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Topologically protected flat zero-energy surface bands in noncentrosymmetric superconductors
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Nodal noncentrosymmetric superconductors (NCS) have recently been shown to be topologically nontrivial.
An important consequence is the existence of topologically protected flat zero-energy surface bands, which are
related to the topological characteristics of the line nodes of the bulk gap via a bulk-boundary correspondence
[A. P. Schnyder and S. Ryu, arXiv:1011.1438]. In this Rapid Communication, we examine these zero-energy
surface bands using a quasiclassical theory. We determine their spectrum and derive a general condition for
their existence in terms of the sign change of the gap functions. A key experimental signature of the zero-energy
surface bands is a zero-bias peak in the tunneling conductance, which depends strongly on the surface orientation.
This can be used as a fingerprint of a topologically nontrivial NCS.
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I. INTRODUCTION

A key experimental signature of topological insulators and
superconductors is the existence of topologically protected
zero-energy surface or edge states, some of which are of
Majorana type.1–4 But, zero-energy boundary modes of topo-
logical origin can also occur in gapless topological systems
that exhibit topologically stable Fermi points or in nodal
superconductors with nontrivial topology. In such systems,
one generically finds topologically protected dispersionless
zero-energy surface states, i.e., flat bands at the surface. Such
flat bands are known to occur at the zig-zag and bearded
edge in graphene,5,6 on the (110) surface of a dx2−y2 -wave
superconductor,7,8 within vortices in the A phase of 3He,9 and
in other systems with topologically protected Dirac points.10

It has recently been realized that nodal noncentrosymmetric
superconductors (NCS) are topologically nontrivial states of
matter.11–13 An NCS is realized in a system lacking inversion
symmetry, which gives rise to an antisymmetric spin-orbit
(SO) coupling and consequently to the admixture of spin-
singlet and spin-triplet components in the superconducting
state. There is a steadily growing list of these remarkable mate-
rials, most notably Li2PdxPt3−xB,14,15 Y2C3,16 and the heavy-
fermion compounds CePt3Si,17 CeRhSi3,18 and CeIrSi3.19 It
is predicted that the topological nontriviality of a nodal NCS
leads to topologically protected zero-energy surface bands,
which only occur within regions of the surface Brillouin zone
bounded by the projected nodal lines of the bulk gap. Since
these zero-energy surface bands give a singular contribution
to the surface density of states, we can expect them to lead to
a zero-bias conductance peak (ZBCP).

It is the aim of this Rapid Communication to investigate
the appearance of zero-energy surface bands in an NCS using
the quasiclassical scattering theory.8 This method is ideal for
exploring the bound surface states of unconventional supercon-
ductors, and has revealed key aspects of the surface physics of
the cuprate high-Tc compounds7,8 and NCS systems.20–25 We
hence derive the surface-bound-state spectrum and a general
condition for the existence of the zero-energy surface bands
in terms of a sign change of the superconducting gap function
across the Fermi surface. This condition is complementary to
the topological criterion given in Ref. 13. We then compute

the tunneling conductance between a normal metal and an
NCS as a function of both the surface orientation and the
relative magnitude of the spin-singlet and spin-triplet pairing
states. We argue that the strong dependence of the ZBCP on
both these variables provides a powerful diagnostic test of the
pairing state of an NCS, while also directly evidencing the
topologically protected zero-energy surface bands.

