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Superconducting pairing in the spin-density-wave phase of iron pnictides
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Some of the iron pnictides show coexisting superconductivity and spin-density-wave order. We study the
superconducting pairing instability in the spin-density-wave phase. Assuming that the pairing interaction is due
to spin fluctuations, we calculate the effective pairing interactions in the singlet and triplet channels by summing
the bubble and ladder diagrams, taking the reconstructed band structure into account. The leading pairing
instabilities and the corresponding superconducting gap structures are then obtained from the superconducting
gap equation. We illustrate this approach for a minimal two-band model of the pnictides. Analytical and numerical
results show that the presence of spin and charge fluctuations in the spin-density-wave phase strongly enhances
the pairing. Over a limited parameter range, a px-wave state is the dominant instability. It competes with various
states, which have mostly s±-type structures. We analyze the effect of various symmetry-allowed interactions on
the pairing in some detail.

DOI: 10.1103/PhysRevB.89.054515 PACS number(s): 74.70.Xa, 75.30.Fv, 74.20.Rp, 75.10.Lp

I. INTRODUCTION

Understanding the phase diagrams of iron-pnictide super-
conductors has been an important challenge for the condensed-
matter community in recent years [1–3]. This large class of
compounds can be subdivided into several families according
to their crystal structure. Among the most intensively studied
families are the so-called 1111 compounds RFeAsO, where
R is a rare-earth element, and the 122 compounds AFe2As2,
where A is an alkaline-earth element. The materials in these
families share important features: The undoped parent com-
pounds show an antiferromagnetic spin-density-wave (SDW)
phase below a Néel temperature TN and a structural transition
from a tetragonal to an orthorhombic phase at the same or a
slightly higher temperature. The magnetic and orthorhombic
phase is suppressed by doping or by applying pressure. Close
to where the magnetic and structural phase transitions ap-
proach zero temperature, superconductivity appears [3–9]. The
proximity of the magnetic and superconducting (SC) phases
suggests a close relationship between the two phenomena.
Hence, spin fluctuations are widely considered to provide
the pairing “glue” in these systems [10–13], although it has
also been proposed that orbital fluctuations are critical for the
superconductivity [14–16]. It has been shown that the spin-
fluctuation-mediated pairing interaction in the paramagnetic
phase of the iron pnictides is repulsive between electron and
hole Fermi pockets [10–13,17]. Therefore, sign changes in the
gap are required to satisfy the BCS gap equation, which leads
to an s±-state as the dominant SC instability.

The underdoped region of the phase diagram, close to the
disappearance of the SDW, is particularly interesting. Intu-
itively, one might expect that the SDW and superconductivity
should not coexist because both types of order compete for the
same electrons. Indeed, for fluorine-doped LaFeAsO under
ambient pressure, a strong first-order transition between the
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SDW phase and the SC phase is observed [4]. In other cases,
e.g., for fluorine-doped LaFeAsO under pressure [18] and for
CaFe2As2 [8], the two phases coexist but are thought to be
separated into different domains on a mesoscopic scale. On
the other hand, for hole-doped Ba1−xKxFe2As2 and electron-
doped Ba(Fe1−xCox)2As2, there is strong experimental evi-
dence from x-ray diffraction [5], neutron scattering [5,7,19],
NMR [20,21], and μSR [6] that the SDW, superconductivity,
and the orthorhombic distortion coexist microscopically. In
these systems, there exists a finite doping range where
upon cooling the system first undergoes the structural and
magnetic transitions and at a lower temperature becomes
superconducting. The SDW order displays reentrant behavior
in the Ba(Fe1−xCox)2As2 system, disappearing at still lower
temperature [19].

Studies based on microscopically derived Ginzburg-Landau
functionals [22] find that due to the multiband nature of
the pnictides, a conventional s-wave SC state with the same
sign of the SC gap on all Fermi pockets and the SDW
are mutually exclusive. On the other hand, an s±-state with
opposite signs of the gap on electron and hole Fermi pockets
can coexist with a SDW. These results are consistent with
mean-field calculations inside the coexistence phase which
find coexistence of the SDW with an s±-state to be much
more favorable than with a conventional s-wave state [23–25].
It has also been shown that an increasing magnitude of the
SDW amplitude can lead to the appearance of accidental
nodes of the SC gap in the coexistence regime [26], which
could explain thermal-conductivity measurements suggesting
vertical line nodes in strongly underdoped Ba1−xKxFe2As2

