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Memristive properties of single-molecule magnets
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Single-molecule magnets weakly coupled to two ferromagnetic leads act as memory devices in electronic
circuits—their response depends on history, not just on the instantaneous applied voltage. We show that magnetic
anisotropy introduces a wide separation of time scales between fast and slow relaxation processes in the system,
which leads to a pronounced memory dependence in a wide intermediate time regime. We study the response to
a harmonically varying bias voltage from slow to rapid driving within a master-equation approach. The system
is not purely memristive but shows a partially capacitive response on short time scales. In the intermediate time
regime, the molecular spin can be used as the state variable in a two-terminal molecular memory device.
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I. INTRODUCTION

Electronic transport through magnetic molecules has
been extensively studied both experimentally1–13 and
theoretically.14–34 The magnetic moment of these molecules
can be realized by one or more transition-metal ions with or-
ganic ligands, by organic radicals, or by endohedral fullerenes.
Transition-metal ions in a molecular ligand field typically show
sizable magnetic anisotropy. In the case of a pronounced easy
axis, one then speaks of single-molecule magnets (SMMs).
For memory devices, easy-axis anisotropy is desirable since
it introduces an energy barrier for spin reversal and thereby
stabilizes the spin in the up or down orientation.17

Driving the system with an external electric field allows the
control and manipulation of the molecular spin state, and con-
sequently writing and reading of information using SMMs.17

Clearly, the response of the system to the applied electric field
is not purely instantaneous—the system has memory. This can
be compared to the response of SMMs to a magnetic field.
At low temperatures, they show pronounced hysteresis in the
magnetization (of bulk crystals of noninteracting SMMs) vs
the magnetic field.35,36

Similarly, if a harmonically varying bias voltage is applied,
we expect hysteresis loops in the spin, charge, and current
dynamics vs the applied voltage to develop, whose amplitude
depends on the voltage amplitude and frequency—as in other
systems whose spin polarization can be controlled by a voltage
or current; see, e.g., Ref. 37. At very low frequencies, the
spin dynamics can easily follow the external field and little or
no hysteresis is expected. At very high frequencies, the spin
dynamics are “frozen.” There is, however, an intermediate
frequency range—comparable to the inverse spin-relaxation
time(s)—where the hysteresis is most pronounced. In this
range, the device state, at any given time, is strongly dependent
on the history of states through which the system has evolved.
In that case, we expect the resistance of the device to be a
function of the state variable x that describes its memory
(the spin polarization) and possibly of the protocol with
which the voltage V (t) has been applied, i.e., the entire
wave form of V (t). In other words, the resistive response

can be characterized by a function of the type R(x,V,t).
Such a device goes under the name of memristive (for
“memory resistive”) system.38–40 Resistors with memory are
experiencing a surge of research activity, in part due to
promising applications in memory storage, but also because
of their ubiquity in diverse areas ranging from nontraditional
computing to biophysics.41–43 It is natural to think that
SMMs form another example of memristive systems, with the
molecular spin playing the role of internal state variable. This
would have the added advantage of combining memristive and
spintronics functionality37,44 in molecular junctions. Indeed,
Miyamachi et al.13 have recently demonstrated memristive
behavior of single Fe(1,10-phenanthroline)2(NCS)2 molecules
on CuN under a scanning tunneling microscope. In their case,
the molecule is switched between a high-spin (S = 2) and a
low-spin (S = 0) state of the Fe2+ ion, which is connected
with a change in conformation and conductance. Our case is
quite different: We consider the switching of a molecular local
spin of fixed length S over an anisotropy barrier.

In this paper, we show that the response of this system is
only partially memristive. In addition, capacitive components
emerge on short time scales. The capacitive components are
related to the charging energy of the molecule and thus to the
Coulomb repulsion of electrons.

Transport through magnetic molecules is typically domi-
nated by a strong exchange interaction between the spin of
mobile electrons and the local molecular spin, in addition
to the large Coulomb repulsion. We are thus faced with a
strongly interacting nonequilibrium system, which makes a
quantitative description difficult in general. However, if the
coupling between the molecule and the metallic leads is weak,
as is often the case in break junctions, this coupling can
be used as the small parameter in a perturbative approach.
This can be done in the framework of the master equation,
which has the advantage that the strong interactions within the
molecule can be treated exactly. The master equation has been
applied to transport through magnetic molecules by various
groups.14,15,17–21,23–28 It provides an ensemble description, not
a description of individual time series of single-molecule
devices. Statements we make about the memristive properties

104427-11098-0121/2012/86(10)/104427(12) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.104427


CARSTEN TIMM AND MASSIMILIANO DI VENTRA PHYSICAL REVIEW B 86, 104427 (2012)

are thus to be understood in an ensemble sense. On the
other hand, devices consisting of a monolayer of weakly
interacting molecules between metallic electrodes, in which
many molecules conduct in parallel, are self-averaging. In this
case, we predict the time-dependent observables of a single
device.

The analysis of SMMs as memory devices requires us to
study their dynamics under a time-dependent bias. In Refs. 17
and 18, their relaxation for constant or suddenly switched
bias has been considered. Here, we consider the current,
charge, and spin response to a harmonically varying bias
V (t) = V0 sin ωt , which is easily realizable experimentally.
For a nonmagnetic molecule involving a vibrational mode, the
response to a harmonic voltage has been recently studied by
Donarini et al.45 In this case, Franck-Condon blockade leads
to interesting dynamics.45,46

The remainder of this paper is organized as follows: In
Sec. II we present our model, followed by a discussion of the
master-equation approach in Sec. III. The results are presented
and discussed in Sec. IV. Finally, in Sec. V we summarize the
main points, address possible limiting effects, and draw some
conclusions.

