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Nodal noncentrosymmetric superconductors have topologically nontrivial properties manifested by protected
zero-energy surface states. Specifically, it was recently found that zero-energy surface flat bands of topological
origin appear at their surface. We show that the presence of certain inversion-type lattice symmetries can give
rise to additional topological features of the gap nodes, resulting in surface states forming one-dimensional
arcs connecting the projections of two nodal rings. In addition, we demonstrate that Majorana surface states
can appear at time-reversal-invariant momenta of the surface Brillouin zone, even when the system is not fully
gapped in the bulk. Within a continuum theory we derive the topological invariants that protect these different
types of zero-energy surface states. We independently derive general conditions for the existence of zero-energy
surface bound states using the complementary quasiclassical scattering theory, explicitly taking into account the
effects of spin-orbit splitting of the bands. We compute surface bound-state spectra for various crystal point-group
symmetries and orbital-angular-momentum pairing states. Finally, we examine the signatures of the arc surface
states and of the zero-energy surface flat bands in tunneling-conductance spectra and dicuss how topological
phase transitions in noncentrosymmetric superconductors could be observed in experiments.
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I. INTRODUCTION

Systems with strong spin-orbit coupling (SOC) have re-
cently attracted a great deal of attention. Prime examples
are topological insulators, where strong spin-orbit interac-
tions give rise to a nontrivial band topology, leading to
topologically protected zero-energy surface states.1–3 Another
class of compounds for which SOC plays an important role
are superconductors without inversion symmetry.4,5 In these
remarkable materials, Rashba-type antisymmetric spin-orbit
interactions lift the spin degeneracy of the electronic bands and
generate complex spin textures in the electron Bloch functions.
In the superconducting state, the antisymmetric SOC gives rise
to the admixture of even-parity spin-singlet and odd-parity
spin-triplet pairing components and, importantly, allows a
nontrivial topology of the Bogoliubov-quasiparticle wave
functions.6–9 Akin to topological insulators, this nontrivial
wave-function topology results in various types of protected
zero-energy states at the edge or surface of noncentrosymmet-
ric superconductors (NCSs).8–14 For instance, a fully gapped
NCS with nontrivial topology supports linearly dispersing
helical Majorana modes at its boundary.8,9,15–20 In three-
dimensional systems, the stability of these Majorana surface
states is protected by an integer (Z) topological invariant,
i.e., the three-dimensional winding number,9,15 whereas in
two-dimensional systems a binary (Z2) topological number
guarantees the robustness of the edge modes.8,17,21–23

Remarkably, topologically protected zero-energy boundary
modes also occur in NCSs with line nodes.9–14 In particular,
it has recently been shown that dispersionless zero-energy
states (i.e., flat bands) of topological origin generically appear
at the surface of three-dimensional nodal NCSs.9,10 These
zero-energy flat bands are confined to regions of the two-
dimensional surface Brillouin zone (BZ) that are bounded
by the projections of the nodal lines of the bulk gap.24

The topological protection of these dispersionless boundary
states is linked to the topological characteristics of the nodal

gap structure via a bulk-boundary correspondence. In fact,
the stability of both the dispersionless zero-energy surface
states and the line nodes of the bulk gap is ensured by the
conservation of the same integer topological invariant, namely
the one-dimensional winding number. Apart from these two-
dimensional surface flat bands, certain NCSs also support
zero-energy boundary states that form one-dimensional open
arcs in the surface BZ, connecting the projection of two nodal
rings.10,20,25–29 Moreover, it has recently been reported that
Majorana surface states can occur at time-reversal-invariant
momenta of the surface BZ,9,14 even if the superconductor is
not fully gapped in the bulk.

Topological surface states are generic features of NCSs
whose spin-triplet pairing component is at least as strong
as the spin-singlet one. It is, therefore, quite reasonable
to expect that these zero-energy boundary states occur in
the superconducting state of the heavy fermion compounds
CePt3Si,30 CeRhSi3,31 and CeIrSi3,32 as well as in Y2C3,33

Li2PdxPt3−xB,34–36 and Mo3Al2C.37,38 All of these noncen-
trosymmetric materials show strong spin-orbit interactions,
with the spin-orbit band splitting far exceeding the supercon-
ducting energy scale.5 For the study of surface phenomena in
NCSs it is thus important to explicitly account for the strong
SOC,13,29,39–41 a subtlety that has been overlooked in many
previous works.10,20,25–28

The main aim of this paper is to provide a comprehensive
classification of the topological features of three-dimensional
nodal NCSs. In particular, we demonstrate that the presence
of certain inversion-type symmetries gives rise to additional
topological features of the gap line nodes. These features are
characterized by a two-dimensional Z2 topological invariant
and manifest themselves on the surface as one-dimensional
arcs of zero-energy states, terminating at the projection of the
nodal lines onto the surface BZ. We also examine the ap-
pearance of Majorana surface states at time-reversal-invariant
momenta of the surface BZ and show that the topological
properties of these linearly dispersing modes are described by
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a one-dimensional Z2 invariant. Using a continuum model of
NCSs, we derive expressions for the Z2 invariants and the
winding number that protect the Majorana modes, the arc
surface states, and the surface flat bands, respectively.

We illustrate these topological features by investigating the
surface-bound-state spectrum and the tunneling conductance
of NCSs using quasiclassical scattering theory. Allowing for
non-negligible SOC, we consider three different experimen-
tally relevant crystal point-group symmetries and explore
the effects of pairing with higher orbital angular momenta
[e.g., (dx2−y2 + f )-wave pairing]. We find that higher-orbital-
angular-momentum pairing leads to additional topologically
stable line nodes in the bulk gap. Correspondingly, there
appear extra surface flat bands associated with these additional
nodal lines. We show that the surface flat bands and the arc
states leave unique signatures in the tunneling-conductance
spectra. Finally, we investigate topological phase transitions in
NCSs, i.e., zero-temperature quantum phase transitions where
the momentum-space topology of the quasiparticle spectrum
changes abruptly as a function of the singlet-to-triplet ratio in
the pairing amplitude. We argue that anomalies in the density
of states and the tunneling conductance provide experimental
fingerprints of these zero-temperature phase transitions.

The remainder of this paper is organized as follows. Section
II discusses the model Hamiltonian and its symmetries. In
Sec. III we derive the topological invariants characterizing
topological properties of both the nodal lines and the surface
states and give a detailed discussion of the topological criteria
for the existence of zero-energy surface states. By use of
quasiclassical scattering theory, we derive in Sec. IV general
conditions for the occurrence of surface bound states in terms
of sign changes of the superconducting gap functions across
the Fermi surface. We show that these conditions are in perfect
agreement with the topological criteria given in Sec. III. In
addition, we present in Sec. IV surface-bound-state spectra for
three different crystal point-group symmetries and for various
surface orientations. In Sec. V A we compute the tunneling
conductance between a normal metal and an NCS, identify the
signatures of the zero-energy surface flat bands and the arc
surface states in the tunneling spectra, and discuss topological
phase transitions. Our conclusions and outlook are given in
Sec. VI.

II. MODEL HAMILTONIAN AND SYMMETRIES

We consider a three-dimensional single-band BCS su-
perconductor with noncentrosymmetric crystal structure and
Rashba-type SOC. On a phenomenological level, such a
superconductor is described by the Bogoliubov-de Gennes
Hamiltonian H = 1

2

∑
k �

†
kH(k)�k, with

H(k) =
(

h(k) �(k)
�†(k) −hT(−k)

)
(1a)

and �k = (ck↑,ck↓,c
†
−k↑,c

†
−k↓)T, where c

†
kσ (ckσ ) denotes the

electron creation (annihilation) operator with momentum k
and spin σ . The normal-state dispersion of the electrons in the
spin basis is given by

h(k) = εkσ0 + gk · σ , (1b)

where εk = h̄2k2/(2m) − μ, gk denotes the SOC potential,
σ = (σx,σy,σz)T are the three Pauli matrices, and σ0 stands
for the 2 × 2 unit matrix. In the so-called helicity basis the
normal-state Hamiltonian (1) takes diagonal form, h̃(k) =
diag(ξ+

k ,ξ−
k ), where ξ±

k = εk ± |gk| is the dispersion of the
positive-helicity and negative-helicity bands, respectively.

