness of R̃(2μ,2μ′)
reg for η → 0+ is shown in a more general

context in Appendix C. Note that R̃(2μ,2μ−2)
reg = R̃(2μ,2μ−2)

and, in particular, R̃(2)
reg = R̃(2), since there is no position to
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insert Q̃. This reproduces the well-known observation that
the second-order rates in the T-matrix formalism do not show
divergences.

From Eq. (57) we now obtain, using Eq. (20),

R̃(2μ) = R̃(2μ,0)
reg + R̃(2μ,2)

reg

R̃(2,0)
reg

2η
+ R̃(2μ,4)

reg

R̃(4,0)
reg

4η

+ R̃(2μ,4)
reg

R̃(4,2)
reg

4η

R̃(2,0)
reg

2η
+ · · · + R̃(2μ,2μ−2)

reg

× R̃(2μ−2,2μ−4)
reg

(2μ − 2)η

R̃(2μ−4,2μ−6)
reg

(2μ − 4)η
· · · R̃

(2,0)
reg

2η
. (59)

Since we have inserted P̃ + Q̃ in μ − 1 positions, there are
2μ−1 terms in this sum. In particular, we find

R̃(2) = R̃(2,0)
reg , (60)

R̃(4) = R̃(4,0)
reg + R̃(4,2)

reg

R̃(2,0)
reg

2η
, (61)

R̃(6) = R̃(6,0)
reg + R̃(6,2)

reg

R̃(2,0)
reg

2η
+ R̃(6,4)

reg

R̃(4,0)
reg

4η

+ R̃(6,4)
reg

R̃(4,2)
reg

4η

R̃(2,0)
reg

2η
. (62)

As an intermediate result, we have thus written the T-matrix
generator R̃ order by order in terms of expressions that remain
finite for η → 0+ and explicit negative powers of η. Since each
insertion of P̃ generates a factor of 1/η, the most strongly
diverging term in R̃(2μ) scales as 1/ημ−1.

Inserting Eq. (59) into Eq. (52), we obtain S̃ (2μ) in terms
of R̃(2ν,2ν ′)

reg with 0 � ν ′ < ν � μ for all μ. The leading terms
read as

S̃ (2) = R̃(2,0)
reg , (63)

S̃ (4) = R̃(4,0)
reg + R̃(4,2)

reg

R̃(2,0)
reg

2η
− R̃(2,0)

reg

R̃(2,0)
reg

2η
, (64)

S̃ (6) = R̃(6,0)
reg + R̃(6,2)

reg

R̃(2,0)
reg

2η
+ R̃(6,4)

reg

R̃(4,0)
reg

4η
+ R̃(6,4)

reg

R̃(4,2)
reg

4η

× R̃(2,0)
reg

2η
− R̃(4,0)

reg

R̃(2,0)
reg

2η
− R̃(4,2)

reg

R̃(2,0)
reg

2η

R̃(2,0)
reg

2η

− R̃(2,0)
reg

R̃(4,0)
reg

4η
− R̃(2,0)

reg

R̃(4,2)
reg

4η

R̃(2,0)
reg

2η

+ R̃(2,0)
reg

R̃(2,0)
reg

2η

R̃(2,0)
reg

2η
. (65)

In this expansion of the exact TCL Pauli generator, all singular
contributions in the limit η → 0+ have been made explicit. The
maximum power is 1/ημ−1.

To conclude this section, we illustrate the results by
considering the terms of fourth order. The corresponding term

in the T-matrix generator reads as

R̃(4) = −i P̃Lhyb (−L0 + 3iη)−1 Lhyb(−L0 + 2iη)−1

×Lhyb (−L0 + iη)−1 LhybP̃. (66)

Let R̃(4) act upon some density operator ρ. Then, Lhyb (−L0 +
iη)−1 LhybP̃ρ contains contributions for which the second
(from the right) superoperator Lhyb undoes the changes in-
troduced by the first Lhyb. Hence, Lhyb (−L0 + iη)−1 LhybP̃ρ

is an operator with nonvanishing diagonal components in the
product basis of unperturbed eigenstates. But, for diagonal
components |j 〉〈j |, we have L0 |j 〉〈j | = 0 so that L0 in
the next superoperator to the left, (−L0 + 2iη)−1, can be
replaced by zero. We thus obtain a singular contribution
proportional to 1/2iη. More formally, we single out the
divergent contributions by introducing 1 = Q̃ + P̃:

R̃(4) = −i P̃Lhyb (−L0 + 3iη)−1Lhyb (−L0 + 2iη)−1Q̃Lhyb

× (−L0 + iη)−1 LhybP̃ − i P̃Lhyb (−L0 + 3iη)−1

×Lhyb
−i

2η
P̃Lhyb(−L0 + iη)−1 LhybP̃

=: R̃(4)
reg + R̃(4)

div. (67)

The divergent part R̃(4)
div is identical to R̃(4,2)

reg R̃(2,0)
reg /2η, accord-

ing to the definition (58).
The fourth-order term S̃ (4) of the TCL generator contains a

correction term beyond R̃(4) [cf. Eq. (54)], namely,

−R̃(2) R̃(2)

2η
≡ −R̃(2)

reg

R̃(2)
reg

2η

= +i P̃Lhyb (−L0 + iη)−1 Lhyb
−i

2η

× P̃Lhyb (−L0 + iη)−1 LhybP̃. (68)

This looks very similar to the divergent part R̃(4)
div. The

differences are the opposite sign and a different prefactor of
iη in the leftmost inverse superoperator. If this factor were the
same, the correction term would exactly cancel the divergent
part. As it is, the correction term does remove the divergence
for η → 0+ but leaves a nonzero difference behind:

R̃(4)
div − R̃(2) R̃(2)

2η
= i P̃Lhyb (−L0 + iη)−1(−L0 + 3iη)−1

×LhybP̃Lhyb (−L0 + iη)−1LhybP̃.

(69)

We will show that this difference indeed remains finite.

F. Cancelation of divergences

Our next goal is to show that the divergences described by
negative powers of η all cancel in the limit η → 0+. It is useful
to resum the terms in Eq. (52), i.e.,

S̃ =
∞∑

q=0

(−1)q
∞∑

μ0,μ1,...,μq=1

R̃(2μ0) R̃(2μ1)

2μ1η
· · · R̃

(2μq )

2μqη
. (70)
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Inserting Eq. (59), we obtain

S̃ =
∞∑

p=0

∑
μ0,μ

′
0,μ1,μ

′
1,μ2,μ

′
2,...,μp

(−1)n
′ R̃(2μ0,2μ′

0)
reg

R̃(2μ1,2μ′
1)

reg

2μ1η

R̃(2μ2,2μ′
2)

reg

2μ2η
· · · R̃

(2μp,2μ′
p=0)

reg

2μpη
, (71)

where n′ + 1 is the number of μ′
i being zero. The second sum is over p + 1 pairs (μi,μ

′
i), i = 0,1, . . . ,p, with μi = 1,2, . . . , μ′

i =
0,1, . . . , and μi > μ′

i , satisfying either μ′
i = μi+1 or μ′

i = 0 for any two consecutive pairs. The last μ′
i = μ′

p must equal zero.

