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Transport anomalies due to anisotropic interband scattering
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Unexpected transport behavior can arise due to anisotropic single-particle scattering in multiband systems.
Specifically, we show within a semiclassical Boltzmann approach beyond the relaxation-time approximation that
anisotropic scattering between electronlike and holelike Fermi surfaces generically leads to negative transport
times, which in turn cause negative magnetoresistance, an extremum in the Hall coefficient, and a reduction
of the resistivity. The anisotropy required for this to occur decreases with increasing mismatch between the
Fermi-surface radii.
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I. INTRODUCTION

In basic transport theory, the acceleration of carriers by
an applied electric field is balanced by scattering, leading
to a steady state with constant drift current.1 The direction
of the drift current is determined by the charge of the
carriers and relaxes over a characteristic transport time (TT).
Deviations from this basic picture tend to generate a lot of
interest. A striking example are negative TTs: Some fraction
of the carriers may drift in the direction opposite of what
one would expect based on their charge. Negative TTs of
minority carriers were predicted for systems with electron- and
holelike Fermi surfaces (FSs),2 based on strong electron-hole
(two-particle) scattering. This carrier drag was first observed
in semiconductor quantum wells.3

In this paper, we explore a different origin of negative
TTs and its consequences for transport: Negative TTs can
also arise due to anisotropic single-particle scattering4 in
multiband systems. In the case of isotropic scattering, the TTs
are equivalent to the usual quasiparticle lifetimes. Anisotropic
scattering, on the other hand, favors certain scattering angles.
As a result, the transport coefficients can deviate significantly
from the expectation based on the bare lifetimes.

Anisotropic single-particle scattering in multiband systems
can be realized in materials close to an excitonic instability,
e.g., electron-hole bilayers,5 the iron pnictides,6–8 chromium
and its alloys,9,10 and the transition-metal dichalcogenides.11,12

In these materials, nesting of electron and hole FSs strongly
enhances interband spin or charge fluctuations with a wave
vector close to the nesting vector Q. These fluctuations are
expected to promote highly anisotropic scattering between the
nested FSs.

In the iron pnictides, the effect of such scattering seems
to be especially pronounced, as the normal-state transport
coefficients show highly anomalous behavior. In particular,
the unexpectedly small magnetoresistance is hard to reconcile
with the strongly enhanced Hall coefficient if analyzed
based on a simple multiband model with positive transport
times.13 In these materials, anisotropic scattering is thought
to be mainly due to spin fluctuations.14–17 Fanfarillo et al.17

have demonstrated that vertex corrections can lead to an
enhancement of the Hall coefficient, which could explain
its pronounced temperature dependence in the pnictides.18,19

Vertex corrections result from the anisotropy of the scattering
and are responsible for the difference between bare lifetimes

and TTs. They also show that the enhancement of the Hall
coefficient is connected to negative TTs of minority carriers.17

In the present work we focus on the effect of anisotropic
interband scattering on transport coefficients. Working within
a Boltzmann approach beyond the relaxation-time approxima-
tion, we consider two FSs and include an interband scattering
rate with arbitrary dependence on the scattering angle. We
show that, if one FS is electronlike and the other holelike,
anisotropy not only leads to an enhancement of the Hall
coefficient17 but also to an extremum. Moreover, we find a
reduction of the resistivity and negative magnetoresistance as
direct consequences of negative TTs.

II. MODEL AND METHOD

We consider two-dimensional (2D) and three-dimensional
(3D) metals with two isotropic FSs labeled by s = 1,2. The
center of one FS is displaced with respect to the other by a wave
vector Q [see Fig. 1(a)]. One of the FSs may be electronlike and
the other holelike (the e-h case) or both may be of the same type
(the e-e or h-h case). We employ a semiclassical description
in terms of the distribution function fs,k = f0(εs,k) + gs,k,
with the equilibrium Fermi-Dirac distribution f0(εs,k), where
εs,k is the band energy, and a deviation gs,k. In a weak
uniform electric field E, the stationary state is described by
the linearized Boltzmann equation:1

eE · vs,k[−f ′
0(εs,k)] =

∑
s ′,k′

W
s ′,k′
s,k (gs,k − gs ′,k′ ), (1)

where vs,k = h̄−1 ∇kεs,k is the velocity, and W
s ′,k′
s,k is the

scattering rate from state s,k to state s ′,k′. The scattering term
contains an in-scattering contribution proportional to gs ′,k′ ,
which is equivalent to vertex corrections.