II. MODEL

Our device consists of a magnetic molecule coupled to
two ferromagnetic leads. The full system is described by the
Hamiltonian H = Hmol + Hleads + Hhyb, where the molecular
Hamiltonian reads17,18,20

Hmol = εd

∑
σ

d†
σ dσ + Ud

†
↑d↑d

†
↓d↓ − J s · S − K2 (Sz)2, (1)

where d†
σ (dσ ) creates (annihilates) an electron of spin σ in

the molecular orbital with energy εd , s ≡ ∑
σσ ′ d†

σ (σ σσ ′/2)dσ

is the corresponding spin operator, and S is the spin operator
of a local spin of length S. The two spins are coupled by
the exchange interaction J and the local spin is subject to an
easy-axis anisotropy of strength K2 > 0. The extension of this
model by including more than one electronic orbital, or more
than one local spin, does not pose any conceptual difficulties.
In a break-junction setup, the on-site energy εd could be tuned
by a gate voltage. However, this tunability is not necessary for
our conclusions.

The molecular Hamiltonian Hmol commutes with the z

component of the total spin Stot ≡ s + S so that the eigenvalue
m of Sz

tot is a good quantum number. We show in Fig. 1
the energy levels of Hmol vs m for the parameter values
εd = 0.2 eV, U = 10 eV, J = 0.1 eV, K2 = 40 meV, and
S = 2, which we will also use below to illustrate our results.
Note that we are using a large value of the anisotropy energy
in order to most clearly show the generic behavior. For the
smaller anisotropies of SMMs,36 the interesting physics would
occur in a narrower voltage range and at lower temperatures.
For n = 0 and for n = 2 electrons on the molecule, the total
spin is just given by the local spin S so that there are 2S + 1
levels in these charge sectors. For one electron, n = 1, its spin
1/2 combines with the local spin S to form two multiplets
of 2(S − 1/2) + 1 = 2S and 2(S + 1/2) + 1 = 2S + 2 states.
The splitting between the two multiplets is on the order of
JS. The easy-axis anisotropy leads to the parabolic dispersion
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FIG. 1. (Color online) Molecular energy levels En,m vs magnetic
quantum number m for εd = 0.2 eV, U = 10 eV, J = 0.1 eV, K2 =
40 meV, and S = 2. Levels for electron occupation number n = 0
(n = 1) are shown as heavy blue (medium red) bars. Levels for
electron number n = 2 are outside the range of the plot. The arrows
indicate the lowest-energy sequential-tunneling transitions out of the
ground states.

seen for all multiplets in Fig. 1. The total dimension of the
molecular Fock space is NF = 4(2S + 1).

The leads are described by the Hamiltonian

Hleads =
∑
νkσ

ενkσ c
†
νkσ cνkσ , (2)

where c
†
νkσ (cνkσ ) creates (annihilates) an electron with wave

vector k and spin σ in lead ν = L,R. Below, we will assume
that the leads are ferromagnetic with opposite magnetizations
parallel to the z direction. The molecule and the leads are
coupled by the hybridization term

Hhyb = − thyb√
N

∑
νkσ

(c†νkσ dσ + d†
σ cνkσ ), (3)

where, for simplicity, we have assumed the tunneling matrix
element thyb to be real and independent of the lead index,
wave vector, and spin. The number of sites, N , in each lead
is introduced by the Fourier transformation into momentum
space and drops out of the physical results.

III. MASTER EQUATION

The master-equation approach starts from the exact von
Neumann equation (we set h̄ = 1),

dρ

dt
= −i [H,ρ], (4)

for the density (statistical) operator ρ for the complete system.
The reduced density operator of the molecule is obtained
by tracing out the degrees of freedom of the leads, ρmol =
Trleads ρ. The resulting equation of motion is the master
equation for ρmol.47–53 In principle, an exact master equation
that is local in time,

d

dt
ρmol = −i [Hmol(t),ρmol(t)] − R(t,t0) ρmol(t), (5)

can be derived even for time-dependent Hamiltonians if the
molecule and the leads were in a product state at some
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initial time t0.51 The first term on the right-hand side of
Eq. (5) describes the time evolution of the decoupled molecule,
whereas the second term involving a linear superoperator R
describes relaxation.

In practice, approximations are needed to obtain superoper-
atorsR that preserve the positivity of the density operator. Here
we make three simplifications: (i) We employ the sequential-
tunneling approximation, which consists of keeping only terms
up to second order in the tunneling matrix element thyb. This
approximation is reasonable if � � kB�, where � is the
temperature. (ii) We only consider reduced density operators
ρmol that are diagonal in the eigenbasis of Hmol. Actually, this
is not an approximation: Below, we will always assume that the
time evolution starts from equilibrium or from a pure diagonal
state. If we start from such a diagonal ρmol, the exact time
evolution does not generate nonzero off-diagonal components.
This is because off-diagonal components would correspond to
superpositions (coherences) of states with different charge or
different spin component Sz

tot. The former would break U(1)
charge symmetry, and could only be expected in supercon-
ducting systems. The latter would lead to nonzero averages of
Sx

tot or S
y
tot, which would require spontaneous breaking of the

spin-rotation symmetry around the z axis. (iii) We employ the
Markov approximation, which posits that correlation functions
describing the memory of the leads decay on a time scale
τleads that is much shorter than all experimentally relevant
time scales. This requires the oscillation period T of the bias
voltage to satisfy T � τleads. Since the leads are metals with
typical relaxation times in the femtosecond range, this is easily
fulfilled. The Markov approximation is necessary here since it
allows us to use the instantaneous value of the bias voltage in
the master equation.