[27]. However, these theoretical works either assume a simple
phenomenological pairing interaction [22] or consider only
the bare electron-electron interaction [23,26] to obtain pairing
in the SDW phase. They do not consider any momentum
dependence of the interaction beyond the one resulting from
the unitary transformation into reconstructed bands in the
SDW phase. Although it is generally recognized that spin
fluctuations are crucial for the understanding of supercon-
ductivity in the paramagnetic phase, their effect in the SDW
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phase has not received a lot of attention. In particular, the
breaking of spin-rotation symmetry leads to the appearance
of propagating magnon modes, and the presence of these
modes is expected to strongly affect the pairing. It is not
covered by the approaches discussed above. In a first attempt
to include magnetic excitations in the SDW phase, Wu and
Phillips [28] studied a spin-fermion model with a single
electronic band coupled to localized spins. This approach
also gives an s± state as the leading SC instability in the
SDW phase. However, it does not take into account that the
same particles are responsible for the formation of collective
magnetic excitations and of Cooper pairs. A more realistic
description should be based on the pairing interaction due to
the exchange of spin fluctuations, calculated for a multiband
electronic model in the magnetically ordered state. Our goal is
to develop such a description.

Our approach consists of two steps: First, we obtain the
approximate effective pairing interaction in the presence of
the SDW by summing up the bubble and ladder diagrams
in the particle-hole channel that contribute to the effective pair-
ing vertex. This allows us to express the pairing interaction in
terms of random-phase-approximation (RPA) susceptibilities.
Second, we follow Berk and Schrieffer [29] by inserting the
pairing interaction into the linearized BCS gap equation to
obtain the leading SC instability. This approach has been used
extensively to study SC pairing in the paramagnetic phase of
the iron pnictides [10–12].

In the first part of the paper, Sec. II, we develop this
approach for a multiband system in the presence of a SDW.
We thereby fill the gap between earlier works that either obtain
the effective pairing interaction in the presence of SDW order
for a one-band model [30,31] or apply the RPA to multiband
systems in the absence of long-range order [10–12]. We note
already here that an important consequence of the breaking
of spin-rotation symmetry by the SDW is the mixing of
spin-singlet and spin-triplet pairing. Therefore, the naive spin
degree of freedom of the quasiparticles in the SDW phase is not
the same as the bare electron spin. We will call the former the
“quasispin.” The definition will be made more precise below.

In the rest of the paper, we apply this technique to a two-
band model with momentum-independent interactions, which
is introduced in Sec. III. Our model is inspired by two-band
models that are frequently used as minimal models for the
iron pnictides [32–35] because they reproduce central features
of the Fermi surface: They include one hole Fermi pocket
around (0,0) and two electron Fermi pockets around (π,0) and
(0,π ) in the unfolded Brillouin zone (BZ). We then study the
effect of various symmetry-allowed types of bare interactions
on the effective pairing interaction and the resulting SC gap
structure, using analytical arguments in Sec. IV and numerical
calculations in Sec. V. We pay particular attention to the
effect of the magnons in the SDW phase since they lead to
a divergence of the interband components of the transverse
RPA spin susceptibility. As predicted by previous studies
[22,23], the dominant quasi-spin-singlet state has an s±-type
structure. However, we find extended parameter ranges where a
quasi-spin-triplet px-wave state is the dominant SC instability.
We observe that an interband pair-hopping interaction is
crucial for stabilizing quasi-spin-singlet pairing. In Sec. VI,
we summarize our results and draw some conclusions.

II. METHOD

A. Multiband model with SDW order

We introduce our method for a general Hubbard-type model
with N bands in the paramagnetic phase. For simplicity, the
interactions are assumed to be momentum-independent in the
basis that diagonalizes the free Hamiltonian but are otherwise
general. The generalization to momentum-dependent inter-
actions, which may arise due to orbital degrees of freedom,
is straightforward. We set � = 1 and, in the present section,
employ the functional-integral formalism. The action for our
model reads

S =
∫ β

0
dτ

[ ∑
k,σ

∑
A

c∗
A,k,σ (∂τ + εA,k,σ ) cA,k,σ

+ 1

2

∑
k,k′,q

∑
A,B,C,D

∑
σ,σ ′

U(A,B),(C,D)(σ,σ ′)

× c∗
A,k+q,σ c∗

C,k′−q,σ ′cD,k′,σ ′cB,k,σ

]
≡ S0 + Sint, (1)

where the letters A, B, C, and D label the bands in the
paramagnetic state, and cA,k,σ etc. are Grassmann variables.

