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Topological surface states in paramagnetic and antiferromagnetic iron pnictides

Alexander Lau and Carsten Timm*

Institute of Theoretical Physics, Technische Universität Dresden, 01062 Dresden, Germany
(Received 8 May 2013; revised manuscript received 23 September 2013; published 3 October 2013)

The electronic structure of iron pnictides is topologically nontrivial, leading to the appearance of Dirac cones
in the band structure for the antiferromagnetic phase. Motivated by the analogy with Dirac cones in graphene, we
explore the possible existence of topologically protected surface states. Surprisingly, bands of surface states exist
even in the paramagnetic state. A realistic five-orbital model predicts two such bands. In the antiferromagnetic
phase, these surface bands survive but split. We obtain the bulk and surface dispersion from exact diagonalization
of two- and five-orbital models in a strip geometry and discuss the results based on topology.
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I. INTRODUCTION

Two of the most active areas in condensed-matter physics
concern the iron pnictides1,2 and topological properties of
matter.3,4 The iron pnictides are of interest since they show
multiband superconductivity with high transition temperatures
competing with itinerant antiferromagnetism. Topology in
condensed matter has received a lot of attention in part because
nontrivial topology can induce surface or edge states. This
paper is concerned with the topological properties and surface
states of iron pnictides.

In iron pnictides, several iron 3d orbitals contribute sig-
nificantly to the electronic states close to the Fermi energy.
Ran et al.5 have realized that this multiorbital character
can lead to nontrivial topological properties. They find band
touchings at the (0,0) and (π,π ) points in the Brillouin zone
(BZ), which are associated with winding numbers in orbital
space. As a consequence, the formation of a spin-density
wave (SDW) with ordering vector Q = (π,0) cannot open a
full gap but rather leaves an even number of Dirac points.5

This holds both for a two-orbital model including only the
most important 3dYZ and 3dZX orbitals6 and for a model
including all five 3d orbitals.7 While the two-orbital model
does not give a realistic description, it allows a simpler
discussion of the topological properties. On the other hand,
the five-orbital model7 gives a good account of the low-energy
band structure of the prototypical compound LaFeAsO and
also leads to reasonable predictions for the magnetic order vs
doping.8,9 Evidence for the Dirac points has been obtained
from quantum-oscillation experiments,10 magnetotransport,11

and angle-resolved photoemission (ARPES).12,13 However,
conflicting evidence is presented in Ref. 14.

Dirac points in the band structure have attracted a lot of
attention in the context of graphene.15 There, Dirac points
emerge due to the two-sublattice structure of the honeycomb
lattice. They are accompanied by dispersing edge states at so-
called zigzag edges,15–18 which appear in the one-dimensional
(1D) edge BZ between the projections of the Dirac points.
Regardless of the different origins of the Dirac points, one
may ask whether they have similar consequences in pnictides
and in graphene. Specifically, do surface states also exist
in the SDW phase of the iron pnictides? Yang and Kee19

have indeed found surface bands for a two-orbital model
with broken symmetry. However, the required combined
orbital, SDW, and charge-density-wave order is not realized

in iron pnictides and actually opens a full gap without Dirac
points.

We will show that dispersing bands of surface states exist
even in the paramagnetic phase of the iron pnictides due to
its topological character. In the SDW phase, the surface bands
split. This is found for both two-orbital and five-orbital models,
but the latter features two surface bands, whereas the former
has only one. We will explain the topological origin of the
surface states.