Specifically, we consider elastic scattering with an isotropic
intraband contribution Wi and an in general anisotropic
interband contribution Wa(θk,k′):

W
s ′,k′
s,k = δ(εs ′,k′ − εs,k) [δs ′ s̄ Wa(θk,k′) + δs ′s Wi], (2)

where s̄ = 2 (1) for s = 1 (2). The interband scattering rate
Wa in general depends on k and k′. Since we consider a weak
electric field E, we assume the displacements of the Fermi
seas to be small compared to the Fermi momenta kF,s . Then
the range of relevant absolute values |k|, |k′| is small compared
to the range of relevant polar angles, and we can ignore the
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FIG. 1. (Color online) (a) Sketch of the two isotropic FSs s

and s̄, displaced by Q, and the elastic interband scattering rate
Wa(θ ) (red/gray gradient). (b) Illustration of the relation between
the anisotropy parameter ε and the shape of the function Wa(θ ), for
the case of Wa(θ ) having a single peak. We focus on the situation in
which the peak appears at θ = 0, highlighted by the box.

dependence of Wa on the former. By symmetry, Wa can then
only depend on the angle θ ≡ θk,k′ spanned by k and k′ [see
Fig. 1(a)] and is an even function of θ .

The deviations gs,k solving the Boltzmann equation (1)
are linear in E and can thus be written as gs,k = eE ·
�s,k[−f ′

0(εs,k)]. Since the scattering rate W
s ′,k′
s,k is an even

function of θ , the scattering does not break rotational symmetry
and does not introduce a preferred direction of rotation.
Therefore, �s,k must be parallel to the only vector appearing
in the equation, namely, the velocity vs,k. Due to rotational
symmetry, the prefactor cannot depend on k. Thus we can
write

gs,k = τs eE · vs,k[−f ′
0(εs,k)], (3)

where τs is the TT for FS s, to be determined below.
Inserting Eq. (2) and performing the energy integration we

obtain for the right-hand side of Eq. (1)

∑
s ′

Ns ′ 〈[δs ′ s̄Wa(θ ) + δs ′sWi](gs,k − gs ′,k′ )〉θ , (4)

where Ns is the density of states for FS s and the average over
θ is denoted by 〈· · ·〉θ = 1

π

∫
dθ . . . for two dimensions and

〈· · ·〉θ = 1
2

∫
dθ sin θ . . . for three dimensions. Equation (3)

shows that gs ′,k′ depends on θ through the velocity, which for
isotropic FSs can be written as

vs ′,k′ = ηs,s ′vF,s ′

(
vs,k

vF,s

cos θ + e⊥ sin θ

)
, (5)

where vF,s > 0 is the Fermi velocity for FS s, ηss ′ = +1 (ηss ′ =
−1) if the FSs s and s ′ are of the same (different) type, and
e⊥ denotes the unit vector perpendicular to vs,k in the plane
spanned by vs,k and vs ′,k′ . Since Wa(θ ) is an even function
of θ , the term proportional to sin θ averages to zero. Using
the definition Eq. (3) and the assumption of elastic scattering,
the term proportional to cos θ can be written in terms of gs,k.

Factoring out gs,k, we obtain

eE · vs,k[−f ′
0(εs,k)] = gs,k

∑
s ′

Ns ′

〈
[δs ′ s̄Wa(θ ) + δs ′sWi]

×
(

1 − ηss ′
τs ′vF,s ′

τsvF,s

cos θ

)〉
θ

. (6)

Together with Eq. (3), this implies

1

τs

= NsWi + Ns̄ 〈Wa(θ )〉θ − ηss̄Ns̄

τs̄vF,s̄

τsvF,s

〈Wa(θ ) cos θ〉θ .