The derivation of the resulting master equation is
standard14,17,46,54,55 and we only present the results. We assume
the bias voltage V to be split evenly between the two molecule-
lead contacts. The two leads are assumed to be identical
ferromagnetic metals with their magnetizations along the z

direction but of opposite sign. The relevant parameter is the
ratio p = Nmin/Nmaj between the densities of states (assumed
to be energy independent) for minority-spin and majority-spin
electrons. We write the diagonal reduced density operator as
ρmol = diag(P1,P2, . . .), where the Pi are the probabilities of
many-particle eigenstates |i〉 of Hmol. The master equation
then takes the form

dPi

dt
=

∑
j

(Rj→i Pj − Ri→j Pi), (6)

with Rj→i the transition rate from state |j 〉 to state |i〉 due to
sequential tunneling. The rate can be written as a sum over
contributions from spin up and spin down and from the left
and right leads,

Rj→i =
∑

σ=↑,↓

∑
ν=L,R

Rσν
j→i , (7)

with17

R
↑L

j→i = �

[
f

(
Ei − Ej + eV

2

)
|D↑

ji |2

+f

(
Ei − Ej − eV

2

)
|D↑

ij |2
]
, (8)

R
↓L

j→i = p�

[
f

(
Ei − Ej + eV

2

)
|D↓

ji |2

+f

(
Ei − Ej − eV

2

)
|D↓

ij |2
]
, (9)

R
↑R

j→i = p�

[
f

(
Ei − Ej − eV

2

)
|D↑

ji |2

+f

(
Ei − Ej + eV

2

)
|D↑

ij |2
]
, (10)

R
↓R

j→i = �

[
f

(
Ei − Ej − eV

2

)
|D↓

ji |2

+f

(
Ei − Ej + eV

2

)
|D↓

ij |2
]
, (11)

where f (E) is the Fermi-Dirac distribution function, Ei is
the eigenenergy of molecular state |i〉, Dσ

ij ≡ 〈i|dσ |j 〉 are
matrix elements of the electron annihilation operator between
molecular eigenstates, and � ≡ 2π |thyb|2Nmaj quantifies the
coupling of majority electrons to the leads.

The average occupation number, the z component of the
electron spin, and the z component of the local spin are
given by

〈n〉 =
∑

i

Pi 〈i|
∑

σ

d†
σ dσ |i〉, (12)

〈sz〉 =
∑

i

Pi 〈i| d
†
↑d↑ − d

†
↓d↓

2
|i〉, (13)

〈Sz〉 =
∑

i

Pi 〈i|Sz|i〉, (14)

respectively. The average charge current between lead ν and
the molecule is17

〈Iν〉 = −eν
∑
ij

Pj (ni − nj ) Rσν
j→i , (15)

where the numerical value of ν is +1 (−1) for the left
(right) lead and ni ≡ 〈i| ∑σ d†

σ dσ |i〉. The current is counted
as positive if it is flowing from left to right.

While for the stationary state the left and right currents are
equal, this is not generally the case for time-dependent ρmol.56

It is then crucial to realize that an ammeter in, say, the left lead
nevertheless measures the symmetrized current,

I ≡ 〈IL〉 + 〈IR〉
2

. (16)

The reason is the following: 〈Iν〉 only contains the tunneling
(particle) current through the contact between the molecule
and lead ν. In addition, there are displacement currents across
the contacts resulting from charging of the molecule-lead
capacitors.57,58 The displacement currents are equal to the
charging currents, as seen from the simple example of a pure
capacitor. An ammeter placed in the left lead picks up the sum
of the tunneling and the charging currents. By recalling that for
a symmetric device the displacement currents in both barriers
are equal in magnitude but opposite in sign,59 and that the sum
of particle and displacement current is divergence free, one can
show that the sum of the particle and displacement currents in
the left contact, and thus the current in the ammeter, equals the
symmetrized particle current.59
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The master equation (6) is solved numerically by discretiz-
ing time and propagating the probabilities Pi(t) forward step
by step. We will compare our results to the stationary solution
at constant bias voltage, which constitutes the limit of infinitely
slow driving. The stationary solution P ∞

i is found by setting
the left-hand side of Eq. (6) to zero, resulting in

0 =
∑

j

Aij P ∞
j , (17)

with

Aij =
{

Rj→i for i 
= j ,
−∑

k 
=i Ri→k for i = j .
(18)

The stationary probability vector P∞ = (P ∞
1 ,P ∞

2 , . . .) is thus
the right eigenvector of the transition-rate matrix A with zero
eigenvalue. A has at least one vanishing eigenvalue, i.e., one
stationary state, since (1,1, . . . ,1) is clearly a left eigenvector
with zero eigenvalue.

We can also conclude that since our model is ergodic—any
state |i〉 can be reached from any other state by a finite number
of sequential-tunneling transitions with nonvanishing rates—
the stationary state is unique. However, the matrix A is often ill
conditioned since the rates Rj→i are spread over many orders
of magnitude due to the Fermi functions. This leads to the
problem that diagonalization routines working with machine
precision obtain more than one eigenvalue that is numerically
zero, and thereby fail to find the unique stationary state. We
overcome this difficulty by diagonalizing A with high precision
in MATHEMATICA.60 We use LU decomposition to estimate the
L∞ condition number and adapt the number of digits kept in
the diagonalization so that the resulting P∞ contains at least
12 significant digits.