Due to the lack of inversion symmetry, the superconducting
gap generally contains an admixture of even-parity spin-singlet
and odd-parity spin-triplet pairing states,

�(k) = (ψkσ0 + dk · σ )(iσy), (1c)

where ψk and dk represent the spin-singlet and spin-triplet
components, respectively. It is well known that in the absence
of interband pairing, the superconducting transition tempera-
ture is maximized when the spin-triplet pairing vector dk is
aligned with the polarization vector gk of the SOC.42 Hence,
we parametrize the singlet and triplet components of the
superconducting gap function as

ψk = �sf (k) = r

r + 1
�0f (k), (2a)

dk = �tf (k) lk = 1

r + 1
�0f (k) lk, (2b)

where lk = gk/λ, with λ the SOC strength. Here, r = �s/�t

denotes the ratio between the singlet and triplet pairing
components. The pairing amplitudes �s and �t are assumed
to be positive and constant, i.e., r � 0. We have included in
Eq. (2) a structure factor f (k), which allows us to investigate
the effects of higher-orbital-angular-momentum pairing. In the
following, we consider the three cases

f (k) =

⎧⎪⎨⎪⎩
1 for (s + p) wave,(
k2
x − k2

y

)
/k2

F for (dx2−y2 + f ) wave,

2kxky/k2
F for (dxy + p) wave,

(3)

where kF is the Fermi vector in the absence of spin-orbit
interactions. With Eq. (2), it follows that the gaps on the two
helicity bands are given by �±

k = f (k)�0(r ± |lk|)/(r + 1).
The specific form of the SOC vector gk (and hence of

lk and dk) is constrained by time-reversal symmetry and the
crystallographic point-group symmetries of the superconduc-
tor. Time-reversal symmetry requires gk to be real and an odd
function of k. An element R of the crystallographic point
group G of the NCS can be represented as either a proper (for
det R = +1) or an improper (for det R = −1) rotation. Thus,
the Bogoliubov-de Gennes Hamiltonian (1) transforms under
an operation R of G as

UR̃H(R−1k)U †
R̃

= +H(k) (4)

with R̃ = det(R)R, UR̃ = diag(uR̃,u∗
R̃

), and uR̃ the spinor
representation of R̃, i.e., uR̃ = exp[−i(θ/2)n̂ · σ ]. Here, n̂
denotes the unit vector along the rotation axis of R̃ and θ

is the angle of rotation. It follows from Eq. (1) that the lattice
symmetries (4) impose the constraint

gk = det(R)R gR−1k (5)

on gk. To determine the form of gk, we employ a small-
momentum expansion. Using Eq. (5) we find that for the
tetragonal point group G = C4v (relevant for CePt3Si,
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CeRhSi3, and CeIrSi3) the lowest-order symmetry-allowed
term is43

gk = λ(ky x̂ − kx ŷ). (6a)

For the cubic point group G = O (represented by
Li2PdxPt3−xB and Mo3Al2C) the vector gk takes the form

gk = λ
[
kx

(
1 + g2

[
k2
y + k2

z

])
x̂ + ky

(
1 + g2

[
k2
x + k2

z

])
ŷ

+ kz

(
1 + g2

[
k2
x + k2

y

])
ẑ
]

(6b)

with the second-order SOC g2. Finally, for the tetrahedral
point group G = Td (relevant for Y2C3) the small-momentum
expansion of gk yields

gk = λ
[
kx

(
k2
y − k2

z

)
x̂ + ky

(
k2
z − k2

x

)
ŷ + kz

(
k2
x − k2

y

)
ẑ
]
. (6c)

Before deriving the relevant topological invariants for
Hamiltonian (1), we first discuss in some detail the dis-
crete symmetries responsible for the nontrivial topological
characteristics of H(k). According to the classification of
Refs. 15, 44, and 45, H(k) belongs to symmetry class
DIII since it satisfies two independent antiunitary discrete
symmetries: Particle-hole symmetry (PHS) C = KUC , with
UC = σ1 ⊗ σ0,46 and time-reversal symmetry (TRS) T =
KUT , with UT = σ0 ⊗ iσ2, where K denotes the complex
conjugation operator. TRS acts on the Bogoliubov-de Gennes
Hamiltonian H(k) as

UTHT(−k)U †
T = +H(k) (7)

and PHS as

UCHT(−k)U †
C = −H(k). (8)

Combining TRS and PHS, one obtains a third discrete
symmetry, the so-called chiral symmetry, which acts as

U
†
SH(k)US = −H(k) (9)

with the unitary matrix US = iUT UC = −σ1 ⊗ σ2. As we will
explain in Sec. III, it is the chiral symmetry (9) that leads to
the protection of the zero-energy surface flat bands. Since
H(k) anticommutes with the unitary matrix US , it can be
brought into block off-diagonal form. This is achieved by a
unitary transformation that diagonalizes US , e.g., WUSW

† =
diag(σ0, − σ0), with

W = 1√
2

( +σ0 −σ2

+iσ2 +iσ0

)
. (10a)

The transformed Hamiltonian reads

H̃(k) = WH(k)W † =
(

0 Dk

D
†
k 0

)
, (10b)

where the off-diagonal block is given by

Dk = (Bkσ0 + Ak lk · σ )(−iσ2) (10c)

with the short-hand notation Ak = λ + i�tf (k) and Bk =
εk + i�sf (k). We will see in the next section that the
topological invariants characterizing the topology properties of
H(k) can be conveniently defined in terms of the off-diagonal
block Dk, Eq. (10), or its flat-band version. It is found that

a crystallographic point-group operation R acts on Dk as
uR̃DR−1ku

T
R̃

= Dk, whereas TRS implies Dk = −DT
−k.

Depending on the point group G and the specific form of
gk, the Hamiltonian H(k) may in addition to Eq. (7) also
satisfy another “time-reversal”-like symmetry that acts only
on a two-dimensional plane within the three-dimensional BZ,
i.e., a symmetry that acts on Dk as

−DT
−ki ,k0

= Dki ,k0 , (11a)

with ki = (ki1,ki2) the coordinates within the plane Ek0 (û) =
{k | k = k0û + ki1v̂ + ki2ŵ} and k0 the coordinate perpendic-
ular to Ek0 . Here, û = v̂ × ŵ and v̂ and ŵ are taken to be
orthogonal unit vectors. It follows from Eq. (10c) that a
combination of the symmetries (7) and (11a) imposes the
constraint

gki ,−k0 = gki ,+k0 (11b)

on gk = λlk. For example, in the case of the tetragonal
point-group C4v with gk given by Eq. (6a), symmetry (11)
is satisfied for the one-parameter family of planes Ekz

(ẑ). It is
important to note that even though Eq. (11b) has the form of an
inversion-type symmetry, it differs from the mirror symmetries
imposed by the crystallographic point group; see Eq. (5). We
will explain below that the presence of symmetry (11) can give
rise to topologically stable arc surface states.