In the SDW phase above the SC transition temperature, the
SDW is the only electronic order present. The interaction term
can be written as

Sint = SSDW + �S, (2)

where SSDW is the interaction in the spin channel, which leads
to the formation of the SDW, and �S contains all the remaining
interaction terms. The spin-density interaction reads

SSDW =
∫ β

0
dτ

∑
q

∑
A,B,C,D

SAB,−q Û
spin
ABCD SCD,q, (3)

where

SAB,q = 1

2

∑
k

∑
σ,σ ′

[
c∗
A,k,σ

σσσσσ ′

2
cB,k−q,σ ′

+ c∗
B,k,σ

σσσσσ ′

2
cA,k−q,σ ′

]
(4)

and σσσ is the vector of Pauli matrices. Û
spin
ABCD are matrices

of coupling constants, which can be obtained from the
coefficients U(A,B),(C,D)(σ,σ ′) in Eq. (1). If the interactions
do not break spin-rotation invariance, we can write

Û
spin
(A,B),(C,D) = U(A,D),(C,B)(↑,↓) 1̂3, (5)

where 1̂3 is the three-dimensional unit matrix. The interaction
SSDW is decoupled by the introduction of Hubbard-Stratonovic
fields ���AB,q. We assume a finite static saddle-point value
���AB,Q = �AB êz only for q = Q, with the SDW ordering
vector Q. The saddle-point SDW order parameters �AB are
obtained from the stationarity conditions of the resulting free
energy ∂Fsp/∂�AB ≡ −β−1 ∂ ln Zsp/∂�AB = 0, where Zsp is
the partition function evaluated at the saddle-point values �AB

of the Hubbard-Stratonovic fields.
Fluctuations of the decoupling field around this saddle point

are denoted by δδδAB,q so that ���AB,q = �AB êzδq,Q + δδδAB,q.
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Sufficiently deep in the SDW phase, we can neglect the
fluctuations δδδAB,Q in the q = Q channel compared to the
saddle-point value �AB êz—this constitutes the mean-field
approximation for the order parameter. However, we keep the
fluctuations in all other channels, where the saddle-point value
is zero. With this, the action becomes

S ′ = S0 + �S

+
∑

A,B,C,D

{ ∫ β

0
dτ

∑
q �=Q

[
2δδδAB,q · SCD,−q

− δδδAB,−q
(
Û

spin
ABCD

)−1
δδδCD,q

] + 2�AB êz · SCD,Q

− �AB

[(
Û

spin
ABCD

)−1]
zz

�CD

}
. (6)

The fluctuation fields can now be integrated out again. This
gives the action in terms of the fermionic fields in the presence
of a SDW as

S ′′ = S0 +
∑

A,B,C,D

{∫ β

0
dτ

[
2�AB êz · SCD,Q

+
∑
q �=Q

SAB,−q Û
spin
ABCD SCD,q

]

− �AB

[(
Û

spin
ABCD

)−1]
zz

�CD

}
+ �S. (7)

In the thermodynamic limit, the sum over q is replaced by
an integral, for which the exclusion of the single point q = Q
does not make a difference, unless the integrand is too strongly
divergent at this point. We will show in Secs. IV and V that the
effective interactions remain finite as this point is approached.
Hence, we can drop the exclusion of q = Q without changing
the results.

The bilinear part of the action S ′′, which consists of S0 and
a contribution from the saddle point, can be diagonalized by a
unitary transformation,

cA,k+nQ,σ =
2N∑
ν=1

UA,n;ν(k,σ ) dν,k,σ , (8)

where n can be 0 or 1 and ν labels the reconstructed bands.
We have assumed here that the SDW doubles the size of the
unit cell in real space and thus halves the BZ and doubles the
number of bands. Note that the transformation factors depend
on the spin index σ . Therefore, part of the spin information
in the original basis is transferred to the band information in
the new basis. The spin index of the transformed operator
dν,k,σ thus does not contain the full spin information. We
therefore call the quantity

∑
σ,σ ′ d

∗
A,k,σ (σσσσσ ′/2) dB,k−q,σ ′ a

“quasispin.”
Combining the interactions in the SDW channel and in �S

into one term again, the action in the new basis becomes

S ′′ =
∫ β

0
dτ

[ ∑
ν

∑
k

′ ∑
σ

d∗
ν,k,σ (∂τ + Eν,k) dν,k,σ + 1

2

∑
k,k′,q

′ ∑
σ,σ ′

∑
j,k,l

∑
ν,μ,α,β

∑
A,B,C,D

U(A,B),(C,D)(σ,σ ′)

