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Effect of intraband Coulomb repulsion on the excitonic spin-density wave
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We present a study of the magnetic ground state of a two-band model with nested electron and hole Fermi
surfaces and both interband and intraband Coulomb interactions. Our aim is to understand how the excitonic
spin-density-wave (ESDW) state induced by the interband Coulomb repulsion is affected by the intraband
interactions. We first determine the magnetic instabilities of our model in an unbiased way by employing
the random-phase approximation (RPA) to calculate the static spin susceptibility in the paramagnetic state.
From this, we construct the mean-field phase diagram, demonstrating the robustness of the ESDW against the
intraband interaction. We then calculate the RPA transverse spin susceptibility in the ESDW state and show
that the intraband Coulomb repulsion significantly renormalizes the paramagnon line shape and suppresses the
spin-wave velocity. We conclude with a discussion of the relevance of this suppression for the commensurate
ESDW state of Mn-doped Cr alloys.
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I. INTRODUCTION

The discovery of superconductivity in the iron pnictides is
one of the most exciting recent developments in condensed
matter physics.1 Although most work has been directed
at understanding the superconducting pairing,2 the unusual
antiferromagnetic (AFM) state of the parent compounds has
also attracted much attention.3 This state appears to be
a metallic spin-density wave (SDW), with relatively small
staggered magnetic moment at the Fe sites4 and significant
reconstruction of the Fermi surface below the Néel temperature
TN .5,6 Ab initio calculations have highlighted the nesting of
the electron-like and hole-like Fermi surfaces as a crucial
ingredient for the SDW,7,8 and neutron-scattering experiments
reveal signatures of itinerant magnetism.9,10 This has led many
theorists to interpret the SDW in the pnictides as a new
manifestation of an old problem: the excitonic instability of a
multiband metal.11–22

The excitonic instability was first proposed in the context
of the semimetal-insulator transition.23–27 Assuming electron
and hole Fermi pockets separated by a nesting vector Q, the
Coulomb repulsion between the two bands can equivalently
be viewed as an attractive interaction between electrons in
one band and holes in the other. Depending upon the degree
of the nesting, this causes the condensation of interband
electron-hole pairs (excitons) with relative wave vector Q
and opens a gap in the single-particle excitation spectrum.
Although excitonic semimetal-insulator transitions are rare,28

this scenario has been generalized to account for the presence
of additional non-nested Fermi surfaces.29 It is widely accepted
that such an excitonic instability is responsible for the metallic
SDW state in chromium and its alloys,29–36 and the excitonic
scenario has had notable success in reproducing the spin
dynamics above TN and the doping dependence of the phase
diagram.33 On the other hand, while it qualitatively captures
the spin dynamics below TN , it nevertheless overestimates the
low-temperature spin-wave velocity by a factor of about 2.34–36

The interband interaction responsible for the excitonic
instability is only one of many possible interaction terms for
a multiband system. In most theoretical studies, however, the

intraband interaction is neglected on the basis that it does not
directly play a role in causing interband exciton formation.
The intraband Coulomb repulsion is nevertheless likely to
be at least as large as its interband counterpart, and one
might expect that it could give rise to competing magnetic
phases or influence the spin dynamics. These questions
are of fundamental interest, since the excitonic spin-density
wave (ESDW) is a key concept in the theory of multiband
antiferromagnets. Effective negative, i.e., attractive, intraband
interactions have been studied in Ref. 37, where they can lead
to superconductivity.

In this paper, we present a weak-coupling analysis of a two-
band model with perfect nesting of electron and hole Fermi
surfaces and both interband and intraband on-site interactions.
We specialize to two dimensions for consistency with Refs. 16,
17, and also to make contact with the SDW in the iron pnictides.
However, we expect our general results to be of relevance
to any system with nested electron and hole pockets. After
introducing our model in Sec. II, we start its analysis in Sec. III
by examining the static spin susceptibility in the paramagnetic
state, which allows us to determine the nature of the different
magnetic instabilities of the system. This informs a suitable
mean-field ansatz, with which we construct the ground-state
phase diagram of the model. We find that the ESDW state is
stable against the intraband interaction at weak to moderate
coupling strengths, but is replaced by states with intraband
antiferromagnetic instabilities at stronger coupling.