III. TOPOLOGICAL INVARIANTS IN NODAL
NONCENTROSYMMETRIC SUPERCONDUCTORS

To characterize the topological properties of nodal NCSs
in three dimensions, we introduce an integer topological
invariant and two Z2 topological numbers. For this purpose
it is convenient to work in the off-diagonal basis (10) and to
adiabatically deform H̃(k) into a flat-band Hamiltonian. The
off-diagonal block Dk, which is in general non-Hermitian,
can through a singular-value decomposition be written as
Dk = U

†
k
kVk , where Uk and Vk are unitary matrices and


k is a diagonal matrix with the positive eigenenergies

�1,k =
√

(ξ+
k )2 + (�+

k )2, (12a)

�2,k =
√

(ξ−
k )2 + (�−

k )2 (12b)

of H̃(k) and, thus, of H(k) on its diagonal, i.e., 
k =
diag(�1,k,�2,k). Assuming that �1,k,�2,k �= 0, we adiabat-
ically deform the spectrum of H̃(k) into flat bands with
eigenvalues +1 and −1, which amounts to replacing 
k by
the unit matrix. Hence, the off-diagonal component of the
flat-band Hamiltonian is given by9

q(k) = U
†
kVk = 1

2�1,k�2,k

[
{�+

k Bk − �−
k Ak |lk|}σ0

+ {�+
k Ak |lk| − �−

k Bk } lk
|lk| · σ

]
, (13)

where �±
k = �1,k ± �2,k. As a result of TRS, the 2 × 2

unitary matrix q(k) ∈ U(2) satisfies iσ2q
T(−k) = q(k)iσ2.
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A. Winding number

In a three-dimensional nodal superconductor, q(k) is
defined only for values of k for which �1,k,�2,k �= 0, i.e., for
all k in the BZ except for those on the nodal lines. Hence, the
three-dimensional winding number ν,15 which characterizes
fully gapped systems, is ill defined for nodal NCSs. However,
we can use the one-dimensional winding number WL, which
is defined in terms of a one-dimensional momentum-space
loop (or line) integral, to characterize the topology of nodal
NCSs. To that end, we consider q(k) along a one-dimensional
loop (or line) in reciprocal space R3 that does not cross
gapless regions. That is, we study the mapping S1 → U(2)
given by q(k) ∈ U(2). Since the first homotopy group of U(2)
is π1[U(2)] = Z,47 there is an infinite number of homotopy
classes of mappings from S1 to U(2), which can be labeled by
the one-dimensional winding number

WL = 1

2πi

∮
L

dkl Tr[q†(k)∂kl
q (k)]. (14)

The integral is to be evaluated along the path L parametrized
by kl . We observe that WL is quantized for any closed loop L
that does not intersect with nodal lines. If L encircles a line
node, WL determines the topological charge and, hence, the
topological stability of the nodal line. Using Eq. (13) we find

WL = 1

2πi

∮
L

dkl ∂kl
[ln det q(k)]

= 1

2π

∮
L

dkl ∂kl

[
arg
(
B2

k − A2
k|lk|2

)]
= 1

2π

∮
L

dkl ∂kl
[arg(ξ+

k + i�+
k ) + arg(ξ−

k + i�−
k )],

(15)

where, in going from the first to the second line, we have used
the identity | det q(k)| = 1.

Assuming that the energy scales of the gap functions
are much smaller than those of the normal-state dispersions
(i.e., for a weak-pairing superconductor), we can rescale �±

k
without changing WL, such that the gaps are nonzero only
within a small neighborhood of the Fermi surface sheets [cf.
Eq. (12)]. In this limit we find that the phase arg(ξν

k + i�ν
k)

is constant far away from the Fermi surface of helicity ν = ±
and that it jumps by

−π sgn
(
∂kl

ξ ν
k |k=k0

F

)
sgn

(
�ν

k0
F

)
(16)

where the path L crosses the Fermi surface at k0
F . It follows

that the winding number WL can be simplified to (cf. Ref. 11)

WL = −1

2

∑
ν=±

∑
k0

F ∈Sν
L

sgn
(
∂kl

ξ ν
k |k=k0

F

)
sgn

(
�ν

k0
F

)
, (17)

where the set of points Sν
L is given by the intersection of the path

L with the Fermi surface for helicity ν. Thus Eq. (17) shows
that for a weak-pairing NCS WL is completely determined by
the phase structure of the superconducting gaps �+

k and �−
k in

the vicinity of the positive-helicity and negative-helicity Fermi
surfaces, respectively. Moreover, it follows from Eq. (17) that
nodal lines necessarily carry nontrivial topological charge

WL �= 0, irrespective of the particular form of the band
structure or the crystal point-group symmetries.

B. Two-dimensional Z2 topological invariant

The two-dimensionalZ2 topological invariant introduced in
this subsection is defined only for NCSs satisfying symmetry
(11). We therefore consider a Hamiltonian H(k) of the form
(1) that is invariant under symmetry (11) for the plane Ek0 (û).
Furthermore, we assume that the nodal lines of H(k) do not
cross Ek0 (û). Hence, H(k) restricted to the plane Ek0 (û) can
be regarded as describing a two-dimensional fully gapped
superconductor invariant under both TRS [i.e., symmetry
(11)] and PHS [i.e., the combination of chiral symmetry and
symmetry (11)]. Such a two-dimensional system belongs to
symmetry class DIII and its topological characteristics are
described by the Z2 topological invariant8,9,17,21–23

N2D
Ek0

=
∏

ki2=0,π

Pf[iσ2 q̂(π,ki2,k0)]

Pf[iσ2 q̂(0,ki2,k0)]

× e− 1
2

∫ π

0 dki1 Tr[q̂†(k) ∂ki1 q̂(k)], (18)

where q̂(k) represents a lattice regularization of q(k)48 and
N2D

Ek0
= −1 (+1) indicates a topologically nontrivial (trivial)

character. In Eq. (18), we have assumed that the coordinates
(ki1,ki2) within the plane Ek0 (û) are chosen such that Ki =
(0,0), (π,0), (0,π ), and (π,π ) are left invariant under symmetry
(11). Note that at these points iσ2q̂(Ki ,k0) is antisymmetric,
so the Pfaffian is well defined.

As before, we consider the weak-pairing limit and set the
gaps �±

k to zero far away from the Fermi surfaces. Using
Eq. (17), we find that in this approximation the exponential
factor in Eq. (18) reduces to∏

ν=±

∏
k0

F ∈S̃ν
Ek0

i sgn
(
�ν

k0
F

∂ki1ξ
ν
k |k=k0

F

)
, (19)

where the set of points S̃ν
Ek0

is given by the intersection of
the Fermi surface for helicity ν with the integration paths
ki : (0,0) → (π,0) and ki : (0,π ) → (π,π ). Assuming that the
Fermi level does not cross the positive-helicity or negative-
helicity bands at (Ki ,k0), we find that Pf[iσ2q̂(Ki ,k0)] is either
+1 or −1 depending on whether the helicity bands at (Ki ,k0)
are occupied or unoccupied. As a result, the Z2 invariant for
H(k) simplifies to

N2D
Ek0

= sgn
(
�+

Ek0

)
sgn

(
�−

Ek0

)
, (20)

where sgn(�±
Ek0

) denotes the sign of the gap on the Fermi line
given by the intersection of Ek0 (û) with the positive/negative-
helicity Fermi surface. Observe that Eq. (20) does not depend
on the lattice regularization and, hence, is valid also in the
continuum limit.

For an NCS that is invariant under symmetry (11) for a one-
parameter family of planes Ek(û), with, for example, k ∈ R, it
is possible to assign a Z2 topological charge to the line nodes,
provided that there are fully gapped regions in momentum
space separating different line nodes. For concreteness, let us
consider the situation where a nodal line is located within the
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plane Ek=k0 (û). The Z2 topological charge of this nodal ring
can be defined as

Ñ2D = N2D
E

k
+
0

N2D
E

k
−
0

, (21)

where Ek+
0

and Ek−
0

represent two planes that are located on
either side of the nodal line. For the tetragonal point-group
C4v [with gk of the form (6a)], the two-dimensional Z2

number can be defined for the one-parameter family of planes
Ekz

(ẑ). The nodal rings, which are centered around the kz

axis, consequently carry a nontrivial Z2 topological charge
Ñ2D

α = N2D
Ekz=0

N2D
Ekz=αkF

, where kF =
√

2mμ/h̄2 and α = ±
distinguishes between the topological charges of the nodal
rings in the upper (kz > 0) and lower (kz < 0) half-spaces.