For periodic bias voltage V (t), the system will not relax
toward a stationary state but will approach a periodic cycle.
We define the time-evolution matrix � for one full period by
P(t + T ) = � P(t). To make � unique, we choose the time t in
such a way that V (t) = 0 and V ′(t) > 0, i.e., at vanishing bias
voltage on the upsweep. � is the stochastic matrix of a discrete-
time Markov process. The periodic state is characterized by
the probability vector Pper = (P per

1 ,P
per
2 , . . .), which is a right

eigenvector of the stochastic matrix with eigenvalue one,
Pper = � Pper. The stochastic matrix � has at least one unity
eigenvalue, and this eigenvalue is nondegenerate, since the
discrete-time process is ergodic, in analogy to the discussion
for A above. Starting from Pper, the periodic time dependence
can be obtained by integrating the master equation (6) over
one period. The stochastic matrix � is evaluated numerically
by discretizing time as � = ∏

0�t<T [1 + �t A(t)], where the
transition-rate matrix A now depends on time through the
bias voltage. We normalize � after each matrix multiplication
such that

∑
m �mn = 1 for all n, which is required to conserve

probability. � can also be ill conditioned and we apply the
method sketched above to find the unique periodic state.

IV. RESULTS

Before analyzing the dependence on the period and the
amplitude of the bias voltage in detail, let us show the
typical behavior of our system for one parameter set. Figure 2
shows the approach to the periodic regime when the system

-0.4

-0.2

0

0.2

0.4

cu
rr

en
t  

I/
eΓ

0

0.2

0.4

0.6

oc
cu

pa
ti

on
  <

n>

-0.4 -0.2 0 0.2 0.4
bias voltage  V (V)

-2

-1

0

1

2
sp

in
  <

Sz to
t>

T = 10 Γ−1

(a)

(b)

(c)

FIG. 2. (Color online) (a) Current, (b) occupation number, and
(c) z component of the total spin vs bias voltage for the SMM
driven by a harmonic bias voltage of amplitude V0 = 0.5 V and
period T = 10 �−1. Ten full periods are shown as solid blue (gray)
curves. The arrows indicate the directions in which the loops are
traversed. The black dashed curves refer to the stationary state,
corresponding to T → ∞. The spin polarization in the leads is
p = Nmin/Nmaj = 0.5. The other model parameters are εd = 0.2 eV,
U = 10 eV, J = 0.1 eV, K2 = 40 meV, and S = 2, as in Fig. 1.

is initialized in its equilibrium state at time t = 0 and then
driven by a bias V (t) = V0 sin ωt with period T = 2π/ω.
The current, occupation number, and the z component of the
total spin approach periodic behavior within a few periods.
As expected, all three observables show hysteresis. Since
the state of the system evidently depends on its history, we
immediately see that our system is indeed a memory device.40

Its internal state is described by the probability vector P(t),
which contains NF − 1 independent real variables, where NF

is the dimension of the molecular Fock space. However, it is
not a purely memristive system: A memristive system would
satisfy equations of the form40

I (t) = G(V (t),P(t))V (t), (19)

dP
dt

= F(V (t),P(t)). (20)
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In our case, the second equation is the master equation (6). On
the other hand, our Eqs. (15) and (16) for the current cannot be
written in the form of Eq. (19) for all V . Equation (19) implies
that the current vanishes for zero bias for a memristive system,
whereas Fig. 2 shows that it does not vanish for our device—the
hysteresis loop is not pinched at V = 0. Physically, this is
because we have additional capacitive or inductive effects. The
I–V characteristics of a harmonically driven pure capacitor (in-
ductor) show an ellipse that is traversed in the clockwise (coun-
terclockwise) direction. Since the loop in Fig. 2(a) is clock-
wise, the behavior is partially capacitive. This is reasonable
since the molecule is transiently charged, as shown in Fig. 2(b).

For comparison, Fig. 2 also shows the voltage dependences
of all observables in the stationary state (dashed curves).
Note that the average spin in the stationary state is nonzero
and depends on the bias voltage solely because the leads are
magnetically polarized. If electrons are predominantly moving
from left to right (I < 0), the left lead injects predominantly
spin-up electrons, while the right lead absorbs predominantly
spin-down electrons. The result is a positive spin polarization
on the molecule, as seen in Fig. 2(c). The stationary curves
all show plateaus separated by thermally broadened steps.
The dynamical current and charge mainly relax toward the
stationary values at the plateaus but cannot follow the rapid
changes at the steps. The visibility of the relaxation suggests
that the driving period is comparable to the relevant relaxation
times. On the other hand, the spin hysteresis loop bears no
resemblance to the stationary curve, showing that the spin
cannot relax rapidly enough to approach its stationary value.
We will discuss these points in what follows.

A. Dependence on the voltage period

To elucidate the role of the driving period T , we have
determined the periodic behavior for various T ’s as described
in Sec. III, keeping all other parameters fixed. Figures 3, 4,
and 5 show single hysteresis loops for current, charge, and
spin in the periodic regime. Since the hysteresis in the current
is not very pronounced on the scale of the figures, we show
an enlargement close to the voltage maximum in Fig. 6. The
natural time scale is �−1 = (2π |thyb|2Nmaj)−1, the inverse of
the characteristic tunneling rate. Note that for a typical current
of 200 pA in the transmitting regime,3,61 the tunneling rate is on
the order of � ≈ 109 s−1. In the limit of rapid driving (T → 0),
shown in Fig. 3, all hysteresis loops close since the molecule
cannot follow the rapid bias. The charge and the spin approach
constant values determined by the time-averaged rates,

Rn→m = 1

T

∫ T

0
dtRn→m(t). (21)

The current loop also closes but it does not become a
horizontal line since the current in Eq. (15) explicitly depends
on the instantaneous rates, which in turn depend on the
instantaneous bias.

