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Doping dependence of antiferromagnetism in models of the pnictides
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We study the doping dependence of the spin-density-wave (SDW) state in four models of the 1111 pnictides.
The random-phase approximation is used to determine the ordering temperature and the ordering vector as
functions of doping, and to evaluate the contribution of the various orbitals to the SDW instability. In addition
to the usual assumption of orbitally rotation-invariant interactions, we consider the effect of reduced interactions
involving the xy orbital, which are anticipated by crystal-structure considerations. We find that changing the
relative strength of the interaction in the xy orbital tunes the system between different nesting instabilities, leading
to similar SDW order. We identify two models as showing reasonable agreement with experiments, while the
other two display significant discrepancies, and discuss the underlying differences between the models.
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I. INTRODUCTION

The discovery of superconductivity in the iron pnictides
has triggered intense research activity striving to under-
stand this diverse class of materials. Two pnictide families
have attracted particular interest due to their high critical
temperatures, namely, the 1111 compounds1 RFeAsO and
the 122 compounds2 AFe2As2 (R and A are rare-earth and
alkaline-earth elements, respectively). Both systems are anti-
ferromagnets at parent-compound filling, and must be chem-
ically doped or subjected to significant pressure to become
superconducting. The close proximity of antiferromagnetic
(AFM) and superconducting states in the phase diagram
evidences an intimate connection between the magnetic and
the superconducting phases.3,4

There is considerable experimental evidence that the 1111
and the 122 families display a metallic spin-density-wave
(SDW) state.5–11 Furthermore, spectroscopic measurements
indicate at most intermediate correlation strengths.12,13 This
suggests that the microscopic origin of the AFM phase can be
understood within a weak-coupling picture, which is consistent
with ab initio calculations identifying the nesting between
the electron and hole Fermi pockets as responsible for the
SDW.14–16

The nesting picture of the magnetism implies a strong
doping dependence of the AFM phase. It is well established
that the SDW critical temperature Tc of the 1111 compounds
decreases upon electron doping.5 In contrast, very few
experiments with hole-doped 1111 compounds have been
reported, and the magnetic behavior remains obscure.17–21

The resistivity anomaly characteristic of the onset of SDW in
the parent compounds becomes much less pronounced upon
hole doping in La1−xSrxFeAsO,17,18 Pr1−xSrxFeAsO,19 and
Pr1−xCaxFeAsO,20 but it is unclear whether this corresponds
to a suppression of magnetic order. A more accurate probe
of the antiferromagnetism is given by μSR measurements,
which in Pr1−xSrxFeAsO suggests that mesoscopic phase
separation allows a substantial fraction of the system to remain
antiferromagnetic up to x = 0.2, although it is not known if
this is intrinsic.21 The experimental situation is much clearer
in the 122 family, e.g., electron doping rapidly suppresses
the SDW in Ba(Fe1−xCox)2As2, the SDW is already absent
for x = 0.05,22 while for the hole-doped Ba1−xKxFe2As2,

and the SDW, Tc decreases more slowly and vanishes at
0.3 < x < 0.4, corresponding to 0.15–0.2 holes per single-Fe
unit cell.23,24 It is interesting to see whether this asymmetric
doping dependence of the AFM order can be replicated by
theoretical models.

The complicated structure of the Fermi surface of the
pnictides, which consists of two electron pockets and up to
three hole pockets of various orbital character, allows for a
number of different nesting instabilities that may compete
with or reinforce each other. Previous works have identified
two instabilities that may be responsible for the characteristic
(π,0) order: Many authors25–34 identify the most important
nesting as that between the hole pockets around the � point
and the electron pocket at the X point of the single-Fe Brillouin
zone, which implies a dominant role of the Fe 3d xz and yz

orbitals in the formation of the SDW state. On the other hand,
the role of nesting between the pockets at the Y and M points
has also been emphasized,35–39 where the key contribution
comes from the Fe 3d xy orbital. The two nesting instabilities
are not mutually exclusive, and appear at similar doping
levels. However, the number and location of the hole pockets
involved in the magnetic instability nevertheless has important
consequences for the spin-wave spectrum28,40 and the realized
commensurate SDW order.41 One of the goals of this work is
therefore to examine the relative importance of the two nesting
instabilties across the phase diagram.

The most popular starting points for the theoretical descrip-
tion of the pnictides are extended Hubbard models possessing
orbital degrees of freedom. These models typically include
up to five of the Fe 3d orbitals26,30,38,39,42–47 or also the
As 4p orbitals.48,49 Since the former dominate the Fermi
surface,14,50,51 models constructed in terms of the five Fe 3d

orbitals are expected to give a good account of the physics
while keeping the parameter space manageable. In the study
of these models, it is common to assume orbitally rotation-
invariant interactions.26,30,34–39,42–44,48,49,52,53 This symmetry
is, however, broken by the underlying crystal structure of the
FeAs lattice. Furthermore, upon integrating out the As 4p

orbitals to obtain an effective Fe 3d model, the maximally
localized Wannier functions of the 3d orbitals acquire a
significant As 4p component, and are consequently expanded
compared to the atomic limit.47,51 The xy orbital has the
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greatest overlap with the relevant 4p states and hence the
greatest extent, which implies a weaker intraorbital interaction
strength. Conversely, the x2−y2 and 3z2−r2 orbitals have only
small overlap with the 4p orbitals and are thus expected to
remain rather compact, with stronger interaction potentials.
The degenerate xz and yz orbitals lie in-between these ex-
tremes. Miyake et al.47 have confirmed the expected hierarchy
of interaction strengths within a constrained random-phase
approximation (cRPA). The xz, yz, and xy orbitals make up
the bulk of the Fermi surface,50 and so they are most important
when considering the origin of the SDW. The relatively weaker
interaction strength on the xy orbital might therefore be
expected to play a significant role in selecting the leading
nesting instability. Investigating this aspect of the physics is
the second major goal of our paper.