C. One-dimensional Z2 topological invariant

Finally, we also introduce a one-dimensional Z2 invariant
that characterizes the topological properties of H(k) restricted
to a time-reversal-invariant loop (or line) L, which is mapped
onto itself under k → −k. Similarly to Eq. (18), the one-
dimensional Z2 topological number can be conveniently
defined in terms of the lattice-regularized version of q(k),
Eq. (13),9,14,21,23

N1D
L = Pf[iσ2 q̂(K2)]

Pf[iσ2 q̂(K1)]
e− 1

2

∮
L dkl Tr[q̂†(k) ∂kl

q̂(k)], (22)

where we have assumed that L does not cross the nodal
lines and K1 and K2 denote the two time-reversal-invariant
momenta on the path L. Repeating similar steps as in
the previous subsection, we find that for a weak-pairing
superconductor N1D

L simplifies to

N1D
L = sgn(�+

L ) sgn(�−
L ), (23)

where sgn(�±
L ) represents the sign of the gap at the points given

by the intersection of L with the positive-/negative-helicity
Fermi surface.

D. Topological criteria for the existence of zero-energy
surface states

As a consequence of a bulk-boundary correspondence,15,49

a nontrivial value of any of the three topological invariants
(14), (18), and (22) signals the appearance of zero-energy
states at the surface of the NCS. That is, WL �= 0 leads to
surface flat bands, Ñ2D

± = −1 gives rise to arc surface states,
and N1D

L = −1 results in Majorana modes at time-reversal-
invariant momenta of the surface BZ. In the following, we
discuss in detail the topological criteria for the existence of
these three types of surface states. For that purpose, we denote
the coordinates parallel (perpendicular) to a given surface of
the NCS by r‖ (r⊥) and the corresponding momenta by k‖
(k⊥).

1. Surface flat bands

The appearance of surface flat bands can be understood by
considering a continuous deformation of the closed integration
path L of WL, Eq. (14), into an infinite semicircle, such that
the diameter of the semicircle contains the line (k⊥,k‖), with
k⊥ ∈ R and k‖ fixed. This path deformation does not alter the

value of the integral, as long as no nodal line is crossed while
deforming L; if a nodal line is crossed WL changes by ±1.
As can be seen from Eq. (17), the integral along the arc of the
semicircle is zero and, hence, the integral along the diameter
is given by50

W(lmn)(k‖) = −1

2

∑
ν=±

[
sgn

(
�ν

kF,ν

)− sgn
(
�ν

k̃F,ν

)]
, (24)

where kF,± = (k⊥,±,k‖) and k̃F,± = (̃k⊥,±,k‖) satisfy ξ±
kF,± =

0 and ξ±
k̃F,±

= 0, respectively, with kF,± (̃kF,±) corresponding
to solutions with positive (negative) signs of the Fermi-velocity
component perpendicular to the surface. The subscript (lmn)
in Eq. (24) parametrizes the direction perpendicular to the
surface. From Eq. (24) it follows that zero-energy surface states
occur whenever W(lmn)(k‖) �= 0, which corresponds to regions
of the surface BZ that are bounded by the projections of the
nodal rings of the bulk gap.

2. Arc surface states

Consider an NCS satisfying symmetry (11) for Ek(û),
with k ∈ R, and with two nodal rings carrying nontrivial Z2

topological charge, Eq. (21). Any two-dimensional subsystem
Ek(û) lying between these two line nodes can be viewed as
a time-reversal-invariant topological superconductor in class
DIII. When these two-dimensional subsystems are terminated
by a boundary, there appear helical Majorana edge states.
These Majorana modes cross zero energy on the surface
BZ, somewhere in between the projections of the two nodal
rings. Thus, there is a one-dimensional arc of zero-energy
states connecting the projections of the two nodal rings. If
the projected nodal rings have a finite overlap in the surface
BZ, cancellation occurs and no arc surface states are expected.
By symmetry, the arc surface states always appear at those
surface momenta that are invariant under symmetry (11). It is
interesting to note that these arc surface states are reminiscent
of the Fermi arcs that appear at the surface of Weyl semimetals,
which have recently been discussed in the context of the A
phase of 3He,51 pyrochlore iridates,52 and topological insulator
multilayers.53

3. Majorana surface states

We observe that the gap �ν
k (with ν = ±) has the same

values at any two momenta related by TRS. Thus, for a
given time-reversal-invariant surface momentum K‖, the one-
dimensional Z2 number (23) reads50

N1D
K‖ = sgn

(
�+

KF,+

)
sgn

(
�−

KF,−

)
, (25)

where KF,± = (K⊥±,K‖) satisfies ξ±
KF,± = 0 and the sign of

the Fermi-velocity component ∂K⊥ξ±
k |k=KF,± is assumed to

be positive. Consequently, N1D
K‖ = −1 indicates the presence

of Kramers-degenerate Majorana surface modes at the time-
reversal-invariant momentum K‖ of the surface BZ.

Before closing this subsection, we note that the topological
protection of boundary modes appearing in nodal noncen-
trosymmetric superconductors is weaker than the protection
of surface states in strong topological insulators or super-
conductors with a full gap in the bulk. Nevertheless, the
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surface states in nodal NCSs are expected to possess a certain
robustness against disorder, similar to the zero-energy edge
states in graphene54 or in dx2−y2 -wave superconductors.55 For
example, we expect that weak surface roughness will result
in a broadening of the surface states described above, but
the surface spectral function will still display sharp peaks at
the bound-state energies. Deeper examination of the effect of
disorder is beyond the scope of this paper and is left to later
publications.

IV. BOUND-STATE SPECTRA

In this section, we use quasiclassical scattering theory to
derive conditions for the existence of surface bound states. We
will see that the quasiclassical criteria for the appearance of
zero-energy surface states are in perfect agreement with the
topological criteria given in the previous section. Hence, this
provides a verification of the bulk-boundary correspondence
that relates nontrivial topological characteristics of quasiparti-
cle wave functions in the bulk to the existence of zero-energy
states at the surface.

A. General condition for bound states

The wave-vector component k‖ parallel to an ideal surface
is a good quantum number due to translational invariance,
and so we can construct the bound-state wave function for
each point in the surface BZ independently. For a given k‖,
the usual quasiclassical method56 is applicable only if there
are at most two solutions in each helicity sector. If there are
more than two solutions in either sector (for example, for a
concave Fermi surface) we are unable to uniquely determine
the coefficients of the different spinors appearing in the bound-
state-wave-function ansatz for the given k‖. Our approach is,
therefore, reasonable in the limit of weak to moderate SOC,
where the concavity of the Fermi surface is relevant only over
a small fraction of the surface BZ.

For given k‖ we must therefore in general consider four
wave vectors k± = (k⊥,±,k‖) and k̃± = (̃k⊥,±,k‖), which
satisfy ξ±

k± = ξ±
k̃±

= 0. We classify a solution as propagating
if k⊥ is real and as evanescent otherwise. In the former case,
k± and k̃± correspond to solutions with opposite signs of the
Fermi-velocity component perpendicular to the surface. We
assume that the NSC is located in the half-space r⊥ > 0.

