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Transport through a quantum spin Hall quantum dot
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Quantum spin Hall insulators, recently realized in HgTe/(Hg,Cd)Te quantum wells, support topologically
protected, linearly dispersing edge states with spin-momentum locking. A local magnetic exchange field can
open a gap for the edge states. A quantum-dot structure consisting of two such magnetic tunneling barriers is
proposed, and the charge transport through this device is analyzed. The effects of the bias voltage, the gate voltage,
and the charging energy in the quantum dot are studied employing Landauer and master-equation approaches.
For vanishing charging energy, the differential conductance is periodic in both gate and bias voltages. For
nonzero charging energy, the periodicity in the gate voltage is retained, but with increased period. A partial
recurrence of the noninteracting periodicities is found for strong interactions. The possibility of controlling the
edge magnetization by a locally applied gate voltage is proposed.
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I. INTRODUCTION

Topological insulators and superconductors1–3 have re-
cently become the topic of extensive experimental and the-
oretical research. These materials can be described in terms of
weakly interacting quasiparticles with Hamiltonians showing
nontrivial topological properties in momentum space. They
have an energy gap in the bulk but a topologically protected
gapless spectrum of boundary states. Schnyder et al.2,4 and
Kitaev5 have put forward an exhaustive classification of these
systems in terms of their Altland-Zirnbauer symmetry classes6

and of the number of spatial dimensions.
A topologically nontrivial state is possible for the symplec-

tic class AII in two dimensions, corresponding to systems with
spin-orbit coupling in the absence of an applied magnetic field
and of superconductivity. This so-called quantum spin Hall
(QSH) state7,8 has protected edge states with gapless Weyl-
type dispersion. Bernevig et al.9 have predicted and König
et al.10,11 have observed the QSH state in HgTe/(Hg,Cd)Te
quantum wells.

The edge states of the QSH system show spin-momentum
locking in the sense that right-moving (left-moving) electrons
are strictly spin up (spin down).1,3,11 Consequently, density-
density interactions cannot lead to backscattering since they
cannot flip the spin. On the other hand, spin-dependent
scattering, for example by magnetic impurities, can lead
to backscattering. Unconventional transport properties are
thus expected, and possible applications in spintronics can
be envisaged. It is therefore of interest to study electronic
transport in prototypical device geometries involving QSH
edge states.

The idea at the basis of this paper is to realize a quantum
dot as a finite-length segment of a QSH edge. This cannot
be achieved by electrostatic gating since an electric potential
just shifts the edge bands without opening a gap and thus
does not lead to the formation of tunneling barriers. However,
such barriers could be realized by ferromagnetic insulators
imposing a magnetic exchange field orthogonal to the spin-
orbit field and opening a gap. We here consider parallel and
antiparallel exchange fields in the two barriers and assume the
barriers to be thin. We also include a gate electrode that can
be used to tune the electrostatic potential on the quantum dot.

Figure 1 shows a sketch of the device. Finally, we assume
the thermal energy kBT to be small compared to the lifetime
broadening of the dot levels so that we can set the temperature
to zero. Including a finite temperature is straightforward. An
alternative realization of a QSH quantum dot as the edge
of a small QSH puddle has been analyzed by Tkachov and
Hankiewicz,12 assuming negligible charging energy.

After introducing the model in Sec. II, we study the effect
of the gate and bias voltages on the transport in Sec. III. A
Landauer approach13 is used to obtain the current for arbitrary
strength of the magnetic barriers. The effect of the electron-
electron interaction within the dot is studied in Sec. IV. We
employ a simple model including a charging energy in terms
of the excess charge. This is valid if the range of the electron-
electron interaction is large compared to the dot size W but
should give qualitatively correct results beyond this regime.
The opposite case of short-range interactions has been studied
for an unmodulated QSH edge in Refs. 14–16. A quantum
dot in a spinless Luttinger liquid, not a QSH edge, has been
studied by several authors.17–20 Tunneling through a quantum
dot between two QSH edges has been addressed by Law et al.21

II. MODEL

The noninteracting part of the Hamiltonian of the QSH
edge with magnetic barriers is written as a 2 × 2 matrix in
spin space,