× U∗
A,|j−l|;ν(k + q,σ )UB,j ;μ(k,σ )U∗

C,|k−l|;α(k′ − q,σ ′)UD,k;β(k′,σ ′) d∗
ν,k+q,σ d∗

α,k′−q,σ ′dβ,k′,σ ′dμ,k,σ

]

− �AB

[(
Û

spin
ABCD

)−1]
zz

�CD, (9)

where Eν,k is the dispersion of the reconstructed bands and
∑′

k denotes the sum over the magnetic BZ.

B. Effective pairing interaction and the gap equation

In this section, we calculate the effective pairing interaction �ν,μ(k,k′) in the presence of the SDW but above the SC critical
temperature Tc. The pairing interaction is then inserted into the linearized gap equation [29], which can be expressed as an
eigenvalue problem with the pairing-symmetry functions γα(k) as eigenvectors:

−
∑

j

∮
Cj

dk′
‖

2πvF (k′)
�νi,μj

(k,k′) γα(k′) = λα γα(k). (10)

Herein, vF (k) = |∇kEν(k)| is the Fermi velocity. The indices i and j label the Fermi pockets and νi denotes the band that forms
the Fermi pocket with index i. The integral is performed along each Fermi pocket; since we work with a two-dimensional
model, the Fermi pockets are closed loops Cj . An eigenvalue λα � 1 implies that the system is unstable toward a SC
phase with gap symmetry given by the corresponding γα(k). We work in the regime T > Tc, where all eigenvalues are
smaller than unity. Nevertheless, the symmetry of the dominant pairing instability is given by the eigenvector to the largest
eigenvalue λmax.

Our calculation of the effective pairing interaction extends the one for the single-band Hubbard model in Ref. [30]. Since
we only consider pairing on the Fermi surface and a static SC gap, the interaction is assumed to be frequency-independent.
We evaluate an infinite RPA-type series of bubble and ladder diagrams. Interband pairing, i.e., the formation of Cooper pairs
consisting of two electrons from different bands, either involves electrons in states far from the Fermi energy or leads to
finite-momentum Cooper pairs, and is therefore excluded. Hence, the Cooper pairs always consist of two electrons from the same

054515-3



JACOB SCHMIEDT, P. M. R. BRYDON, AND CARSTEN TIMM PHYSICAL REVIEW B 89, 054515 (2014)

FIG. 1. Diagrammatic representations of the matrix elements of (a) Û z and (b) Û+−. The two lowest-order contributions to the RPA series
for the effective pairing interactions for pairs with vanishing total quasispin sz = 0 are shown in (c) for longitudinal particle-hole fluctuations
and in (d) for transverse fluctuations. The dotted lines represent the transformation factors U attached to the external legs.

band. The summation yields two terms that enter the quartic part of the effective pairing Hamiltonian in addition to the bare
interaction:

H eff
pair = − 1

N

∑
ν,μ

∑
σ,σ ′

∑
k,k′

′ ∑
iωn,iω′

n

∑
A,B,C,D

∑
j,k,n,m

[Û zχ̂ z(k − k′,iωn − iω′
n) Û z](A,B,n,σ ),(C,D,m,σ ′)

× U∗
A,|j−n|;ν(k′,σ )U∗

C,|k−m|;ν(−k′,σ ′)UD,k;μ(−k,σ ′)UB,j ;μ(k,σ ) d
†
ν,k′,σ d

†
ν,−k′,σ ′dμ,−k,σ ′dμ,k,σ

− 1

N

∑
ν,μ

∑
σ,σ ′

∑
k,k′

′ ∑
iωn,iω′

n

∑
A,B,C,D

∑
j,k,n,m

[Û+−χ̂+−(k − k′,iωn − iω′
n) Û+−](A,B,n,σ ),(C,D,m,σ ′)δσ,−σ ′

× U∗
A,|j−n|;ν(k′,σ )U∗

C,|k−m|;ν(−k′,σ ′)UD,k;μ(−k,σ )UB,j ;μ(k,σ ′) d
†
ν,k′,σ d

†
ν,−k′,σ ′dμ,−k,σ dμ,k,σ ′

+ 1

N

∑
ν,μ

∑
σ,σ ′

∑
k,k′

′ ∑
A,B,C,D

∑
j,k,l

U(A,B),(C,D)(σ,σ ′)