In Eq. (71), p represents the explicit order in 1/η. However, the superoperators R̃(2μ,2μ′)
reg also depend on η. To find the limit

η → 0+, we thus have to expand them up to the order ηp. Their Taylor series in η reads as

R̃(2μ,2μ′)
reg = −i

∞∑
m2μ−1,m2μ−2···m2μ′+1=0

(−i η)m2μ−1+m2μ−2+···+m2μ′+1 (2μ − 1)m2μ−1 (2μ − 2)m2μ−2 · · · (2μ′ + 1)m2μ′+1

× [m2μ−1,m2μ−2, . . . ,m2μ′+1](2μ,2μ′), (72)

where we have defined the notation

[m2μ−1,m2μ−2, . . . ,m2μ′+1](2μ,2μ′) := lim
η→0+

P̃ Lhyb[−L0 + (2μ − 1)iη]−1−m2μ−1 Lhyb Q̃[−L0 + (2μ − 2)iη]−1−m2μ−2

×Lhyb · · ·Lhyb[−L0 + (2μ′ + 1)iη]−1−m2μ′+1 Lhyb P̃ (73)

with Q̃ inserted at all even-numbered positions. In particular,
Eq. (72) implies that

lim
η→0+

R̃(2μ)
reg = −i [0,0, . . . ,0](2μ,0). (74)

It is shown in Appendix C that the limit η → 0+ in Eq. (73)
converges for all m2μ−1,m2μ−2, . . . ,m2μ′+1 � 0. Moreover,

we show in Appendix B that the superoperator defined in
Eq. (73) does not depend on the values of the prefactors of iη,
as long as they are all positive. Thus, it does not depend on
μ and μ′ except in so far as 2μ − 2μ′ − 1 is the number of
its arguments mν . We therefore drop the superscript (2μ,2μ′)
from now on.

Insertion of Eq. (72) into Eq. (71) leads to an expansion of
the TCL generator S̃,

S̃ =
∞∑

p=0

(−i)p+1
∑

μ0,μ
′
0,μ1,μ

′
1,μ2,μ

′
2,... μp

(−1)n
′

∞∑
m0,2μ0−1,...,m0,2μ′

0+1,...,mp,2μp−1,...,mp,1=0

(−i)�m

2μ1 2μ2 · · · 2μp

(2μ0 − 1)m0,2μ0−1 · · ·

× (2μ′
0 + 1)

m0,2μ′
0+1 · · · (2μp − 1)mp,2μp−1 . . . [m0,2μ0−1, . . . ,m0,2μ′

0+1] · · · [mp,2μp−1, . . . ,mp,1]η�m−p, (75)

where �m := m0,2μ0−1 + · · · + mp,1 is the sum of all mi,ν . The two indices of mi,ν enumerate the factors of R̃(2μ,2μ′)
reg in Eq. (71)

and the inverse superoperators in [m2μ−1,m2μ−2, . . . ,m2μ′+1], respectively.
Terms containing positive powers �m − p > 0 of η vanish in the limit η → 0+ and can thus be disregarded. On the other

hand, to obtain a finite limit, the prefactors in all terms involving negative powers �m − p < 0 must cancel. The cancellations
can only involve terms with the same superoperator factor [m0,2μ0−1, . . . ,m0,2μ′

0+1] · · · [mp,2μp−1, . . . ,mp,1]. These terms have
the same values of p, of the orders 2ni = 2μi − 2μ′

i , and of all mi,ν .We thus write

S̃ =
∞∑

p=0

(−i)p+1
∞∑

n0,n1,...,np=1

∞∑
m0,2μ0−1,...,m0,2μ′

0+1,...,mp,2μp−1,...,mp,1=0

(−i)�mf (n0,n1, . . . ,np; m0,2μ0−1, . . . ,mp,1)

×[m0,2μ0−1, . . . ,m0,2μ′
0+1] · · · [mp,2μp−1, . . . ,mp,1]η�m−p (76)

with the prefactors

f (n0,n1, . . . ,np; m0,2μ0−1, . . . ,mp,1)

:=
∑

μ0,μ
′
0,μ1,μ

′
1,μ2,μ

′
2,...,μp

(−1)n
′

2μ1 2μ2 · · · 2μp

(2μ0 − 1)m0,2μ0−1 · · · (2μ′
0 + 1)

m0,2μ′
0+1 · · · (2μp − 1)mp,2μp−1 · · · , (77)
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where the sum in Eq. (77) is now constrained by 2μi −
2μ′

i = 2ni being given. With this constraint, the only free-
dom left in the sum is the choice of which μ′

i are
zero; recall that the nonzero μ′

i equal μi+1. The numbers
μ0,μ

′
0,μ1,μ

′
1,μ2,μ

′
2, . . . ,μp can be reconstructed from the

orders n0,n1,n2, . . . ,np and the indices i of the μ′
i that equal

zero. Defining the set

Z := {i|μ′
i = 0}, (78)

we have p ∈ Z and n′ = |Z| − 1, where |Z| is the cardinality
of Z. Defining the “nonmember function”

πZ
i :=

{
0 if i ∈ Z,

1 if i /∈ Z,
(79)

we have πZ
p = 0 and n′ = p − ∑p−1

i=0 πZ
i . Replacing μ′

i by
μi − ni in Eq. (77), we obtain

f (n0,n1, . . . ,np; m0,2μ0−1, . . . ,mp,1) = (−1)p
1∑

πZ
0 ,πZ

1 ,...,πZ
p−1=0

∏p−1
i=0 (−1)π

Z
i

2μ12μ2 · · · 2μp

(2μ0 − 1)m0,2μ0−1 (2μ0 − 2)m0,2μ0−2 · · ·

× (2μ0 − 2n0 + 1)m0,2μ0−2n0+1 · · · (2μp − 1)mp,2μp−1 (2μp − 2)mp,2μp−2 · · · 1mp,1 , (80)

where μi = ni + πZ
i ni+1 + πZ

i πZ
i+1ni+2 + · · · and μp = np,

and products are understood to equal unity if they do not
contain any factors. For convenience, we define

Mi := mi,2μi−1 + mi,2μi−2 + · · · + mi,2μi−2ni+1. (81)

Note that �m = ∑p

i=0 Mi .
The evaluation of Eq. (80), which is presented in

Appendix C, is rather lengthy but has a remarkably simple
result: For all �m � p,

f (n0,n1, . . . ,np; m0,2μ0−1, . . . ,mp,1) = 1 (82)

if and only if

�m − p = M0 + M1 + · · · + Mp − p = 0 (83)

and there does not exist any integer i < p such that

M0 + M1 + · · · + Mi − i = 0. (84)

Otherwise, f = 0. Recall that f is not of interest if �m > p.
Furthermore, we also show in Appendix C that the condition
for nonzero f can only be satisfied if mp,2μp−1 = · · · =
mp,1 = 0.