II. MODELS AND METHOD

We follow Refs. 5 and 7 in choosing 3d orbitals with respect
to the X and Y axes of the tetragonal lattice, which are rotated
by 45◦ relative to the x and y axes of the square iron lattice.
The two-orbital model5,6 retains only these two orbitals in a
single-iron unit cell. The Hamiltonian is H = H0 + HI , where
the noninteracting part for the extended system reads H0 =∑

kσ

∑2
a,b=1 d

†
kaσHab(k)dkbσ . Here, H(k) is a 2 × 2 matrix in

orbital space,

H(k) = 2t1 (cos kx − cos ky) τ 1 − 2(t2 − t ′2) sin kx sin ky τ 3

+ [2(t2 + t ′2) cos kx cos ky + 2t ′1 (cos kx + cos ky)] τ 0,

(1)

where τ 1, τ 2, τ 3 are Pauli matrices, τ 0 is the unit matrix, and the
orbital index 1 corresponds to 3dZX and 2 corresponds to 3dYZ .
We adopt the hopping parameters5 t1 = 0.30 eV, t ′1 = 0.06 eV,
t2 = 0.51 eV, and t ′2 = 0.09 eV.

For the interactions we take5

HI = U

2

∑
i

(
n̂2

i1 + n̂2
i2

) + (U − 2J )
∑

i

n̂i1n̂i2

+ J
∑

i

∑
σσ ′

d
†
i1σ d

†
i2σ ′di1σ ′di2σ

+ J
∑

i

(d†
i1↑d

†
i1↓di2↓di2↑ + H.c.), (2)

where n̂ia ≡ ∑
σ d

†
iaσ diaσ , and the interaction parameters are

chosen as U = 1.20 eV and J = 0.12 eV. Assuming a
SDW with ordering vector Q = (π,0) and spins pointing
along the Sz axis, a mean-field decoupling with 〈d†

iaσ dibσ 〉 =
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nab + (−1)ix σ
2 mab gives the mean-field Hamiltonian

HMF = H0 +
∑
iab

(−1)ix Mab(d†
ia↑dib↑ − d

†
ia↓dib↓), (3)

with M11 = −(Um11 + Jm22)/2, M22 = −(Um22 +
Jm11)/2, M12 = M21 = −Jm21. The Hartree shifts nab

have been absorbed into H0. The parameters mab are
calculated self-consistently, assuming half filling.

Edge states will be studied for a strip of width W with (10)
edges. Since the strip is extended along the y axis, ky is a good
quantum number, and we carry out a Fourier transformation in
the y direction, diaσ = N

−1/2
y

∑
ky

eiky iy dixkyaσ . The mean-field
Hamiltonian then consists of blocks of dimensions 2W × 2W

for fixed ky , σ . These blocks are diagonalized numerically,
giving the energy bands of the strip system. We here assume
that the SDW in the strip is described by the same order
parameters mab as for the extended system.

The five-orbital model7 includes all hopping amplitudes
larger than 10 meV up to fifth neighbors. The hopping ampli-
tudes and on-site energies are obtained from density-functional
calculations and are tabulated in Ref. 7. The interaction HI is
analogous to the two-orbital model, except that the interorbital
terms in Eq. (2) now become sums over all pairs of orbitals a,
b, with a < b, where a,b = 1, . . . ,5 correspond to 3d3Z2−R2 ,
3dZX, 3dYZ , 3dX2−Y 2 , 3dXY . The interaction parameters are
chosen to be U = 1.0 eV and J = 0.2 eV.5 Applying a
mean-field decoupling as above, we obtain the mean-field
Hamiltonian (3), where now the orbital indices traverse
a,b = 1, . . . ,5, and Maa = −(Umaa + J

∑
b 	=a mbb)/2 and

Mab = Mba = −Jmab for a 	= b. The mean-field parameters
mab are determined self-consistently, assuming six electrons
per iron, corresponding to zero doping. For the (10) strip,
we proceed analogously to the two-orbital case. By means
of a Fourier transformation in the y direction, the problem
is reduced to the diagonalization of 5W × 5W Hamiltonian
matrices for fixed ky , σ .

