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Microscopically derived Ginzburg-Landau theory for magnetic order in the iron pnictides
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We examine the competition of the observed stripe spin density wave (SDW) with other commensurate and
incommensurate SDW phases in a two-band model of the pnictides. Starting from this microscopic model, we
rigorously derive an expansion of the free energy in terms of the different order parameters at the mean-field
level. We show that three distinct commensurate SDW states are possible and study their appearance as a function
of the doping and the electronic structure. We show that the stripe phase is generally present, but its extent in the
phase diagram depends strongly upon the number of hole Fermi pockets that are nested with the electron Fermi
pockets. Electron pockets competing for the same portion of a hole pocket play a crucial role. We discuss the
relevance of our results for the antiferromagnetism of the pnictides.

DOI: 10.1103/PhysRevB.84.214510 PACS number(s): 75.30.Fv, 75.10.Lp, 74.70.Xa

I. INTRODUCTION

The superconductivity of the iron pnictides continues
to fascinate the condensed matter community.1–3 Because
of their high critical temperatures, particular interest has
focused upon the so-called 1111 family4 RFeAsO and the 122
family5 AFe2As2 (R and A are rare-earth and alkaline-earth
elements, respectively), which become superconducting by
chemical doping or under pressure. The parent compounds
are antiferromagnets,2,3 with stripelike magnetic order with
respect to the lattice of Fe atoms. Furthermore, the antiferro-
magnetism is intimately linked to an orthorhombic distortion
of the crystal,6,7 as evidenced by the coincidence of the
ferromagnetic direction with the shorter crystallographic axis
in all 1111 and 122 parent compounds. It has been argued
that the same condition that favors stable stripe order also
implies a nematic transition above the Néel temperature TN ,
where the magnetic fluctuations on each sublattice become
locked into a stripe configuration,8–10 and which produces the
orthorhombic distortion via magnetoelastic coupling.10–12 The
mechanism for stabilizing the stripe order is therefore a key
problem in pnictide physics.

The microscopic origin of antiferromagnetism in the
pnictides has been approached in a number of different
ways. Frustrated local moment models for the Fe spins can
reproduce the observed magnetic order,2,13,14 but the evidence
for the metalicity15–17 and relatively weak correlations18 of the
parent compounds and the development of incommensurate
(IC) magnetic order upon doping,19 suggest an itinerant
description. Ab initio calculations predict,20,21 and angle-
resolved photoemission and magneto-oscillation experiments
confirm,22,23 that the Fermi surface of the pnictide parent
compounds have quasi-two-dimensional nested electron and
hole pockets. Such a system is known to undergo an excitonic
instability toward a spin-density-wave (SDW) state,24,25 as,
for example, in chromium.26,27 In addition, many authors have
emphasized the importance of the complicated orbital structure
of the Fermi surfaces,28–36 but key aspects of the physics are
nevertheless well understood on the basis of simpler orbitally
trivial “excitonic” models.31,37–50

Most itinerant models of the pnictides display at least
two nesting instabilities at different wave vectors. There is
hence competition between the stripe magnetic order and

other SDW phases. Within a minimal two-orbital model,28

it has been shown that doping away from half filling29,30

or a relatively large ratio of the Hund’s rule coupling to
the Coulomb repulsion30 can stabilize the stripe state. For
excitonic models, on the other hand, Eremin and Chubukov43

have demonstrated that the ellipticity of the electron pockets
or interactions between the electron bands can stabilize the
observed SDW state. The stripe order was nevertheless found
to be rather sensitive to the number of Fermi pockets involved
in the SDW, and its extent in the phase diagram remains
uncertain. Competition with a different excitonic instability
has also been proposed to stabilize a stripe SDW.48

In this paper we present a systematic study of the mag-
netic order in the popular two-band excitonic model of the
pnictides.31,32,41,42,45,50 Keeping only interaction terms which
lead to an excitonic state, we construct the Dyson equation
for the single-particle Green’s functions in an arbitrary
commensurate SDW phase treated at the mean-field level. By
iterating the Dyson equation, we obtain approximate forms for
the self-consistency equations for the order parameters valid
near TN , which we then integrate to obtain a Ginzburg-Landau
expansion of the free energy. From this we determine the
phase diagram for several choices of the noninteracting band
structure and show that three different commensurate SDW
states are possible. We conclude with a discussion of the
relevance to the magnetism of the pnictide parent compounds.