(7)
It is useful to define the anisotropy parameter

ε ≡ 1 + η12
〈Wa(θ ) cos θ〉θ

〈Wa(θ )〉θ
(8)

as a measure of the anisotropy of Wa(θ ). The limit ε = 0
(ε = 2) corresponds to Wa(θ ) having a δ-function peak at
θ = 0 (θ = π ) for the e-h case and vice versa for the e-e or h-h
case. ε = 1 always corresponds to 〈Wa(θ ) cos θ〉θ = 0, which
includes the case of isotropic interband scattering. Figure 1(b)
illustrates the connection between ε and the anisotropic
scattering rate for the case of a single maximum. We focus
on the situation in which the maximum is at θ = 0. Although
our results hold for a general even function Wa(θ ), for the
sake of clarity we confine the discussion to an anisotropic
scattering rate with a single maximum at θ = 0 [see Fig. 1(b)].
Such a maximum occurs naturally for the e-h case close to
an excitonic instability, due to the scattering by the enhanced
spin or charge fluctuations, allowing ε ∈ [0,1] to be tuned by
doping or temperature. In particular, we expect that ε → 0 as
one approaches the excitonic instability. Although there is no
excitonic instability for the e-e or h-h case, ε ∈ [1,2], collective
fluctuations can still be enhanced due to the proximity of
nesting.

III. TRANSPORT TIMES

We first consider pure interband scattering. Solving Eq. (7)
for the TTs, we obtain

τs = τ0,s

1 + 1−ε
ε

(
1 − 1

γs

)
2 − ε

, (9)

where τ0,s = N−1
s̄ 〈Wa(θ )〉−1

θ is the bare lifetime for FS s,
and γs ≡ vF,sτ0,s/vF,s̄τ0,s̄ = (kF,s/kF,s̄)d−1, where d is the
dimension of the system. Note that only the surface areas
of the FSs matter and not their densities of states.

The TT is plotted in Fig. 2. We first focus on the e-h case,
0 � ε � 1 [cf. Fig. 1(b)]. The smaller FS has a negative TT
for

ε < ε∗ ≡ 1 − γ<, (10)

where γ< = min γs � 1. In the anisotropic limit, ε → 0,
the TT of the smaller (larger) FS diverges to negative
(positive) values, while their ratio remains finite and negative,
(τs/τ0,s)/(τs̄/τ0,s̄) → −γs̄ = −1/γs . This can be understood
as follows. For ε → 0, the scattering rate Wa(θ ) becomes a
δ function and, therefore, a particle in the state s,k can only
scatter to the state s̄,k̄, where k̄ is determined by εs̄,k̄ = εs,k and
θk,k̄ = 0 [see Fig. 1(a)]. Thus the system decouples into pairs
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FIG. 2. (Color online) Transport time τs in units of the bare
lifetime τ0,s at FS s as a function of the anisotropy parameter ε

and γs = (kF,s/kF,s̄)d−1. The corresponding plot of τs̄/τ0,s̄ would be
the mirror image with respect to γs = 1.

of states, s,k and s̄,k̄, thereby becoming nonergodic. The joint
particle density of these two states, Fs,k ≡ Nsfs,k + Ns̄fs̄,k̄,
cannot change due to scattering and for the e-h case considered
here evolves in time according to

dFs,k

dt
= eNsE · vs,k[−f ′

0(εs,k)]

(
1 − 1

γs

)
. (11)

A steady state is established only for the special case
of perfectly matched FSs, γs = 1, leading to finite TTs.
Equation (9) shows that they approach the limit τs = τ0,s/2.
For γs �= 1, however, the joint particle density Fs,k accelerates
freely so that the TTs diverge. While this leads to diverg-
ing individual occupations fs,k, the difference fs,k − fs̄,k̄ =
gs,k − gs̄,k̄ approaches the finite value τ0,seE · vs,k[−f ′

0(εs,k)],
which can be obtained from Eq. (1) by considering δ scattering.