We note that the hysteresis loops for the current, in
particular at rapid driving, show additional steplike features
absent from the stationary curves. These features are due to
excited-state-to-excited-state (ETE) transitions. Such transi-
tions are also observed in the stationary state,6 but only if the
energy of the ETE transition is higher than the energy of the
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FIG. 3. (Color online) (a) Current, (b) occupation number, and
(c) z component of the total spin vs voltage for voltages of amplitude
V0 = 0.5 V and relatively short periods T = 1.25, 2.5, 5, and 10 �−1.
The other parameters are as in Fig. 2. A single hysteresis loop in the
periodic regime is shown. The arrows indicate the directions in which
the loops are traversed. The black dashed curves show the voltage
dependence in the stationary state.

transition populating its initial state. This restriction is relaxed
for dynamical measurements, where the initial state can be
transiently occupied even when the voltage is not sufficiently
high to populate it in the stationary regime. Thus, additional
spectroscopic information on ETE transition energies and
lifetimes (from the width of the current steps) can be obtained
from dynamical measurements.

In the limit of slow driving, T → ∞, the hysteresis loops
must also close since the observables approach the stationary
values. The current loops in Fig. 5(a) indeed close for slow
driving. In particular, the capacitive response (open loop at
V = 0) decreases rapidly together with the charge at zero
voltage. However, the charge and the spin in Figs. 5(b) and 5(c),
respectively, have not approached the stationary curve even at
T = 2560 �−1. The reason for this requires some discussion.

All quantities show steplike behavior for large T with
two pairs of steps at voltages of about ±0.20 V and
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FIG. 4. (Color online) (a) Current, (b) occupation number, and
(c) z component of the total spin vs voltage for voltages of amplitude
V0 = 0.5 V and intermediate periods T = 20, 40, 80, and 160 �−1.
The other parameters are as in Fig. 2. A single hysteresis loop in the
periodic regime is shown. The arrows indicate the directions in which
the loops are traversed. Black dashed curves: Stationary state.

about ±0.37 V. It is useful to refer to the level scheme in
Fig. 1 to understand what happens at these voltages. At
|V | = V1 ≡ 2(E1,±5/2 − E0,±2) = 0.2 V, the excess energy
eV/2 of electrons appearing in Eqs. (8)–(11) matches the
lowest transition energy E1,±5/2 − E0,±2 out of the ground
states with occupation number n = 0 and magnetic quantum
numbers m = ±2 to the states n = 1, m = ±5/2. These
transitions are denoted by solid arrows in Fig. 1. From the
excited states n = 1, m = ±5/2, the molecule can only relax
back to the ground states by emitting one electron into the
leads. No other transitions are allowed for sequential tunneling.
Thus the molecule cannot overcome the anisotropy barrier
and the imbalance �M ≡ 〈sgn(Sz

tot)〉 between positive and
negative m cannot be relaxed.17 In fact, this statement is only
rigorously true at zero temperature. At finite temperatures,
there is a thermally activated process in which the molecule
goes from the ground states to a state with n = 1, m = ±3/2
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FIG. 5. (Color online) (a) Current, (b) occupation number, and
(c) z component of the total spin vs voltage for voltages of amplitude
V0 = 0.5 V and relatively long periods T = 320, 640, 1280, and
2560 �−1. The other parameters are as in Fig. 2. A single hysteresis
loop in the periodic regime is shown. The arrows indicate the
directions in which the loops are traversed. Black dashed curves:
Stationary state.

(dashed arrows in Fig. 1), but the transition rate for this process
is exponentially suppressed by the tail of the Fermi function.

At the second step at |V | = V2 ≡ 2(E1,±3/2 − E0,±2) =
0.367763 V, the excess energy eV/2 matches the transition
energy E1,±3/2 − E0,±2 from the ground states to a state with
n = 1 and m = ±1/2 (dashed arrows in Fig. 1). But then
the molecule can overcome the anisotropy barrier by a series
of sequential-tunneling transitions that are either exothermal
or endothermal with a transition energy lower than eV2/2.
Consequently, for voltages close to V2, the rate for spin
relaxation over the barrier crosses over from exponentially
small to a sizable fraction of �.17 Relaxation over the barrier
is still slower than relaxation not crossing the barrier since
it involves several sequential-tunneling transitions, each of
which competes with a transition in the opposite direction.

We can now understand the behavior of the spin for
slow driving in Fig. 5: Above the second threshold, V > V2,

104427-6



MEMRISTIVE PROPERTIES OF SINGLE-MOLECULE MAGNETS PHYSICAL REVIEW B 86, 104427 (2012)

0.3 0.35 0.4 0.45 0.5
bias voltage  V (V)

0.35

0.4

0.45
cu

rr
en

t  
I/

eΓ
TΓ = 1.25
2.5
5
10
20
40
80
160
320
640
1280
2560

FIG. 6. (Color online) Details of the current vs voltage curves for
periods T = 1.25, . . . 2560 �−1 from Figs. 3, 4, and 5. The arrows
indicate the direction in which the hysteresis loops are traversed.
Black dashed curve: Stationary state.

relaxation over the barrier is not exponentially suppressed, and
the system indeed approaches the stationary behavior for slow
driving. As the voltage is lowered into the range V1 < V < V2,
the imbalance �M between positive and negative m is frozen
in. As long as the driving is not exponentially slow, the system
will relax under the constraint of fixed �M . In the range
V1 < V < V2, the frozen-in value of �M is close to the
stationary value so that the system can still relax to a state
close to the stationary one. When the voltage falls below V1, all
transitions out of the two ground states in Fig. 1 are thermally
suppressed, and the system relaxes toward the ground states
with the imbalance �M approximately conserved.