II. MODEL

We model the FeAs planes as a two-dimensional interacting
two-band system, where one band has electronlike Fermi
pockets while the other has holelike Fermi pockets. Including
only interaction terms which directly lead to an excitonic
instability, we write the Hamiltonian as

H =
∑
k,σ

{(
εc

k − μ
)
c
†
kσ ckσ + (

ε
f

k − μ
)
f

†
kσ fkσ

}
+ g1

V

∑
k,k′,q

∑
σ,σ ′

c
†
k+q,σ ckσ f

†
k′−q,σ ′fk′σ ′

+ g2

V

∑
k,k′,q

{
c
†
k+q,↑c

†
k′−q,↓fk′,↓fk,↑ + H.c.

}
, (1)
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FIG. 1. (Color online) (a) Dispersion of the electron and hole
bands for the cases of a single hole pocket at the � point (ξh = 0)
and of hole pockets at both the � and M points (ξh = 0.975). Panels
(b) and (c) show the corresponding Fermi surfaces and the nesting
vectors Q1 = (π/a,0) and Q2 = (0,π/a). In all panels we set μ = 0.

where c
†
kσ (f †

kσ ) creates a spin-σ electron with momentum k
in the holelike (electronlike) band. In terms of the single-Fe
unit cell, we assume the dispersions εc

k = εc + 2tc(1 −
ξh) [ cos(kxa) + cos(kya) ] + 2tcξh[1 + cos(kxa) cos(kya)]
and ε

f

k = εf + tf,1 cos(kxa) cos(kya) − tf,2ξe [ cos(kxa) +
cos(kya)], where a is the Fe-Fe bond length. In units of tc, we
take εc = −3.5, εf = 3.0, tf,1 = 4.0, and tf,2 = 1.0. We plot
representative band structures and Fermi surfaces in Fig. 1. The
dimensionless quantities ξe and ξh are key control parameters:
ξe controls the ellipticity of the electron pockets, while varying
ξh from 0 to 1 tunes the band structure from a system with a
single hole pocket at the � point to a system with equally large
hole pockets at both the � and the M points. For ξh ≈ 0 each
electron pocket is nested with the hole pocket by only one of
the orthogonal wave vectors, Q1 = (π/a,0) and Q2 = (0,π/a)
[Fig. 1(b)], while for ξh ≈ 1 both electron pockets can nest
with a hole pocket at each nesting vector [Fig. 1(c)]. A

system with a single hole pocket and two electron pockets
was proposed as a minimal model of the pnictides in Ref. 43,
and has been examined by a number of authors.42,44,47,50 On
the other hand, a Fermi surface with hole pockets at the �

and M points is realized in the minimal two-orbital model
of the pnictides,28 and this situation has been extensively
studied.28–32,43,47 Furthermore, it is also of relevance to
more sophisticated orbital models where in addition to the
dxz/dyz-derived hole pockets at the � point there is usually also
a dxy-derived hole pocket at the M point,33,34 which may play
an important role in generating the SDW order.35,36 Although
the orbital content of the � and M hole pockets are very
different, mean-field studies suggest that the SDW instability
is primarily determined by the nesting properties,35,36 hence
justifying the orbitally trivial excitonic model used here.