H0 = −ih̄vF σ z∂x − ηh̄vF σ xδ(x)

∓ ηh̄vF σ xδ(x − W ) + V (x), (1)

where vF is the Fermi velocity, σx and σ z are Pauli matrices,
η is the dimensionless strength of the magnetic barriers, and
V (x) is a nonuniform electric potential. A 2 × 2 unit matrix
is implied in the last term. H0 is only valid within the bulk
energy gap. The first term is the Weyl Hamiltonian of the
bare edge.11,22 We neglect higher-order spatial derivatives,
which lead to nonlinear terms in the dispersion. An electric
field perpendicular to the layers would induce an additional
Rashba spin-orbit-coupling term HR = −iασ y∂x . However,
this term can be absorbed into the Weyl term by a rotation in
spin space.22 The upper (lower) sign of the third term refers to
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FIG. 1. (Color online) Cutaway view of the QSH quantum dot.

parallel (antiparallel) exchange fields in the two barriers. The
parameter η can be written as

η = gμBBexcL

h̄vF

, (2)

where g is the g factor, μB is the Bohr magneton, Bexc is the
exchange field, and L is the length of the magnetic barrier.
Equation (1) is obtained in the limit of thin barriers, L → 0,
Bexc → ∞, BexcL = const. This limit is valid if |E − V (x)| �
gμBBexc since then the potential term proportional to E −
V (x) is negligible compared to the field term in the barrier.
In this case, the transfer matrices of the barriers, introduced
below, only depend on η ∝ BexcL. Exchange energies on the
order of several tens of meV appear to be feasible. Then the
bias and gate voltages should be limited to a few millivolts.
This does not impose an additional constraint, however, since
the maximum bulk gap of HgTe/(Hg,Cd)Te wells in the QSH
regime is calculated10 as Eg = 40 meV and our approach is
only applicable within the gap in any case.

The limit is also valid for |E − V (x)| L/h̄vF � 1 since
then the phase accumulated by an electron traveling through
the barrier due to the potential term is negligible. Teo and
Kane23 give h̄vF = 0.35 eV nm. Taking a typical value of
|E − V (x)| = 10 meV (see previous point), we obtain L �
h̄vF /|E − V (x)| = 35 nm. Thus the limit is also valid for very
thin barriers for any Bexc. For V (x) we take

V (x) =
⎧⎨
⎩

eV/2 for x � 0,

−eVg for 0 < x � W,

−eV/2 for x > W,

(3)

where V is the bias voltage and Vg is the gate voltage.
Multiplying the time-independent Schrödinger equation

resulting from H0 by σ z from the left, we obtain

∂xψ = i
E − V (x)

h̄vF

σ z ψ(x)

− η σy δ(x) ψ(x) ∓ η σy δ(x − W ) ψ(x), (4)

which for x � x0 is solved by means of a (nonunitary) “spatial-
evolution operator,”

ψ(x) = S← exp

{ ∫ x

x0

dx ′
[
i
E − V (x ′)

h̄vF

σ z

− η σy δ(x ′) ∓ η σy δ(x ′ − W )

]}
ψ(x0), (5)

where S← is a spatial-ordering directive; operators acting on
ψ(x0) are ordered with their spatial coordinates increasing
from right to left. Equation (5) implies the boundary condition

ψ(0+) = e−ησy

ψ(0−) = (cosh η − σy sinh η) ψ(0−) (6)

at the barrier at x = 0. Since the Schrödinger equation is of first
order, there is only a single boundary condition. Analogously,
we find ψ(W+) = (cosh η ∓ σy sinh η) ψ(W−).