In the second part of the paper, we examine the influence
of the intraband interaction on the spin dynamics of the
ESDW state. Although the Dyson equation for the ESDW
state with rather general interband and intraband interactions
has previously been obtained in Ref. 17, only the interband
Coulomb repulsion was assumed nonzero in the numerical
evaluation of the transverse spin susceptibility. In Sec. IV, we
therefore compare the transverse spin susceptibility calculated
both with and without accounting for the intraband repulsion.
We show that the finite intraband repulsion leads to a strong
renormalization of the paramagnon line shape and a reduction
of the spin-wave velocity. The relevance of the latter result
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to the experimental situation in Mn-doped Cr alloys is
discussed in Sec. V, where we argue that the magnitude of
the reduction of the spin-wave velocity is consistent with the
observed deviation from the usual weak-coupling predictions.
We conclude with a short summary of our work in Sec. VI.

II. MODEL HAMILTONIAN

We write the minimal Hamiltonian for a two-band
semimetal with nested electron and hole Fermi surfaces as

H = H0 + HU + HI . (1)

The noninteracting Hamiltonian is

H0 =
∑
k,σ

[
ε1kc

†
1kσ c1kσ + ε2kc

†
2kσ c2kσ

]
, (2)

where the operator c
†
akσ (cakσ ) creates (annihilates) an electron

in band a = 1,2 with momentum k and spin σ . For the
single-particle energies, we consider a two-dimensional band
structure with nearest-neighbor hopping,

εak = 2ta(cos kx + cos ky) ∓ EG − μ. (3)

A typical plot of the band structure is given in Fig. 1(a). At
half-filling, this band structure always gives a hole-like pocket
at the � point and an electron-like pocket at the M point of
the Brillouin zone. While the parameter EG tunes the size and
shape of the Fermi surface [see Figs. 1(b)–1(d)], the electron
and hole Fermi pockets are always perfectly nested by the

FIG. 1. (Color online) (a) Band structure and (b) Fermi surface of
the noninteracting model for t1 = t2 = t and EG = 3t at half-filling.
The hole and electron pockets are nested by the vector Q1 = (π,π ).
The Fermi surfaces for EG = 0.05t and EG = 1.5t are shown in (c)
and (d), respectively, illustrating the weaker intraband nesting of parts
of the electron (hole) Fermi pockets with the vectors Q1 = (π,π ),
Q2 = (π,0), and Q3 = (0,π ).

vector Q1 = (π,π ), i.e., for k on the Fermi surface, we have
ε1k = ε2k−Q1 . We note that Eq. (3) has been employed as a
minimal model of the electronic structure of the iron-pnictide
parent compounds.11,13,15,17,21

The interaction Hamiltonian consists of three on-site terms
which naturally arise in the effective low-energy theory of
multiorbital models.13 Specifically, we have the intraband
Coulomb repulsions within each band,

HU =
∑
a=1,2

Uaa

V
∑

k,k′,q

c
†
ak+q↑c

†
ak′−q↓cak′↓cak↑, (4)

and the interband Coulomb repulsion,

HI = U12

V
∑

k,k′,q

∑
σ,σ ′

c
†
1k+qσ c

†
2k′−qσ ′c2k′σ ′c1kσ . (5)

For simplicity, we set U22 = U11 > 0 in the following, in
contrast to previous theoretical studies where the intraband
repulsion is neglected.17,19,22 The interband Coulomb repul-
sion is responsible for the excitonic instability of the nested
electron and hole Fermi surfaces. A variety of excitonic
mean-field (MF) states are possible, namely charge-, spin-,
charge-current-, and spin-current-density waves.26,32,38 For the
Hamiltonian Eq. (1), these density-wave states are degenerate,
but the ESDW can be stabilized by additional interband
correlated-transition terms.17,32 These terms can be assumed
to be arbitrarily small, and so we ignore them in our analysis.

III. MEAN-FIELD THEORY

A. Magnetic instabilities of the paramagnetic state

Within the paramagnetic (PM) state, we obtain an effective
mean-field Hamiltonian by decoupling the interaction terms in
Eq. (1) using the particle densities naσ = 1/V

∑
k〈c†akσ cakσ 〉.