Equation (1) contains a density-density interaction and a
term describing correlated transitions between the electron and
hole bands, with contact potentials g1 and g2, respectively. At
sufficiently low temperatures, the system is unstable against
an excitonic SDW with effective coupling gSDW = g1 + g2 >

0.25,37,42 For our system the excitonic SDW state has two
order parameters corresponding to electron-hole pairing with
a relative wave vector equal to Q1 and Q2, i.e., �1 =∑

α,β �1,α,β = (1/V )
∑

k

∑
α,β σ̂σσα,β〈c†k+Q1,α

fkβ〉 and �2 =∑
α,β �2,α,β = (1/V )

∑
k

∑
α,β σ̂σσα,β〈c†k+Q2,α

fkβ〉, where σ̂σσ is
the vector of the Pauli matrices. �1 and �2 are related to
the magnetization of each Fe sublattice by ma = �1 + �2,
mb = �1 − �2. When both �1 and �2 are nonzero, therefore,
the magnetization is the superposition of two SDW states
with orthogonal ordering vectors. It has been pointed out
that in the case that �1 · �2 �= 0 one has to introduce
additional charge-density-wave (CDW) order parameters δc =
(1/V )

∑
k,σ 〈c†k+Q3,σ

ckσ 〉 and δf = (1/V )
∑

k,σ 〈f †
k+Q3,σ

fkσ 〉,
where Q3 = Q1 + Q2.29,51

III. FREE ENERGY EXPANSION

We define the single-particle Green’s functions of the
excitonic SDW system by

G
a,b
Q,σ,σ ′ (k,iωn) = −

∫ β

0
dτ

〈
Tτak+Q,σ (τ )b†k,σ ′(0)

〉
eiωnτ , (2)

where a,b = c,f . Treating the SDW and CDW orders at the
mean-field level, we write the Dyson equation for the Green’s
functions as

G
a,b
Qn,σ,σ ′(k,iωn) = δa,bδσ,σ ′δQn,0G

a(0)(k,iωn) + g1δaG
a(0)(k + Qn,iωn)Ga,b

Qn+Q3,σ,σ ′ (k,iωn)

− gSDW

∑
m=1,2

∑
α

�m,α,σ Ga(0)(k+Qn,iωn)Ga,b
Qn+Qm,α,σ ′ (k,iωn), (3)

where c = f and f = c, and the Green’s functions of the noninteracting system are Ga(0)(k,iωn) = (iωn − εa
k + μ)−1. The order

parameters can be expressed in terms of the Green’s functions as

�m,σ,σ ′ = 1

V

∑
k

1

β

∑
n

Gf,c

Qm,σ ′,σ (k,iωn)eiωn0+
, (4a)

δν=c,f = 1

V

∑
k,σ

1

β

∑
n

Gν,ν
Q3,σ,σ (k,iωn)eiωn0+

, (4b)
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where β = 1/kBT . In general, it is not possible to analytically
solve Eq. (3) for the Green’s functions. By iterating the Dyson
equation, however, we are able to expand the Green’s functions
in terms of the order parameters. Inserting this expansion into
the self-consistency (“gap”) equations (4) and truncating it
above a given order, we hence obtain an approximate form of
the self-consistency equations valid close to TN (assuming a
second-order transition, as is the case here). Since the self-
consistency equations are obtained from the stationary points
of the free energy with respect to the order parameters, we can
construct a Ginzburg-Landau expansion for the free energy F

by integrating them,

F = F0 + α
(|�1|2 + |�2|2

) + β0
(|�1|4 + |�2|4

)
+β1|�1|2|�2|2 + β2|�1 · �2|2
+ (γcδc + γf δf )�1 · �2 + αcf δcδf + αcδ

2
c + αf δ2

f , (5)

where F0 is independent of the order parameters. We keep
only second-order terms involving the CDW order parameters,
since the system is far away from a pure CDW instability and
a CDW emerges only as a secondary order parameter.52 We
also neglect gradient terms since we are only interested in
homogeneous states. The coefficients in Eq. (5) are written in
terms of the noninteracting Green’s functions as follows:

α = 2gSDW

[
1 + gSDW

V

∑
k

1

β

∑
n

Gc(0)(k,iωn)Gf (0)(k + Q1,iωn)

]
, (6a)

β0 = g4
SDW

V

∑
k

1

β

∑
n

[
Gc(0)(k,iωn)Gf (0)(k + Q1,iωn)

]2
, (6b)

β1 = 2g4
SDW

V

∑
k

1

β

∑
n

{
Gc(0)(k,iωn)Gc(0)(k + Q3,iωn)

[
Gf (0)(k + Q1,iωn)

]2

+ Gf (0)(k + Q1,iωn)Gf (0)(k + Q2,iωn)
[
Gc(0)(k,iωn)

]2

−Gc(0)(k,iωn)Gc(0)(k + Q3,iωn)Gf (0)(k + Q1,iωn)Gf (0)(k + Q2,iωn)
}
, (6c)

β2 = 4g4
SDW

V

∑
k

1

β

∑
n

Gc(0)(k,iωn)Gc(0)(k + Q3,iωn)Gf (0)(k + Q1,iωn)Gf (0)(k + Q2,iωn) , (6d)

γc = 4g1g
2
SDW

V

∑
k

1

β

∑
n

Gc(0)(k,iωn)Gf (0)(k + Q1,iωn)Gf (0)(k + Q2,iωn) , (6e)

γf = 4g1g
2
SDW

V

∑
k

1

β

∑
n

Gc(0)(k,iωn)Gc(0)(k + Q3,iωn)Gf (0)(k + Q1,iωn) , (6f)

αcf = g1 , (6g)

αc = −g2
1

V

∑
k

1

β

∑
n

Gf (0)(k + Q1,iωn)Gf (0)(k + Q2,iωn) , (6h)

αf = −g2
1

V

∑
k

1

β

∑
n

Gc(0)(k,iωn)Gc(0)(k + Q3,iωn) . (6i)

The CDW order parameters can be integrated out, resulting in
the renormalization of

β2 → β̃2 = β2 + αcγ
2
f + αf γ 2

c − αcf γcγf

α2
cf − 4αcαf

. (7)

The Ginzburg-Landau expansion of the free energy, Eq. (5),
and the expressions for the coefficients in terms of a specific
microscopic model, Eq. (6), are the first major results of our
paper.

IV. PHASE DIAGRAM

The free energy in Eq. (5) admits three possible commen-
surate SDW states which we name following Ref. 29:

(1) A magnetic stripe (MS) state where only one of the
excitonic order parameters is nonzero, e.g., �1 �= 0, �2 = 0.
This corresponds to the ordering in the pnictides. This state
minimizes the free energy if 2β0 < min{β1 + β̃2,β1}.

(2) An orthomagnetic (OM) state where |�1| = |�2| and
�1 ⊥ �2. This corresponds to a “flux”-type ordering of the
magnetic moments. This state minimizes the free energy if
β1 < min{2β0,β1 + β̃2}.

(3) A spin and charge order (SCO) state where |�1| = |�2|
and �1‖ ± �2. In this state only one sublattice of the Fe plane
has nonzero moments, which order in a checkerboard pattern.
When g1 �= 0, the spin order induces a CDW with ordering
vector Q3. This state minimizes the free energy if β1 + β̃2 <

min{2β0,β1}.
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From close examination of Eqs. (6b) and (6c) we observe
that if ε

f

k = ε
f

k+Q3
or εc

k = εc
k+Q3

for all k we have 2β0 = β1,
and hence the MS and OM states are degenerate. These condi-
tions are satisfied for the electron and hole bands at ξe = 0 and
ξh = 1, respectively. In particular, if ξh �= 1 the degeneracy of
the MS and OM states is lifted by arbitrarily small ellipticity
of the electron Fermi pockets, as pointed out in Ref. 43