In order to answer these questions, we consider the doping
dependence of the magnetic order in four different five-orbital
models of LaFeAsO, proposed by Kuroki et al.,42 Graser
et al.,43 Ikeda et al.,39 and Calderón et al.46 All four models are
based on ab initio band structures. Kuroki et al. and Ikeda et al.
obtain tight-binding models from local density approximation
(LDA) calculations employing maximally localized Wannier
functions, while Graser et al. fit a Slater-Koster tight-binding
model to a generalized gradient approximation (GGA) band
structure. Calderón et al. propose a Slater-Koster model
containing a limited number of free parameters, which were
chosen to best reproduce the LDA band structure. We employ
the random-phase approximation (RPA) to calculate the static
spin susceptibility in the paramagnetic phase, and examine
it for divergences as the temperature and doping are varied.
This allows us to determine the limits of the paramagnetic
state in an unbiased way as we are able to identify ordered
states with large unit cells that would not be accessible by
the usual mean-field approaches.26,30,34,44,52,53 Further insight
into the nesting mechanisms in the models is obtained by
decomposing the paramagnetic RPA spin susceptibility into
its orbital components close to the critical temperature. The
comparison of the magnetic phase diagrams of these models
is the final major goal of our work. Not only does this allow us
to better understand the mechanisms for antiferromagnetism
in the pnictides, but also it helps to identify the most realistic
models for this system.

The paper is organized as follows. In Sec. II, we introduce
the model Hamiltonian and outline the calculation of the
RPA spin susceptibility. We proceed to conduct a systematic
analysis of the four different models in Sec. III. This is followed
in Sec. IV by a discussion of our results and the implications
for the understanding of the pnictides. We conclude with a
summary in Sec. V.

II. THEORY

A. Model

We start with a tight-binding Hamiltonian that describes the
noninteracting five-orbital system

H0 =
∑

k

∑
σ

∑
ν,μ

Tν,μ(k)d†
k,ν,σ dk,μ,σ , (1)

where d
†
k,ν,σ (dk,ν,σ ) is the creation (annihilation) operator for

a spin σ electron of momentum k in the orbital ν. The values
of Tν,μ for the different models are provided in Refs. 42,
43, 39, and 46. Keeping only local terms in the interaction
Hamiltonian, we have

Hint =
∑

i

∑
νμ

∑
σσ ′

[Uνμd†
i,ν,σ d

†
i,μ,σ ′di,μ,σ ′di,ν,σ

+ Jνμ(d†
i,ν,σ d

†
i,μ,σ ′di,ν,σ ′di,μ,σ

+ d†
i,ν,σ d

†
i,ν,σ ′di,μ,σ di,μ,σ )], (2)

where the index i stands for the lattice site, ν and μ stand
for the orbitals, and σ and σ ′ denote the spin. Equation (2)
is usually26,30,34–39,42–44,48,52,53 simplified by assuming orbital-
independent interactions for which we then have

Hint = U
∑

i

∑
ν

ni,ν,↑ni,ν,↓

+ 1

4
(2U − 5J )

∑
i

∑
ν �=μ

∑
σ,σ ′

ni,ν,σ ni,μ,σ ′

− J
∑

i

∑
ν �=μ

Si,ν · Si,μ

+ J
∑

i

∑
ν �=μ

d
†
i,ν↑d

†
i,ν↓di,μ↓di,μ↑. (3)

This is obtained from Eq. (2) by setting Uνν = U , Jνμ = J ,
and Uνμ = 1

4 (2U − 5J ) if ν �= μ. The latter choice implies
invariance of the interaction Hamiltonian under rotations
in orbital space.54,55 The spin operators are expressed in
terms of the creation and annihilation operators as Si,ν =
1
2

∑
σσ ′ d

†
i,ν,σσσσσσ ′di,νσ ′ , whereσσσ is the vector of Pauli matrices.

The ratio between the local Coulomb interaction and the
Hund’s rule coupling is set to U/J = 4. For our calculations,
we adopt the standard assumption that doping does not
change the interaction and band-structure parameters in the
Hamiltonian.

Although the invariance of the interaction
Hamiltonian under orbital rotations is a common
assumption,26,30,34–39,42–44,48,49,52,53 in general we expect
different interaction strengths Uμ,ν and Jμ,ν for inequivalent
choices of the orbitals μ, ν. In particular, of the three orbitals
which dominate the electronic structure near the Fermi
surface, ab initio calculations of Miyake et al.47 predict a
much weaker interaction on the xy orbital compared to the
equivalent xz and yz orbitals. In order to capture this aspect
of the physics, we renormalize every interaction strength in
Eq. (3) involving the xy orbital by a multiplicative factor of
Vxy � 1; all other interactions are left unchanged.