Inserting these results into Eq. (76), taking the limit η →
0+, and renumbering the mi,ν , we obtain

lim
η→0+

S̃ = −i

∞∑
p=0

(−1)p
∞∑

n0,n1,...,np=1

×
∑

m0,1,...,m0,2n0−1,...,mp−1,1,...,mp−1,2np−1−1

×�(M0 − 1)�(M0 + M1 − 2) · · ·
×�(M0 + M1 + · · · + Mp−1 − p)

× [m0,1, . . . ,m0,2n0−1] . . . [mp−1,1, . . . ,mp−1,2np−1−1]

× [0, . . . ,0], (85)

where the sum over the mi,ν is constrained by m0,1 + · · · +
mp−1,2np−1−1 = p and we have defined

�(n) :=
{

0 for n < 0,

1 for n � 0.
(86)

Note that the factor �(M0 + M1 + · · · + Mp−1 − p) is
redundant.

The p = 0 contribution in Eq. (85) does not contain any
sums over mi,ν since �m = p = 0. There just remains a
sum over n0, the order in Hhyb, i.e., the p = 0 contribution
reads −i [0] − i [0,0,0] − . . . . According to Eq. (74), this
equals limη→0+

∑
μ R̃(2μ)

reg . Thus, in the expansion in Hhyb,
the expansion term S̃ (2μ) of the TCL generator contains the
properly regularized T-matrix term R̃(2μ)

reg plus corrections.
Furthermore, all these corrections contain [0, . . . ,0], i.e., an
expansion term of R̃reg, as the rightmost superoperator factor.

Suppressing the limit directive from now on, we find that
i S̃ in Eq. (85) is the sum of all terms that can be constructed
according to the following rules:

(i) Each term is a product of p + 1 = 1,2, . . . superop-
erators of the form [mj,1, . . . ,mj,2nj −1] with j = 0, . . . ,p,
nj = 1,2, . . . , and mj,ν = 0,1, . . . .

(ii) Defining Mj := mj,1 + · · ·mj,2nj −1, only terms
with M0 + M1 + · · · + Mj > j for all j < p are
allowed.

(iii) Only terms with M0 + M1 + · · · + Mp = p are al-
lowed.

(iv) Each term obtains a factor (−1)p.
We draw a number of conclusions: If an allowed term

contains a factor [mj,1, . . . ,mj,2nj −1], then any term with
this factor replaced by [m′

j,1, . . . ,m
′
j,2n′

j −1] with m′
j,1 + · · · +

m′
j,2n′

j −1 = mj,1 + · · · + mj,2nj −1 is also allowed. If we denote

the sum of all such terms by

[[M]] :=
∞∑

n=1

∑
m1+···+m2n−1=M

[m1, . . . ,m2n−1], (87)

we obtain

i S̃ =
∞∑

p=0

(−1)p
∞∑

M0=1

×
∞∑

M1=max(0,2−M0)

∞∑
M2=max(0,3−M0−M1)

· · ·
p−M0−M1−···−Mp−2∑

Mp−1=max(0,p−M0−···−Mp−2)

× [[M0]] [[M1]] · · · [[Mp−1]] [[0]]. (88)
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The last sum is understood to equal zero if the upper limit is
smaller than the lower one. In order to obtain an expansion
of iS̃ in powers of Hhyb, we note that [m1, . . . ,m2n−1] is of
order H 2n

hyb with 2n � 2. Thus [[M]] contains contributions
of second and higher orders. To obtain the expansion term
iS̃ (2μ) of order 2μ, we thus only have to consider terms with
p + 1 � μ factors [[Mj ]] in Eq. (88). The first few terms
read as

S̃ (2) = −i [0], (89)

S̃ (4) = −i [0,0,0] + i [1][0], (90)

S̃ (6) =−i [0,0,0,0,0] + i [0,0,1][0] + i [0,1,0][0]

+ i [1,0,0][0] + i [1][0,0,0] − i [1][1][0] − i [2][0][0].

(91)

Higher-order terms are easily generated using computer
algebra. They become increasingly lengthy; S̃ (8) contains 30
terms and S̃ (10) already has 143. Simplification is possible by
realizing that some of the terms in S̃ (2μ) contain factors of
S̃ (2μ′) with μ′ < μ, as we show now.

Equation (88) is equivalent to the surprising identity

i S̃ =
∞∑

M=0

[[M]] (−i S̃)M. (92)

The usefulness of this equation rests on the observation that
[[M]] is of at least second order in Hhyb. Therefore, we can
express S̃ (2μ) by lower-order terms S̃ (2μ′), μ′ < μ. Together
with the starting value S̃ (2) = −i [0] = R̃(2)

reg, we obtain a
recursive scheme for determining S̃ (2μ).

To prove that Eq. (92) has the solution given in Eq. (88),
we iterate Eq. (92):

i S̃ = [[0]] +
∞∑

M0=1

[[M0]] (−i S̃)M0

= [[0]] −
∞∑

M0=1

∞∑
M1=0

[[M0]] [[M1]] (−i S̃)M0+M1−1

= [[0]] − [[1]] [[0]] +
∞∑

M0=1

∞∑
M1=max(0,2−M0)

∞∑
M2=0

[[M0]]

× [[M1]] [[M2]] (−iS̃)M0+M1+M2−2

= [[0]] − [[1]] [[0]] +
2∑

M0=1

[[M0]] [[2 − M0]] [[0]] ∓ . . . .

(93)

It is clear how this continues. The terms no longer containing
S̃ are the ones satisfying the conditions in the multiple sum in
Eq. (88). Thus, Eq. (88) is a solution of Eq. (92). To show that
it is the only solution, i.e., that Eq. (88) implies Eq. (92), we
note that the iteration shows that any solution S̃ ′ of Eq. (92)
agrees with Eq. (88) order by order in the number p + 1 of su-
peroperator factors. Thus, we find S̃ ′ = S̃ to any order p + 1.

G. Relation to the Nakajima-Zwanzig master equation

The Nakajima-Zwanzig ME (Refs. 27 and 28) and
equivalent formulations are commonly used in the field of
transport through nanostructures. The real-time diagrammatic
technique18–20 and the suitably generalized Wangsness-Bloch-
Redfield theory45–47 are such equivalent formulations.23,26 We
again only consider the initial condition Qρ(t0) = 0. The
derivation starts in the same way as the one of the TCL ME,
leading to Eq. (11). Inserting this equation into Eq. (9) and
using the identities (5) and (6), we obtain the NZ ME (Ref. 39)

d

dt
Pρ(t) = −iL0Pρ(t) − PLhybe

ηt

∫ t

t0

dt ′T← exp

[
− i

∫ t

t ′
dt ′′ (L0 + QLhybe

ηt ′′ )

]
QLhybe

ηt ′Pρ(t ′). (94)

Expansion in powers of Lhyb yields

d

dt
Pρ(t) = −iL0Pρ(t) − PLhybe

ηt

∞∑
ν=0

(−i)ν
∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tν−1

t0

dtν

∫ tν

t0

dtν+1 e−iL0 (t−t1)QLhybe
ηt1 e−iL0 (t1−t2)