The free energy in Eq. (5) allows us to determine the
phase diagram of the model close to TN . In Fig. 2 we
present phase diagrams showing the ordered state realized at
a temperature T = T −

N infinitesimally below TN as a function
of ξe and of the doping relative to half filling δn for various
values of ξh. In constructing the phase diagrams, we adjust
gSDW such that for each value of ξe the maximum critical
temperature of the commensurate SDW as a function of the
doping δn is kBT

opt
N = 0.0646 tc, which gives a reasonable

ratio of kBT
opt
N to the bandwidth. The variation of the optimal

doping level δnopt, where TN is maximal, with ξe is shown
by black dotted lines. The boundaries between the different
commensurate SDW phases are determined by the conditions
on the β0, β1, and β̃2 mentioned above, where the coefficients in
Eq. (6) were evaluated for g1 = g2 and using a 1000 × 1000
k-point mesh. In all phase diagrams we find regions where
IC SDW order occurs. Since the IC SDW ordering vector
is likely close to the commensurate SDW vector,36 the
boundary between the two phases is determined by solv-
ing 1 + (gSDW/V )

∑
k(1/β)

∑
n Gc(0)(k,iωn)Gf (0)(k + Q1 +

δq,iωn) = 0 for the critical temperature of the Q1 + δq
SDW state, where δq = (0.01π/a,0), (0,0.01π/a). When the
critical temperature of the Q1 + δq SDW exceeds that of the
commensurate SDW, an IC SDW is assumed to be realized.
We similarly find the critical doping for which there is no
IC SDW order, and the system remains paramagnetic (PM)
down to zero temperature. Note that we disregard states with
TN < 0.05 T

opt
N .

We first consider the phase diagram for ξh = 0 [Fig. 2(a)],
which corresponds to a Fermi surface with a single hole
pocket and two electron pockets at optimal doping as shown
in Fig. 1(b). A commensurate SDW state is realized here
for δn ≈ δnopt ± 0.025 for all ξe. At ξe = 0 the condition
ε

f

k = ε
f

k+Q3
is satisfied, and hence the OM and MS states

are degenerate. These states have the lowest free energy at
underdoping and near optimal doping, but at overdoping the
SCO is realized. Upon switching on a finite ξe, the degeneracy
of the MS and OM states is lifted, and the MS state is found
to have the lower free energy near optimal doping and at
overdoping, while the OM state is stable at underdoping. The
SCO state is rapidly suppressed by a finite ξe.

The phase diagrams for the case of two hole and two elec-
tron Fermi pockets [see Fig. 1(c)] are shown in Figs. 2(b) and
2(c) for ξh = 0.95 and ξh = 0.975, which correspond to hole
pockets of lesser and greater similarity, respectively. We note
that the interaction strength gSDW needed to produce the SDW
state is roughly a third smaller than for the single-hole-pocket
scenario. For small ξe, a commensurate SDW is nevertheless
realized over a much greater doping range than in the single-
hole-pocket case. The OM phase is stable near optimal doping,
with the MS phase found at moderate doping, and the SCO
found at stronger doping. At larger values of ξe, however, we
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FIG. 2. (Color online) Magnetic order at T = T −
N as a function

of ξe and δn for (a) ξh = 0, (b) ξh = 0.95, and (c) ξh = 0.975.
Magnetic phases are as defined in the text. At ξe = 0 the thick solid
line indicates degenerate MS and OM solutions. For ξe �= 0, solid
lines indicate phase boundaries, while the dotted line indicates the
optimal doping δnopt.

find a strong tendency toward IC order in the ξh = 0.95 case,
with commensurate order completely absent for ξe > 1.75.
In contrast, the commensurate SDW in the ξh = 0.975 case
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FIG. 3. (Color online) Critical temperature TN of the SDW states as a function of doping δn for ξe = 1 and (a) ξh = 0, (b) ξh = 0.95, and
(c) ξh = 0.975. The temperature is scaled by the maximum temperature for commensurate SDW order kBT

opt
N = 0.0646 tc.

is present for all ξe and is always realized about optimal
doping.