B. Method

The static paramagnetic spin susceptibility contains all
necessary information about the magnetic instabilities of the
paramagnetic state. In particular, it diverges at the ordering
vector as one approaches the critical temperature Tc. Hence, a
temperature-versus-doping phase diagram for the boundaries
of the paramagnetic phase can be obtained by determining
the highest temperature for which 1/χs(q,0) vanishes as the
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filling is varied, where the corresponding q is the ordering
vector Q. We obtain the static susceptibility from the analytic
continuation iωn → ω + i0+ of the total susceptibility in
Matsubara-frequency space and subsequently taking the limit
ω → 0. The total spin susceptibility is defined as

χs(q,iωn)

= 1

N

∑
j,j ′=x,y,z

∑
νμ

∫ β

0
dτ eiωnτ

〈
TτS

j
ν (q,τ )Sj ′

μ (−q,0)
〉
. (4)

The Fourier-transformed spin operator S
j
ν (q) is related to the

spin operator at site i by

Sj
i,ν = 1√

N

∑
q

Sj
ν (q)e−iq·ri .

Due to rotational symmetry in the paramagnetic phase, the
spin susceptibility can be expressed in terms of its transverse
part

χs(q,0) = 3
2χ−+(q,0). (5)

The transverse susceptibility is written as

χ−+(q,iωn) =
∑
ν,μ

χ−+
ννμμ, (6)

where we introduce the generalized susceptibility

χ−+
νν ′μμ′(q,iωn) = 1

N

∑
k,k′

∫ β

0
dτ eiωnτ 〈Tτd

†
k+q,ν,↓(τ )dk,ν ′,↑(τ )

× d
†
k′−q,μ,↑(0)dk′,μ′,↓(0)〉. (7)

The orbitally resolved susceptibilities χ−+
ννμμ ≡ χ−+

νμ are of
particular interest, as they contain information about the
contribution of the different orbitals to the instability.

We calculate χ−+
νμ using the RPA. Summing up the ladder

diagrams, we obtain the Dyson equation

χ−+
ννμμ = χ−+(0)

ννμμ + χ
−+(0)
νναβ Vαβγ δχ

−+
γ δμμ, (8)

where the nonzero elements of Vαβγ δ are given by

Vaaaa = U [1 − (1 − Vxy)δa,xy], (9a)

Vaabb = J [1 − (1 − Vxy)(δa,xy + δb,xy)], (9b)

Vabba = (U − 2J )[1 − (1 − Vxy)(δa,xy + δb,xy)], (9c)

Vabab = J [1 − (1 − Vxy)(δa,xy + δb,xy)] (9d)

with a �= b. The bare susceptibilities χ
−+(0)
νν ′μμ′ are given by

χ
−+(0)
νν ′μμ′(q,iωn)

= − 1

N

∑
k

∑
s,s ′

us,ν ′ (k)u∗
s,μ(k)us ′,μ′(k + q)u∗

s ′,ν(k + q)

× nF (Es,k) − nF (Es ′,k+q)

Es,k − Es ′,k+q − iωn

, (10)

where nF (E) is the Fermi function, Ek are the eigenvalues
of H0, and us,ν(k) are the coefficients that transform the
annihilation operators of the diagonalizing basis γs,k into the
orbital basis, i.e., dν,k = ∑

s us,ν(k)γs,k. We adopt the common
approximation to ignore Hartree shifts,36,43,44,52 as we assume
them to be included in the ab initio calculations. We have

Γ X Y M Γ-1
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0.5

1

ε 
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μ 
(e

V
)

Kuroki
Graser
Ikeda
Calderón

FIG. 1. (Color online) Band structure along high-symmetry lines
for the four models of Refs. 39,42,43, and 46.

verified that the inclusion of Hartree shifts only leads to small
quantitative changes in our results.

III. RESULTS

In this section, we present our analysis of the four
different five-orbital models.39,42,43,46 We first investigate
the temperature-versus-doping phase diagrams, calculated as
described in Sec. II B. The summation over k in Eq. (10) was
performed using a 400 × 400 k-point mesh. We have checked
that a 200 × 200 k-point mesh results in only small quantitative
differences, and so finite-size effects are expected to be
negligible. We ignore ordered states with critical temperatures
less than 10 K. Throughout, we measure the doping δ relative
to parent-compound filling, i.e., the electron concentration is
n = 6 + δ.

We start by discussing the noninteracting system. In Fig. 1,
we plot the noninteracting band structure of the undoped
models close to the Fermi energy. The models of Kuroki
et al.42 and Ikeda et al.39 are hardly distinguishable within
about 0.1 eV of the Fermi surface, and so we expect a very
similar phase diagram for these two models at weak doping.
Near to the � point, the Fermi surfaces for the model of Graser
et al.43 almost coincide with those of Kuroki et al. and Ikeda
et al., but elsewhere there are significant differences: The
hole pocket at the M point is very small compared to these
models, the electron pocket at the X point is also smaller,
and the (3z2−r2)-derived flat band at the M point lies much
closer to the Fermi energy. The model of Calderón et al.46 is
quite distinct from the other models, with highly elliptical
electron pockets, almost degenerate hole pockets at the �

point, and no flattening of the (3z2−r2)-derived band at the
M point.