In the following, we will need the eigenstates of the
decoupled dot, i.e., for η → ∞. The Schrödinger equation
for the eigenspinors ψν(x) to eigenenergies Eν reads

−ih̄vF σ z ∂xψν − eVg ψν(x) = Eν ψν(x), (7)

with the boundary conditions

(1 + σy) ψν(0) = 0, (1 ∓ σy) ψν(W ) = 0. (8)

The normalized solutions are

ψν(x) = 1√
2W

⎛
⎝ exp

(
i

Eν+eVg

h̄vF
x
)

−i exp
( − i

Eν+eVg

h̄vF
x
)
⎞
⎠ , (9)

with

Eν = −eVg + πh̄vF

W

×
{

ν + 1/2 for parallel exchange fields,
ν for antiparallel exchange fields, (10)

where ν can assume any integer value. Note that the spectrum
is an equidistant ladder of nondegenerate levels. The level
spacing is E0 := πh̄vF /W . Of course, the discrete spectrum
only exists inside the bulk gap and is only equidistant as long
as nonlinear terms in the dispersion can be neglected. For
vanishing voltages, V = Vg = 0, the spectrum is symmetric
with respect to zero energy for both orientations of the
exchange fields due to the particle-hole symmetry of H0. For
antiparallel exchange fields, one eigenstate has energy zero,
whereas for parallel exchange fields all eigenenergies come in
pairs of opposite sign. Since the particle-hole symmetry is only
approximate in a real device, this symmetry of the spectrum is
only approximate as well.

Finally the charging energy is described by the particle-
hole-symmetric term,

Hint = e2

2C

[∑
ν

(
nν − 1

2

)]2

, (11)

where C is the capacitance of the quantum dot and nν = c†νcν is
the number operator of the single-particle state |ν〉. ∑

ν(nν −
1/2) denotes the excess charge.

III. TRANSPORT THROUGH A NONINTERACTING DOT

To study transport, we assume the states in both leads to be
filled up to the chemical potential μ, measured relative to the
Weyl nodes, which are shifted by the potential ±eV/2. Ne-
glecting the electron-electron interaction, the current through
the QSH quantum dot can be expressed in terms of its
transmission coefficient T (E) by the Landauer formula,13

I = e

h

∫ μ+eV/2

μ−eV/2
dE T (E). (12)
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Since T (E) does not depend on the bias voltage V in our case,
the differential conductance is simply given by

dI

dV
= e2

h

T (μ + eV/2) + T (μ − eV/2)

2
. (13)

The transmission coefficient T (E) is obtained from the transfer
matrix T = TRTdotTL of the device, where the three factors are
the transfer matrices of the right barrier, the dot region, and the
left barrier, respectively. Since the right-moving (left-moving)
electrons have spin up (down), Eq. (6) implies

TL = cosh η − σy sinh η =
(

cosh η i sinh η

−i sinh η cosh η

)
. (14)

For the right barrier we get

TR =
(

cosh η ±i sinh η

∓i sinh η cosh η

)
. (15)

The transfer matrix for the dot region can be inferred from
Eq. (5) for x0 = 0+, x = W−,

Tdot = exp

(
i
E + eVg

h̄vF

σ zW

)
. (16)

The transmission coefficient T = |t |2 obtained from
TRTdotTL

(1
r

) = (
t

0

)
reads

T (E) = 1

1 + trg2
(E+eVg

h̄vF
W

)
sinh2 2η

, (17)

where trg = cos (sin) for parallel (antiparallel) exchange
fields. The transmission reaches unity whenever E matches
an eigenenergy Eν of the decoupled dot. The width of the
maxima is controlled by the barrier strength η. This is more
easily seen by rewriting T (E) as

T (E) = E0

2π cosh 2η

∞∑
ν=−∞

2γ

(E − Eν)2 + γ 2
, (18)

where the width of the Lorentzian peaks is

γ := E0

π
ln coth η = h̄vF

W
ln coth η. (19)

An analytical expression for the current can be obtained by
inserting T (E) into Eq. (12):

I = e

h

h̄vF

W cosh 2η

∑
ν

(
arctan

Eν − μ + eV
2

γ

− arctan
Eν − μ − eV

2

γ

)
. (20)