For −V2 < V < −V1, the lowest-energy transitions be-
come active again but now the frozen value of �M is very
different from the stationary one at negative voltages. The
system is still with a high probability on the left-hand side of
the barrier (�M < 0). The most relevant transition is the one
from the state n = 0, m = −2 to the state n = 1, m = −5/2,
which requires a spin-down electron. However, for negative
voltages, predominantly spin-up electrons are injected. The
transition rate for this process is thus suppressed by the
spin-polarization factor p in Eq. (9). Consequently, the average
occupation 〈n〉 is suppressed relative to the stationary case,
leading to the plateau at 〈n〉 ≈ 0.336 in Fig. 5(b). Finally,
for V < −V2, spin relaxation over the barrier becomes active
again, the imbalance �M is unfrozen, and the system can relax
to the stationary state at slow driving.

In summary, the device does approach the stationary regime
in the limit of slow driving, T → ∞, but to reach this regime,
the period T has to be large compared to the exponentially long
spin-relaxation time. We thus find a separation of time scales:
The spin-relaxation time is generically long compared to typ-
ical relaxation times for processes not crossing the anisotropy
barrier. This can be compared to the dynamics of a molecule
without local spin but involving a vibrational mode:45,46 In
this case, small Franck-Condon matrix elements suppressing
low-energy transitions can lead to a separation of time scales.

B. Dependence on the voltage amplitude

Since the imbalance �M between positive and negative
magnetic quantum numbers is effectively frozen in when the
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FIG. 7. (Color online) (a) Current, (b) occupation number, and (c)
z component of the total spin vs voltage for voltage amplitudes V0 =
0.35, 0.36, 0.367763 (= V2), 0.37, 0.40, and 0.50 V and period T =
40 �−1. The other parameters are as in Figs. 2–5. A single hysteresis
loop in the periodic regime is shown in each case; the loop at the
threshold amplitude, V0 = V2, is highlighted as a heavy red (gray)
curve. The arrows indicate the directions in which the loops are
traversed. The black dashed curves show the voltage dependence in
the stationary state.

voltage drops below the threshold V2, we expect the behavior
of the device to change dramatically when the amplitude
V0 of the bias V (t) = V0 sin ωt is tuned through V2. To
exhibit this dependence, we have determined the periodic
behavior for amplitudes V0 through the threshold V2, keeping
all other parameters fixed. Figure 7 shows single hysteresis
loops for current, charge, and spin in the periodic regime.
As expected, the spin hysteresis loops are nearly closed for
voltage amplitudes V0 below the threshold V2 and open up
above the threshold. Then the system can overcome the barrier
for part of the driving period so that the spins injected from
the magnetized leads can reverse the local spin.

A reasonable measure of the size of the spin hystere-
sis loop—which represents the effectiveness of the device
in storing information—is the frozen spin at V = 0 with
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FIG. 8. (Color online) (a) Frozen local spin 〈Sz〉0 and (b) frozen
electronic spin 〈sz〉0 at V (t) = 0 and V ′(t) > 0 vs voltage amplitude
at thermal energies kB� = 0, 2 meV, 20 meV, and 0.2 eV. The other
parameters are as in Fig. 7.

V ′(t) > 0. We plot the local and the electronic contributions
to the frozen spin as functions of the voltage amplitude for
zero and finite temperatures in Fig. 8. To obtain the values
at zero temperature, we proceed differently from the method
outlined in Sec. III: For kB� = 0, the Fermi function becomes
a step function and thus the transition rates in Eqs. (8)–(11)
are piecewise constant functions of the instantaneous voltage
V (t) and, therefore, of time. This allows us to obtain the
stochastic matrix � analytically as a product of a finite number
of matrices describing the time evolution over time intervals
with constant rates.

The frozen local spin 〈Sz〉0 in Fig. 8(a) shows critical
behavior for vanishing temperature. Taking the square, we
find that the critical exponent is 1/2, 〈Sz〉0 ∼ (V0 − V2)1/2.
The singularity is smeared out at finite temperatures. For the
frozen electronic spin, critical behavior is not evident.

The origin of the exponent 1/2 is that the fraction of time
during which the voltage is large enough to overcome the
barrier scales with (V0 − V2)1/2 provided that V (t) is analytic
close to its extrema. Taking, for example, the first voltage
maximum, the end points of this time interval are obtained
by solving V (T/4 ± �t/2) = V2. If V (t) is analytic, we can
expand around the maximum, V0 + V ′′(T/4)�t2/8 = V2, the
solution of which gives �t ∼ (V0 − V2)1/2. We now expand
the stochastic matrix � for small �t and use perturbation
theory to find the probability vector for the periodic state
satisfying Pper = � Pper. The leading correction is linear in
�t and thus proportional to (V0 − V2)1/2.

We can therefore draw two conclusions: (i) Quite generally,
all observables should inherit a (V0 − V2)1/2 correction from
Pper above the threshold. (ii) The same argument also applies
whenever additional transitions become energetically allowed
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FIG. 9. (Color online) Frozen local spin 〈Sz〉0 vs voltage period at
thermal energies kB� = 0, 20 meV, and 0.2 eV. The voltage amplitude
is V0 = 0.37 V, slightly above the threshold V2. The other parameters
are as in Fig. 7.

at higher voltage amplitudes. Thus there should be correspond-
ing singular terms associated with these transitions. We have
checked that this is borne out by the numerical results.