We hence find

H PM =
∑
a=1,2

∑
k,σ

(
εak + Uaanaσ̄ + U12

∑
s

nās

)
c
†
akσ cakσ

−
∑
a=1,2

UaaVna↑na↓ − U12V
∑
σ,σ ′

n1σ n2σ ′ , (6)

where we introduce the notation ā = 2(1) when a = 1(2).
Although we always have perfect nesting, the Hartree terms in
Eq. (6) shift the bands relative to one another, thus changing
the shape of the Fermi surfaces. It is clear from Figs. 1(b)–1(d)
that the changed shape of the Fermi surface may lead to
competing magnetic phases. These magnetic instabilities can
be determined in an unbiased way by examining the peaks in
the PM static spin susceptibility: as the temperature is lowered
toward the critical temperature of the magnetic state, the static
PM spin susceptibility diverges at the ordering vector Q.

The dynamical spin susceptibility is defined by

χij,q,q′(iωn) = 1

V

∫ β

0
dτ

〈
TτS

i
q(τ )Sj

−q′(0)
〉
eiωnτ , (7)

where Sj (q) is the spin operator,

Sj
q =

∑
a,b

S
j

a,b,q = 1

V
∑
a,b

∑
k

∑
s,s ′

c
†
ak+qs

σ
j

ss ′

2
cbks ′ . (8)
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Inserting Eq. (8) into Eq. (7), we express the spin susceptibility
in terms of the generalized susceptibilities,

χij,q,q′(iωn) =
∑

a,b,c,d

χabcd
ij,q,q′(iωn), (9)

χabcd
ij,q,q′(iωn) = 1

V

∫ β

0
dτ

〈
TτS

i
a,b,q(τ )Sj

c,d,−q′ (0)
〉
eiωnτ .

(10)

We obtain the static transverse MF susceptibilities by making
the analytical continuation iωn → ω + i0+ and then taking
the limit ω → 0.

Due to the invariance of the PM state under spin rotation,
we need only determine the singularities of the transverse
spin susceptibility as these contain all information about the
possible order in the system. By summing up the ladder
diagrams, we obtain the Dyson equation for the generalized
RPA spin susceptibilities,

χabba
−+,q,q = χ

abba(0)
−+,q,q + Uabχ

abba(0)
−+,q,qχabba

−+,q,q. (11)

All other generalized susceptibilities vanish. Expressions for
the lowest-order susceptibilities χ

abba(0)
−+,q,q are found in Ref. 17.

Note that Eq. (11) separates into equations for the interband
(a 	= b) and intraband (a = b) spin susceptibilities.

Evaluating the PM spin susceptibility on a 2000 × 2000
k-point mesh, we find three distinct magnetic instabilities,
which we classify by their ordering vector and interband or
intraband character.

(i) Interband (excitonic) instability with the ordering vec-
tor Q = Q1, corresponding to the nesting shown in Fig. 1(b).
The evolution of the PM susceptibility is shown in Fig. 2(a).
We describe this phase by the order parameter 
σσ ′ =
(U12/V)

∑
k〈c†1kσ c2k−Q1σ ′ 〉.

(ii) Intraband instability with the ordering vector Q = Q1,
corresponding to the nesting shown in Fig. 1(c), and the PM
susceptibilities in Fig. 2(b). We describe this instability by
the order parameter A

(1)
aσσ ′ = (U11/V)

∑
k〈c†akσ cak−Q1σ ′ 〉 with

a = 1,2.
(iii) Intraband instability with the ordering vector Q =

(α,β), where α ≈ 0 and β ≈ π or vice versa, corresponding
to the nesting shown in Fig. 1(d). To describe this incommen-
surate (IC) magnetic order, we approximate the vectors by

FIG. 2. (Color online) Total static transverse spin susceptibility
for three representative points of the parameter space for finite tem-
peratures and t1 = t2 = t and EG = 3t . Note the different logarithmic
scales.

Q2 = (π,0) and Q3 = (0,π ). Typical PM susceptibilities are
shown in Fig. 2(c), and we define the order parameters A

(λ)
aσσ ′ =

(U11/V)
∑

k〈c†akσ cak−Qλσ ′ 〉 with a = 1,2 and λ = 2,3.

B. Mean-field phase diagram

We use the order parameters introduced above and the
particle densities naσ to decouple the interaction terms HU and
HI . Employing standard techniques, we construct the ground-
state MF phase diagram, again using a 2000 × 2000 k-point
mesh.