III. RESULTS AND DISCUSSION

First, we consider the two-orbital model without SDW
order, i.e., with mab = 0, in a (10) strip geometry. In Fig. 1,
we compare the energy bands of the (10) strip with width
W = 100 to the bands of the extended system projected onto
the (10) edge BZ. All energies are twofold spin degenerate.
We see that the majority of the bands of the strip lie within
the projected continuum of bulk bands. However, there is an
additional band that does not agree with the bulk continuum.
We have found that the corresponding states are localized at
the edges of the strip. A closer look reveals that this band,
ignoring spin degeneracy, actually comprises two bands, which
are only approximately degenerate. For finite widths W , the
two states at given ky correspond to bonding and antibonding
combinations of states localized at the two edges. Thus,
there is a finite splitting, invisible in Fig. 1, which decreases
exponentially with increasing W .

The origin of the edge states can be understood from a
topological argument. We start from the noninteracting first-
quantized Hamiltonian H(k) of Eq. (1). We consider one spin
sector throughout and suppress the spin index. For the strip,

FIG. 1. (Color online) Energy bands of the two-orbital model in
the absence of SDW order: bands of a (10) strip with width W = 100
[red (medium gray) lines] compared to the bulk bands projected onto
the 1D BZ for the strip [blue (light gray) region]. Note the bands of
edge states for the strip.

ky is a constant of motion. For each fixed value of ky , we obtain
an effective 1D model. For an extended system, the BZ of this
1D model is the subset with ky = const of the two-dimensional
BZ. If the 1D BZ does not cross any Fermi surface, the 1D
model is gapped in the bulk. One such 1D BZ is shown by the
black arrow in Fig. 2. H(k) can be written as5

H(k) = a(k) τ 0 + b(k) (sin φk τ 1 + cos φk τ 3), (4)

with b(k) � 0. The vector field (cos φk, sin φk) is plotted in
Fig. 2. It exhibits vortices with vorticities ±2 at the band-
touching points k = (0,0) and (π,π ). Furthermore, a winding
number of +1 (−1) is acquired when moving from kx = −π

to kx = +π along a line with constant ky > 0 (ky < 0). The
effective 1D system thus has a nontrivial topological structure
in orbital space.5

The appearance of edge states is best understood by
deforming the Hamiltonian of the effective 1D system into

3 2 1 0 1 2 3

3

2

1

0

1

2

3

kx

k y

FIG. 2. (Color online) Fermi surfaces (solid lines) in the
BZ for the two-orbital model superimposed on the vector field
(cos φk, sin φk) (small arrows) showing the nontrivial winding of the
Hamiltonian H(k) in orbital space. The black arrow denotes the BZ
for an effective 1D model obtained by fixing ky , where the arrow is
meant to indicate the projection onto the 1D edge BZ.
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one with a topologically protected winding number. For fixed
ky > 0 (ky < 0 is analogous), we deform the Hamiltonian
into H̃(kx) = cos kx τ 1 − sin kx τ 3. This deformation does not
change the topology of the bands and, in particular, leaves the
energy gap open. H̃(kx) is unitarily equivalent to

Ĥ(kx) ≡ e−i π
4 τ 1H̃(kx) ei π

4 τ 1 =
(

0 e−ikx

eikx 0

)
. (5)

In the bulk, this new Hamiltonian has the eigenvalues ±1 for
every kx ; that is, it has flat bands. Furthermore, Ĥ(kx) is time-
reversal symmetric. The antiunitary time-reversal operator
T can be written as T = KUT , where K is the complex
conjugation in our basis and UT is unitary and must satisfy
UT Ĥ∗(−kx)U †

T = Ĥ(kx), which is fulfilled for UT = τ 0. Note
that T squares to T 2 = τ 0. Ĥ(kx) is also charge-conjugation
symmetric. The antiunitary charge-conjugation operator C can
be written as C = KUC , where UC is unitary and must satisfy
UCĤ∗(−kx)U †

C = −Ĥ(kx), which is fulfilled for UC = τ 3. We
find C2 = Kτ 3Kτ 3 = τ 0. These symmetry properties imply
that the deformed 1D model belongs to the Altland-Zirnbauer
class BDI.20 This class allows a Z topological invariant in one
dimension.21

For the strip, the effective 1D model is a finite chain
of length W . The Z topological invariant means that states
localized at the ends can exist but does not guarantee that
Ĥ(kx) has any. However, this is easily seen by transforming
Ĥ(kx) into real space, which gives Ĥ = ∑W−1

j=1 (d†
j+1,↑dj,↓ +

d
†
j,↓dj+1,↑), where ↑, ↓ now refer to the orbital pseudospin.