×QLhybe
ηt2 · · ·QLhybe

ηtν e−iL0 (tν−tν+1)QLhybe
ηtν+1Pρ(tν+1). (95)

As above, the projections Q at odd-numbered positions are redundant, while at even-numbered positions they remove divergent
reducible contributions.23,26,38

The derivation goes through if we replace P and Q by P̃ and Q̃, respectively. We end up with a Nakajima-Zwanzig-Pauli ME
for the diagonally projected density operator,

d

dt
P̃ρ(t) = −P̃Lhybe

ηt

∫ t

t0

dt ′ T← exp

[
− i

∫ t

t ′
dt ′′(L0 + Q̃Lhybe

ηt ′′ )

]
Q̃Lhybe

ηt ′P̃ρ(t ′). (96)
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The bare time evolution has dropped out because of Eq. (20). It
is this ME that is expanded up to fourth order in Refs. 24 and 26.
The projections Q̃ now remove only the diagonal reducible
contributions, but not all of them. They thus implement the
regularization discussed by Koller et al.26 As in Ref. 26,
the regularization is automatically included. Our result shows
that it can be formulated compactly using suitable projection
operators P̃ and Q̃. It has been noted in Ref. 38 and shown
explicitly in Ref. 26 that the Turek-Matveev scheme34,48 differs
from this built-in regularization already at fourth order.

If one is only interested in the stationary solution of the
ME, P̃ρ(t ′) on the right-hand side of Eq. (96) can be taken to
be time independent. It is then possible to evaluate the time
integrals explicitly. The resulting equation for the stationary
state reads as 0 = G̃ P̃ρ with the generator, for t0 → −∞,

G̃ ≡
∞∑

μ=1

G̃(2μ) := −iP̃Lhyb

∞∑
μ=1

e2μηt

× [−L0 + (2μ − 1)iη]−1 LhybQ̃ [−L0 + (2μ − 2)iη]−1

×Lhyb · · · Q̃Lhyb (−L0 + iη)−1 Lhyb P̃. (97)

The redundant projections Q̃ at odd-numbered positions have
been omitted. Since this is an exact result for the stationary
state, it should agree with what the exact TCL ME predicts.
We will return to this point shortly.

If one is interested in the dynamics, one can still obtain a
local ME from the NZ approach. This requires the Markov
approximation, which is based on the assumption that the
memory kernel in Eq. (96) decays rapidly in time. This
assumption is often justified since relaxation in the leads
is rapid but also follows directly from the condition of a
nearly closed conduction channel I/V � e2/h.23 With the
Markov approximation, P̃ρ(t ′) is replaced by P̃ρ(t). Taking
t0 → −∞, one obtains the approximate “Nakajima-Zwanzig-
Markov-Pauli” ME

dP̃ρ(t)/dt = G̃ P̃ρ(t) (98)

with the generator G̃ defined in Eq. (97).
Comparison of Eqs. (97) and (58) shows that the expansion

terms are identical to the properly regularized expansion terms
of the T-matrix generator (we suppress the limit η → 0+),

G̃(2μ) = R̃(2μ)
reg . (99)

Hence, the Nakajima-Zwanzig-Markov-Pauli ME is identical,
order by order in Hhyb, to the ME with rates obtained from
the T-matrix approach and regularized by dropping secular
reducible contributions. Up to fourth order, this has been shown
by Koller et al.26

We can now gain additional insight into the failure26

of the Turek-Matveev regularization scheme.48 The proper
regularization of the T-matrix expressions can be understood
as omitting all terms in Eq. (59) except for the first one
or, in other words, as omitting all terms containing explicit
negative powers of η. The Turek-Matveev scheme, applied
to the calculation of the fourth-order rates,34 corresponds to
expanding the rates into powers of η and omitting the diverging
part proportional to 1/η and then letting η go to zero. The

obvious generalization to all orders is to omit all negative
powers of η. The two regularization procedures thus look quite
similar. They are not identical, though, since the superoperators
R̃(2μ,2μ′)

reg appearing in the proper expansion (59) contain

positive powers of η. The positive powers from R̃(2μ,2μ′)
reg

together with the explicit negative powers lead to terms of
order η0, which are retained by the Turek-Matveev scheme
but are absent in the proper regularization. We reiterate that
both the Nakajima-Zwanzig-Markov-Pauli ME and the TCL
Pauli ME are automatically regularized—for the TCL case,
this is one of our central results. The discussion of the proper
regularization scheme is only relevant if one wants to construct
the NZ transition rates from the T-matrix expressions.

The exact TCL ME is not equivalent to the approximate
Nakajima-Zwanzig-Markov-Pauli ME: As noted in the dis-
cussion of Eq. (85), the p = 0 term in this expansion is∑

μ R̃(2μ)
reg , which we have now identified as the Nakajima-

Zwanzig-Markov-Pauli generator G̃. Using Eqs. (74) and (87),
we can also write this generator as

G̃ ≡
∑

μ

R̃(2μ)
reg ≡ −i [[0]]. (100)

The expansion (88) of the TCL generator S̃ contains G̃ as the
first term, but it is followed by an infinite series of additional
terms.

H. The stationary state

Global conservation of probability implies that a stationary
solution of any well-formed Pauli ME exists. Equation (24)
then shows that the TCL generator S̃ must have a right
eigenoperator ρstat to the eigenvalue zero. Due to the P̃ pro-
jections in S̃, this right eigenoperator must be of the form

ρstat = ρstat
dot ⊗ ρ0

leads, (101)

where ρstat
dot is diagonal.

Applying Eq. (92) to ρstat, only the M = 0 term in the sum
survives and we obtain 0 = [[0]] ρstat, which together with
Eq. (100) implies

G̃ ρstat = 0. (102)

The reverse is also true: If G̃ ρ ′
stat = [[0]] ρ ′

stat = 0, then
Eq. (88) shows that S̃ρ ′

stat = 0.
Thus, ρstat is an exact stationary state if and only if ρstat is a

right eigenoperator of G̃ to the eigenvalue zero. The exact
stationary state can thus be obtained from the regularized
T matrix or Nakajima-Zwanzig-Markov-Pauli generator G̃
alone, in principle. The formal origin of this result is that
all corrections to G̃ in S̃ contain G̃ as the rightmost factor [cf.
Eq. (88)].

There are two caveats, though: (i) The result does not apply
to approximations obtained by truncating the perturbative
expansion in Hhyb. It does work trivially at second order since
G̃(2) = S̃ (2). But, already at fourth order, the TCL Pauli ME for
the stationary state reads as

−i ([0] + [0,0,0] − [1][0]) ρstat = 0, (103)
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whereas the Nakajima-Zwanzig-Markov-Pauli ME is

−i
(
[0] + [0,0,0]

)
ρstat = 0, (104)

which is not equivalent. (ii) The result does not carry over to
time-dependent solutions. Indeed, if ρ is any eigenoperator of
S̃ to the eigenvalue λ, Eq. (92) gives

iλρ =
∞∑

M=0

(−iλ)M [[M]] ρ. (105)

For λ 
= 0, this does not imply anything for the eigenoperators
of G̃ = −i [[0]]. Conversely, knowing an eigenoperator of G̃ to
a nonzero eigenvalue does not help in finding an eigenoperator
of the TCL generator. For the dynamics, the regularized
T matrix or Nakajima-Zwanzig-Markov-Pauli generator G̃ is
not sufficient.