We now turn to the dependence of the frozen spin on the
driving frequency. Figure 9 shows the frozen local spin 〈Sz〉0 as
a function of the voltage period T for three temperature values.
The voltage amplitude V0 is slightly above the threshold V2

for spin relaxation. At rapid driving T → 0, the frozen spin
goes to zero, as expected since the system cannot follow the
rapidly changing bias. For very large periods, the frozen spin
should approach the stationary value at zero bias, which is also
zero. For the (unphysically) high temperature kB� = 0.2 eV,
Fig. 9 indeed shows this behavior. On the other hand, at zero
temperature, the frozen spin never approaches zero for large
T since there is no spin relaxation for |V (t)| < V2 so that the
system can never reach the stationary state with zero average
spin at zero bias.

C. Quasiperiodic regime

As we have seen, the anisotropy barrier leads to a separation
of time scales for relaxation over the barrier and relaxation
staying on one side of the barrier. It thus makes sense
to consider the intermediate regime reached after the fast
transients have died out, but before the slow relaxation has
become effective. We call this the “quasiperiodic” regime.

As discussed above, the true periodic state is unique since
it is determined by the stationary solution of an ergodic
discrete-time Markov process. Thus the system will eventually
converge to the same periodic solution regardless of its initial
state. However, the same is not true for the quasiperiodic state,
which will depend on the initial condition and, in principle,
also on the protocol with which the bias is switched on. This is
illustrated in Fig. 10(a), which shows the first five periods of
the time evolution of the total spin 〈Sz

tot〉 starting from different
initial states. The voltage amplitude is V0 = 0.35 V < V2 so
that the relaxation over the barrier is exponentially slow. After
a few periods, a quasiperiodic regime is reached, which indeed
depends on the initial state. After a much longer time, during
which the system can relax over the barrier, all curves would
approach the true periodic hysteresis loop (dashed curve).
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FIG. 10. (Color online) (a) Solid curves: Five periods of the z

component of the total spin, 〈Sz
tot〉, vs voltage for different initial

pure states with occupation number n = 0 and magnetic quantum
numbers m = 2, 1, 0, −1, and −2. The voltage amplitude is
V0 = 0.35 V < V2 and the voltage period is T = 40 �−1. The other
parameters are as in Figs. 2–5. Dotted curve: The same for the initial
state with m = 0 but for the voltage shifted in time by half a period.
(b) Solid curves: Five periods of the current for the two cases with
m = 2 and m = −2. The parameters are the same as in (a). The
black dashed curves show the true periodic state that the system
would reach after an exponentially long time.

We have also verified that the quasiperiodic loop does
depend on the way the voltage is switched on. The dotted
blue (gray) curve in Fig. 10(a) shows the spin for the same
initial state as the solid blue (gray) curve; the only difference
is that the voltage is shifted in time by half a period, i.e.,
V (t) = −V0 sin ωt . Since the system starts in the state with
m = 0, which is the one on top of the anisotropy barrier in
Fig. 1, the sign of the voltage applied during the first half
period determines the dominant spin direction of the injected
electrons. This determines the probabilities for the system to
relax into states with positive or negative m. The resulting
imbalance �M is then frozen in because the voltage amplitude
is below the threshold V2. Consequently, the sign of V (t)
during the first half period determines the spin polarization.

It is illuminating to compare the behavior when the voltage
amplitude is above the threshold V2. In this case, we do
not expect a separation of time scales. Figure 11 indeed
shows that the spin approaches the periodic hysteresis loop
without reaching any intermediate quasiperiodic regime. The
relaxation over the barrier is still slow since it involves several
sequential-tunneling transitions and is only active for a small
fraction of the time.

The spin polarization in the intermediate, quasiperiodic
regime can be read out by a transport experiment: Figure 10(b)
shows the current hysteresis loops for the two cases with
initial value m = ±2 (solid curves) and also the true periodic
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FIG. 11. (Color online) Solid red (gray) curve: 50 periods of the
z component of the total spin vs voltage for the initial pure state with
occupation number n = 0 and magnetic quantum number m = 2.
The voltage amplitude is V0 = 0.37 V > V2 and the voltage period
is T = 40 �−1. The other parameters are as in Fig. 10. Dashed black
curve: Periodic state.

behavior (dashed curve). The loops are clearly different. To
use our model system as a memory device, we also need a
protocol for writing the spin. This is possible by increasing the
voltage amplitude over the threshold, and making the period T

sufficiently long. Then the spin approaches a large hysteresis
loop on a time scale of a few periods. Reducing the voltage
amplitude below the threshold while the spin is large in
magnitude freezes the imbalance �M . For illustration, we
plot in Fig. 12 the spin for a process starting from the pure
state with n = 0 and m = 0 and consisting of ten periods at
a small voltage amplitude V0 < V2, followed by five periods
at V0 > V2, and eventually by five more periods at the smaller
amplitude. Figure 12 shows the spin as a function of bias and
of time. This protocol clearly switches the system between two
distinct quasiperiodic states. If we had reduced the amplitude
half of a period earlier or later, i.e., when 〈Sz

tot〉 was negative,
a negative spin would have been written.