The ↑ (↓) state at j = 1 (j = W ) is not coupled to any other
state. Thus there are two zero-energy states localized at the
ends. These arguments can be made for any ky for which the
1D BZ does not intersect a Fermi surface.

What does this tell us about the original Hamiltonian H(k)
with fixed ky? That Hamiltonian has neither T nor C symmetry
and is thus in class A, which is topologically trivial in 1D. Our
point is that the original Hamiltonian can be obtained from
Ĥ(kx) by a continuous deformation without closing the gap.
During the deformation, the T and C symmetries are lost
so that the zero-energy end states are no longer protected.
However, the energy of the end states evolves smoothly during
the deformation. Hence, for H(k) there are still two edge
states for every ky for which the effective 1D Hamiltonian
is gapped. These states have no reason to be at zero energy and
will generally have an exponentially small overlap with each
other, which splits their energies. In principle, the edge states
are not protected against merging with the bulk continuum.
However, we find separate edge states wherever the bulk is
gapped, presumably due to level repulsion between edge and
bulk states. Note the similarity to graphene: The edge band
at graphene zigzag edges is a flat zero-energy band only
for a model without next-nearest-neighbor hopping. In real
graphene, it is dispersing.15,17

In the presence of a SDW with ordering vector Q = (π,0),
the unit cell of the iron square lattice is doubled in the x

direction. Therefore, the bands are folded into the magnetic
BZ. SDW formation opens gaps at some of the new band
crossings but not at all of them: the bands still stick together
at Dirac points.5 Figure 3 shows the band structure of the (10)

FIG. 3. (Color online) Energy bands of the two-orbital model
with SDW order: bands of a (10) strip with width W = 100 [red
(medium gray) lines] compared to the bulk bands projected onto the
1D BZ for the strip [blue (light gray) region].

strip compared to the projected bulk bands. Spin degeneracy
is not lifted by the SDW since the mean-field Hamiltonian is
invariant under combined spin rotation and spatial reflection
x → −x. However, the near degeneracy between bonding and
antibonding combinations of edge states is strongly broken.
We instead find two edge states per spin direction, which are
localized mainly at one edge and are split in energy due to
the opposite exchange field at the two edges. Note that the
edge bands are connected to the bulk bands at the projected
Dirac points, similar to graphene. Moreover, Fig. 3 shows that
additional edge bands appear within the new gaps away from
the Fermi energy.

To check whether the edge bands also occur for the
five-orbital model,5,7 we plot in Fig. 4 the energy bands of
the (10) strip compared to the projected bulk bands for the
paramagnetic and the SDW phase. In the paramagnetic phase
we now find two edge bands, each of which is twofold spin
degenerate and, in the wide limit, also twofold degenerate
between bonding and antibonding combinations. SDW order
again leads to the opening of gaps at crossings of folded bands.
The twofold spin degeneracy remains, but the asymptotic
degeneracy between bonding and antibonding states is lifted
for the same reason as for the two-orbital model.

To understand the appearance of surface states in the
five-orbital model, we again consider effective gapped 1D
models obtained by fixing ky to values for which the path
through the BZ at constant ky does not intersect a Fermi
surface. In this case, two bands lie above the Fermi energy and
three below. The Hamiltonian can be deformed continuously
without closing the gap performing the following steps.
(i) The hopping amplitudes between the d3Z2−R2 and all
other orbitals are tuned to zero, and the resulting decoupled
band is shifted down in energy, effectively removing it from
the model, together with two electrons per iron. (ii) The
hopping amplitudes beyond next-nearest neighbors are tuned
to zero. All components of the Hamiltonian H(kx) can now be
written as linear combinations of cos kx , sin kx , and a constant.
(iii) All constant terms are tuned to zero. (iv) The coefficients
of sin kx in the diagonal components are tuned to zero.
(v) The coefficients of cos kx in the off-diagonal components
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FIG. 4. (Color online) Energy bands of the five-orbital model
(a) without and (b) with SDW order: bands of a (10) strip with
width W = 60 [red (medium gray) lines] compared to the bulk bands
projected onto the 1D BZ for the strip [blue (light gray) regions].