1. Propagating solutions on both Fermi surfaces

If there are propagating solutions on both the positive-
helicity and the negative-helicity Fermi surfaces we have the
wave-function ansatz

�(k‖; r) =
∑
ν=±

�ν(k‖; r)eik‖·r , (26a)

�ν(k‖; r) =
∑

k=kν ,̃kν

αν(k)ψν(k)eik⊥r⊥e−κν
k r⊥ , (26b)

where the positive-helicity and negative-helicity spinors are
given by

ψ+(k) =
(

1,
lxk+il

y

k
|lk|+lzk

, − lxk+il
y

k
|lk|+lzk

γ +
k , γ +

k

)T

, (26c)

ψ−(k) =
(

lxk−il
y

k
|lk|+lzk

, −1, γ −
k ,

lxk−il
y

k
|lk|+lzk

γ −
k

)T

, (26d)

respectively, with

γ ±
k = 1

�±
k

[
E − i sgn

(
v±

F,⊥(k)
)√|�±

k |2 − E2

]
, (26e)

κ±
k = 1

h̄|v±
F,⊥(k)|

√
|�±

k |2 − E2 , (26f)

and vν
F,⊥(k) is the component of the ν = ± helicity Fermi

velocity normal to the surface.
A bound state is realized when it is possible to choose the

coefficients αν(k) in Eq. (26) such that the wave function van-
ishes at the surface, i.e., �(k‖; r)|r⊥=0 = 0. This is equivalent
to the condition

0 = (γ −
k− − γ −

k̃−
)(γ +

k̃+
− γ +

k+)
[(|lk+| + lzk+

)(|l̃k−| + lz
k̃−

)− (
lxk+ + il

y

k+

)(− lxk̃−
+ il

y

k̃−

)]
× [(|lk−| + lzk−

)(|l̃k+| + lz
k̃+

)− (− lxk− + il
y

k−

)(
lxk̃+

+ il
y

k̃+

)]+ (γ −
k− − γ +

k̃−
)(γ +

k+ − γ −
k̃−

)
[(|lk+| + lzk+

)(
lxk̃+

+ il
y

k̃+

)
− (lxk+ + il

y

k+

)(|l̃k+| + lz
k̃+

)][(|lk−| + lzk−

)(− lxk̃−
+ il

y

k̃−

)− (− lxk− + il
y

k−

)(|l̃k−| + lz
k̃−

)]
. (27)

Solutions of this equation satisfying |E| < min{|�±
k±|,|�±

k̃±
|}

are the bound-state energies. Focusing on zero-energy solu-
tions that occur within a finite region of the surface BZ, we
find three possibilities for such states:

(i) sgn(�−
k−�−

k̃−
) = −1 and sgn(�+

k+�+
k̃+

) = +1,

(ii) sgn(�−
k−�−

k̃−
) = +1 and sgn(�+

k+�+
k̃+

) = −1,

(iii) sgn(�−
k−�−

k̃−
) = −1 and sgn(�+

k+�+
k̃+

) = −1 and

sgn(�−
k−�+

k̃+
) = −1.

These conditions agree perfectly with the topological criterion
of Eq. (24). That is, scenarios (i) and (ii) correspond to
topologically protected singly degenerate zero-energy states
with winding number W(lmn) = ±1, while (iii) gives doubly
degenerate states of winding number W(lmn) = ±2. We note
that a careful examination of the terms involving lk can
also yield zero-energy dispersing states at isolated points
or in a line. These states include, but are not limited to,
the topologically protected Majorana modes and arc surface
states introduced in Sec. III D. The general form of this
condition is rather cumbersome, but it simplifies significantly
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in the limit of weak SOC and so we defer discussion to this
case.

2. Propagating solutions on only one Fermi surface

In the case that there are propagating solutions only
on the negative-helicity Fermi surface, the negative-helicity
components of the wave-function ansatz remain as above, but
the positive-helicity components are now written

�+(k‖; r) = {
α+(p)φ(p)e−iqpr⊥

+ α̃+(p)φ̃(p)eiqpr⊥
}
eip⊥r⊥ , (28a)

where p is chosen from k+ and k̃+ such that the imaginary
part of p⊥ is positive, the spinors φ(p) and φ̃(p) are defined
by

φ(p) =
(

1,
lxp+il

y
p

|lp|+lzp
, − lxp+il

y
p

|lp|+lzp
�p, �p

)T

, (28b)

φ̃(p) =
(

1,
lxp+il

y
p

|lp|+lzp
, − lxp+il

y
p

|lp|+lzp
�̃p, �̃p

)T

, (28c)

and we have

�p = 1

�+
p

(
E + i

√
(�+

p )2 − E2

)
, (28d)

�̃p = 1

�+
p

(
E − i

√
(�+

p )2 − E2

)
, (28e)

qp = 1

h̄ Im{v+
F,⊥(p)}

√
(�+

p )2 − E2 . (28f)

Using the same argument as above, we find the condition

0 = (�̃p − �p)(γ −
k− − γ −

k̃−
)
[(|lp| + lzp

)(|lk−| + lzk−

)
−(lxp + ilyp

)(− lxk− + il
y

k−

)][(|lp| + lzp
)(|l̃k−| + lz

k̃−

)
−(lxp + ilyp

)(− lxk̃−
+ il

y

k̃−

)]
(29)

for the formation of bound states. Unlike Eq. (27), this
condition allows only for the existence of singly degenerate
zero-energy surface states that occur whenever sgn(�−

k−) =
− sgn(�−

k̃−
).57 Again, we find that this criterion matches with

the topological one, Eq. (24).

3. Limit of weak spin-orbit coupling

Because of the difficulty of working with spin-orbit split
Fermi surfaces, many theoretical studies assume that the SOC
is weak so the spin splitting of the Fermi surfaces can be
ignored.10,20,25–28 This limit can be directly obtained from
Eq. (27) by setting k+ = k− = k and k̃+ = k̃− = k̃ to yield
the compact bound-state condition

0 = (γ +
k̃

− γ −
k )(γ −

k̃
− γ +

k )(|lk||l̃k| − lk · l̃k)

+ (γ −
k̃

− γ −
k )(γ +

k̃
− γ +

k )(|lk||l̃k| + lk · l̃k). (30)

This result was previously presented in Ref. 10 and is
utilized here to obtain the surface bound-state spectra for
the O and Td point groups. Although describing a phys-
ically idealized situation, Eq. (30) is useful as it signifi-
cantly simplifies the discussion of the zero-energy dispersing
states. In particular, we find that such states are possible
if (i) lk · l̃k = |lk||l̃k| and sgn(�+

k ) = sgn(�−
k̃

) �= sgn(�+
k̃

) =

sgn(�−
k ) or (ii) lk · l̃k = −|lk||l̃k| and sgn(�+

k ) = sgn(�+
k̃

) �=
sgn(�−

k ) = sgn(�−
k̃

). Scenario (ii) includes, but is not limited
to, the topological criteria (20) and (25) which describe arc
surface states and the Kramers-degenerate Majorana modes,
respectively. In particular, the antisymmetry of the SOC vector
ensures that the latter state is realized at the zone center. In
contrast, states satisfying scenario (i) do not fall into either
topological category: They cannot be Kramers-degenerate
Majorana modes, since the requirement that lk · l̃k = |lk||l̃k|
is never satisfied at the zone center, nor can they be arc surface
states protected by a Z2 number, as the condition on the gap
signs implies that any plane containing k and k̃ must also
contain a gap node. We note that the condition on the gaps is
equivalent to sgn[f (k)] = − sgn[f (̃k)], which is not realized
together with the condition on the polarization vector for any
of the systems considered in this paper, i.e., all examples
of zero-energy dispersing states presented below satisfy
scenario (ii).

B. Surface states for the tetragonal point group C4v

In this section we analyze the bound states of the C4v

point group for finite spin-orbit splitting of the Fermi surface.
Assuming a spherical Fermi surface in the limit of vanishing
SOC we find the normal-state dispersion at finite λ,

ξ±
k = μ

k2
F

|k|2 − μ ± λ

√
k2
x + k2

y , (31)

where kF =
√

2mμ/h̄2. This implies a concave negative-
helicity Fermi surface near kz = ±|kF |, and so our quasi-
classical method may not be well defined across the entire
surface BZ. In order to avoid this problem, we approximate
the negative-helicity and positive-helicity Fermi surfaces by
oblate and prolate spheroids, respectively,

ξ±
k ≈ μ

(k±
F )2

(
k2
x + k2

y

)+ μ

k2
F

k2
z − μ, (32)

where

k±
F = kF

⎡⎣∓λkF

2μ
+
√

1 +
(

λkF

2μ

)2
⎤⎦ (33)

gives the radius of the helical Fermi surfaces in the kz = 0
plane. Our dispersion, Eq. (32), qualitatively captures the
salient features of the true dispersion ξ±

k , Eq. (31): In the
kz = 0 plane the Fermi surfaces are circles of different radii,
and they touch only along the line kx = ky = 0. As can be
seen in Fig. 1, the Fermi surfaces of the approximate and exact
dispersions agree very well for moderate λkF /2μ � 0.1. To
determine the bound-state spectra at given k‖, we need only
find kν , k̃ν , and the sign of vν

F,⊥(k) at these points so we
expect that obtaining these parameters from Eq. (32) should
give excellent agreement with the exact results across most of
the surface BZ.