× U∗
A,|j−l|;ν(k′,σ )U∗

C,|k−l|;ν(−k′,σ ′)UD,−k;α(−k,σ ′)UB,j ;μ(k,σ ) d
†
ν,k′,σ d

†
ν,−k′,σ ′dμ,−k,σ ′dμ,k,σ (11)

≡ 1

N

∑
ν,μ

∑
σ,σ ′

∑
k,k′

′ ∑
iωn,iω′

n

V z
ν,μ;σ,σ ′(k,k′,iωn − iω′

n) d
†
ν,k′,σ d

†
ν,−k′,σ ′dμ,−k,σ ′dμ,k,σ

+ 1

N

∑
ν,μ

∑
σ

∑
k,k′

′ ∑
iωn,iω′

n

V +−
ν,μ;σ,−σ (k,k′,iωn − iω′

n) d
†
ν,k′,σ d

†
ν,−k′,−σ dμ,−k,σ dμ,k,−σ

+ 1

N

∑
ν,μ

∑
σ,σ ′

∑
k,k′

′
V 0

ν,μ;σ,σ ′ (k,k′) d
†
ν,k′,σ d

†
ν,−k′,σ ′dμ,−k,σ ′dμ,k,σ . (12)

Herein, the RPA susceptibilities take the well-known form

χ̂ z(q,iqn) = χ̂ z(0)(q,iqn)[1̂ + Û zχ̂ z(0)(q,iqn)]−1, (13)

χ̂+−(q,iqn) = χ̂+−(0)(q,iqn)[1̂ − Û+−χ̂+−(0)(q,iqn)]−1.

(14)

The interaction matrices appearing in the effective interaction
have the components

Uz
(A,B,n,σ ),(C,D,m,σ ′) = U(A,B),(C,D)(σ,σ ′) δn,m

−U(A,D),(C,B)(σ,σ ′) δn,mδσ,σ ′ , (15)

U+−
(A,B,n,σ ),(C,D,m,σ ′) = U(A,D),(C,B)(σ,σ ′) δn,mδσ,−σ ′ . (16)

The diagrammatic representation of the two vertices described
by these interaction matrices is shown in Figs. 1(a) and 1(b).
V̂ z and V̂ +− can then be understood as two separate series

of diagrams that contain either Û z or Û+− but are otherwise
identical except for the spin indices. The two lowest-order
diagrams in these series contributing to pairing with opposite
quasispins are shown in Figs. 1(c) and 1(d).

The components of the bare susceptibility matrices are
given by

χ
z(0)
(A,B,n,σ ),(C,D,m,σ ′)(q,iqn)

≡ χ
z(0)
(A,B,σ ),(C,D,σ ′)(q + nQ,iqn; q + mQ,iqn)

≡ − 1

βV

∑
k,iωn

′ ∑
i,j,ν,μ

G(0)
ν (k − q,iωn − iqn)G(0)

μ (k,iωn)

×U∗
A,i;μ(k,σ )UB,|i−n|;ν(k − q,σ ′)

×U∗
C,|j−m|;ν(k − q,σ ′)UD,j ;ν(k,σ ) δσ,σ ′ (17)
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and

χ
+−(0)
(A,B,n,σ ),(C,D,m,σ ′)(q,iqn)

≡ χ
+−(0)
(A,B,σ ),(C,D,σ ′)(q + nQ,iqn; q + mQ,iqn)

≡ − 1

βV

∑
k,iωn

′ ∑
i,j,ν,μ

G(0)
ν (k − q,iωn − iqn)G(0)

μ (k,iωn)

×U∗
A,i;μ(k,σ )UB,|i−n|;ν(k − q,σ ′)

×U∗
C,|j−m|;ν(k − q,σ ′)UD,j ;ν(k,σ ) δσ,−σ ′ , (18)

where G(0)
ν (k,iωn) = (−iωn + Eν,k)−1 is the bare elec-

tronic Green function in the new basis. The suscep-
tibility χ̂ z(0) describes fluctuations with spin projec-
tion sz = 0 and consists of a longitudinal spin and a

charge contribution. χ̂+−(0) describes transverse spin fluctua-
tions with sz = ±1. Note that the SDW formation does not mix
states with different sz since the z component of spin remains
conserved. Thus in this context we do not need to distinguish
between spins and quasispins.