II. MODEL SYSTEM

We phenomenologically model the NCS as a single-band
system, described by the Bogoliubov–de Gennes (BdG)
Hamiltonian

H(k) =
(

ε(k) + g(k) · σ �(k)
�†(k) −ε(k) + g(k) · σ ∗

)
, (1)

where ε(k) is the spin-independent part of the band dispersion,
g(k) = −g(−k) is the antisymmetric SO coupling, and �(k) =
[�s + d(k) · σ ](iσy) is the superconducting gap function. It is
convenient to express the Hamiltonian Eq. (1) in the so-called
helicity basis, which diagonalizes the kinetic term, yielding
two helicity bands with dispersions ξ±(k) = ε(k) ± |g(k)|. In
the absence of interband pairing, the critical temperature is
maximized by taking the spin-triplet pairing vector d(k) to
be aligned with the polarization vector of the SO coupling
g(k),26 i.e., we parametrize the triplet component of the gap
function and the SO coupling as d(k) = �t lk and g(k) = αlk,
respectively. Hence, the gaps on the two helicity bands are
�±

k = �s ± �t |lk| = �0(q ± |lk|)/(q + 1), where the param-
eter q = �s/�t interpolates between pure triplet pairing (q =
0) and pure singlet pairing (q → ∞). For simplicity, we as-
sume the pairing amplitudes �s and �t to be constant and have
positive sign.27 We note that higher-order angular momentum
components of the gap �0 have also been studied.22,24,28–30

The specific form of the pseudovector lk depends on the
symmetries of the noncentrosymmetric crystal.31 Ignoring
the periodic Brillouin-zone structure, we employ a small-
momentum expansion, which, for the tetragonal point group
C4v (relevant for CePt3Si, CeRhSi3, and CeIrSi3), gives to
lowest order the symmetry-allowed form

lk = ky x̂ − kx ŷ. (2a)
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For the cubic point group O, which is relevant for
Li2PdxPt3−xB, the expansion of lk reads as

lk = kx

(
1 + g2

[
k2
y + k2

z

])
x̂ + ky

(
1 + g2

[
k2
x + k2

z

])
ŷ

+ kz

(
1 + g2

[
k2
x + k2

y

])
ẑ. (2b)

For the spherical Fermi surfaces considered below, the gap
�−

k only has nodes if g2 �= 0. Finally, we also consider the
tetrahedral point group Td , experimentally represented by
Y2C3, where lk takes the form

lk = kx

(
k2
y − k2

z

)
x̂ + ky

(
k2
z − k2

x

)
ŷ + kz

(
k2
x − k2

y

)
ẑ. (2c)

III. SURFACE BOUND STATES

We wish to solve the BdG equation Ĥ�(r) = E�(r)
at a surface for states that decay into the bulk, i.e., that
have energies lying within the gap. We define coordinates
parallel (r‖) and perpendicular (r⊥) to the surface such that
the NCS occupies the half-space r⊥ > 0. For simplicity, we
ignore the SO splitting of the bands and assume coincident
spherical helical Fermi surfaces with radius kF .21,22,25 We have
verified that relaxing this approximation does not alter the
condition for the existence of zero-energy surface bands. It is
therefore convenient to regard the momentum components in
the definition of lk [Eq. (2)] as normalized by kF . If we take
g2 = −1.5 in Eq. (2b), then, for all point groups, we find that
�−

k has point nodes for q = 0, 1, line nodes for 0 < q < 1,
and is fully gapped for q > 1. Examples of the nodal structure
of �−

k are shown in Fig. 1.
We obtain the following ansatz for the surface-bound-state

wave function:

�(k‖,r) =
∑
n=±

∑
p=k,̃k

an(p)ψn(p)e−κn
p r⊥eip·r, (3)

where k = (k‖,k⊥) and k̃ = (k‖, − k⊥) are wave vectors with
|k| = |̃k| = kF . The momentum component parallel to the
surface k‖ is a good quantum number due to translational
invariance. The positive and negative helicity components
ψ±(p) are given by

ψ+(p) =
(

1,
lxp + il

y
p

|lp| + lzp
, − lxp + il

y
p

|lp| + lzp
γ +

p , γ +
p

)T

, (4a)