Figure 3 shows four ground-state phase diagrams with
different values of EG and t2. The structure of these phase
diagrams is quite similar, implying that the topology of the
phase diagram is robust against changes of the band structure.
Because of this robustness, we focus on the plot with t1 = t2 =
t and EG = 3 t [Fig. 3(a)]. We find five different phases: the
PM phase, the band-insulator (BI) phase, the ESDW phase,
the (π,0) + (0,π ) Hubbard AFM phase [Hub(Q2 + Q3)], and
the (π,π ) Hubbard AFM phase [Hub(Q1)].

We first consider the phase diagram for weak to moderate
U11 � 5 t . At U12 = 0, we find the PM state. Due to the perfect
nesting of the electron and hole Fermi pockets, however, only
an infinitesimally small U12 is required to stabilize the ESDW
phase. The Fermi surface is completely gapped, and we have
an insulating state. Without loss of generality, we take the

FIG. 3. (Color online) Ground-state MF phase diagrams for
different parameters of the band structure at half-filling. Solid and
dashed lines indicate first-order and second-order phase transitions,
respectively. Note that the transition between the U12 = 0 PM and
the ESDW phases is of second order. In the shaded region, the MF
ground state is the ESDW state, but the static spin susceptibility
shows an IC AFM intraband instability above the critical temperature
of the ESDW state. The red crosses show points where the critical
temperatures of the ESDW and IC AFM states are equal.
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SDW polarization to be along the z axis, and so we have the
order parameter 
σ,σ ′ = σδσ,σ ′
. Upon increasing U12, the
Hartree shifts U12nā in Eq. (6) push the bands further apart:
slightly after the disappearance of the T = 0 Fermi surface,
the ESDW becomes unstable toward the nonmagnetic BI phase
with a completely filled valence and empty conduction band.39

Starting in the ESDW phase and increasing U11, the Hartree
shifts U11naσ̄ favor the increase of the occupation of the
conduction band, expanding the electron and hole pockets. For
n1σ ≈ 0.78, the system undergoes a first-order phase transition
into the Hub(Q2 + Q3) state with finite order parameters
|A(2)

aσσ ′ | = |A(3)
aσσ ′ | 	= 0 and arbitrary relative sign. This phase is

a superposition of magnetically ordered states with intraband
ordering vectors (π,0) and (0,π ), and hence possesses a
four-site magnetic unit cell. At higher U11 > 8t , the system
undergoes another first-order phase transition into the Hub(Q1)
state where A

(1)
aσσ ′ 	= 0. The existence of this phase is not

unexpected because, in the limit of U12 = 0 and U11 � t,EG,
the system is equivalent to two independent Hubbard models
at half-filling.

The cross-shaded area indicates the part of the ground-state
phase diagram where the restricted MF calculations predict
the ESDW phase but the susceptibilities show an intraband
magnetic instability above the critical temperature at an IC
wave vector. The existence of IC phases in our two-band model
is consistent with results for the single-band Hubbard model
away from half-filling.40,41

To summarize, the ESDW state is robust against the intra-
band interaction up to moderate values of U11. Indeed, at these
strengths, the Hartree shifts due to the intraband interaction
support the ESDW by suppressing the competing BI phase.
Magnetic phases mediated by the intraband interaction only
appear for U11 � 5 t . This is the first major result of our work.

IV. TRANSVERSE SPIN EXCITATIONS

The spin excitation spectrum of the ESDW state has
unique characteristics which distinguish it from single-band
antiferromagnets.17 We obtain the transverse spin susceptibil-
ity for the ESDW state within the RPA by summing up the
ladder diagrams to all orders. This yields the Dyson equation,

χabcd
−+q,q′ = δq,q′

(
δa,dδb,cχ

abcd(0)
−+q,q′ + δā,dδb̄,cχ

abb̄ā(0)
−+q,q′

)
+ δq+Q1,q′

(
δā,dδb,cχ

abbā(0)
−+q,q′ + δa,dδb̄,cχ

abb̄a(0)
−+q,q′

)
+

∑
p=q,q+Q1

∑
m,n=1,2

Umnχ
abmn(0)
−+q,p χnmcd

−+p,q′ . (12)

We note that the Dyson equation has been previously obtained
in Ref. 17, where it was solved only for nonzero interband
Coulomb repulsion and all other interactions vanishing.