III. SUMMARY AND CONCLUSIONS

The dynamics of a quantum dot coupled to electronic
leads can be described in the master-equation formalism. To
use this formalism beyond the regime of weak hybridization
between dot and leads, further insight into the structure
of higher-order terms is required. With this motivation,
we have derived Pauli master equations (rate equations)
for the probabilites of dot states, to all orders in the
hybridization, and both in time-convolutionless and time-
nonlocal (Nakajima-Zwanzig) form. Our approach uses a
projection superoperator P̃ onto product states with diagonal
reduced density matrix. To fourth order, the reduction to the
probabilities has been implemented in Refs. 24 and 26 by
explicitly eliminating the off-diagonal components from a
Nakajima-Zwanzig–type ME. Our approach leads to more
compact superoperator expressions and is easily generalized to
all orders.

Furthermore, we have presented a superoperator derivation
of the T-matrix expression for the Pauli ME and showed that
it fails to take into account the propagation of the density
operator from the present time t back to an initial time t0.
This answers the question posed in Ref. 23 as to whether
it is possible to derive the Pauli master equation within the
T-matrix formalism instead of using it ad hoc to calculate the
transition rates. The superoperator formalism has allowed us
to establish relationships between the TCL Pauli generator S̃ ,
the NZ generator in the Markov approximation (exact
for the stationary state), G̃, and the T-matrix generator R̃.
The off-diagonal components of these generators are the
transition rates in the respective pictures. Relations between
the expansion terms of order 2μ, S̃ (2μ), G̃(2μ), and R̃(2μ),
respectively, have been given. In particular, the expansion
terms S̃ (2μ) of the TCL Pauli generator are the sum of the
corresponding terms G̃(2μ) order by order, plus corrections,
which come from propagating the density operator backward
in time in Eq. (12). Only at the second (lowest) order are the
expressions identical. We have shown that both the Nakajima-
Zwanzig-Markov-Pauli and the TCL Pauli generators converge
in the limit η → 0+, order by order. Here, η is the rate with
which the hybridization is switched on. In the NZ case, the
absence of divergences readily emerges from the superop-
erator expressions, in which the secular reducible terms are

explicitly projected out, whereas for the TCL Pauli generator
it relies on a sweeping cancellation of negative powers
of η.

It is crucial for the derivation that the averages of lead
operators satisfy Wick’s theorem, i.e., that they can be
decomposed into averages of pairs. Aside from reservoirs
consisting of free fermions as considered here, an analogous
derivation should be possible for free bosons.

As is well known, the T-matrix rates diverge for η → 0+.
Specifically, the term R̃(2μ) diverges as 1/ημ−1. The divergence
noted for the fourth-order term by Averin49 thus becomes
even stronger at higher orders. We have shown that the
Nakajima-Zwanzig-Markov-Pauli rates G̃(2μ) are identical,
order by order, to the T-matrix rates with proper regularization.
This might lead to an advantage in practical calculations, as the
T-matrix method formulated using ordinary operators instead
of superoperators is expected to be easier to implement. This
regularization differs from the one proposed by Turek and
Matveev.26,38,48

As a consistency check, we have shown that the stationary
state obtained from the Nakajima-Zwanzig-Markov-Pauli ME
is the exact one, i.e., it is identical to the stationary solution
of the TCL ME. It is quite interesting how this result comes
about: S̃ can be written as G̃ plus corrections that all have S̃ as
the rightmost factor again [cf. Eqs. (92) and (100)]. The result
does not carry over to expansions truncated at finite order or
to time-dependent solutions, though.

Another relation between the expansion terms, Eq. (88),
is also important: all correction terms in S̃ (2μ) beyond G̃(2μ)

have factors G̃(2μ′) of lower order μ′ < μ at their right end.
Consider the case that all G̃(2μ′) for μ′ < μc are suppressed
but G̃(2μc) is not. Then, all corrections in S̃ (2μc) beyond
the Nakajima-Zwanzig-Markov-Pauli term G̃(2μc) are also
small. For example, in the Coulomb-blockade regime, G̃(2)

is suppressed, but G̃(4) is not. Then, the corrections to the
co-tunneling rates are small in the Coulomb-blockade regime
since they involve sequential-tunneling rates. On the other
hand, deep in the sequential-tunneling regime, all fourth-order
terms are small compared to the sequential-tunneling rates if
hybridization is weak. However, close to a threshold where
some G̃(2μ′) crosses over from small to large, for example,
at the Coulomb-blockade threshold, the corrections can be
comparable to the NZ rates.

Of course, outside of the perturbative regime, there is no a
priori reason for any term to be small. It is in this intermediate
coupling regime50 that we expect the TCL Pauli ME to all
orders to show its power. Since the TCL ME describes the
dynamics exactly, not just the stationary state, and is local in
time, it is promising for resummation schemes addressing for
example the dynamical nonequilibrium Kondo effect.
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APPENDIX A: PROOF OF THE CONVERGENCE OF
CERTAIN SUPEROPERATORS FOR η → 0+

We want to show that the limit for η → 0+ in
Eq. (73) exists and is finite for all non-negative integers
m2μ−1,m2μ−2, . . . ,m2μ′+1, where μ > μ′ � 0. It is useful to
prove a more general statement: For μ = 1,2, . . . , the limit
for η → 0+ of the superoperator

P̃ Lhyb (−L0 + c2μ−1iη)−1−m2μ−1 Lhyb Q̃
×(−L0 + c2μ−2iη)−1−m2μ−2 Lhyb · · ·
×Lhyb (−L0 + c1iη)−1−m1 Lhyb P̃, (A1)

where Q̃ is inserted at all even-numbered positions, exists and
is finite for all non-negative integers m2μ−1,m2μ−2, . . . ,m1 and
all positive real numbers c2μ−1,c2μ−2, . . . ,c1. By a finite limit
of a superoperator, we mean a finite limit of all its matrix
elements.51

By inserting the completeness relation

• =
∑
ij

|i〉〈i| • |j 〉〈j | =
∑
ij

〈i| • |j 〉 |i〉〈j | (A2)

in suitable places, the matrix elements of Eq. (A1) can be
expressed in terms of matrix elements of L0, Lhyb, and Q̃
alone. The matrix elements of L0 are

Tr |i〉〈j |L0 |k〉〈l| = δjkδil (Ek − El). (A3)

Here, Ek and El are eigenenergies of H0, including dot and
lead contributions. The former are discrete and, by assumption,
nondegenerate, whereas the latter have a continuous spectrum.
The proposition could fail if a zero matrix element of L0

occurred in Eq. (A1).
At this point, it is useful to go over to a single-particle

description of the leads. As noted in Sec. II C, the projections
P̃ in Eq. (A1) introduce equilibrium averages, trleads · · · ρ0

leads,
over lead-electron creation and annihilation operators. These
averages are nonzero only if all lead operators are paired. In
the expression (A1), which is of order 2μ in Lhyb, there are μ

such pairs.