The differential conductance dI/dV can be read off from
Eqs. (13) and (17). Since the chemical potential μ and the
gate voltage Vg only appear in the combination eVg + μ, we
can set μ = 0 without loss of generality. dI/dV is plotted in
Fig. 2(a) as a function of gate and bias voltages. Figure 2(a)
clearly exhibits the suppression of the low-bias conductance
off resonance due to Pauli blockade. As Fig. 2(b) shows,
the resonant conduction maxima are broadened for strong
coupling to the leads (weak magnetic barriers), and for η → 0
we recover the constant conductance dI/dV = e2/h of an
open channel. dI/dV is periodic in the gate voltage with
period E0 = πh̄vF /W and in the bias voltage with period
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FIG. 2. (Color online) (a) Differential conductance dI/dV

through a QSH quantum dot for the strength η = 1 of the magnetic
barriers and parallel exchange fields as a function of gate voltage Vg

and bias voltage V in the absence of electron-electron interaction.
Light colors denote large dI/dV . (b) Linear conductance G =
dI/dV |V =0 as a function of the gate voltage Vg . The level spacing of
the decoupled dot, E0 = πh̄vF /W , is used as the energy unit.

2E0. Also, going from parallel to antiparallel exchange fields
has the same effect as shifting eVg by half a period, E0/2.
Furthermore, dI/dV is symmetric under reversal of the gate
voltage Vg for both parallel and (not shown) antiparallel
exchange fields. These symmetries are present to the extent that
the approximations of linear dispersion and of particle-hole
symmetry are satisfied.

IV. TRANSPORT THROUGH AN INTERACTING DOT

In this section we consider the effect of the charging energy
Hint given by Eq. (11). Since Hint preserves particle-hole
symmetry, the current is still odd, and dI/dV is even in the
bias voltage. Beyond that, an exact solution does not exist.
Here, we consider the case of weak coupling to the leads
(strong magnetic barriers) but arbitrary interaction strength. A
Pauli master equation, i.e., a master equation for the diagonal
components of the reduced density operator of the quantum
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dot, is well suited for this limit.24–26 It is then reasonable to
retain only the terms of leading order in the coupling, which
constitutes the sequential-tunneling approximation. Strictly
speaking, the broadening of dot states due to the coupling
should be neglected in this approximation. However, then
the noninteracting limit would not be recovered correctly.
Therefore, we include the broadening beyond sequential
tunneling.27–29

Let us denote the many-particle states of the dot in
the occupation-number basis by �m := | . . . ,m0,m1, . . .〉,
where mν = 0,1 is the occupation number of single-particle
state |ν〉. Then the probabilities P ( �m) of these states satisfy
the Pauli master equation

d

dt
P ( �m) =

∑
�m′

[R �m′→ �m P ( �m′) − R �m→ �m′ P ( �m)]. (21)

Here, R �m→ �m′ is the transition rate from state �m to state �m′.
For the stationary solution, the time derivative vanishes. In
practice, the Fock space of the dot is truncated by restricting
the single-particle basis to a sufficient number of states. For
sequential tunneling, the rates R �m→ �m′ vanish unless �m and �m′
differ in exactly one of the occupation numbers mμ. If |ν〉 is
the corresponding single-particle state, the rates are

R �m→ �m′ = Rin
�m,ν := R0

(∫ μ−eV/2

−∞
+

∫ μ+eV/2

−∞

)
dE

2π

× 2γ[
E − Eν − e2

C

∑
μ �=ν

(
mμ − 1

2

) ]2 + γ 2

= R0

π

[
π− arctan

Eν + e2

C

∑
μ �=ν

(
mμ − 1

2

) − μ+ eV
2

γ

− arctan
Eν + e2

C

∑
μ �=ν

(
mμ − 1

2

) − μ − eV
2

γ

]

(22)

for mν = 0 and m′
ν = 1, and

R �m→ �m′ = Rout
�m,ν := R0

(∫ ∞

μ−eV/2
+

∫ ∞

μ+eV/2

)
dE

2π

× 2γ[
E − Eν − e2

C

∑
μ �=ν

(
mμ − 1

2

) ]2 + γ 2

= R0

π

[
π+ arctan

Eν + e2

C

∑
μ �=ν

(
mμ − 1

2

) − μ+ eV
2

γ

+ arctan
Eν + e2

C

∑
μ �=ν

(
mμ − 1

2

) − μ − eV
2

γ

]

(23)

for mν = 1 and m′
ν = 0, respectively. R0 is a characteristic rate

further discussed below. The rate for tunneling into (out of)
state |ν〉, Rin

�m,ν
(Rout

�m,ν
), is proportional to the spectral weight

of this state below (above) the electrochemical potentials in
the leads. The central energy of the dot states |ν〉 for given
occupation numbers mμ, μ �= ν, of the other states is shifted by
the interaction energy e2/C

∑
μ �=ν(mμ − 1/2). Furthermore,

it is assumed that the level broadening due to the coupling to
the leads is not affected by the interaction within the dot.