The density of states as a function of doping, shown in
Fig. 2, provides additional insight. The models of Ikeda et al.39

and Kuroki et al.42 both show a peak in the density of states
close to δ = −0.2, although it is significantly larger in the
latter. This peak arises from the flat bottom of the electron
band at the X point. The model of Graser et al.43 also shows a
very high density of states below δ = −0.3 that is connected
to the (3z2−r2)-derived flat band at the M point. These
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FIG. 2. (Color online) Density of states at the Fermi level as a
function of the doping δ, related by the electron concentration by
n = 6 + δ, for the four band structures from Fig. 1.

peaks raise the possibility of a competition between AFM
and ferromagnetic order at strong hole doping.56 In contrast,
the model of Calderón et al.46 has an almost featureless density
of states due to the much lower bottom of the electron bands
and the absence of the (3z2−r2)-derived flat band at the M

point.
In order to study the doping dependence of the AFM phase,

we first choose the interaction strength U for each model such
that at δ = 0 the critical temperature is Tc ≈ 150 K, close to the
experimentally observed ordering temperature. The resulting
temperature-versus-doping phase diagrams for all four models
are shown in Fig. 3. All models show an enhancement of
Tc for nonzero doping. The dome structure of Tc with a
maximum at moderate hole doping (δ ≈ −0.1) for the models
of Kuroki et al.42 and Ikeda et al.39 is consistent with the phase
diagram determined by Ikeda et al. in Ref. 39. In contrast, the

FIG. 3. (Color online) Critical temperature as a function of
doping δ for the four models from Fig. 1 with Vxy = 1 (see
text). Solid lines denote (π,0) order, whereas dashed lines denote
incommensurate order. The interaction strengths were chosen as
U = 0.875 eV for Kuroki et al. (Ref. 42); U = 0.885 eV for Ikeda
et al. (Ref. 39); U = 1.2232 eV for Graser et al. (Ref. 43); and
U = 1.383 eV for Calderón et al. (Ref. 46).

monotonous increase of Tc in the model of Graser et al.43 for
strong hole doping, and the enhancement of magnetic order
for electron doping in the model of Calderón et al.,46 are
contradicted by experiments. The model of Calderón et al.
further deviates from experimental findings by displaying
a highly incommensurate ordering vector Q = (π,0.24π ) at
zero doping.

The models of Kuroki et al. and Ikeda et al. are most
consistent with the reported asymmetric doping dependence
of the AFM in the pnictides, although the optimal critical
temperature is much too high. Note that there is no reason to
assume that the undoped three-dimensional parent compounds
are best described by choosing precisely the value δ = 0 in
these two-dimensional models. Moreover, we will see that
a moderate increase of the onsite energy of the xy orbital
shifts the peak position to δ = 0 for some of the models.
Instead of specifying Tc at δ = 0 as in Fig. 3, it is therefore
more reasonable to search for an interaction strength giving
a dome shape of Tc and an ordering temperature of T

opt
c ≈

165 K at a nonzero optimal doping δ. The lower T
opt
c should

also allow us to unambiguously identify the leading nesting
instabilities responsible for the SDW. In the following, we
construct the phase diagram of each model according to this
argument.

A. Model of Kuroki et al.

The phase diagram for the model of Kuroki et al.42 is shown
in Fig. 4. Initially focusing on the case of Vxy = 1, we still
find a dome of (π,0) order centered at the optimal doping δ =
−0.093, but there is no magnetic order at δ = 0. In addition
to the AFM dome, there is also a region of ferromagnetic
order around δ = −0.2. The highest critical temperature of
the ferromagnetic state occurs close to the peak in the density
of states (see Fig. 2), consistent with the Stoner criterion.

The mechanism responsible for the (π,0) order can be
observed most clearly at the optimal doping δ = −0.093.
As shown in Fig. 5(a), here we find excellent nesting of the
xy-orbital-dominated parts of the electron pocket at the Y point
with the xy-derived hole pocket at the M point, suggesting
that these Fermi surfaces play the leading role in the AFM
instability. A further hint that the xy orbital is most important
for the AFM order comes from the observation that the optimal
doping can be shifted to δ = 0 by increasing the onsite energy
of the xy orbital by ∼0.1 eV [see Fig. 4(b)], and always
coincides with good nesting of the Y and M pockets.

To examine the effect of the likely weaker interactions in
the xy orbital, in Fig. 4(a) we plot the evolution of the phase
diagram upon reducing Vxy while simultaneously increasing
U such that T

opt
c remains constant. At Vxy = 0.7, which is

close to the value predicted by Miyake et al.,47 we find that the
optimal doping of the AFM dome shifts to δ = −0.105, and the
ordering vector at this filling becomes weakly incommensurate
with Q = (0.95π,0). The Fermi surface plotted in Fig. 5(b)
shows that this corresponds to good nesting between the hole
pockets at the � point and the electron pocket at the X

point, where the best-nested segments of the Fermi surface
have mostly yz-orbital character. The necessary increase of
U by ∼ 10% when Vxy is reduced implies that the AFM
instability due to �-X nesting requires a significantly higher
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FIG. 4. (Color online) (a) Doping dependence of the critical
temperature for the model of Kuroki et al. (Ref. 42) at different
values of Vxy . To maintain T opt

c ≈ 165 K, we choose U = 0.8 eV for
Vxy = 1, U = 0.845 eV for Vxy = 0.9, U = 0.885 eV for Vxy = 0.8,
and U = 0.915 eV for Vxy = 0.7. (b) Doping dependence of the
critical temperature for different shifts of the xy-orbital onsite energy
δεxy with respect to the value given in Ref. 42. For constant optimal
doping critical temperature T opt

c ≈ 165 K, we choose U = 0.8 eV
for δεxy = 0 eV, U = 0.782 eV for δεxy = 1.04 eV, U = 0.78 eV for
δεxy = 1.09 eV, and U = 0.785 eV for δεxy = 1.13 eV.

interaction than the Y -M nesting to produce a realistic T
opt
c .