are tuned to zero. (vi) The remaining coefficients in diagonal
components are tuned to unity and in off-diagonal components
to 1/

√
2. A unitary transformation in orbital space maps the

resulting Hamiltonian onto

Ĥ(kx) =

⎛
⎜⎜⎜⎝

0 e−ikx 0 0

eikx 0 0 0

0 0 0 e−ikx

0 0 eikx 0

⎞
⎟⎟⎟⎠ . (6)

Since this deformed Hamiltonian just consists of two copies
of the Hamiltonian in Eq. (5), it has two sets of zero-energy
end states of distinct orbital character. Upon deforming the
Hamiltonian back into the original one, the end states for
every considered ky continuously develop into dispersing
bands. In addition, the degeneracy between the edge states of
different orbital character is lifted so that we end up with two
bands.

IV. CONCLUSIONS

We have shown that two models of iron pnictides predict
the existence of dispersing bands of surface states at (100)

surfaces for the paramagnetic state. They could be used to
probe the topologically nontrivial electronic structure. These
bands are twofold spin degenerate and have an additional
twofold degeneracy in the limit of a thick slab due to the
decoupling of the states localized at the two surfaces. The
main difference between the two-orbital and the five-orbital
models is that the latter predicts two instead of one such band.
Their existence can be understood from a topological argument
based on the continuous deformation of the Hamiltonian into
one in Altland-Zirnbauer class BDI. In the SDW state, where
we had guessed from an analogy to graphene that surface states
might exist, the surface bands split into two twofold degenerate
bands. It should be noted that while the two models inherit the
surface states from topologically nontrivial Hamiltonians, they
are not themselves topologically nontrivial. Hence, the surface
states are not robust against disorder scattering. The analogy
is thus more with graphene than with topological insulators.

The origin of the surface states discussed here is completely
different from surface states at (001) surfaces of iron pnictides
of the 1111 family, such as LaOFeAs, which have been
observed by ARPES.22,23 In this case, surface bands result
from the polar nature of these surfaces.23 Surface states of this
kind are not expected for LiFeAs and NaFeAs since the (001)
surface of these compounds is not polar and they are indeed
not seen by ARPES.24,25

The surface states predicted here could be detected by
ARPES or scanning tunneling spectroscopy on (100) surfaces,
which are, however, challenging to prepare. An alternative
could be tunneling into the edges of thin (001) films, either
using a scanning tunneling microscope tip, a technique that has
been successful for the detection of edge states in graphene,26

or one of the setups discussed in Ref. 27 in the context of
Josephson junctions. Such tunneling experiments would probe
the density of states, which is expected to be enhanced close to
(100) edges of the film. In particular, the van Hove singularities
associated with extrema of the surface bands lead to an
enhancement of the density of states since the surface states are
essentially one-dimensional. It is an interesting question what
happens to the surface states when superconductivity sets in.
Superconductivity of the s+− type preferred for iron pnictides
could introduce energy gaps in the surface bands discussed
here but could also induce additional surface-bound states.28

Both would also be relevant for recent suggestions to engineer
topological superconductors by using the proximity effect of
superconducting iron pnictides.29

ACKNOWLEDGMENTS

We thank P. M. R. Brydon, M. Daghofer, and A. P. Schnyder
for helpful discussions. Support by the Deutsche Forschungs-
gemeinschaft through Research Training School GRK 1621
and Priority Programme SPP 1458 is acknowledged.