ψ−(p) =
(

lxp − il
y
p

|lp| + lzp
, −1, γ −

p ,
lxp − il

y
p

|lp| + lzp
γ −

p

)T

, (4b)

respectively, with γ ±
p = (�±

p )−1[E − i sgn(p⊥)(|�±
p |2 −

E2)1/2]. The wave-function components decay into the bulk
over the inverse length scale κ±

p = m(h̄2|p⊥|)−1(|�±
p |2 −

E2)1/2, where m is the effective mass.
A bound state occurs if the coefficients an(p) in Eq. (3) can

be chosen so that the wave function vanishes at the surface.
After some algebra, this yields the following condition for
surface-bound-state formation:

0 = (γ +
k̃

− γ −
k )(γ −

k̃
− γ +

k )(|lk||l̃k| − lk · l̃k)

+ (γ +
k̃

− γ +
k )(γ −

k̃
− γ −

k )(|lk||l̃k| + lk · l̃k). (5)

FIG. 1. (Color online) Panels (a), (c) and (e): Variation of the
sign of �−

k over the Fermi surface as seen along the (111) direction
for (a) the C4v point group with q = 0.5, (c) the O point group
with q = 0.35, and (e) the Td point group with q = 0.4. Dark red
indicates sgn(�−

k ) = 1, whereas light blue is sgn(�−
k ) = −1. Panels

(b), (d) and (f): Surface bound states at the (111) face corresponding
to the same parameters as in (a), (c) and (e), respectively. The color
scale of each plot is normalized by the maximum bound state energy,
(b) Emax = 0.333 �0, (d) Emax = 0.211 �0, and (f) Emax = 0.421 �0.
White space indicates the absence of a bound state, and the circle is
the projection of the Fermi surface, i.e., |k‖| = kF .

Setting E = 0 in Eq. (5) and observing that γ ±
p

∣∣
E=0

=
−isgn(p⊥)sgn(�±

p ), we find that Eq. (5) has a nontrivial zero-
energy solution whenever (i) sgn(�−

k ) = sgn(�−
k̃

) = −1 and
lk · l̃k = −|lk||l̃k| or (ii) sgn(�−

k ) = −sgn(�−
k̃

). The latter con-
dition corresponds to the topologically protected zero-energy
surface bands found in Ref. 13, which occur within a finite
region of the surface Brillouin zone bounded by the projected
nodes of the bulk gap. It is interesting that this condition is quite
similar to the one for zero-energy states at surfaces of uncon-
ventional centrosymmetric superconductors, i.e., the sign of
the gap must reverse between k and k̃. It is therefore somewhat
surprising that the relative sign between the gaps on different
helicity bands at these wave vectors is irrelevant, despite the
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mixing of the helicity components in the edge-state wave
function.

In Figs. 1(b), 1(d), and 1(f), we plot the dispersion of the
bound states appearing at the (111) surface of an NCS with
point group C4v , O, and Td , respectively. For all three point
groups, we find singly degenerate zero-energy surface bands
for 0 < q < 1, i.e., there are two-dimensional regions in the
surface Brillouin zone where the energy of the bound states
vanishes [black regions in Figs. 1(b), 1(d), and 1(f)]. As can be
seen by comparison with Figs. 1(a), 1(c), and 1(e), these occur
where the sign of �−

k on the forward-facing half of the Fermi
surface is different to that on the backward-facing half. This
is a manifestation of the bulk-boundary correspondence found
in Ref. 13, which relates the topologically stable nodal lines
of the bulk gap to the zero-energy surface bands. A quantized
topological invariant is associated with the line nodes, which
protects them and hence also the zero-energy surface bands
from sufficiently small symmetry-preserving perturbations.
Large perturbations, which remove the nodal rings (e.g.,
increasing the singlet-to-triplet ratio q past 1), therefore also
destroy the associated zero-energy surface bands.

The zero-energy surface bands are in general accompanied
by dispersing modes [colored regions in Figs. 1(b), 1(d),
and 1(f)], which occur in regions of the surface Brillouin
zone where sgn(�−

k ) = sgn(�−
k̃

) = −1. The coexistence of
dispersive and nondispersive surface states gives rise to
intricate bound-state spectra. In the case of the C4v point group
[Fig. 1(a)], the linearly dispersing states at sufficiently small
|k2,‖| arise from the same mechanism as the states found along
the (100) direction in Ref. 21. Note the line of zero-energy
states at k1,‖ = 0 connecting the two flat bands.