Additional magnetically ordered states appear at strong doping
δ ≈ −0.42 with optimal ordering vector Q = (0.44π,0). At
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FIG. 5. (Color online) Fermi surface for the model of Kuroki et al.
(Ref. 42) (heavy lines) superimposed with the Fermi surface shifted
by (a) (π,0) for δ = −0.093 and (b) (0.95π,0) for δ = −0.105 (thin
lines), corresponding to the ordering at optimal doping for Vxy = 1
and Vxy = 0.7, respectively.
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FIG. 6. (Color online) Total susceptibilities and orbitally resolved
contributions χ−+

νμ at T = 180 K for the model of Kuroki et al.
(Ref. 42) at (a) Vxy = 1, δ = −0.093, (b) Vxy = 0.9, δ = −0.092,
(c) Vxy = 0.8, δ = −0.096, and (d) Vxy = 0.7, δ = −0.105.

these doping levels, however, our assumption of rigid bands is
questionable, and so the physical relevance of these results is
doubtful.

Greater insight into the origin of the AFM order can be
achieved by examining the orbitally resolved susceptibilities at
optimal doping just above Tc (see Fig. 6). As Vxy is decreased,
the dominant contribution shifts from the susceptibilities χ−+

νμ

involving the xy orbital to those involving the yz orbital, and
the peak in χ−+

νμ moves from (π,0) to an incommensurate
vector. This is in perfect agreement with the observed change
of the nesting from xy-dominated to yz-dominated parts of
the Fermi surface. By changing Vxy , we can therefore select
the dominant nesting instability of the system.

Our treatment of the weaker interaction on the xy orbital
neglects the likely different interaction strengths involving
the other inequivalent orbitals. To test our approximation, we
compare the Vxy = 0.7 phase diagram of Fig. 4(a) with the
phase diagram calculated using Miyake et al.’s47 cRPA values
for Uνμ and Jνμ in Eq. (2). As shown in Fig. 7, upon suitably
rescaling the cRPA interaction potentials, we find excellent
agreement between the two phase diagrams for the physically
reasonable doping regime δ > −0.2. We note that in the fully
orbital-dependent results, we have to choose a slightly larger
value of Uyz,yz than in our Vxy = 0.7 calculations in order to
achieve T

opt
c ≈ 165 K for the peak around δ ≈ −0.1; the origin

of this discrepancy is likely the weaker exchange interaction
Jνμ < 0.25 Uνν predicted by Ref. 47. This also indicates that
the AFM order does not crucially depend upon the ratio
U/J in the weak-coupling regime. For strong doping, larger
deviations appear, in particular, there is no ferromagnetism
for the cRPA interactions, and the critical temperature of the
incommensurate AFM state at δ ≈ −0.4 is higher, although
the ordering vector is similar.
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FIG. 7. (Color online) Doping dependence of the critical tem-
perature for the model of Kuroki et al. (Ref. 42) for Vxy = 0.7
(dashed) and for the fully orbital-dependent interactions predicted
in Ref. 47 (solid). For the latter, the interactions strengths were scaled
by 0.406 to find a maximal ordering temperature of Tc ≈ 165 K at
δ > −0.2. Both calculations yield an ordering vector Q = (0.95π,0)
at the maximum Tc close to δ = −0.1.

B. Model of Graser et al.

The phase diagram for the model of Graser et al.43 is shown
in Fig. 8(a). At Vxy = 1, we find a dome of commensurate
AFM order centered at δ = −0.12 and also a small incommen-
surate dome with Q = (0.95π,0) at δ ≈ −0.05. At δ < −0.2,
we observe an incommensurate AFM state with ordering
vector Q = (0.71π,0), and a high critical temperature, which
strongly increases with hole doping. The strong tendency to
AFM order at strong hole doping occurs only in this model,
and is likely connected with the (3z2−r2)-derived flat band
at the M point. Indeed, a Fermi surface due to this band
appears at the critical doping level for the incommensurate
AFM order. Furthermore, the ordering at strong doping can be
suppressed by increasing the onsite energy of the xy orbital,
which effectively lowers the flat band at the M point. This
also shifts the optimal doping of the (π,0) dome at δ = −0.12
towards zero, again suggesting an important role for the xy

orbital in the (π,0) order.
Focusing our attention on the regime of moderate doping,

−0.2 < δ < 0, we find that as Vxy is reduced, the small incom-
mensurate dome grows and becomes the leading instability
at Vxy = 0.7. At this value of Vxy , the ordering vector at
optimal doping δ = −0.06 is Q = (0.93π,0). The orbitally
resolved susceptibilities at the optimal doping of the (π,0)
order at Vxy = 1 and the incommensurate order for Vxy = 0.7
are plotted in Figs. 8(b) and 8(c), respectively, while the nesting
of the corresponding Fermi surfaces are shown in Figs. 8(d)
and 8(e). These results are very similar to those obtained for
the model of Kuroki et al.42 (see Figs. 6 and 5). We hence
conclude that again a reduction of Vxy tunes the system from
the xy-dominated to the yz-dominated instability, although
the optimal dopings for the two instabilities are more widely
separated than in the model of Kuroki et al. This can be
explained by the small M pocket at zero doping in Graser
et al.’s model,43 which implies a much larger change of the
doping in order to optimize the Y -M nesting. Furthermore, due
to the smaller size of the electron pockets at parent-compound
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FIG. 8. (Color online) (a) Doping dependence of the critical
temperature for the model of Graser et al. (Ref. 43) at different
values of Vxy . To maintain T opt

c ≈ 165 K, we choose U = 1.09 eV
for Vxy = 1, U = 1.146 eV for Vxy = 0.9, U = 1.191 eV for Vxy =
0.8, and U = 1.222 eV for Vxy = 0.7. (b) The total susceptibility
and the largest χ−+