To calculate the MF transverse spin susceptibilities in
Eq. (12), we used a 10000 × 10000 k-point mesh and a
broadening δ = 10−3t in the analytical continuation iωn →
ω + iδ. Figure 4(a) shows a typical plot of the imaginary
part of the transverse spin susceptibility within the ESDW
phase for q = (qx,qy = qx). We set t1 = t2 = t and U11 =
2U12 = 3.6t , which gives a gap 
 = 0.0213t . Below, we
summarize the main features of the susceptibility; see Ref. 17

FIG. 4. (a) Logarithm of the imaginary part of the transverse
spin susceptibility for U11 = 2U12 = 3.6t and 
 = 0.0213t . The spin
wave is visible as a dark feature for ω < 2
 near q = Q1 and q = 0.
Note the logarithmic color scale. (b) Ratio of the total transverse spin
susceptibility in panel (a) and the U11 = 0 result presented in Ref. 17.

for a detailed discussion of the susceptibility for U11 = 0 and
U12 = 3.6t .

As for the static susceptibility calculated in Sec. III A,
the total transverse spin susceptibility can be divided into
contributions from intraband and interband excitations. The
former gives the response close to the zone center, while the
latter is responsible for the excitations near Q1. The excitation
spectrum shows a partial symmetry of the response about
q = Q1/2. As shown in Fig. 5(a), the distribution of weight
also seems to be a mirror image except for the momenta near
Q1 and 0. For q ≈ 0, we find a forbidden region, which is
anticipated by the considered band structure, while there is a
significant concentration of weight at q ≈ Q1.

The excitation spectrum shows a continuum of single-
particle excitations for ω > 2
 = 0.0426t . This is sharply
bounded from below at ω = 2
, which is the minimum energy
needed to excite quasiparticles across the energy gap of the
ESDW state. The spectrum is bounded by V-shaped features at
q ≈ 0.54Q1 in the interband susceptibility and at q ≈ 0.46Q1

in the intraband susceptibility. These features are due to the
weak nesting of parts of the electron Fermi surface with the
hole Fermi surface and with itself, respectively.17 For q ≈ Q1,
we observe a paramagnon line in the interband excitation
spectrum. There is a similar but much weaker feature in the
intraband susceptibility close to q = 0.

For ω < 2
, a dispersing spin wave is visible close to the
magnetic ordering vector and, much more weakly, close to
the zone center. The spin-wave dispersion does not intersect
with the single-particle continuum, but instead flattens out
as it approaches ω = 2
 and disappears at q ≈ 0.98Q1 and
q ≈ 0.02Q1. Although the paramagnon seems to continue the
spin wave into the continuum, closer inspection reveals that
the two features avoid each other.
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FIG. 5. (Color online) (a) Cuts through the excitation spectrum
for U11 = 0, U12 = 1.8t , and U11 = 2U12 = 3.6t . Note the increase
of weight of the susceptibility for qx < π/2 for U11 	= 0, while for
qx > π/2 the weight changes only close to qx = π . (b) Comparison
of the paramagnon line shape for the susceptibilities in (a). The lines
are defined as in panel (a). (c) Paramagnon line shape for ω = 0.1t

and various U11 along the line of constant 
 = 0.0213t in the phase
diagram [see Fig. 6(b)].

A. Effect of the intraband Coulomb repulsion

As discussed above, the spin excitation spectrum of the
ESDW state is qualitatively unchanged by the presence of
the intraband Coulomb repulsion. This is unsurprising, as the
main features of the transverse susceptibility are fixed by the
ESDW state. It is nevertheless interesting to examine the trans-
verse susceptibility for quantitative changes in experimentally
relevant details, such as the paramagnon line shape or the
spin-wave velocity. A direct comparison with the results of
Ref. 17 is nevertheless difficult, as Hartree shifts were not
accounted for in that work but instead were assumed to be
already included in EG. This problem can be avoided, however,
by choosing U11 = 2U12, for which the Hartree shifts of the
two bands are identical, i.e., effectively vanishing due to the
fixed particle concentration. In this case, the band structure
in the PM state is the same as the one of the noninteracting
Hamiltonian.

Figure 4(b) shows the ratio of the transverse spin sus-
ceptibility for U11 = 2U12 = 3.6t and U11 = 0, U12 = 1.8t .17

As can be seen, the weight contributed by the intraband
components of the spin susceptibility approximately doubles
when we include the intraband interaction, while the interband
spin susceptibility remains almost the same. Indeed, as
shown in Fig. 5(a), the intraband and interband continuum
excitations have more nearly equal weight when a finite
U11 is present. Although the interband contribution is not as
dramatically affected, for q ≈ Q1 the white line at ω > 2
 in
Fig. 4(b) indicates a significant suppression of the paramagnon
by the intraband Coulomb repulsion, while the white-dark
feature at ω < 2
 shows a decrease of the spin-wave
velocity.