The superconducting order parameter in the SDW phase is a
particle-particle expectation value of the new d quasiparticles,
which are connected to the original electrons by the spin-
dependent transformation in Eq. (8). As noted above, the
quasispin of the d quasiparticles is not the same as the spin
of the original electrons. Indeed, spin-singlet and spin-triplet
states with sz = 0 are mixed in the SDW phase. This is clearly
seen if, for example, the singlet order parameter in the SDW
phase is expressed in terms of the original basis:

〈d†
ν,k,σ d

†
ν,−k,−σ − d

†
ν,k,−σ d

†
ν,−k,σ 〉 =

∑
A,m

∑
B,n

{U∗
A,m;ν(k,σ )U∗

B,n;ν(−k, − σ )〈c†A,k+mQ,σ c
†
B,−k+nQ,−σ 〉

−U∗
A,m;ν(k, − σ )U∗

B,n;ν(−k,σ )〈c†A,k+mQ,−σ c
†
B,−k+nQ,σ 〉}. (19)

We see that an expectation value 〈d†
ν,k,σ d

†
ν,−k,−σ − d

†
ν,k,−σ d

†
ν,−k,σ 〉, which is odd under quasispin inversion σ → −σ , contains

expectation values 〈c†A,k+mQ,σ c
†
B,−k+nQ,−σ + c

†
A,k+mQ,−σ c

†
B,−k+nQ,σ 〉 that are even in spin if U∗

A,m;ν(k,σ )U∗
B,n;ν(−k, − σ ) �=

U∗
A,m;ν(k, − σ )U∗

B,n;ν(−k,σ ). Analogously, a triplet order parameter can contain expectation values with singlet symmetry in the
original basis. However, in the new basis it is still reasonable to distinguish between pairing states that are odd in quasispin σ

and therefore even in k, and those that are even in σ and odd in k. In the following, we will refer to them as quasi-spin-singlet
and quasi-spin-triplet states, respectively.

Since spin-rotation symmetry is broken in the SDW phase, quasi-spin-triplet pairing with sz = ±1 and with sz = 0 is not
equivalent and the two cases must be considered separately. However, the two triplet states with |sz| = 1 are still degenerate.
(Also, recall that sz = ±1 and sz = 0 states are not mixed by the SDW formation.)

The pairing interactions in the various SC channels can be constructed from the effective interactions in Eq. (12). Recall
that we take the pairing interactions to be frequency-independent. Hence, we take the static limit of the susceptibilities in the
following. In the static limit, V z

ν,μ;σ,σ ′ , V +−
ν,μ;σ,σ ′ , and V 0

ν,μ;σ,σ ′ are symmetric under interchange of σ and σ ′. Therefore, we can
decompose the pairing interaction, Eq. (12), into a singlet and two triplet channels in the standard manner [36],

H eff
pair = 1

2N

∑
k,k′

′ ∑
ν,μ

∑
σ

{[
V 0

ν,μ;σ,−σ (k,k′) + V z
ν,μ;σ,−σ (k,k′) − V +−

ν,μ;σ,−σ (k,k′)
] + [k′ → −k′]

}

× (d†
ν,k′,σ d

†
ν,−k′,−σ − d

†
ν,k′,−σ d

†
ν,−k′,σ )(dμ,−k,−σ dμ,k,σ − dμ,−k,σ dμ,k,−σ )

+ 1

2N

∑
k,k′

′ ∑
ν,μ

∑
σ

{[
V z

ν,μ;σ,−σ (k,k′) + V +−
ν,μ;σ,−σ (k,k′)

] − [k′ → −k′]
}

× (d†
ν,k′,σ d

†
ν,−k′,−σ + d

†
ν,k′,−σ d

†
ν,−k′,σ )(dμ,−k,−σ dμ,k,σ + dμ,−k,σ dμ,k,−σ )

+ 1

2N

∑
k,k′

′ ∑
ν,μ

∑
σ

{
V z

ν,μ;σ,σ (k,k′) − [k′ → −k′]
}
d
†
ν,k′,σ d

†
ν,−k′,σ dμ,−k,σ dμ,k,σ

≡ 1

N

∑
k,k′

′ ∑
ν,μ

∑
σ

�s
ν,μ(k,k′) (d†

ν,k′,σ d
†
ν,−k′,−σ − d

†
ν,k′,−σ d

†
ν,−k′,σ )(dμ,−k,−σ dμ,k,σ − dμ,−k,σ dμ,k,−σ )

+ 1

N

∑
k,k′

′ ∑
ν,μ

∑
σ

�t0
ν,μ(k,k′) (d†

ν,k′,σ d
†
ν,−k′,−σ + d

†
ν,k′,−σ d

†
ν,−k′,σ )(dμ,−k,−σ dμ,k,σ + dμ,−k,σ dμ,k,−σ )

+ 1

N

∑
k,k′

′ ∑
ν,μ

∑
σ

�t1
ν,μ(k,k′) d

†
ν,k′,σ d

†
ν,−k′,σ dμ,−k,σ dμ,k,σ , (20)

where [k′ → −k′] represents the preceding terms with k′
replaced by −k′.