νμ for Vxy = 1, T = 180 K, and the optimal
doping δ = −0.137 of the (π,0) state. (c) Same as in (b) but for
Vxy = 0.7, T = 180 K, and the optimal doping δ = −0.065 of the
incommensurate state. (d) Fermi surface at δ = −0.137 (heavy lines)
with the same Fermi surface shifted by (π,0) superimposed (thin
lines). (e) Fermi surface at δ = −0.065 (heavy lines) with the same
Fermi surface shifted by (0.93π,0) superimposed (thin lines).

filling, the incommensurate AFM phase is stabilized at weaker
doping.

C. Model of Ikeda et al.

The phase diagram for the model of Ikeda et al.39 at Vxy = 1
[Fig. 9(a)] is very similar to that for the model of Kuroki
et al.,42 although ferromagnetism is not found near δ = −0.2,
consistent with the smaller peak in the density of states (Fig. 2).
The (π,0) order is again dominated by the xy orbital, and the
nesting of the Y and M pockets is primarily responsible for
the AFM state, in agreement with Ref. 39. Despite the very
similar band structure to the model of Kuroki et al., the phase
diagram for Vxy < 1 shows a significant difference: The (π,0)
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FIG. 9. (Color online) (a) Doping dependence of the critical
temperature for the model of Ikeda et al. (Ref. 39) at different values
of Vxy . To maintain T opt

c ≈ 165 K, we choose U = 0.808 eV for
Vxy = 1, U = 0.852 eV for Vxy = 0.9, U = 0.892 eV for Vxy = 0.8,
and U = 0.925 eV for Vxy = 0.7. (b) The total susceptibility and the
largest χ−+

νμ for Vxy = 0.7, T = 160 K, and δ = −0.12. (c) Same as
in (b) but at δ = −0.06. (d) Fermi surface at δ = −0.12 (heavy lines)
with the same Fermi surface shifted by (0.95π,0) superimposed (thin
lines). (e) Fermi surface at δ = −0.06 (heavy lines) with the same
Fermi surface shifted by (π,0) superimposed (thin lines).

order does not vanish for Vxy = 0.7, but instead moves to
the low-doping half of the AFM dome, while the other half
is incommensurate. As for Kuroki et al.’s model, however,
the yz orbital dominates the magnetism over the full doping
range. This can be seen in two representative plots of χ−+

νμ in
Figs. 9(b) and 9(c) at δ = −0.12 and −0.06, which correspond
to incommensurate Q = (0.95π,0) and commensurate Q =
(π,0) ordering vectors, respectively. As revealed by Figs. 9(d)
and 9(e), at both of these doping levels there is excellent
nesting of the X and � pockets. The ordering vector tracks the
continuous evolution of this nesting vector across the dome,
from slightly incommensurate to commensurate. The close
similarity of this model to the one of Kuroki et al. shows that
very small differences in the band structure play a major role
in determining the ordering vector.
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FIG. 10. (Color online) (a) Doping dependence of the critical
temperature for the model of Calderón et al. (Ref. 46) at different
values of Vxy . To maintain T opt

c ≈ 165 K, we choose U = 1.269 eV for
Vxy = 1, U = 1.378 eV for Vxy = 0.9, U = 1.498 eV for Vxy = 0.8,
and U = 1.635 eV for Vxy = 0.7. (b) The total susceptibility and the
largest χ−+

νμ for Vxy = 1, T = 180 K, and δ = 0.176. (c) Same as in
(b) but for Vxy = 0.7. (d) Fermi surface at δ = 0.176 (heavy lines)
with the same Fermi surface shifted by (π,0.39π ) superimposed (thin
lines).

D. Model of Calderón et al.

The phase diagram for the model of Calderón et al.,46 shown
in Fig. 10(a), is in stark contrast to those for the other models.
The magnetic order is optimized at strong electron doping, δ ≈
0.18, and occurs at the highly incommensurate ordering vector
Q = (π,0.39π ). Although this is inconsistent with experimen-
tal findings for the pnictide systems, it is nevertheless interest-
ing to examine the origin of this AFM state. An important clue
comes from observing that the phase diagram hardly changes
when Vxy is decreased, although the interaction U has to be
increased in order to keep T

opt
c constant. This indicates that the

xy orbital is almost exclusively responsible for the magnetic
ordering, which is confirmed by the orbitally resolved suscep-
tibilities presented in Figs. 10(b) and 10(c). The incommensu-
rate ordering vector at optimal doping gives excellent nesting
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of the xy pocket at the M point and the xy-dominated tip of the
electron Fermi surface at the Y point [Fig. 10(d)], revealing an
unexpected similarity to the nesting instabilities in the other
models.

The stabilization of AFM order by electron doping in the
model of Calderón et al. follows from the observation that the
magnetic order arises only from Y -M nesting. In Fig. 1 it can
be seen that at δ = 0 the circular hole pocket at the M point has
almost the same radius as in the models of Kuroki et al.42 and
Ikeda et al.39 In contrast, the ellipticity of the electron pockets
is highly exaggerated in the model of Calderón et al., and
indeed the minor axis of the electron pockets is much smaller
than the diameter of the M-point hole pocket. As such, it
is necessary to raise the chemical potential (i.e., dope with
electrons) to optimize the nesting between these two Fermi
surfaces.