Consider a certain inverse superoperator (−L0 +
cνiη)−1−mν in Eq. (A1). Some of the paired lead operators may
straddle its position, which is numbered by ν. For two paired
lead operators that are both to the right of this position, the
superoperator (−L0 + cνiη)−1−mν acts on an operator that is
diagonal in the single-electron state associated with the paired
operators. Its energy thus does not appear in the difference
Ek − El in Eq. (A3). Consequently, only lead-operator pairs
that straddle the position ν contribute to the energy difference.
Let us denote the number of such pairs by ζν � 0. Then,
the difference Ek − El has the form En − En′ + ∑ζν

i=1 �εpνi
,

where En, En′ now denote the energies of the dot many-
particle eigenstates |n) and |n′), respectively, and the �εp,
p = 1,2, . . . ,μ are lead single-electron energies. There are μ

such energies, which are independently integrated over from
−∞ to ∞. The ordering of the two Lhyb insertions where
the corresponding lead electron is created and annihilated
determines whether this energy enters with a plus or minus
sign in the energy differences coming from the L0 sandwiched
between these two Lhyb. The single-particle energy enters with
the same sign in all these factors. It is thus possible to absorb
all minus signs into the definitions of �εp.

The integrand in the integrals over �ε1, . . . ,�εμ assumes
the general form

F (�ε1, . . . ,�εμ)∏2μ−1
ν=1

(
Enν

− En′
ν
+ ∑ζν

i=1 �εpνi
+ cνiη

)1+mν
, (A4)

where the function F contains the remaining dependence
on the single-electron energies due to Fermi functions and
possibly energy-dependent densities of states and tunneling
amplitudes. F is assumed to be a real analytic and bounded
function of its arguments. Note that, for perfect crystals, this
does not hold due to the appearance of van Hove singularities
in the density of states. Any disorder will remove these,
though.

We rewrite the expression (A4) by introducing two sets of
auxiliary variables xν and λν ,

F (�ε1, . . . ,�εμ)
∫

dx1 · · · dx2μ−1

2μ−1∏
ν=1

δ
(
xν − ∑ζν

i=1 �εpνi

)
(Enν

− En′
ν
+ xν + cνiη)1+mν

= F (�ε1, . . . ,�εμ)
∫

dx1 · · · dx2μ−1

∫
dλ1

2π
· · · dλ2μ−1

2π

2μ−1∏
ν=1

exp
[
iλν

(
xν − ∑ζν

i=1 �εpνi

)]
(Enν

− En′
ν
+ xν + cνiη)1+mν

. (A5)

The integrand as a function of xν has a pole of order 1 + mν in the negative half-plane. Furthermore, it vanishes rapidly
for xν → +i∞ (xν → −i∞) if λν � 0 (λν � 0). The only possible exception is the case of mν = 0 and λν = 0, which
we exclude now and treat separately later. Hence, we can close the integration contour in the upper (lower) half-plane and
obtain

∫
dxν

exp
[
iλν

(
xν − ∑ζν

i=1 �εpνi

)]
(
Enν

− En′
ν
+ xν + cνiη

)1+mν
=

{
0 for λν � 0,

− 2πi
mν ! (iλν)mν exp

[−iλν

(
Enν

− En′
ν
+ ∑ζν

i=1 �εpνi
+ cνiη

)]
for λν � 0.

(A6)

115416-13



CARSTEN TIMM PHYSICAL REVIEW B 83, 115416 (2011)

Note that, for mν � 1, the case λν = 0, which is included in both lines, is consistent. On the other hand, for mν = 0 this case
was excluded. We find that Eq. (A6) shows a step discontinuity at λν = 0 for mν = 0. The result after performing the integral
over λν does not depend on the value at a single point, though. The expression in Eqs. (A4) and (A5) now becomes

F (�ε1, . . . ,�εμ)
∫ 0

−∞
dλ1

−i1+m1λ
m1
1

m1!
· · ·

∫ 0

−∞
dλ2μ−1

−i1+m2μ−1λ
m2μ−1

2μ−1

m2μ−1!
exp

[
−i

2μ−1∑
ν=1

λν

(
Enν

− En′
ν
+

ζν∑
i=1

�εpνi
+ cνiη

)]

= F (�ε1, . . . ,�εμ)
∫ 0

−∞
dλ1

−i1+m1λ
m1
1 ec1ηλ1

m1!
exp

[−iλ1
(
En1 − En′

1

)] · · ·
∫ 0

−∞
dλ2μ−1

×−i1+m2μ−1λ
m2μ−1

2μ−1 ec2μ−1ηλ2μ−1

m2μ−1!
exp

[−iλ2μ−1
(
En2μ−1 − En′

2μ−1

)]
exp

[
− i

μ∑
p=1

(
λν−

p
+ · · · + λν+

p

)
�εp

]
, (A7)

where ν−
p (ν+

p ) is the first (last) position for which the single-electron energy �εp appears in the energy denominators in Eq. (A4).
Integrating Eq. (A7) over all �εp, we obtain∫ 0

−∞
dλ1

−i1+m1λ
m1
1 ec1ηλ1

m1!
exp

[ − iλ1
(
En1 − En′

1

) ] · · ·
∫ 0

−∞
dλ2μ−1

−i1+m2μ−1λ
m2μ−1

2μ−1 ec2μ−1ηλ2μ−1

m2μ−1!

× exp
[−iλ2μ−1

(
En2μ−1 − En′

2μ−1

)]
F̂

(
λν−

1
+ · · · + λν+

1
, . . . ,λν−

μ
+ · · · + λν+

μ

)
(A8)

with the Fourier transform

F̂ (κ1, . . . ,κμ) : =
∫

d�ε1 e−iκ1�ε1 · · ·
∫

d�εμ e−iκμ�εμ

×F (�ε1, . . . ,�εμ). (A9)

If there are no lead-operator pairs straddling the position ν,
i.e., ζν = 0, the variable λν does not occur in F̂ in Eq. (A8).
The integral over λν can then be evaluated and is propor-
tional to [cνη − i(Enν

− En′
ν
)]−1−mν . If, in addition, Enν

− En′
ν

vanishes, we obtain a divergence for η → 0+. But, by our
assumption of nondegenerate dot states, Enν

= En′
ν

implies
|nν) = |n′

ν). Thus, for this contribution, the dot density matrix
is diagonal at position ν. Because of ζν = 0, we can then insert
a projection P̃ without changing the result. But there is already
a projection Q̃ at this (even-numbered) position and we obtain
P̃Q̃ = 0. The divergent term is thus removed. On the other
hand, for Enν


= En′
ν

there is no divergence.
It remains to consider the case of at least one lead-operator

pair straddling position ν. Then, λν does occur in F̂ . We
now consider the properties of the functions F and F̂ . The
behavior of F at large |�εp| should not affect the transport
and we can therefore assume that F vanishes sufficiently
rapidly and sufficiently smoothly for �εp → ±∞. We thus
assume that all derivatives ∂nF/∂�εn

p, n = 0,1,2, . . . , vanish
for �εp → ±∞ and that all these derivatives are absolutely
integrable in �εp over the real axis. These assumptions require
the previously discussed analyticity property. Under these
conditions, we have limκp→±∞ κn

pF̂ = 0 for all n = 0,1,2, . . .

and all p = 1, . . . ,μ. Thus, the Fourier transform F̂ falls off
faster than any power for κp → ±∞ for all p.