For small ε > 0, the scattering between s,k and s̄,k̄ still
dominates and scattering to other states can be treated as a
weak perturbation. For the uncompensated case γs �= 1, this
additional scattering leads to weak relaxation of Fs,k and thus
stabilizes a steady state. Still, the difference fs,k − fs̄,k̄ relaxes
much more rapidly than the individual occupations, so that
fs,k ≈ fs̄,k̄ in the steady state. The occupation numbers on
the same side of the two FSs are both either enhanced or
reduced in comparison to the equilibrium state. In the e-h
case, the electrons at these points have opposite velocities so
that the electrons on one of the FSs have to drift in the “wrong”
direction. As Fig. 2 shows, the direction of the drift and thus
the signs of the TTs are set by the majority carriers.

On the other hand, for weak anisotropy, ε ≈ 1, Fig. 2 shows
that τs/τ0,s decreases with decreasing ε regardless of the FS
sizes. Increasing anisotropy favors small-θ scattering. For the
e-h case, this enhances backscattering since the velocities
vs,k and vs̄,k̄ are opposite and is therefore more efficient in
relaxing the current. The enhanced backscattering is effective
for all γs , including the compensated case of γs = 1. At this
special value, it is not balanced by the previously discussed
mechanism based on anisotropic scattering so that the TTs
remain finite down to ε = 0.

In the e-e or h-h case, the carriers from both FSs always
drift in the same direction, as expected. The TTs increase
monotonically with ε and diverge in the extreme anisotropic
limit ε → 2. The increasing anisotropy favors small-θ scat-
tering, which for the e-e or h-h case corresponds to forward

scattering, and is thus increasingly inefficient at relaxing the
current.

We finally turn to the consequences of additional isotropic
intraband scattering. If we include Wi in Eq. (2), the TTs
become

τs = τ0,s

1 − 1
γs

1−ε
1+xs̄

1 − 1−ε
1+xs

1−ε
1+xs̄

, (12)

where the bare lifetimes now consist of intra- and interband
contributions,

1

τ0,s

= 1

τ
(a)
0,s

+ 1

τ
(i)
0,s

≡ Ns̄〈Wa(θ )〉θ + Ns Wi, (13)

and xs ≡ τ
(a)
0,s /τ

(i)
0,s is the ratio of the lifetimes due to inter- and

intraband scattering. If we assume equal densities of states at
the two FSs for simplicity we recover the previous expression
Eq. (9) for the TTs with a renormalized anisotropy parameter:

ε → ε + x

1 + x
, (14)

where x = Wi/〈Wa(θ )〉θ . Thus in this case the only effect
of isotropic intraband scattering is to reduce the range of
the anisotropy parameter to x/(1 + x) � ε � 2 − x/(1 + x).
Note that negative TTs still occur provided that x < 1/γ< − 1.
Since the inclusion of isotropic intraband scattering essentially
leads to a renormalization of the anisotropy parameter, we
ignore intraband scattering in the following discussion of the
transport coefficients.

IV. TRANSPORT COEFFICIENTS

A. Resistivity

The resistivity can be obtained from the TTs τs .1 We present
the resistivity relative to its isotropic limit, ρ0 ≡ ρ|ε=1, which
coincides with the result one would obtain by approximating
the TTs by bare lifetimes. We obtain

ρ

ρ0
= vF,1k

d−1
F,1 τ0,1 + vF,2k

d−1
F,2 τ0,2

vF,1k
d−1
F,1 τ1 + vF,2k

d−1
F,2 τ2

= 2 − ε

1 + 1−ε
ε

(
1 − 2

γ1+γ2

) . (15)

The ratio ρ/ρ0 is plotted in Fig. 3. The figure shows that
the anisotropy has a large effect on the resistivity, especially
in the e-h case. Although minority carriers give a negative
contribution to the current for ε < ε∗, the total current in the
direction of E is always positive. In the uncompensated case
(γs �= 1) the competition between the two anisotropy effects,
the usual enhancement of the resistivity due to backscattering
and the reduction due to anisotropic scattering, causes a
maximum of ρ/ρ0 as a function of ε at ε = ε∗.