*carsten.timm@tu-dresden.de
1D. Johnston, Adv. Phys. 59, 803 (2010).
2P. Dai, J. Hu, and E. Dagotto, Nat. Phys. 8, 709 (2012).
3M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

4X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057
(2011).

5Y. Ran, F. Wang, H. Zhai, A. Vishwanath, and D.-H. Lee, Phys.
Rev. B 79, 014505 (2009).

165402-4

http://dx.doi.org/10.1080/00018732.2010.513480
http://dx.doi.org/10.1038/nphys2438
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/PhysRevB.79.014505
http://dx.doi.org/10.1103/PhysRevB.79.014505


TOPOLOGICAL SURFACE STATES IN PARAMAGNETIC . . . PHYSICAL REVIEW B 88, 165402 (2013)

6S. Raghu, X.-L. Qi, C.-X. Liu, D. J. Scalapino, and S.-C. Zhang,
Phys. Rev. B 77, 220503(R) (2008).

7K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani, and
H. Aoki, Phys. Rev. Lett. 101, 087004 (2008).

8P. M. R. Brydon, M. Daghofer, and C. Timm, J. Phys.: Condens.
Matter 23, 246001 (2011).

9J. Schmiedt, P. M. R. Brydon, and C. Timm, Phys. Rev. B 85,
214425 (2012).

10N. Harrison and S. E. Sebastian, Phys. Rev. B 80, 224512 (2009);
M. Sutherland, D. J. Hills, B. S. Tan, M. M. Altarawneh,
N. Harrison, J. Gillett, E. C. T. O’Farrell, T. M. Benseman,
I. Kokanovic, P. Syers, J. R. Cooper, and S. E. Sebastian, ibid.
84, 180506(R) (2011).

11I. Pallecchi, F. Bernardini, F. Caglieris, A. Palenzona, S. Massidda,
and M. Putti, Eur. Phys. J. B 86, 338 (2013).

12P. Richard, K. Nakayama, T. Sato, M. Neupane, Y.-M. Xu, J. H.
Bowen, G. F. Chen, J. L. Luo, N. L. Wang, X. Dai, Z. Fang,
H. Ding, and T. Takahashi, Phys. Rev. Lett. 104, 137001 (2010).

13K. K. Huynh, Y. Tanabe, and K. Tanigaki, Phys. Rev. Lett. 106,
217004 (2011).

14T. Terashima, N. Kurita, M. Tomita, K. Kihou, C. H. Lee,
Y. Tomioka, T. Ito, A. Iyo, H. Eisaki, T. Liang, M. Nakajima,
S. Ishida, S. I. Uchida, H. Harima, and S. Uji, Phys. Rev. Lett. 107,
176402 (2011).

15A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and
A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

16M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. Phys.
Soc. Jpn. 65, 1920 (1996); K. Nakada, M. Fujita, G. Dresselhaus,
and M. S. Dresselhaus, Phys. Rev. B 54, 17954 (1996).

17A. H. Castro Neto, F. Guinea, and N. M. R. Peres, Phys. Rev. B 73,
205408 (2006).

18S. Ryu and Y. Hatsugai, Phys. Rev. Lett. 89, 077002
(2002).

19B.-J. Yang and H.-Y. Kee, Phys. Rev. B 82, 195126 (2010); in
particular, note Fig. 7.

20M. R. Zirnbauer, J. Math. Phys. 37, 4986 (1996); A. Altland and
M. R. Zirnbauer, Phys. Rev. B 55, 1142 (1997).

21A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys.
Rev. B 78, 195125 (2008).

22D. H. Lu, M. Yi, S.-K. Mo, J. G. Analytis, J.-H. Chu, A. S. Erickson,
D. J. Singh, Z. Hussain, T. H. Geballe, I. R. Fisher, and Z.-X. Shen,
Physica C 469, 452 (2009).

23H. Eschrig, A. Lankau, and K. Koepernik, Phys. Rev. B 81, 155447
(2010).

24A. Lankau, K. Koepernik, S. Borisenko, V. Zabolotnyy, B. Büchner,
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