To conclude this section, we briefly comment on the relation
of our approach to two other methods that are used to obtain
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effective pairing interactions from repulsive bare interactions.
The effective interactions we obtain are closely related to
the fluctuation exchange approximation (FLEX) [36]. In the
FLEX, effective two-particle vertices are determined by taking
the derivative of a generating functional, which consists of the
bare vertices and dressed Green functions, with respect to these
Green functions. If only particle-hole processes are considered,
this yields expressions for the effective interactions that have
the same form as those in Eq. (20), but with the susceptibilities
containing the dressed Green functions. In analogy to Ref. [10],
our approach can be understood as an additional approximation
on top of the FLEX, consisting of replacing dressed Green
functions by bare ones. In the paramagnetic limit, our effective
interactions recover the form of the FLEX equations for a
multiband system given in Ref. [37], with dressed Green
functions replaced by bare ones. Another related method is
referred to as the perturbative renormalization group (RG).
Here, the diagrams that contribute to the effective pairing
interaction are only considered up to second order and at
temperature T = 0. The condition that one eigenvalue of the
gap equation reaches unity under the RG flow yields an energy
scale that is identified with Tc. This method has been used to
study the pairing in various ordered phases of the single-band
Hubbard model [38]. It is exact in the limit of infinitesimal
interactions. However, in the pnictides the interaction strengths
are of the same order as the bandwidth so that an approximation
including higher-order diagrams is desirable.

III. TWO-BAND MODEL

To study the effect of an effective pairing interaction medi-
ated by spin and charge fluctuations in a concrete multiband
system, we have to specify the band structure and the bare
interactions. In the following, we will use a two-band model
that captures some important features of many iron pnictides:
There is a nearly circular hole pocket in the center of the
unfolded BZ and two approximately elliptical electron pockets
around (π,0) and (0,π ). We divide the Hamiltonian into
noninteracting and interacting components, H = H0 + Hint.
The noninteracting bands are described by

H0 =
∑

k

∑
σ

(
εc

kc
†
kσ ckσ + ε

f

k f
†
kσ fkσ

)
, (21)

where c
†
kσ (f †

kσ ) creates a spin-σ electron with mo-
mentum k in the holelike (electronlike) band. Neglect-
ing the small orthorhombic distortion, the dispersions are
[35] εc

k = εc + 2tc (cos kxa + cos kya) − μ and ε
f

k = εf +
4tf cos kxa cos kya − tf ξe (cos kxa + cos kya) − μ, where a

is the Fe-Fe bond length and μ is the chemical potential. In
units of tc, we set tf = tc, εc = −3.5tc, and εf = 3.0tc. The
parameter ξe determines the ellipticity of the electron pockets.
Here, we choose ξe = 1, which corresponds to moderate
ellipticity. Figure 2(a) shows the resulting Fermi surface for
an electron doping level of δn = 0.085 relative to half-filling.

Following Ref. [32], we include four on-site interaction
terms in Hint: the intraband Coulomb repulsion, which we set
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FIG. 2. (Color online) Fermi surface for our model (a) in the
paramagnetic phase and (b) in the SDW phase with a SDW gap of
� = 0.055tc, which corresponds to a temperature of kBT = 0.06tc.
The doping has been set to δn = 0.085. In the paramagnetic phase,
there is one hole pocket [light green (light gray)] and two electron
pockets [blue (dark gray)]. In the SDW phase, there are two hole
pockets [light green (light gray)] and three electron pockets [blue
(dark gray)]. The letters and numbers specify the bands that form the
corresponding Fermi pockets.