Consistent with previous investigations17 we find that in
compensated e-h systems ρ/ρ0 exhibits an enhancement up to
a factor of 2 due to the usual backscattering. In uncompensated
e-h systems, however, anisotropy of the scattering causes a
strong reduction of the resistivity below ε = ε∗, which occurs
already at weak anisotropy, if the mismatch between the FS
radii is large.
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FIG. 3. (Color online) Resistivity in terms of its isotropic limit,
ρ0 ≡ ρ|ε=1, as a function of ε and γs = (kF,s/kF,s̄)d−1. At ε = ε∗

(dashed curve), the TT of the minority carriers changes sign and the
resistivity has a maximum as a function of ε.

B. Hall coefficient

The Hall coefficient of a two-band system with isotropic
dispersion obeys1

RH = ± 1

ec

nsμ
2
s + ηss̄ ns̄μ

2
s̄

(nsμs + ns̄μs̄)2
, (16)

where μs = eτsvF,s/kF,s and ns ∝ kd
F,s are the mobility and

particle number of FS s, respectively, and the upper (lower)
overall sign pertains to a holelike (electronlike) FS s. With
Eq. (9) we obtain

RH

RH,s

=
1 + η12 γ

4−3d
d−1

s

[ 1−γs (1−ε)
1−γ −1

s (1−ε)

]2

[
1 + γ −2

s
1−γs (1−ε)

1−γ −1
s (1−ε)

]2 , (17)

where RH,s ∝ 1/ns is the Hall coefficient of FS s. In the e-h
case, the electrons and holes contribute with different signs
to the Hall coefficient, irrespective of the signs of the TTs.
The ratio RH/RH,s is plotted for the 2D and 3D cases in
Fig. 4. The figure shows that RH/RH,s is strongly affected
by the anisotropy, implying that approximating the TT by the
lifetime15 is not sufficient. In particular, we find a maximum
at

ε∗∗ ≡ (γs − 1)
(
1 − γ

− 1
d−1

s

)
γ

− 1
d−1

s + γs

, (18)

which corresponds to equal magnitude but opposite sign of
the electron and hole mobilities, μe = −μh. At the maximum
the Hall coefficient assumes the value RH/RH,s = 1/[1 −
γ

−d/(d−1)
s ], which diverges for γs → 1 so that for nearly

compensated e-h systems anisotropic scattering can cause
a huge enhancement of the Hall effect in agreement with
Fanfarillo et al.17 Going beyond Ref. 17, we predict that an
extremum in the Hall coefficient should be observed when
the anisotropy parameter ε is tuned through the value ε∗∗.
According to Eq. (18) and Fig. 4, the anisotropy required
to reach the extremum decreases (ε∗∗ increases) for a larger
mismatch between the FS radii. We speculate that this is the
reason why among the pnictides LiFeAs and LiFeP, which
have rather poor nesting, show the most pronounced extremum
in the Hall coefficient as a function of temperature.20,21 It
is remarkable that also in 122 pnictides an extremum in the
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FIG. 4. (Color online) (a) Hall coefficient RH for a 2D system as
a function of ε and γs , in units of the Hall coefficient RH,s of FS s.
(b) The same quantity as a function of ε on a logarithmic scale for
various γs . (c), (d) The same as in panels (a), (b) for a 3D system. We
only plot RH in terms of RH,s for the larger FS (γs � 1); the result in
terms of the smaller FS is easily obtained from Eq. (17). Note that the
limit ε → 1 in Eq. (17) is different for the e-h and e-e or h-h cases.
The characteristic anisotropy level ε∗ where the TT of the minority
carriers changes sign is indicated by a dashed line. The dotted line
marked by ε∗∗ indicates the maximum of RH /RH,s as a function of ε.

Hall coefficient is observed for sufficiently strongly doped
systems.22

C. Magnetoresistance

The magnetoresistance coefficient

�ρ ≡ ρ(B) − ρ(0)