IV. DISCUSSION

Our study of the four different models for the 1111 pnictides
shows a clear distinction between the models of Kuroki et al.,42

Graser et al.,43 and Ikeda et al.39 on the one hand and the
model of Calderón et al.46 on the other. In the former, a
SDW is stabilized for hole doping with commensurate or
near-commensurate ordering vector, whereas in the latter we
find a strongly incommensurate AFM state upon electron
doping. The behavior of Calderón et al.’s model can be
explained by the unrealistically high ellipticity of the electron
pockets. Calderón et al.46 started from an eight-orbital model
with nearest-neighbor Fe-Fe and Fe-As hopping and then
removed the As orbitals within perturbation theory. By using
the Slater-Koster approach, they were able to write the 18
hopping integrals as functions of only 4 overlap integrals
and the Fe-As bond angle; in the other models, these 18
hopping integrals are free parameters, which gives much
greater freedom in fitting the band structure. One can speculate
that the smaller parameter space available to Calderón et al.
is responsible for the unphysical doping dependence in
their model. Among the remaining models, the monotonous
increase of Tc for the model of Graser et al. [see Figs. 3
and 8(a)] also contradicts available experimental data.17–21,23,24

The comparably high (3z2−r2)-derived flat band at the M

point is responsible for this strong tendency to AFM order.34

In contrast, the models of Kuroki et al. and Ikeda et al.
show a dome of (π,0) order centered at moderate hole
doping δ ≈ −0.1; for realistic maximum critical temperature
Tc ≈ 165 K, there is no ordering at zero nominal doping,
δ = 0. Similar behavior is seen in the model of Graser et al. for
sufficiently small interaction strength. In the first three models,
there are hence strong (π,0) spin fluctuations at weak doping,
consistent with previous studies39,42,43 and the asymmetric
doping dependence of the SDW phase observed in some
experiments.5,17–24

Our results again demonstrate the sensitive dependence of
the magnetic order on small details of the band structure in
the weak-coupling limit.34 This is illustrated by the major
discrepancies between the model of Graser et al. and the more
realistic models of Kuroki et al. and Ikeda et al., despite
the very similar band structures of these three models. It is
significant that the models of Kuroki et al. and Ikeda et al.

were obtained by fitting to ab initio results for the experimental
crystal structure of the FeAs planes, whereas the model of
Graser et al. is based upon ab initio calculations for a relaxed
structure. These two structures have rather different Fe-As
bond angles, which has been identified as a crucial control
parameter for pnictide physics.39,42,46

In addition to the major role of the band structure, important
details of the antiferromagnetic order were found to be
controlled by the interaction strengths involving the xy orbital
relative to the other orbitals. Under the common assumption of
orbitally rotation-invariant interactions, the models of Kuroki
et al.42 and Ikeda et al.39 display (π,0) order at optimal doping
(maximum SDW critical temperature Tc). Upon reducing
the interactions involving the xy orbital, the optimal doping
slightly shifts and the ordering vector tends to become weakly
incommensurate: At the lowest reduction factor Vxy = 0.7, the
AFM dome for the model of Kuroki et al. becomes entirely
incommensurate, while for the model of Ikeda et al. there is a
continuous change from incommensurate to commensurate
order as one moves from stronger to weaker doping. By
reducing Vxy in the model of Graser et al.,43 we find that
the dome with (π,0) order is almost obscured by a second
dome with weakly incommensurate order that has a smaller
optimal doping.

We find that in all models commensurate (π,0) order is
realized for an extended doping range. This shows that com-
mensurate order can be stabilized in purely electronic models,
but does of course not imply that mechanisms beyond the
models considered here are unimportant in this respect. Indeed,
the experimentally observed robustness of commensurate
order suggests that some additional stabilizing mechanism is
required, especially in the scenario of reduced Vxy . Accounting
for the three dimensionality of the Fermi surface may improve
the nesting with a commensurate ordering vector. Most likely,
though, the weak incommensuration we have found will result
in commensurate order if magnetoelastic coupling is taken into
account.

Our results allow us to distinguish the dominant nesting
instability in the various models. The (π,0) order observed
for orbitally rotation-invariant interactions originates mainly
from the good nesting between the xy-derived parts of the Y

and the M pockets, as identified in Refs. 35–39. For reduced
interactions involving the xy orbital, however, the nesting
instability between the � and X pockets gives the highest
ordering temperature, which corresponds to the scenario in
Refs. 25–34. This mechanism is dominated by the yz orbital
and produces a SDW with the ordering vector Q = (Qx,0),
where 0.9π < Qx � π .