We examine the modification of the paramagnon in greater
detail in Fig. 5(b). At U11 = 0, the paramagnon can be

identified as a distinct peak that becomes broader and lower
with increasing energy ω. This changes dramatically at
finite U11, with the almost complete removal of the peak.
At small excitation energies a “peak-dip-hump” structure
develops, while at larger energies the paramagnon looks
more like a kink. Thus, for fixed normal-state band structure,
the intraband interaction can produce a significant change
in the paramagnon line shape. In Fig. 5(c), we show the
evolution of the paramagnon feature with increasing U11,
where U12 is tuned so that 
 remains fixed. In contrast to
the results in panel (b), here the normal-state Fermi surface
undergoes significant changes due to the Hartree shifts. In this
case, we see that the “dip-hump” structure disappears with
increasing U11, leaving only a progressively sharper peak.
The strong dependence of the paramagnon line shape on the
intraband Coulomb repulsion is the second major result of this
paper.

B. Spin-wave velocity

The low-energy dispersion of the spin wave can be
analytically obtained by expanding the determinant of the
Dyson equation (12) about ω = 0 and q = Q1. We hence find
for the spin-wave dispersion

ωm(Q1 − q) = csw|Q1 − q|, (13)

where csw is the spin-wave velocity. For the band structure
considered here, we have

c2
sw = 2a3

(1 − 2U11a0)a0 − 2U11

2a2

1

a2
1 + 2a0a2 − 8U11a0a

2
1

, (14)

where

a0 = 1

4V
∑

k


2

E3
k

, a1 = 1

4V
∑

k

ε̃1k

E3
k

, a2 = a0

2
2
, (15)

a3 = t

2V
∑

k

(
t
2
2 − ε̃2

1k

E5
k

sin2kx − ε̃1k

2E3
k

coskx

)
. (16)

Note that the definition of a3 is different from that in Ref. 17.
In the physically relevant limit 
 � t , we find

csw
∼= vF√

2

√
1 − N0U11, (17)

where vF is the average Fermi velocity and N0 is the
single-spin density of states of one of the bands at the
Fermi energy. Equation (17) is the final major result of
this work. For U11 = 0, we recover the well-known relation
csw

∼= vF /
√

2.17,30,31 At finite U11, the spin-wave velocity can
be significantly suppressed by the factor

√
1 − N0U11, and

it exactly vanishes when the Stoner criterion for (intraband)
ferromagnetism is satisfied. The dependence of the spin-
wave velocity on U11 can be seen in Fig. 6, where we
plot the spin-wave velocity for a cut through the phase
diagram at constant order parameter 
. We find an excellent
agreement between Eq. (17) and the numerical data, with
the spin-wave velocity going through a maximum as U11

is increased. In contrast, the usual expression csw = vF /
√

2
overestimates the spin-wave velocity, and monotonically
increases with U11 due to the effect of the Hartree shifts
upon vF .
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FIG. 6. (Color online) (a) Comparison of the numerical (open
circles) and the approximate (solid and dash-dotted lines) results for
the spin-wave velocity for 
 = 0.0213t depending on the intraband
Coulomb repulsion. (b) Line of 
 = 0.0213t (dash-dotted) for which
we determine the spin-wave velocity. We continue the constant-
 line
to the limit of metastability of the ESDW state within the Hub(Q2 +
Q3) phase.

V. SPIN-WAVE VELOCITY IN CHROMIUM ALLOYS

The ESDW state is widely believed to be realized in Cr and
its AFM alloys. Cr displays a slightly incommensurate SDW
with a Néel temperature of 311 K and a temperature depen-
dence of the staggered magnetization that is well described by
standard MF theory.34 A commensurate SDW state with much
higher TN can be stabilized by doping with Mn.42 Several
authors have discussed the spin dynamics of such Cr alloys
using the RPA.30,31,35,36 Neglecting intraband interactions, they
found good agreement between theory and experiment above
the Néel temperature TN .43,44 At low temperatures T � TN ,
a key theoretical prediction is that the spin-wave velocity
is c2

sw = vevh/3, where vh(e) is the hole (electron) Fermi
velocity and the factor of 3 in the denominator arises because
a three-dimensional band structure is considered.30,31,35,36

Experiments, however, show that this result overestimates csw

by a factor of approximately 2.43–45 This discrepancy persists in
more sophisticated models of the band structure (e.g., Ref. 36)
and has not yet been conclusively explained. A notable attempt
was made by Liu,46,47 who proposed that the coupling between
SDW-induced local moments on the Cr ions and magnons was
responsible for the reduced spin-wave velocity.