The current through lead α reads24,30,31

Iα = −α
e

h̄

∑
�m, �m′

(∑
ν

m′
ν −

∑
ν

mν

)
Rα

�m→ �m′ P ( �m), (24)

where α = L = 1 (α = R = −1) for the left (right) lead.
Rα

�m→ �m′ denotes the part of the rates in Eqs. (22) and (23)
due to lead α. The symmetrized current is

I = IL + IR

2
= − e

2h̄

∑
�m

∑
ν

×
{

R
L,in
�m,ν

− R
R,in
�m,ν

for mν = 0

−R
L,out
�m,ν

+ R
R,out
�m,ν

for mν = 1

}
P ( �m). (25)

We assume that the characteristic rate R0 is not affected by
interactions within the dot. Then R0 has to be chosen in such
a way that Eq. (20) is recovered for e2/C → 0. Inserting
the rates into Eq. (25), we find R0 = h̄vF /(W cosh 2η). The
current is then

I = e

h

h̄vF

W

1

cosh 2η

∑
�m

∑
ν

P ( �m)

×
[

arctan
Eν + e2

C

∑
μ �=ν

(
mμ − 1

2

) − μ + eV
2

γ

− arctan
Eν + e2

C

∑
μ �=ν

(
mμ − 1

2

) − μ − eV
2

γ

]
. (26)

Chemical potential and gate voltage only appear as eVg + μ

in Eqs. (22), (23), and (26) so that the current only depends
on this combination, as in the noninteracting case. We thus
set μ = 0 without loss of generality. The current is then still
odd in the bias voltage and even in the gate voltage. The
current remains periodic in eVg , but the period is changed to
E0 + e2/C since a shift of eVg by E0 + e2/C in Eqs. (22),
(23), and (26) can be compensated for by shifting the ladder
of single-particle states by one level spacing E0, taking into
account that this will also increase or decrease the excess
charge in the stationary state by one unit. Moreover, the change
from parallel to antiparallel exchange fields is equivalent to a
shift of eVg by half that period. For antiparallel exchange fields
and μ = eVg = 0, a conductance peak remains pinned at zero
bias due to particle-hole symmetry.

Note that our approach not only is valid for weak coupling
to the leads but also recovers the exact results in the limit
of weak interactions for any coupling. Moreover, the limit of
strong coupling to the leads (η → 0, γ → ∞) is also correct:
The current then approaches I = (e2/h) V , the result for an
open channel, for any interaction strength.

Figure 3 shows the differential conductance dI/dV for
various interaction strengths e2/C and otherwise the same
parameters as in Fig. 2(a). With increasing e2/C, the Pauli-
blockade diamonds morph into Coulomb-blockade diamonds
and become larger, in agreement with the gate-voltage pe-
riod E0 + e2/C. Compared to the noninteracting case, the
conductance peaks are split since the energy of the dot
single-particle states now depends on the occupation of all
other states. The peaks demarcating the Coulomb diamonds
are particularly strong. Weak conductance peaks are visible
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FIG. 3. (Color online) Differential conductance dI/dV through
a QSH quantum dot with parallel exchange fields as a function of
gate voltage Vg and bias voltage V . The dimensionless strength of
the magnetic barriers is η = 1 (γ = 0.086689 E0). The interaction
strength is (a) e2/C = 0.1 E0, (b) e2/C = 0.6 E0, and (c) e2/C =
4.3 E0.