Our results therefore confirm the two proposals in the
literature for a nesting instability in the pnictides, with their
relative importance tuned by the parameter Vxy . This implies
a crucial role for the As 4p orbitals, as their hybridization
with the Fe 3d orbitals is ultimately responsible for the strong
orbital dependence of the interaction potentials in an effective
3d theory.47 It is therefore somewhat unsatisfying that the As
orbitals do not enter the calculations more directly. Indeed,
keeping the As 4p orbitals reduces the variation in the size
of the Fe 3d Wannier functions, and hence the interaction
strength is likely to show much less pronounced orbital
dependence.47,51 A detailed comparison of the spin fluctuations
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in a realistic 3d-4p model with those in a pure 3d model is
therefore desirable.49

V. SUMMARY

In this work, we have presented an analysis of the
instabilities responsible for magnetic order in the 1111
pnictides. Using the RPA we have determined the doping
dependence of the SDW critical temperature and ordering
vector in four different five-orbital models. For the three
models proposed by Kuroki et al.,42 Graser et al.,43 and Ikeda
et al.,39 we find that the observed (π,0) magnetic order is
stabilized for hole doping, while in the model of Calderón
et al.,46 an incommensurate SDW phase appears at electron
doping, contradicting experimental results. We have studied

the relative importance of the two known nesting instabilities
across the phase diagram of these models, and have identified
the relative interaction strength in the xy orbital as a parameter
that tunes the dominant mechanism leading to magnetic order.
We have identified two models as giving particularly good
agreement with experiment, and discussed the band-structure
features which lead to the poorer agreement for the others.

ACKNOWLEDGMENTS

The authors thank M. J. Calderón, M. Daghofer,
T. Dellmann, P. Materne, J. Spehling, R. Valentı́, M. Vojta, and
B. Zocher for useful discussions. We acknowledge funding
by the Deutsche Forschungsgemeinschaft through Priority
Programme 1458.

*jacob_alexander.schmiedt@tu-dresden.de
†brydon@theory.phy.tu-dresden.de
‡carsten.timm@tu-dresden.de
1Y. Kamihara, T. Watanabe, M. Hirano, and Hideo Hosono, J. Am.
Chem. Soc. 130, 3296 (2008).

2M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. 101, 107006
(2008).

3J. Zhao, Q. Huang, C. de la Cruz, S. Li, J. W. Lynn, Y. Chen,
M. A. Green, G. F. Chen, G. Li, Z. Li, J. L. Luo, N. L. Wang, and
P. Dai, Nat. Mater. 7, 953 (2008); J. Zhao, Q. Huang, C. de la Cruz,
J. W. Lynn, M. D. Lumsden, Z. A. Ren, J. Yang, X. Shen, X. Dong,
Z. Zhao, and P. Dai, Phys. Rev. B 78, 132504
(2008).

4Q. Huang, Y. Qiu, W. Bao, M. A. Green, J. W. Lynn, Y. C.
Gasparovic, T. Wu, G. Wu, and X. H. Chen, Phys. Rev. Lett.
101, 257003 (2008); A. Jesche, N. Caroca-Canales, H. Rosner,
H. Borrmann, A. Ormeci, D. Kasinathan, H. H. Klauss, H. Luetkens,
R. Khasanov, A. Amato, A. Hoser, K. Kaneko, C. Krellner, and
C. Geibel, Phys. Rev. B 78, 180504(R) (2008).

5M. D. Lumsden and A. D. Christianson, J. Phys.: Condens. Matter
22, 203203 (2010).

6S. E. Sebastian, J. Gillett, N. Harrison, P. H. C. Lau, C. H. Mielke,
and G. G. Lonzarich, J. Phys.: Condens. Matter 20, 422203 (2008);
J. G. Analytis, R. D. McDonald, J.-H. Chu, S. C. Riggs, A. F.
Bangura, C. Kucharczyk, M. Johannes, and I. R. Fisher, Phys. Rev.
B 80, 064507 (2009).

7M. Yi, D. H. Lu, J. G. Analytis, J.-H. Chu, S.-K. Mo, R.-H. He,
M. Hashimoto, R. G. Moore, I. I. Mazin, D. J. Singh, Z. Hussain,
I. R. Fisher, and Z.-X. Shen, Phys. Rev. B 80, 174510
(2009).

8T. Shimojima, K. Ishizaka, Y. Ishida, N. Katayama, K. Ohgushi,
T. Kiss, M. Okawa, T. Togashi, X.-Y. Wang, C.-T. Chen,
S. Watanabe, R. Kadota, T. Oguchi, A. Chainani, and S. Shin,
Phys. Rev. Lett. 104, 057002 (2010).

9M. A. McGuire, A. D. Christianson, A. S. Sefat, B. C. Sales,
M. D. Lumsden, R. Jin, E. A. Payzant, D. Mandrus, Y. Luan,
V. Keppens, V. Varadarajan, J. W. Brill, R. P. Hermann, M. T.
Sougrati, F. Grandjean, and G. J. Long, Phys. Rev. B 78, 094517
(2008); M. A. McGuire, R. P. Hermann, A. S. Sefat, B. C. Sales,
R. Jin, D. Mandrus, F. Grandjean, and G. J. Long, New J. Phys. 11,
025011 (2009).

10R. H. Liu, G. Wu, T. Wu, D. F. Fang, H. Chen, S. Y. Li, K. Liu,
Y. L. Xie, X. F. Wang, R. L. Yang, L. Ding, C. He, D. L. Feng, and
X. H. Chen, Phys. Rev. Lett. 101, 087001 (2008).

11J. K. Dong, L. Ding, H. Wang, X. F. Wang, T. Wu, G. Wu, X. H.
Chen, and S. Y. Li, New J. Phys. 10, 123031 (2008).

12S.-L. Drechsler, H. Rosner, M. Grobosch, G. Behr, F. Roth,
G. Fuchs, K. Koepernik, R. Schuster, J. Malek, S. Elgazzar,
M. Rotter, D. Johrendt, H.-H. Klauss, B. Büchner, and M. Knupfer,
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