IV. TUNNELING CONDUCTANCE

Although the surface bound states do not form at an
interface with a normal metal, for a low-transparency barrier
between a metal and an NCS, the physical mechanism
discussed above leads to the formation of interface-resonance
states. For a surface that displays zero-energy bands, it is well
known that the corresponding tunnel junction will show a sharp
ZBCP in the low-temperature tunneling conductance. As in the
case of the d-wave gap in the high-Tc cuprates,8,32 a direction-
dependent ZBCP in an NCS due to the topologically protected
zero-energy surface bands would be a key experimental
signature of the pairing state.

The zero-temperature charge conductance σS(eV) for tun-
neling into the NCS is a generalization of the usual Blonder-
Tinkham-Klapwijk formula20,21,25,33

σS(eV) =
∑

k‖

{
1 + 1

2

∑
σ,σ ′

[∣∣aσ,σ ′
k‖

∣∣2 − ∣∣bσ,σ ′
k‖

∣∣2]}
, (6)

where a
σ,σ ′
k‖ and b

σ,σ ′
k‖ are the Andreev and normal reflection

for electron injection into the NCS, respectively. These
coefficients are determined by solving the BdG equation for
the junction at energy E = eV, with the wave-function ansatz
�σ (k‖,r) = �(−r⊥)ψ<

k‖,σ (r) + �(r⊥)ψ>
k‖,σ (r), where

ψ<
k‖,σ (r) = ψe,σ eik·r +

∑
σ ′=↑,↓

[
a

σ,σ ′
k‖ ψh,σ ′eik·r + b

σ,σ ′
k‖ ψe,σ ′eik̃·r],

ψ>
k‖,σ (r) =

∑
n=±

[
c
σ,n
k‖ ψn(k)eik·r + d

σ,n
k‖ ψn (̃k)eik̃·r] . (7)

ψe,σ = 1
2 (1 + σ,1 − σ,0,0)T and ψh,σ = 1

2 (0,0,1 + σ,1 −
σ )T are the electron and hole spinors in the normal metal,
respectively. We adopt the assumption that the bias energy
is small compared to the Fermi energy so that the wave
vectors in Eq. (7) are well approximated to have magnitude
kF .20,23 The insulating barrier at r⊥ = 0 is modeled as a δ

function of height U . The coefficients in Eq. (7) are then
chosen such that �σ is continuous at the interface, i.e.,
�σ (k‖,r)|r⊥=0− = �σ (k‖,r)|r⊥=0+ , while the derivative obeys
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FIG. 2. (Color online) Panels (a), (c) and (e): Normalized con-
ductance spectra at the (111) face for an NCS with point group (a)
C4v , (c) O, and (r) Td and various values of 0 � q = �s/�t � 1. In
all panels we take Z = 3 and T = 0 K. Curves are vertically shifted
by multiples of 0.2. Panels (b), (d) and (f): ZBCP as a function of
surface orientation for an NCS with point group (b) C4v with q = 0.5,
(d) O with q = 0.35, and (f) Td with q = 0.4. The color at each point
on the sphere indicates the height of the ZBCP for the corresponding
normal vector. Panel (g): Variation of ZBCP height at the (111) face
as a function of q.
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∂r⊥�σ (k‖,r)|r⊥=0+ − ∂r⊥�σ (k‖,r)|r⊥=0− = 2Z�σ (k‖,r)|r⊥=0,
where Z = mU/h̄2 with m is the effective mass, assumed the
same in the NCS and the metal.