ρ(0)B2
(19)

is obtained from the standard expression1

�ρ = n1μ1n2μ2

(n1μ1 + n2μ2)2

(
μs

c
− ηss̄

μs̄

c

)2

, (20)

to leading order in the magnetic field B. In terms of the TTs
we find

�ρ

(μ0,s/c)2
=

τ1
τ0,1

τ2
τ0,2(

τ1
τ0,1

γ1 + τ2
τ0,2

γ2
)2

(
τs

τ0,s

− η12 γ
2−d
d−1

s

τs̄

τ0,s̄

)2

, (21)

where μ0,s = eτ0,svF,s/kF,s is the bare mobility for FS s.
Results are plotted in Fig. 5. The magnetoresistance is
negative for ε < ε∗, where one TT becomes negative. Figure 6
illustrates the connection between negative TT and negative
magnetoresistance. If the TT of the minority carriers is negative
(positive), the current contributions j< and j> of minority
and majority carriers, respectively, point in opposite directions
(the same direction) for B = 0. If a magnetic field is applied,
the contributions j< and j> are rotated due to the Lorentz force,
under the constraint that the total current in the transverse
direction vanishes. However, as long as j< and j> are not
rotated by the same angle, they are no longer parallel and their
vector sum is thus larger (smaller) in absolute value than for
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FIG. 5. (Color online) (a) Magnetoresistance coefficient for the
2D system in units of (μ0,s/c)2 as a function of ε and γs and (b) as a
function of ε for two values of γs . (c), (d) The same as in panels (a),
(b) for a 3D system. At ε = ε∗ (dashed curve) and ε∗∗ (dotted curve)
the magnetoresistance is zero.

B = 0. Hence, the magnetoresistance is negative (positive).
A special point is ε = ε∗∗, where the two angles are equal,
the total current is unchanged, and the magnetoresistance
vanishes.

Since many materials of interest, such as the iron pnictides,
have more than two FSs, we briefly discuss this case. In the
presence of additional isotropic FSs, the magnetoresistance
coefficient is determined by a sum over all pairs of FSs:

�ρ =
1
2

∑
i,j=1 niμinjμj

(
μi

c
− ηij

μj

c

)2

( ∑
i=1 niμi

)2 . (22)

Each pair of FSs with opposite signs of the TTs gives a
negative contribution to the magnetoresistance. Hence, when
more than two FSs are present, the appearance of negative
TTs does not necessarily lead to a negative magnetoresistance
coefficient, although it can be significantly reduced. This
could be relevant for the observation of an unexpectedly small
magnetoresistance in certain pnictides.13

V. CONCLUSIONS

Anisotropic single-particle scattering between electron and
hole FSs causes the transport coefficients to differ dramatically

FIG. 6. (Color online) Illustration of the negative magnetoresis-
tance below ε∗. The magnetic field B rotates the current contribution
of the smaller (larger) FS, j< (j>), by the angle φ< (φ>), which leads
to an increase of the total current jtot = j> + j< if φ< �= φ>. The
induced Hall electric field EH has no effect on the magnetoresistance
but ensures that the total current points in the direction parallel to the
applied electric field E.

from the expectation based on bare lifetimes. The unexpected
behavior is especially pronounced in the regime where the
minority carriers have negative TTs. Here the magnetoresis-
tance is negative, the Hall coefficient exhibits an extremum,
and the resistivity decreases upon increasing the anisotropy.
The degree of anisotropy required for this to occur decreases
for increasing ratio between the FS areas. This effect does not
depend on a particular microscopic origin for the anisotropic
scattering17 and is distinct from carrier drag due to the
two-particle electron-hole interaction.2

Some general conclusions may be drawn. Close to perfect
nesting, negative TTs are restricted to the limit of extreme
scattering anisotropy and thus should only become evident
in the transport just above the excitonic instability. Sig-
nificant doping may therefore be required to observe the
most striking effects. It is, however, encouraging that in
the pnictides the magnetoresistance is rather small,13 while
the Hall coefficient is strongly enhanced close to the spin-
density-wave transition,18,19 consistent with our predictions.
In contrast to what is stated in Ref. 17, we show that the
Hall coefficient enhancement can be explained within the
semiclassical approach. Moreover we predict that the Hall
coefficient exhibits an extremum when the system is tuned
through a characteristic degree of anisotropy, which becomes
weaker for larger mismatch between the FS radii. This could
explain the appearance of an extremum in the Hall coefficient
as a function of temperature in strongly doped 122 pnictides,18

as well as in LiFeAs and LiFeP,20,21 which show rather poor
nesting. However, the most decisive test of negative TTs
resulting from anisotropic interband scattering would be the
measurement of a negative magnetoresistance.
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