In Fig. 3 we plot the critical temperature of the SDW states
as a function of doping δn for constant-ξe cuts through the
three phase diagrams in Fig. 2. For the ξh = 0 case [Fig. 3(a)]
we note that there are substantial IC SDW “shoulders” to the
commensurate SDW dome which extend up to T ≈ 0.75 T

opt
N .

Although IC SDW states are also found at strong underdoping
or overdoping in the ξh = 0.975 case [Fig. 3(c)], they are real-
ized over a smaller doping range relative to the commensurate
states and do not extend to such high temperatures compared
to the single-hole-pocket scenario. As shown in Fig. 3(b), how-
ever, slightly reducing ξh leads to IC states appearing at optimal
doping.

V. DISCUSSION

To summarize our main results, we have shown that in
a two-band model of the pnictides there are three distinct
commensurate SDW states: the MS, OM, and SCO phases.
In a model with a single hole pocket and two electron pockets,
the MS state dominates the phase diagram, but the OM and
SCO phases are possible away from optimal doping. For a
model with two hole pockets, in contrast, the OM phase is
stable at optimal doping, although the MS phase remains at
under- and overdoping. Since only the MS state is observed
experimentally, we hence conclude that the model with a single
hole pocket gives a more reasonable description of the physics.
We nevertheless note that such a model displays a rather
strong tendency toward IC SDW order which is not observed
experimentally.19

We consider the results for the single-hole-pocket case
in more detail. In agreement with Ref. 43 we found that
MS order was realized near optimal doping for arbitrarily
small ellipticity of the electron Fermi pockets. Away from
optimal doping, however, states consisting of a superposition
of commensurate SDWs with orthogonal ordering vectors Q1,
Q2 are realized. This can be understood via the following
argument. At strong underdoping, we expect that the best
nesting between the hole pocket and the elliptical electron
pockets occurs for the states near the major axis of the electron
pockets, as shown in Fig. 4(a). Similarly, for strong overdoping
the best nesting occurs for the states near the minor axis of the
electron pockets [Fig. 4(c)]. In both cases the SDW gaps for the
two nesting vectors involve states far apart on the hole Fermi

surface, and so there should be little competition between
them. Near optimal doping, however, the nested electron Fermi
pockets compete for the same states on the hole Fermi surface
[Fig. 4(b)], and hence it is more favorable for only a single
electron pocket to participate in the SDW. We note that the
variation of the nesting “hotspots” with doping is expected to
have significant consequences for the a-b resistivity anomaly
in the pnictides.53

The addition of a second hole pocket at the M point strongly
affects the physics. The doping range of commensurate SDW
states is significantly expanded, and the OM state is realized
near optimal doping with a MS phase appearing upon doping.
This is consistent with previous investigations of the two-
orbital model.29,30 In contrast, our results are inconsistent with
the degenerate OM and MS phases found in Ref. 43. This is
due to the fact that in the model of Ref. 43 the � hole pocket is
mapped exactly onto the M pocket by translation of Q3, i.e., the
degeneracy condition εc

k = εc
k+Q3

is always satisfied. Despite
the apparent differences, the phase diagram can be understood
in a similar way to the single-hole-pocket case. At optimal
doping the nesting of the electron pockets is not optimal for
either hole pocket but instead corresponds to overdoping for
the smaller pocket and underdoping for the larger pocket, thus
allowing the OM phase. Indeed, this perfectly describes the
nesting properties of the two-orbital model at half filling.35

Upon doping the system, the nesting with one of the hole
pockets is optimized, while the nesting in the other hole pocket
becomes extremely poor. As such, only a single hole pocket