It follows that F̂ falls off faster than any power for λν →
−∞. Thus, the integral over λν in Eq. (A8) converges for
any mν , Enν

− En′
ν
, and η � 0. It thus converges pointwise for

η → 0+. The convergence is also uniform since the integrand

in Eq. (A8) is bounded in absolute value by the integrand in
the expression∫ 0

−∞
dλ1

λ
m1
1

m1!
. . .

∫ 0

−∞
dλ2μ−1

λ
m2μ−1

2μ−1

m2μ−1!

× ∣∣F̂ (
λν−

1
+ · · · + λν+

1
, . . . ,λν−

μ
+ · · · + λν+

μ

)∣∣ (A10)

and this integral converges.
In summary, all terms generated by taking the relevant

matrix elements of Eq. (A1) and introducing the completeness
relation (A2) remain finite for η → 0+. Since the number of
these terms is finite, the whole quantity remains finite. The
convergence is uniform.

APPENDIX B: PROOF OF THE IDENTITY
OF CERTAIN SUPEROPERATORS

To prove the cancellation of divergences in
Sec. II F, we also need to show that the superoperators
[m2μ−1,m2μ−2, . . . ,m2μ′+1](2μ,2μ′) defined in Eq. (73) do
not depend on the values of the prefactors of iη, as long as
these are all positive. Therefore, we now prove the following
statement: In the limit η → 0+, the superoperator in Eq. (A1)
is independent of c2μ−1,c2μ−2, . . . ,c1 for all non-negative
integers m2μ−1,m2μ−2, . . . ,m1 and all positive real numbers
c2μ−1,c2μ−2, . . . ,c1.

As shown in Appendix C, this limit is finite. The derivative
of (A1) with respect to cν is

−i(1 + mν)η P̃ Lhyb
(−L0 + c2μ−1iη

)−1−m2μ−1

×Lhyb Q̃ · · · (−L0 + c − νiη)−2−mν · · ·Lhyb P̃. (B1)

The derivative and the limit η → 0+ commute because (i)
the expression (A1) is differentiable with respect to cν for
all η > 0, (ii) it converges pointwise for η → 0+ as shown in
Appendix C, and (iii) its derivative with respect to cν converges
uniformly for η → 0+ (this is shown by a trivial modification
of the proof in Appendix C noting that the factor η is bounded
by unity for 0 < η � 1).
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In Eq. (B1), the part P̃ · · · P̃ has a finite limit for η → 0+,
as shown in Appendix C. Including the extra factor of η, the
limit vanishes. Consequently, the expression (A1) is a constant
function of c2μ−1,c2μ−2, . . . ,c1.

APPENDIX C: EVALUATION OF PREFACTORS IN THE
SUPEROPERATOR EXPANSION

In this appendix, we evaluate the functions f defined in
Eq. (80), which appear as prefactors in the expansion of the
TCL generator in powers of η. We first consider the case
p = 0, which is more easily done for the original expression
in Eq. (77). This expression does not contain any sum since
np = n0 is fixed, n′ equals zero because of μ′

p = μ′
0 = 0, and

we obtain

f (n0; m0,2n0−1, . . . ,m0,1)

= (2μ0 − 1)m0,2n0−1 (2n0 − 2)m0,2n0−2 · · · 1m0,1 . (C1)

Since we are only interested in the case �m = M0 � p = 0,
the only possibility is M0 = 0 and, thus, m0,ν = 0 for all ν,
giving f (n0; 0, . . . ,0) = 1.

For p � 1, we evaluate Eq. (80) by iteration. We first
perform the sum over πZ

0 . The term under the sum is
a polynomial in 2πZ

0 μ1 of order M0. The zero-order
term in this polynomial vanishes when the sum is per-
formed due to the factor (−1)π

Z
0 . In particular, for M0 =

0, this is the only term and the whole expression van-
ishes, f (n0,n1, . . . ,np; 0, . . . ,0,m1,2μ1−1, . . . ,mp,1) = 0. For
M0 � 1, in all remaining terms of orders 1, . . . ,M0 in 2πZ

0 μ1,
only the πZ

0 = 1 contribution survives. We thus obtain a
polynomial of order M0 in 2μ1 with the zero-order term
missing. It is thus possible to cancel a factor of 2μ1 with the
same factor in the denominator. What remains is a polynomial
in 2μ1 of order M0 − 1 � 0.

Now we combine this polynomial with the factors (2μ1 −
1)m1,2μ1−1 (2μ1 − 2)m1,2μ1−2 · · · (2μ1 − 2n1 + 1)m1,2μ1−2n1+1 in
Eq. (80). These represent a polynomial in 2μ1 of order M1 � 0.
The product is thus a polynomial of order M0 + M1 − 1 � 0.
Using μ1 = n1 + πZ

1 μ2, we obtain polynomials in 2πZ
1 μ2 of

order M0 + M1 − 1. If M0 + M1 − 1 = 0 and p = 1, πZ
1 = 0

is fixed and we obtain a nonzero result. If M0 + M1 − 1 = 0
and p � 2, we can perform the sum over πZ

1 . However, only
the factor (−1)π

Z
1 depends on πZ

1 and f vanishes.
If M0 + M1 − 1 � 1, we necessarily have �m � 2. Then,

we only have to consider p � 2 and there exists a sum over
πZ

1 . As before, the zero-order term in the polynomial in 2πZ
1 μ2

cancels and the other terms only survive for πZ
1 = 1. The

result is a polynomial in 2μ2 of order M0 + M1 − 1 � 1 with
the zero-order term missing. Canceling a factor 2μ2 with
the denominator, we obtain a polynomial in 2μ2 of order
M0 + M1 − 2 � 0, which we combine with the following term
to give a polynomial of order M0 + M1 + M2 − 2 � 0. Analo-
gously to the above, if M0 + M1 + M2 − 2 � 0 and p = 2, we
obtain a nonzero result, whereas for M0 + M1 + M2 − 2 � 0
and p � 3 we get f = 0. If M0 + M1 + M2 − 2 � 1, which
requires �m � 3, we iterate these steps.