In Sec. IV, we found that the intraband Coulomb repul-
sion provides a significant renormalization of the spin-wave
velocity in the ESDW phase. It is therefore interesting to
estimate the effect of this renormalization for Mn-doped Cr
alloys [the result, Eq. (17), can easily be generalized to
a three-dimensional system by replacing the factor

√
2 by√

3]. Ab initio calculations estimate the total density of states of
paramagnetic Cr to be approximately 0.65 eV−1.48,49 Ignoring

non-nested portions of the Fermi surface, this gives an upper
bound N0 � 0.16 eV−1. Liu31 estimated N0U12 = 0.43 by
fitting to experimental data on Cr0.98Mn0.02. It is therefore
reasonable to take U11 ≈ 3 eV, which gives a renormalization√

1 − N0U11 ≈ 0.7, i.e., the renormalization factor yields a
reduction of the spin-wave velocity by approximately 30%.
This accounts for the bulk of the discrepancy between the
U11 = 0 theory and experimental findings, and suggests that
the hitherto neglected intraband interactions could play a
significant role in the spin dynamics of Cr and its alloys. We
note that a finite U11 will not affect the low-energy normal-state
spin dynamics near to the magnetic ordering vector, and so the
previous results for T > TN are also valid in our theory.

VI. CONCLUSIONS

In this paper, we have presented an analysis of a two-
dimensional two-band Hubbard model with nested electron
and hole Fermi surfaces. By examining the static RPA spin
susceptibility in the paramagnetic state, we have determined
the possible magnetic order in an unbiased way. In addition
to the expected interband ESDW, we have found instabilities
toward a number of intraband AFM states with various
commensurate and incommensurate ordering vectors. Using
these results to inform a mean-field ansatz, we have calculated
the ground-state phase diagram for a number of different
semimetallic band structures. We have shown that the ESDW
state is stable at weak to moderate intraband coupling; at
stronger interaction strengths, however, changes in the Fermi
surface induced by the Hartree shifts stabilize the intraband
AFM states.

In the second part of the paper, we have studied the effect
of the intraband interactions on the low-temperature spin
dynamics of the ESDW. We have solved the Dyson equation
for the transverse spin susceptibility and have compared the
results for vanishing17 and finite intraband interactions. We
find that there is significant renormalization of key experi-
mentally relevant details of the spin excitation spectrum due to
intraband interactions. Specifically, the intraband interactions
qualitatively alter the paramagnon line shape and reduce
the spin-wave velocity. We argue that this mechanism could
resolve the discrepancy between the measured spin-wave
velocity in Mn-doped Cr and previous theoretical predictions.
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(1974)]; M. Gulácsi and Zs. Gulácsi, Phys. Rev. B 39, 714
(1989).

38B. Zenker, H. Fehske, and C. D. Batista, Phys. Rev. B 82, 165110
(2010).

39D. Ihle, M. Pfafferott, E. Burovski, F. X. Bronold, and H. Fehske,
Phys. Rev. B 78, 193103 (2008).

40J. E. Hirsch, Phys. Rev. B 31, 4403 (1985).
41H. J. Schulz, Phys. Rev. Lett. 64, 1445 (1990).
42W. C. Koehler, R. M. Moon, A. L. Trego, and A. R. Mackintosh,

Phys. Rev. 151, 405 (1966).
43S. K. Sinha, S. H. Liu, L. D. Muhlestein, and N. Wakabayashi, Phys.

Rev. Lett. 23, 311 (1969).
44J. Als-Nielsen, J. D. Axe, and G. Shirane, J. Appl. Phys. 42, 1666

(1971).
45S. K. Sinha, G. R. Kline, C. Stassis, N. Chesser, and

N. Wakabayashi, Phys. Rev. B 15, 1415 (1977).
46S. H. Liu, Phys. Rev. B 13, 3962 (1976).
47S. H. Liu, J. Magn. Magn. Mater. 25, 97 (1981).
48H. L. Skriver, J. Phys. F 11, 97 (1981).
49D. G. Laurent, J. Callaway, J. L. Fry, and N. E. Brener, Phys. Rev.