(a) (b) (c)

optimal dopingunderdoping overdoping

FIG. 4. (Color online) Schematic diagram of the nesting of the
two electron pockets (blue dotted and red dashed lines) with a
single hole pocket (black solid line). We show the situation for
(a) underdoping, (b) optimal doping, and (c) overdoping. The small
shaded circles indicate the region of best nesting of the electron
pockets with the hole pocket.
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participates in the nesting, and so the MS state is stable. The
relative size of the two hole pockets is thus crucial: If the two
pockets are too dissimilar in size, there will be a tendency for
the TN (δn) curves in Fig. 3 to split into two separate domes with
commensurate order near their maxima. The strong tendency
toward an IC SDW state at optimal doping suggests that the
ξh = 0.95 case is close to this limit. For somewhat lower ξh,
i.e., when the hole pocket at the M point is much smaller
than the pocket at the � point, the pocket at the M point
only shows good nesting with the electron pockets at very
large hole doping. At realistic doping levels, the smaller hole
pocket is essentially irrelevant for the SDW formation and the
single-hole-pocket model is applicable.

Finally, we consider the implications of our results for the
hypothesized nematic state in the pnictides. Indeed, a major
motivation for our study is the connection of this phase with
the MS SDW state.8–10 This can be seen via the following
naive argument: After integrating out the CDW, we write the
free energy Eq. (5) in terms of the sublattice magnetizations
ma and mb,

F = F0 + 1

2
α
(|ma|2+ |mb|2

) + 1

16
(2β0 + β1)

(|ma|2+ |mb|2
)2

+ 1

4
(2β0 − β1)(ma · mb)2 + 1

16
β̃2

(|ma|2 − |mb|2
)2

, (8)

and identify the Ising nematic degree of freedom as ϕ =
ma · mb. In the mean-field theory presented in this paper, ϕ is
only nonzero in the MS phase. The inclusion of sufficiently
strong magnetic fluctuations, however, allows the nematic
order parameter to be nonzero above TN ,8–10 as long as the
coefficient of ϕ2 in Eq. (8) is negative, i.e., 2β0 < β1. This
is the same condition that ensures that the MS phase has
lower free energy than the OM phase, and hence implies that
a nematic transition occurs at T � TN when the SDW state
shows stripe order. It is therefore intriguing that we find that
2β0 − β1 changes sign as a function of doping in all cases. This
suggests a strong doping dependence of the nematic phase. In
particular, for a scenario with a single hole pocket we expect
that the nematic phase at underdoping will be weaker and
occur closer to TN compared to overdoping, or may even be
absent. Since this is apparently not observed experimentally,

our results might imply that the magnetoelastic coupling plays
a more direct role in the structural transition.12

VI. SUMMARY

In this paper we have presented a weak-coupling study of
the magnetic order in a two-band model of the iron pnictides.
Using the Dyson equation for the Green’s function of an
arbitrary commensurate SDW state treated at the mean-field
level, we have obtained an expansion of the free energy valid
close to the critical temperature. We have shown that this
allows three commensurate SDW states: the experimentally
relevant stripe MS phase, the flux OM phase, and the SCO
phase for which only one sublattice orders. The competition
of these phases with one another and with IC SDW states has
been studied as a function of the doping and the variation of
key features of the noninteracting electronic structure.

In particular, we have examined systems containing two
elliptical electron pockets and either a single hole pocket at
the � point or hole pockets at both the � and the M points. In
the former case we find that the MS state is stable at optimal
doping, while a superposition of two orthogonal SDW states
is stable away from optimal doping. In the latter scenario,
however, the OM phase is realized near optimal doping, while
the MS state is stable at moderate doping and the SCO state
appears at higher doping levels. The doping dependence of
the associated phase diagrams can be understood in terms
of the changing nesting properties of the Fermi surface. Our
results indicate that the single-hole-pocket model is in better
agreement with experiments, presumably because any hole
pocket at the M point in the real materials is small and poorly
nested with the electron pockets. The single-hole-pocket
picture also suggests that the proposed nematic state in the
pnictides should be highly asymmetric with respect to electron
vs hole doping.
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