We obtain f = 0 if there exists an integer i < p with

M0 + M1 + · · · + Mi − i = 0. (C2)

We obtain f 
= 0 if this condition is not satisfied and

M0 + M1 + · · · + Mp − p ≡ �m − p = 0. (C3)

This implies that M0 � 1, M0 + M1 − 1 � 1, M0 + M1 −
1 + M2 − 1 � 1, etc., and thus

M0 + M1 + · · · + Mi − i � 1 (C4)

for all i < p. Finally, if M0 + M1 + · · · + Mp − p ≡ �m −
p < 0, there must exist an i < p such that condition (C2) is
satisfied and we obtain f = 0.

We draw some conclusions for the case of nonzero
f with �m = p. Since M0 + M1 − 1 + · · · + Mp−1 − 1 � 1
and M0 + M1 − 1 + · · · + Mp − 1 = 0, we find Mp = 0. This
implies that M0 + M1 − 1 + · · · + Mp−1 − 1 = 1. Since fur-
ther M0 + M1 − 1 + · · · + Mp−2 − 1 � 1, we conclude that
Mp−1 � 1. By iteration we find that Mi � p − i.

The next goal is to find the nonzero values of f for all cases
with �m = p. For p = 0, we have found f (n0; 0, . . . ,0) = 1.
For p � 1, we already know that mp,2μp−1 = mp,2μp−2 =
· · · = mp,1 = 0 is required for a nonzero result. Equation (80)
then assumes the form

f (n0,n1, . . . ,np; m0,2μ0−1, . . . ,mp−1,2μp−1−2np−1+1,0, . . . ,0)

= (−1)p
1∑

πZ
0 ,πZ

1 ,...,πZ
p−1=0

∏p−1
i=0 (−1)π

Z
i

2μ12μ2 · · · 2μp

(2μ0 − 1)m0,2μ0−1 (2μ0 − 2)m0,2μ0−2 · · ·

× (2μ0 − 2n0 + 1)m0,2μ0−2n0+1 · · · (2μp−1 − 1)mp−1,2μp−1−1 (2μp−1 − 2)mp−1,2μp−1−2 · · · 1mp−1,2μp−1−2np−1+1 . (C5)

The factors following the fraction contain exactly p factors of the form 2μi − ν = 2(ni + πZ
i ni+1 + πZ

i πZ
i+1ni+2 + · · ·) − ν with

i ∈ {0, . . . ,p − 1} and ν ∈ {1, . . . ,2ni − 1}, where for miν � 2 we count miν factors. We rewrite this product as
∏p−1

k=0 (2μik − νk),
where we assume, without loss of generality, 0 � i0 � i1 � · · · � ip−1 � p − 1 and νk � νk′ if ik = ik′ and k < k′. Then the
condition M0 + M1 + · · · + Mi − i � 1 for i < p implies ik � k for all k. Thus, we have

f (n0,n1, . . . ,np; m0,2μ0−1, . . . ,0) = (−1)p
1∑

πZ
0 ,πZ

1 ,...,πZ
p−1=0

p−1∏
i=0

(−1)π
Z
i

∏p−1
k=0 (2μik − νk)∏p

i=1 2μi

=: f̃p(n0,n1, . . . ,np; i0,i1, . . . ,ip−1; ν0,ν1, . . . ,νp−1), (C6)

where the subscript in f̃p refers to the number of factors 2μik − νk in the numerator.
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By adding and subtracting a constant, we can write for any j ∈ {0, . . . ,p − 1} and any real number c,

f̃p(n0,n1, . . . ,np; i0,i1, . . . ,ip−1; ν0,ν1, . . . ,νp−1) = f̃p(n0, . . . ,np; i0, . . . ,ip−1; ν0, . . . ,νj−1,c,νj+1, . . . ,νp−1)

− (νj − c) f̃p−1(n0, . . . ,np; i0, . . . ,ij−1,ij+1, . . . ,ip−1; ν0, . . . ,νj−1,νj+1, . . . ,νp−1). (C7)

The second term on the right-hand side contains f̃p−1, which
has �m = p − 1 factors 2μik − νk in the numerator. We have
shown above that, for �m < p, the term f vanishes. Thus, only
the first term remains and we find that f = f̃p does not depend
on νj for any j . Thus, we can replace νj by 2(nij + nij +1 +
· · · + nj ) (recall that ij � j for all j ) without changing the
value of f . We obtain

f̃p(n0,n1, . . . ,np; i0,i1, . . . ,ip−1; ν0,ν1, . . . ,νp−1)

= (−1)p
1∑

πZ
0 ,πZ

1 ,...,πZ
p−1=0

p−1∏
i=0

(−1)π
Z
i

×
∏p−1

k=0 2
(
nik + πZ

ik
μik+1 − nik − nik+1 − · · · − nk

)
∏p

i=1 2μi

.

(C8)

The factor for k = 0 in the numerator contains ik = i0 = 0
and thus reads 2(n0 + πZ

0 μ1 − n0) = 2πZ
0 μ1. In the factor for

k = 1 we have to distinguish the two cases i1 = 0,1. For i1 =
0, the corresponding factor in the numerator reads as 2(n0 +
πZ

0 μ1 − n0 − n1) = 2(πZ
0 n1 + πZ

0 πZ
1 μ2 − n1). This factor is

multiplied by πZ
0 from the k = 0 factor. Since (πZ

i )2 = πZ
i ,

we can drop the πZ
0 in the k = 1 factor and write it as

2(n1 + πZ
1 μ2 − n1) = 2πZ

1 μ2. If instead i1 = 1, the k = 1
factor reads 2(n1 + πZ

1 μ2 − n1) = 2πZ
1 μ2. We thus obtain the

same result in both cases.
For larger k, the factor in the numerator reads as

2(nik + πZ
ik
nik+1 + · · · + πZ

ik
πZ

ik+1 · · ·πZ
k μk+1

−nik − nik+1 − · · · − nk). (C9)

Since this factor is multiplied by πZ
0 , . . . ,πZ

k−1 from the factors
for j < k, we can drop all πZ

j with j < k and obtain simply
2πZ

k μk+1. We finally find

f̃p(n0,n1, . . . ,np; i0,i1, . . . ,ip−1; ν0,ν1, . . . ,νp−1)

= (−1)p
1∑

πZ
0 ,πZ

1 ,...,πZ
p−1=0

p−1∏
i=0

(−1)π
Z
i

∏p−1
k=0 2πZ

k μk+1∏p

i=1 2μi

= (−1)p (−1)p = 1. (C10)

We have shown that the coefficients f for �m = p vanish if
condition (C2) is satisfied and equal unity otherwise.
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37M. C. Lüffe, J. Koch, and F. von Oppen, Phys. Rev. B 77, 125306

(2008).
38G. Begemann, S. Koller, M. Grifoni, and J. Paaske, Phys. Rev. B

82, 045316 (2010).
39H.-P. Breuer and F. Petruccione, The Theory of Open Quantum

Systems (Oxford University Press, Oxford, 2002).
40In order to describe a system with degenerate dot states, we could

introduce a small ad hoc splitting that is sent to zero at the end of
the calculation, after taking η to zero.

41C. Timm, Phys. Rev. E 80, 021140 (2009).
42M. G. Schultz and F. von Oppen, Phys. Rev. B 80, 033302 (2009).
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