In Figs. 2(a)–2(c) we present the surface bound-state spectra
for the (100) face of a C4v point-group NCS for several
different pairing symmetries. In the case of (s + p)-wave
pairing we observe dispersing states in the region bounded
by the projected positive-helicity Fermi surface and the two
nodal rings at kz � ±0.89kF [Fig. 2(a)]. Since these nodal
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FIG. 1. (Color online) Comparison of the Fermi surfaces in the
x-z plane of the approximate dispersion Eq. (32) (solid lines) and the
exact dispersion Eq. (31) (dashed lines) for λkF /2μ = 0.1.

rings carry nontrivialZ2 topological charge, in agreement with
the discussion in Sec. III D there are zero-energy arc surface
states10,20,25–29 connecting the projections of the two nodal
rings. Moreover, in accordance with the analysis of Secs. III D
and IV A 3, we find that this arc lies along the line ky = 0,
i.e., at surface momenta that are left invariant under symmetry
(11), and where we have lk · l̃k = −|lk||l̃k|.

The situation is qualitatively similar for the (dx2−y2 + f )-
wave case [Fig. 2(b)], although the extra nodes due to the dx2−y2

form-factor f (k) modulate the results of the (s + p)-wave
case. Note that these extra nodes remove the condition for the
topological protection of the line of zero-energy surface states
at ky = 0; the zero-energy state at the zone center nevertheless
remains a Kramers-degenerate Majorana mode. In contrast,
Fig. 2(c) shows that we do not find any dispersing zero-energy
states for the (dxy + p)-wave pairing, but, instead, there are
zero-energy flat bands in several regions bounded by the pro-
jected line nodes of the positive-helicity and negative-helicity
gaps. The zero-energy states lying outside the projected
positive-helicity Fermi surface (light gray line) are the singly
degenerate “time-reversal-invariant Majorana states” found in
Ref. 13 and are associated with a nontrivial winding number of
W(100) = ±1 as shown in Fig. 2(d). In contrast, the zero-energy
surface states lying inside the projected positive-helicity Fermi
surface are doubly degenerate and have winding number
W(100) = ±2. These states occur in the region where the gap
has predominantly singlet character and, hence, are due to the
same mechanism as the zero-energy surface states in a pure
dxy-wave superconductor.49,56,58

The bound states at the (101) surface shown in Fig. 3
display a much more interesting topological character. We
first consider the results for the (s + p)-wave case [Fig. 3(a)],
which are qualitatively identical to those previously obtained in
Ref. 10 for vanishing spin-orbit splitting of the Fermi surfaces.
Specifically, we find that flat zero-energy bands occur within
the projected nodes of the negative-helicity Fermi surface
where the sign of the negative-helicity gap reverses between
the forward- and backward-facing halves of the Fermi surface.
These zero-energy states are associated with a finite winding
number W(101) = ±1; the variation of W(101) across the surface
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FIG. 2. (Color online) Surface bound-state spectra at the (100)
face of a C4v point-group NCS as a function of surface momentum
k‖ = (ky,kz) with (a) (s + p)-wave, (b) (dx2−y2 + f )-wave, and (c)
(dxy + p)-wave pairing symmetry. Here we set λkF /(2μ) = 0.1 and
r = 0.5. The color scale indicates the energy: black represents
zero energy while yellow represents the maximum energy Emax.
The black (gray) line shows the extent of the projected negative-
helicity (positive-helicity) Fermi surface. (d) Winding number W(100),
Eq. (24), at the (100) face corresponding to the same parameters as in
panel (c). Black (white) indicates W(100) = +2 (−2), dark blue (gray)
corresponds to W(100) = +1 (−1), while light blue is W(100) = 0.
The red dashed (green solid) lines represent the nodal lines on the
negative-helicity (positive-helicity) Fermi surface.

BZ shown in Fig. 3(b) clearly demonstrates the nonzero
topological charge associated with the nodal rings of the
negative-helicity gap. Like for the (100) face, the projections
of these topologically charged nodal rings are connected by
arc surface states. The presence of higher angular-momentum
harmonics [Figs. 3(c)–3(f)] results in the appearance of
additional regions of zero-energy states due to the nodes of
both the positive-helicity and negative-helicity gaps. All of
these states correspond to a winding number of W(101) = ±1,
as can be seen by comparing the bound-state spectra, Figs. 3(c)
and 3(e), with the winding number calculations, Figs. 3(d) and
3(f), respectively.

C. Surface states for the cubic point group O

In the cubic point group O there are pronounced changes in
the nodal structure of the negative-helicity gap as the singlet-
to-triplet ratio r = �s/�t is varied, which are reflected in
the surface bound-state spectrum. To simplify the discussion,
we assume a spherical Fermi surface, negligible spin-orbit
splitting, and finite g2 < 0.59 A schematic topological phase
diagram of this NCS is presented in Fig. 4. For r > 1 the
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FIG. 3. (Color online) Surface bound-state spectra at the (101)
face of a C4v point-group NCS as a function of surface momentum k‖
with (a) (s + p)-wave, (c) (dx2−y2 + f )-wave, and (e) (dxy + p)-wave
pairing symmetry. Here we set λkF /(2μ) = 0.1 and r = 0.5. The
color scale is the same as in Figs. 2(a)–2(c). The black (gray) line
shows the extent of the projected negative-helicity (positive-helicity)
Fermi surface. Panels (b), (d), and (f) show the winding number W(101)

at the (101) face corresponding to the same parameters as in panels
(a), (c), and (e), respectively. Dark blue (gray) indicates W(101) = +1
(−1), while light blue is W(101) = 0. The red dashed (green solid) lines
represent the nodal lines on the negative-helicity (positive-helicity)
Fermi surface.

system is fully gapped and topologically trivial. Reducing r ,
we find that at r = 1 point nodes appear in the negative-helicity
gap at k = kF (1,0,0) and equivalent points. This is a Lifshitz
transition60 at which the topology of the Bogoliubov-de
Gennes quasiparticle spectrum changes, but the symmetry of
the ground state remains unaltered.61,62 On further lowering
r , these point nodes develop into nodal rings with nontrivial
topological charge. A critical value is reached at r = rc =
1 + g2/2, where the nodal rings touch each other and reconnect
in a different manner, i.e., there is a change in the topology of
the nodal structure itself, with the rings now centered about
k = (kF /

√
3)(1,1,1) and equivalent points. Finally, at r =

1 + 2g2/3 there is another Lifshitz phase transition to a fully
gapped phase with topologically nontrivial order characterized

topological phase
 transition, marginal 

nodal points

topological phase
 transition, nodal 

lines touch

topological phase 
transition, marginal 

nodal points

fully
gapped

fully
gapped

gapless with
nodal lines

gapless with
nodal lines

ν = ±1 WL = ±1

r

r = 1

WL = ±1 ν = 0

rc = (1+g2/2)r = (1+2g2/3)

0

FIG. 4. (Color online) Schematic phase diagram for an NCS with
cubic point group O as a function of the ratio r = �s/�t of the
singlet and triplet gaps. Here, the second-order SOC g2 [see Eq. (6b)]
is assumed to be negative.

by the three-dimensional winding number ν = ±1.9 The nodal
structure at this transition point is marginal in the sense that it
is topologically trivial and not protected against decay either
into the fully gapped topologically nontrivial state or into the
topologically stable gapless phase, i.e., point nodes do not
posses any topological protection in a three-dimensional NCS.
Experimental signatures of the topological phase transition
will be discussed in Sec. V B. In the following discussion of
the bound states we take g2 = −1.5, which implies line nodes
for 0 < r < 1, point nodes for r = 0, 1, and a fully gapped
state for r > 1. Surface bound states only occur for r < 1.