The typical time scale of the switching in Fig. 12 is a few
times T = 40 �−1 ∼ 4 × 10−8 s. This should be compared to
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FIG. 12. (Color online) z component of the total spin vs
(a) voltage and (b) time for a process starting from the pure state
with n = 0 and m = 0 and consisting of ten periods at the amplitude
V0 = 0.35 V < V2, five periods at V0 = 0.5 V > V2, and five periods
at V0 = 0.35 V < V2. The voltage period is held fixed to T = 40 �−1.
The other parameters are as in the previous figures.
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the switching time of memristive systems containing a MgO
layer between ferromagnetic electrodes, which is on the order
of seconds, probably because it involves the displacement of
oxygen vacancies.62,63 The switching mechanism proposed
in the present paper can be much faster since it involves
neither nuclear motion, as Refs. 62 and 63 and also the
spin transition considered by Miyamachi et al.13 do, nor the
motion of domain walls, which is the mechanism studied by
Münchenberger et al.64

V. SUMMARY AND CONCLUSIONS

Memristive (memory resistive) properties of a SMM
weakly coupled to two ferromagnetic leads have been inves-
tigated. To that end, we have studied three observables: the
average current through the molecule, the occupation (charge),
and the z component of the total spin on the molecule. We
have obtained the hysteresis loops for these quantities vs the
applied bias. The device is not a purely memristive system, as
evidenced by the open hysteresis loop for the current. Instead,
the transient charging of the molecule leads to a partially
capacitive response. This capacitive response is governed by
the fast charge relaxation. The device combines memristive
with spintronics functionality facilitated by a large polarization
of the molecular spin.

For rapid driving, i.e., for driving frequencies on the order of
the characteristic tunneling rate �, the memory dependence is
suppressed and the hysteresis loops close. The current-voltage
characteristics nevertheless show additional spectroscopic
features not seen in the stationary (dc) current-voltage curve.
In the opposite limit of very slow driving, memory effects
are also suppressed since the system eventually approaches
the stationary behavior. However, the period of the voltage
required to reach this stationary regime can be exceedingly
long in the presence of easy-axis anisotropy. The origin of this
dynamical slowing down is that relaxation of the molecular
spin over the anisotropy barrier becomes suppressed below a
certain bias voltage so that any imbalance between positive
and negative spin polarization is essentially frozen in. It is the
very slow relaxation over the barrier that governs the eventual
closing of the hysteresis loops.

At zero temperature, the frozen occupation number and
spin at zero bias exhibit nonanalyticities when the voltage
amplitude crosses the threshold for relaxation over the barrier.
The nonanalytic contributions scale with the voltage distance
from the transition point with a critical exponent of 1/2. The
singular behavior is smeared out at finite temperatures.

We have seen that the easy-axis anisotropy naturally leads
to a separation of time scales: If the bias voltage is below a
critical threshold, relaxation over the barrier is exponentially
suppressed, compared to relaxation between states on the
same side of the barrier, by the tail of the Fermi function
appearing in the sequential-tunneling rates. Now, the question
arises as to whether any processes neglected in our approach
become relevant in this regime. Sequential tunneling is of
the order of t2

hyb ∝ �. At the order t4
hyb ∝ �2, cotunneling

occurs: An electron can tunnel coherently from one lead to
the other. During this process, it can flip its spin, which leads
to a transition of the molecular state without a change of the
occupation number, but with a change of the spin by one unit.

Out of the ground states, this process becomes active when eV

matches the energy difference eVcot ≡ E0,±1 − E0,±2 between
the states with m = ±1 and m = ±2, which for the parameters
chosen here happens at a voltage below the Coulomb-blockade
threshold V1; see Fig. 1. (Note that the full bias eV enters in this
case.) Beyond the voltage Vcot, the system can overcome the
anisotropy barrier by cotunneling. Thus there is a regime where
relaxation over the barrier is dominated by cotunneling, which
is down by a factor of � compared to sequential tunneling,
but does not involve an exponentially small factor at low tem-
peratures. At smaller voltages, |V | < Vcot, cotunneling is also
exponentially suppressed and processes of even higher order
in � become important. Eventually, the direct transition from
one ground state to the other involving a change of the spin
by four units occurs at order �8. This process happens even at
zero bias and is thus never suppressed by exponential factors.

Still, below the threshold V2 for spin relaxation due to
sequential tunneling, the relaxation rate is at least suppressed
by a factor of �. Thus, for sufficiently weak coupling between
the molecule and the leads, there is still a wide separation of
time scales. We finally note that transverse spin-anisotropy
terms, or a transverse magnetic field, can lead to spin tunneling
through the barrier and thereby open another channel for spin
relaxation.

The separation of time scales opens up an intermediate
time regime where fast transients have died out, but relaxation
over the barrier has yet to become effective. In this regime, a
quasiperiodic dependence of all observables on the bias is
observed. Unlike the true periodic state, the quasiperiodic
hysteresis loop depends on the initial conditions and the
protocol by which the bias is switched on. In view of the
long lifetime that can be realized experimentally, this means
that this property can be used to store information. Indeed,
we have demonstrated that this spin information can be read
out by measuring the alternating current, and that it can be
rewritten at will by judiciously changing the voltage amplitude.
Note that we have discussed a two-terminal device. None of
this functionality requires a gate electrode (although the latter
would add extra flexibility), which should make the practical
implementation significantly easier.

Finally, it is also worth noting that the presence of different
time scales and long relaxation times makes molecular mag-
nets ideally suited for a host of neuromorphic applications,43

ranging from learning circuits41 and associative memory42 to
the massively parallel solution of optimization problems.65

While neuromorphic and memristive devices based on mag-
netic solid-state structures have been suggested,62–64,66 molec-
ular magnets potentially offer higher integration densities,
faster switching, and lower power consumption. These features
make them ideal candidates for neuromorphic computing.
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