B 23, 4977 (1981).

144425-7

http://dx.doi.org/10.1088/0953-8984/20/42/422203
http://dx.doi.org/10.1103/PhysRevB.80.174510
http://dx.doi.org/10.1103/PhysRevLett.100.237003
http://dx.doi.org/10.1103/PhysRevLett.101.057003
http://dx.doi.org/10.1103/PhysRevLett.101.057003
http://dx.doi.org/10.1103/PhysRevB.83.214519
http://dx.doi.org/10.1103/PhysRevB.83.214519
http://dx.doi.org/10.1103/PhysRevLett.106.257001
http://dx.doi.org/10.1103/PhysRevLett.106.257001
http://dx.doi.org/10.1209/0295-5075/82/37007
http://dx.doi.org/10.1103/PhysRevB.78.140509
http://dx.doi.org/10.1103/PhysRevB.78.140509
http://dx.doi.org/10.1103/PhysRevB.78.134512
http://dx.doi.org/10.1103/PhysRevB.78.134512
http://dx.doi.org/10.1209/0295-5075/85/37002
http://dx.doi.org/10.1103/PhysRevB.80.024512
http://dx.doi.org/10.1103/PhysRevB.79.060508
http://dx.doi.org/10.1103/PhysRevB.79.060508
http://dx.doi.org/10.1103/PhysRevB.79.180504
http://dx.doi.org/10.1103/PhysRevB.80.174401
http://dx.doi.org/10.1103/PhysRevLett.104.257001
http://dx.doi.org/10.1103/PhysRevLett.104.257001
http://dx.doi.org/10.1103/PhysRevB.81.140506
http://dx.doi.org/10.1103/PhysRevB.81.140506
http://dx.doi.org/10.1103/PhysRevB.82.014521
http://dx.doi.org/10.1103/PhysRevB.82.214515
http://dx.doi.org/10.1103/PhysRevB.83.224503
http://dx.doi.org/10.1103/PhysRevB.83.224503
http://dx.doi.org/10.1016/0022-3697(65)90153-8
http://dx.doi.org/10.1103/PhysRev.158.462
http://dx.doi.org/10.1103/PhysRev.158.462
http://dx.doi.org/10.1103/PhysRev.162.752
http://dx.doi.org/10.1103/PhysRevB.74.165107
http://dx.doi.org/10.1103/PhysRevB.2.3619
http://dx.doi.org/10.1103/PhysRev.143.245
http://dx.doi.org/10.1103/PhysRevB.2.2664
http://dx.doi.org/10.1103/PhysRevB.24.5713
http://dx.doi.org/10.1103/PhysRevB.30.5284
http://dx.doi.org/10.1103/RevModPhys.60.209
http://dx.doi.org/10.1103/PhysRevB.50.4240
http://dx.doi.org/10.1103/PhysRevB.54.7233
http://dx.doi.org/10.1103/PhysRevB.39.714
http://dx.doi.org/10.1103/PhysRevB.39.714
http://dx.doi.org/10.1103/PhysRevB.82.165110
http://dx.doi.org/10.1103/PhysRevB.82.165110
http://dx.doi.org/10.1103/PhysRevB.78.193103
http://dx.doi.org/10.1103/PhysRevB.31.4403
http://dx.doi.org/10.1103/PhysRevLett.64.1445
http://dx.doi.org/10.1103/PhysRev.151.405
http://dx.doi.org/10.1103/PhysRevLett.23.311
http://dx.doi.org/10.1103/PhysRevLett.23.311
http://dx.doi.org/10.1063/1.1660389
http://dx.doi.org/10.1063/1.1660389
http://dx.doi.org/10.1103/PhysRevB.15.1415
http://dx.doi.org/10.1103/PhysRevB.13.3962
http://dx.doi.org/10.1016/0304-8853(81)90152-9
http://dx.doi.org/10.1088/0305-4608/11/1/013
http://dx.doi.org/10.1103/PhysRevB.23.4977
http://dx.doi.org/10.1103/PhysRevB.23.4977