We first consider the bound states at the (100) face
[Figs. 5(a)–5(e)], which were partially examined in Ref. 27
for r > rc. Starting at r = 0 we find bound states for all
|k‖| < kF except at the projected point nodes. Of particular
note are the dispersing zero-energy states at (k1,‖,k2,‖) =
(0,0), (kF /

√
3,0) and equivalent points, where the condition

lk = −l̃k is satisfied. From Sec. III, however, we deduce
that only the zero-energy state at the zone center is a
topologically protected Majorana fermion. The other four
zero-energy states, in contrast, form only for g2 < −1 and
hence are not topologically stable. The apparent zeros close to
(kF /

√
3,kF /

√
3) and symmetry-related points in Fig. 5(a) are

the projections of the point nodes. On increasing r , the nodal
rings on the negative-helicity Fermi surface lead to regions
within the projected Fermi surface where bound states do not
occur, i.e., the white space in Fig. 5(b). Note that we have
W(100) = 0 everywhere since the integration path L passes
through none or two nodal rings, the contributions of which
cancel. The reconnection of the nodal rings at r = rc splits
the bound states into disconnected regions at the zone center
and near the edges of the projected Fermi surface. Note that
the Majorana fermion mode at the zone center survives up to
r = 1. As shown in Figs. 5(f)–5(j), the situation for the (110)
face is essentially similar, although here the Majorana fermion
state at the zone center only survives up to the topological
Lifshitz transition at r = rc.
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FIG. 5. (Color online) (a)–(e) Surface bound-state spectra for the (100) face of an NCS with point group O, g2 = −1.5, and λ = 0, as a
function of surface momentum k‖ for (a) r = 0, (b) r = 0.15, (c) r = rc = 0.25, (d) r = 0.6, and (e) r = 0.9. The color scale is the same as in
Figs. 2(a)–2(c). [(f)–(j)] Same as panels (a)–(e) but for the (110) face. [(k)–(o)] Same as panels (a)–(e) but for the (111) face. [(p)–(t)] Winding
number W(111) for the (111) face corresponding to the same parameters as in panels (k)–(o). Dark blue (gray) indicates W(111) = +1 (−1), while
light blue is W(111) = 0. The red dashed lines represent the projections of nodal lines.

The bound states at the (111) face differ qualitatively due to
the presence of topologically protected zero-energy bands. We
show the bound-state spectra and the associated maps of the
winding number W(111) in Figs. 5(k)–5(o) and Figs. 5(p)–5(t),
respectively. Unlike for the other two surfaces, we find that at
r = 0 the energy of the dispersing states reaches the gap so we
have regions within the projected Fermi surface where bound
states do not occur. For finite but small r , the dispersing bound
states break up into six lobes, with zero-energy flat surface
bands within the projected nodal lines close to the center and
edges. Like for the C4v point group, the zero-energy states are
associated with a winding number W(111) = ±1. Increasing r ,
we see that the zero-energy surface states grow in extent while
the dispersing states shrink, until at r = rc the nodes in the
gap touch and the zero-energy states surround the dispersing
states. The dispersing states vanish at r closer to 1 when the
projected nodes no longer overlap, and we hence find only
zero-energy states in Fig. 5(o).

D. Surface states for the tetrahedral point group Td

The tetrahedral point group Td also shows topological
phase transitions in the nodal structure on varying r , which
we again discuss for a spherical Fermi surface and vanishing
spin-orbit splitting. At r > 1 the system is fully gapped and
topologically trivial. On reducing the singlet-to-triplet ratio to
r = 1, a Lifshitz transition occurs with the appearance of 12
point nodes in the negative-helicity gap at k = (kF /

√
2)(1,1,0)

and equivalent points; further reducing r , we find topologically
charged nodal rings centered about these points. These rings
grow as r is lowered, eventually touching at r = rc = 4

√
2/9.

For r < rc the nodal rings reconnect in a different way so they
are now centered about the 14 zeros of lk at k = kF (1,0,0),
(kF /

√
3)(1,1,1) and equivalent points. In the limit of a purely

triplet gap we find point nodes at these locations.
The bound states at the (100) surface are shown in

Figs. 6(a)–6(e). Unlike for the cubic point group O, there
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FIG. 6. (Color online) (a)–(e) Surface bound-state spectra for the (100) face of an NCS with point group Td and λ = 0 as a function of the
surface momentum k‖ for (a) r = 0, (b) r = 0.2, (c) r = rc = 4

√
2/9, (d) r = 0.75, and (e) r = 0.9. The color scale is the same as in Figs.

2(a)–2(c). [(f)–(j)] Same as panels (a)–(e) but for the (110) face. [(k)–(o)] Same as panels (a)–(e) but for the (111) face. [(p)–(t)] Winding
number W(111) for the (111) face corresponding to the same parameters as in panels (k)–(o). Dark blue (gray) indicates W(111) = +1 (−1), while
light blue is W(111) = 0. The red dashed lines represent the projections of nodal lines.

are no zero-energy dispersing states for this surface; the
apparent zero-energy states at r = 0 in Fig. 6(a) are in fact
nodes. For r > 0 these points become lines, clearly visible
as the boundaries of the white space. As r is increased past
rc the dispersing bound states separate into disconnected
regions of the BZ, which vanish at r = 1. We now turn to
the bound states for the (110) surface, which are presented
in Figs. 6(f)–6(j). At r < rc we find lines of dispersing
zero-energy states which connect the projected point nodes
(for r = 0) and nodal rings (for r > 0) of the negative-helicity
gap. These arc states are not topologically protected by the
mechanism discussed in Sec. III D, however, since for this
point-group symmetry the condition Eq. (11b) holds only for
planes which intersect line nodes of the gap. We nevertheless
note that the zero-energy state at the surface BZ center is a
topologically protected Majorana fermion which is present for
all r < 1.

Like for the cubic point group O, topologically protected
zero-energy bound states are found at the (111) surface for
0 < r < 1. The bound-state spectra are plotted in Figs. 6(k)–
6(o), with the variation of the winding number W(111) shown
in Figs. 6(p)–6(t). The main difference to the case of the
point group O is the much more limited extent of the
dispersing bound states, which are almost entirely absent
for r > rc. At small r we also observe arc surface states
connecting the topologically charged nodal rings near the
edge of the projected Fermi surface, but again these states
are not topologically protected by the mechanism discussed in
Sec. III D.

V. TUNNELING CONDUCTANCE AND TOPOLOGICAL
PHASE TRANSITIONS

In this section we discuss the calculation of the tunneling-
conductance spectra for a normal-metal–NCS junction. Such
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FIG. 7. (Color online) Tunneling-conductance spectra for the (100) and (101) interfaces of a C4v NCS with r = 0.5, Z = 3, and (a)
(s + p)-wave gap symmetry [f (k) = 1], (b) (dx2−y2 + f )-wave gap symmetry [f (k) = (k2

x − k2
y)/k2

F ], and (c) (dxy + p)-wave gap symmetry
[f (k) = 2kxky/k2

F ]. In all panels the thick lines show the results for finite spin-orbit splitting λkF /2μ = 0.1, while the thin lines show the
results for degenerate helical Fermi surfaces.

tunneling experiments are an important test for the pairing
symmetry of unconventional superconductors.56 In partic-
ular, they can confirm the existence of the zero-energy
surface flat bands, which are evidenced by a sharp peak
in the low-temperature conductance at zero bias.10,13 We
also discuss possible signatures of the topological phase
transitions.