inside the Coulomb diamonds. While a single dot charge
dominates in this regime, other dot charges have nonzero
probabilities controlled by the tails of the Lorentzian peaks,
which fall off like power laws in the energy distance from the
Coulomb-blockade threshold. These subdominant dot charges
lead to satellite peaks in dI/dV , which are stronger than
those obtained from standard sequential-tunneling calculations
without broadening but at nonzero temperature. In that case
the peaks are exponentially suppressed by the tail of the Fermi
distribution function. It should be emphasized that broadening
effects first emerge at order R2

0 and that at the same order
additional effects, namely, cotunneling and pair tunneling,
occur, which are not included here.25

In the case of strong interactions [Fig. 3(c)], the sequential-
tunneling lines show an approximate periodicity with the
noninteracting periods E0 in eVg and 2E0 in eV . The
explanation is that lines separated by E0 in the gate voltage
result from different single-particle states |ν〉 and |ν + 1〉
but with the same occupation number of the other states.
The interaction strength e2/C then drops out of the energy
difference.

We finally turn to the consequences of spin-momentum
locking. From the continuity equation for the one-dimensional
charge and current densities, ∂tρ + ∂xj = 0, one easily obtains
the charge current in terms of the many-particle wave function
�,

j (x) = −evF

∫
dx1dx2 · · ·

∑
σ1,σ2,...=±1

∑
i

δ(x − xi)

×�∗
σ1σ2...

(x1,x2, . . .) σi �σ1σ2...(x1,x2, . . .). (27)

This expression is proportional to the z component of the one-
dimensional spin density ρz,

j (x) = −2evF

h̄
ρz(x). (28)

In the stationary state, the current j (x) = I is uniform so
that the z components of the spin density and of the one-
dimensional magnetization are also uniform. Thus the QSH
quantum dot allows one to control the magnetization Mz =
−gμBρz/h̄ ≈ μBI/evF of the whole edge with a gate voltage
applied locally to the dot. The conductance on resonance is
G = e2/h. For a bias voltage of half the maximum bulk
gap,23 V = 20 mV, the current on resonance is thus I = 7.7 ×
10−7 A. The resulting magnetization is Mz ≈ 9.0 × 106 μB

m−1. Clearly, the magnetic moment carried by a QSH edge of
a typical length10 of a few times 10−4 m is small and probably
hard to measure in the vicinity of the ferromagnetic barriers.

A probably better approach to probing the magnetization
of the QSH edge is to study the spin-filter effect of the
device. Since all electrons moving to the right (left) have spin
up (down), the charge current I corresponds to a magnetic-
moment current of Iμ ≈ μBI/e = 4.8 × 1012 μB s−1. This is
the magnetic moment deposited per second in both contacts
to the measurement apparatus. This suggests to measure the
accumulated spin in the contacts or to study the transport
through the device using ferromagnetic electrodes. In the
limiting case of half-metallic ferromagnets and perfect spin
injection, the measurement would only register a current for
one sign of the bias voltage but not for the other.
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V. SUMMARY

We have considered a quantum dot in a QSH edge realized
by two thin magnetic tunneling barriers with parallel or
antiparallel exchange fields. For a vanishing electron-electron
interaction, arbitrary strengths of the magnetic barriers are
studied within the Landauer approach. The linear dispersion
of edge states leads to an equidistant ladder of dot resonances
and to a double periodicity of the differential conductance in
both gate and bias voltages. The features are washed out for
weak barriers.

In the interacting case, we employ the Pauli master
equation in a sequential-tunneling approximation including
level broadening, which is valid for strong magnetic barriers.
The approach also becomes exact in the two limits of
vanishing barriers and of weak interaction. For increasing
Coulomb interaction, the Coulomb-blockade diamonds grow,

as expected. The periodicity of the differential conductance in
the gate voltage is preserved, albeit with increased period,
while the periodicity in the bias voltage is destroyed. For
strong interactions, the noninteracting period reemerges. Spin-
momentum locking leads to a proportionality between the
charge current, the z component of the magnetization of the
whole QSH edge, and the magnetic moment deposited in
the contacts to the device. This opens the possibility to control
the magnetization by a locally applied gate voltage.
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