In Figs. 2(a), 2(c), and 2(e), we show the conductance
spectra at the (111) face for the C4v , O, and Td point
groups, respectively. The spectra are normalized by the
normal-state conductance σN = ∑

k‖ |k‖|2/(Z2 + |k‖|2). For
0 < q < 1, we find a sharp ZBCP, signaling the existence
of the zero-energy surface bands. For the most part, this
peak is well separated from the contributions of dispersing
states or the edges of the bulk gap. A notable exception is
the C4v case [Fig. 2(a)], where, for small q, we find the
ZBCP superimposed on a wide domelike feature due to the
dispersing surface modes.21,25 As shown in Fig. 2(g), the ZBCP
vanishes as q → 1 and is absent for q > 1, consistent with the
topologically trivial gapped state that forms when the singlet
pairing dominates. We note that, in the case of the O and Td

point groups, the ZBCP height shows kinks as a function of q,
marked by the arrows in Fig. 2(g). At these values of q, there
is a Lifshitz-type transition in the BdG spectrum at which the
nodal rings touch each other and then reconnect.

Finally, we consider the direction dependence of the ZBCP
[Figs. 2(b), 2(d), and 2(f)]. The strong variation in the
conductance with the surface orientation reflects the changing
projection of the bulk nodal lines onto the surface Brillouin
zone. Note that the ZBCP is absent along the crystal axes
for all point groups. This can be exploited as a probe of the
pairing state in an NCS: For example, the observation of a
ZBCP along the (111) direction, but its absence along the
(100) direction, would lend strong support to a model of an
NCS pairing state with a dominant triplet component. Since
the zero-energy surface bands responsible for the ZBCP are
topologically protected, we expect this to be a particularly
robust test of the superconducting state.

V. CONCLUSIONS

In this Rapid Communication, we have used quasiclassical
scattering theory to study the appearance of topologically
protected zero-energy bands at the surface of NCS for three
experimentally relevant choices of the point group. We have
derived a general condition for the existence of these states,
which is consistent with the bulk-boundary correspondence
found in Ref. 13. The surface-bound-state spectrum has been
computed and shown to allow the coexistence of zero-energy
flat bands with dispersing states. We have also calculated
the tunneling conductance, where the presence of these
zero-energy states manifests itself as a ZBCP. The ZBCP
displays a strong dependence on the surface orientation and,
in particular, vanishes along the crystal axes. Not only can
this dependence be exploited as a test of the orbital and
spin pairing symmetries in these materials, but the ZBCP
also directly evidences the topologically protected zero-energy
surface bands. Our paper therefore makes the case for NCS as a
model gapless topological superconducting system, in analogy
to the role of Bi2Se3, Bi2Te3, and related semiconductors
as the reference systems for spin-orbit-induced topological
insulators.3

Prospects for further work are promising. For example,
the large degeneracy of the zero-energy surface bands may
be expected to lead to instabilities toward symmetry-broken
states in the presence of interactions. The possible coexis-
tence of time-reversal-symmetry-breaking and time-reversal-
symmetry-preserving order parameters near the surface of an
NCS is particularly tantalizing.

ACKNOWLEDGMENT

The authors thank A. Avella, S. Ryu, and M. Sigrist for
useful discussions.

*brydon@theory.phy.tu-dresden.de
†a.schnyder@fkf.mpg.de
1M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

2X.-L. Qi and S.-C. Zhang, e-print arXiv:1008.2026v1.
3M. Z. Hasan and J. E. Moore, Ann. Rev. Cond. Matt. Phys. 2, 55
(2011).

4S. Ryu et al., New J. Phys. 12, 065010 (2010).
5K. Nakada et al., Phys. Rev. B 54, 17954 (1996).
6M. Fujita et al., J. Phys. Soc. Jpn. 65, 1920 (1996).
7C.-R. Hu, Phys. Rev. Lett. 72, 1526 (1994).
8S. Kashiwaya and Y. Tanaka, Rep. Prog. Phys. 63, 1641 (2000).
9G. E. Volovik, Pis’ma ZhETF 93, 69 (2011) [JETP Lett. 93, 69
(2011)].
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