A. Tunneling conductance

At zero temperature the tunneling conductance σS(eV) for
tunneling from a normal metal without SOC into an NCS under
bias voltage V is given by the generalized Blonder-Tinkham-
Klapwijk formula20,25,39,63

σS(eV) =
∑

k‖

∑
σ,σ ′

{1 + |aσ,σ ′(k‖)|2 − |bσ,σ ′(k‖)|2}, (34)

where aσ,σ ′ (k‖) and bσ,σ ′ (k‖) are the spin-resolved Andreev
and normal reflection coefficients for electron injection
into the NCS, respectively. These coefficients appear in
the wave-function ansatz describing the electron-injection
process,

�σ (k‖,r) = ψ<
σ (k‖,r)�(−r⊥) + ψ>

σ (k‖,r)�(r⊥). (35)

In the normal metal the wave function is written as

ψ<
σ (k‖,r) = ψe,σ eik·r +

∑
σ ′

[
aσ,σ ′ (k‖)ψh,σ ′eik·r

+ bσ,σ ′ (k‖)ψe,σ ′eik̃·r] (36)

with the electron and hole spinors ψe,σ = 1
2 (1 + σ,1 −

σ,0,0)T and ψh,σ = 1
2 (0,0,1 + σ,1 − σ )T , respectively. In

the case that there are propagating solutions in both
helicity sectors, the wave function in the NCS is
written as

ψ>
σ (k‖,r) =

∑
n=±

[
cσ,nψn(kn)eikn·r + dσ,nψn(̃kn)eik̃n·r], (37)

where the spinors are defined as in Sec. IV A 1; if there
are propagating solutions only in the negative-helicity sector,
the positive-helicity components of Eq. (37) are replaced by

Eq. (28a). To simplify the discussion we assume that the
normal metal has a spherical Fermi surface with the same
chemical potential and effective mass as the NCS. We restrict
ourselves to the limit where the bias energy is negligible
compared to the Fermi energy so the energy dependence of
the wave vectors can be ignored.

The reflection coefficients are determined by applica-
tion of the interface boundary conditions. The first con-
dition requires continuity of the wave function across the
interface, i.e.,

ψ<
σ (k‖,r)|r⊥=0− = ψ>

σ (k‖,r)|r⊥=0+ . (38)

The second condition enforces conservation of probability
across the barrier,64–66 which is modeled as a δ function of
height U . We have

v̌Sψ
>
σ (k‖,r)|r⊥=0+ = (∂r⊥ + 2ZkF )ψ<

σ (k‖,r)|r⊥=0− , (39)

where Z = mU/h̄2kF is a dimensionless parameter character-
izing the transparency of the interface and v̌S is proportional to
the r⊥ component of the velocity operator in the normal state
of the NCS. For a C4v point-group NCS orientated such that
the b axis is parallel to the interface and the c axis makes an
angle α to the interface, we write

v̌S = σ̂0 ⊗ σ̂0 ∂r⊥ + i σ̂0 ⊗ σ̂2
mλ

h̄2 cos α . (40)

In Fig. 7 we present conductance spectra for tunneling into
a C4v point-group NCS through (100) and (101) interfaces
for both vanishing and finite SOC λ. We find the tunneling-
conductance results to be quite robust against the finite
spin-orbit splitting of the Fermi surfaces. Several features of
these spectra are noteworthy. For the (100) surface we observe
a broad humplike feature in the tunneling conductance for the
(s + p)-wave and (dx2−y2 + f )-wave pairing states, which is
a signature of the arc surface states. In the (dxy + p)-wave
case, in contrast, we find a zero-bias conductance peak well
separated from the bulk density of states. In the limit of
degenerate helical Fermi surfaces, this is due to the doubly
degenerate zero-energy states for k‖ close to ±kF ez [see
Fig. 2(d)], while for nonzero SOC the singly degenerate
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zero-energy states near k‖ = ±kF ey also contribute. For
the (101) surface all pairing symmetries show a zero-bias
conductance peak, which is a key experimental signature of the
topologically protected zero-energy states.10,13 For the cases
of (s + p)-wave and (dx2−y2 + f )-wave pairing, however, we
note that this is superimposed on a much diminished humplike
feature. This signals the continued existence of arc surface
states in these systems, in agreement with Fig. 3.

B. Evidence for topological phase transitions

In Sec. IV C we have demonstrated the existence of
topological phase transitions as a function of the singlet-triplet
ratio r for an NCS with point group O and SOC vector lk given
by Eq. (6b) with g2 �= 0. This discussion is physically relevant
for Li2PdxPt3−xB, for which the SOC strength can be tuned by
substituting Pd for Pt.67 The magnitude of the SOC interaction
in these compounds seems to be directly related to r ,36 which
suggests that it might be possible to observe topological phase
transitions between a fully gapped and a gapless phase, or
between two gapless phases, in Li2PdxPt3−xB as a function of
Pt concentration.

The most direct way to detect the topological phase
transitions in this system requires measurements sensitive
to the low-energy bulk density of states ρ(ω). At the r = 1
and r = (1 + 2g2/3) Lifshitz transitions, this quantity changes
from ρ(ω) = 0, characteristic of a full gap, to the linear
dependence ρ(ω) ∝ ω associated with line nodes. Signatures
of the topological phase transition can also be seen in the
conductance spectra, in particular the zero-bias conductance
peak at the (111) surface. Indeed, as shown in Fig. 8, the
zero-bias conductance shows abrupt changes at the boundaries
of the nodal region. Furthermore, at the critical rc where
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FIG. 8. (Color online) Variation of the zero-bias conductance-
peak height at the (111) face as a function of singlet-to-triplet ratio r

for the point group O. The black, downward-pointing arrows indicate
topological phase transitions between fully gapped and nodal phases.
The red, upward-pointing arrow marks an inflection point in σS(eV),
where the character of the nodes on �−

k changes qualitatively. In this
figure we set g2 = −1, Z = 3, and T = 0 K.

the topological structure of the nodes changes, there is a
kink anomaly that is marked by the red, upward-pointing
arrow in Fig. 8. Tunneling experiments could, therefore, in
principle be used to evidence a topological phase transition in
Li2PdxPt3−xB.

VI. CONCLUSIONS AND OUTLOOK

We have performed a detailed analysis of the topological
properties of nodal NCSs in three dimensions. Using topo-
logical arguments, we have derived general criteria for the
existence of Andreev bound states at the surface of nodal
NCSs. Three different types of topologically protected sur-
face states have been identified, namely Kramers-degenerate
Majorana modes, arc surface states, and surface flat bands,
whose stability is guaranteed by the conservation of the one-
and two-dimensional Z2 invariants [Eq. (22) and (18)] and the
winding number (14), respectively.

We have independently derived the general criteria for
zero-energy surface states using the quasiclassical scattering
theory. Furthermore, we have applied this technique to study
a number of physically relevant manifestations of NCSs.
For a C4v point-group symmetry, we have calculated the
surface bound-state spectra and the tunneling conductance
for (s + p)-wave, (dx2−y2 + f )-wave, and (dxy + p)-wave
pairing and finite spin-orbit splitting. We have shown that
the surface bound states are in perfect agreement with the
variation of the topological winding number across the surface
BZ. We have shown how the surface flat bands manifest
themselves as a zero-bias conductance peak, while the arc
surface states lead to a broad, humplike feature centered
around zero bias in the conductance spectra. Both features
exhibit a pronounced dependence on surface orientation,
which provides characteristic fingerprints of the topological
properties of the system. We have also examined the bound-
state spectra in NCSs with O and Td point-group symme-
try in the limit of weak spin-orbit splitting and discussed
the occurrence of topological Lifshitz transitions in these
spectra.

On symmetry grounds the zero-energy surface flat bands
are expected to appear in any unconventional nodal su-
perconductor preserving TRS. In particular, this should be
the case for the class-CI topological superconductors.68–70

Furthermore, flat bands are also expected to occur at the
surface of nodal topological superconductors in symmetry
class AIII9,70 (i.e., topological superconductors with TRS that
are invariant under rotations about one fixed axis in spin space).
Besides the tunneling conductance, the surface flat bands and
arc surface states also profoundly affect other surface and
interface properties of NCSs, such as Josephson tunneling,71

the nonlinear Meissner effect, and surface thermal transport.
The investigation of these interesting boundary properties are
left for future work.
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