to be equal for both bands,

H1 = g1

V

∑
k,k′,q

(c†k+q↑c
†
k′−q↓ck′↓ck↑ + f

†
k+q↑f

†
k′−q↓fk′↓fk↑),

(22)

the interband Coulomb repulsion

Hcf = gcf

V

∑
k,k′,q

∑
σ,σ ′

c
†
k+qσ f

†
k′−qσ ′fk′σ ′ckσ , (23)

and two types of correlated interband-hopping transitions,

H2a = g2a

V

∑
k,k′,q

(c†k+q↑c
†
k′−q↓fk′↓fk↑ + H.c.), (24)

H2b = g2b

V

∑
k,k′,q

∑
σ,σ ′

c
†
k+qσ f

†
k′−qσ ′ck′σ ′fkσ . (25)

With these interactions, the interaction matrix in Eq. (1) takes
the form

Û (σ,σ ′)

= 1

V

⎛
⎜⎜⎜⎝

g1δσ,−σ ′ 0 0 gcf

0 g2aδσ,−σ ′ g2b 0

0 g2b g2aδσ,−σ ′ 0

gcf 0 0 g1δσ,−σ ′

⎞
⎟⎟⎟⎠. (26)

Only two of the interactions are responsible for the formation
of a SDW gap so that a SDW interaction strength gSDW ≡
gcf + g2a can be defined [39].

We have previously shown that this model exhibits a robust
SDW phase with ordering vector Q = (π,0) or (0,π ) for an
extended doping range around δn = 0.085 [35]. Decoupling
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within a mean-field approximation, we obtain the Hamiltonian

HMF =
∑
k,σ

′
(c†kσ ,c

†
k+Qσ ,f

†
kσ ,f

†
k+Qσ )

×

⎛
⎜⎜⎜⎜⎝

εc
k 0 0 σ�

0 εc
k+Q σ� 0

0 σ� ε
f

k 0

σ� 0 0 ε
f

k+Q

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ckσ

ck+Qσ

fkσ

fk+Qσ

⎞
⎟⎟⎟⎠ , (27)

where

� = −gSDW

2V

∑
k,σ

σ 〈f †
kσ ck+Qσ 〉MF (28)

is the mean-field SDW gap and 〈· · · 〉MF indicates the thermal
average calculated with HMF. The mean-field Hamiltonian is
diagonalized by a unitary matrix of the form

Û(k,σ ) =

⎛
⎜⎜⎜⎝

−σu1,k 0 0 −v1,k

0 −σu2,k −v2,k 0

0 v2,k −σu2,k 0

v1,k 0 0 −σu1,k

⎞
⎟⎟⎟⎠ ,

(29)

with the transformation factors

u1,k =
ε−
f c(k) −

√
ε−
f c(k)2 + �2

√
�2 + (ε−

f c(k) −
√

ε−
f c(k)2 + �2)2

, (30)

v1,k = �√
�2 + (ε−

f c(k) −
√

ε−
f c(k)2 + �2)2

, (31)

and u2,k = u1,k+Q, v2,k = v1,k+Q. The reconstructed bands are
given by

E1(k) = ε+
f c(k) +

√
ε−
f c(k)2 + �2, (32)

E2(k) = ε+
cf (k) +

√
ε−
cf (k)2 + �2, (33)

E3(k) = ε+
cf (k) −

√
ε−
cf (k)2 + �2, (34)

E4(k) = ε+
f c(k) −

√
ε−
f c(k)2 + �2, (35)

where ε±
ij (k) = (εi

k+Q ± ε
j

k)/2 and i and j can be c or f . The
resulting reconstructed Fermi surface is shown in Fig. 2(b). In
the SDW phase, the hole Fermi pocket and the electron pocket
around Q = (π,0), which is strongly nested with the hole
pocket, reconstruct to form four small banana-shaped pockets.
Two of these are electronlike and two are holelike. The electron
pocket around (0,π ) is only weakly affected by the SDW.

IV. ANALYSIS OF THE EFFECTIVE INTERACTION

Even the minimal model introduced above cannot be solved
analytically. The matrices χ̂ z, χ̂+−, �̂s , �̂t0 , and �̂t1 each
contain 16 × 16 components, and for nonparabolic bands it is

impossible to analytically calculate the susceptibilities appear-
ing in the effective interactions. Nevertheless, it is possible to
draw some conclusions about the effective interactions based
on analytical considerations, which helps to understand the
numerical results presented in Sec. V.

The presence of the Goldstone magnon mode in the SDW
phase implies divergent static transverse spin susceptibilities.
Specifically, the components χ+−

(c,f,1,↑),(c,f,1,↓), χ
+−
(c,f,1,↑),(f,c,1,↓),

χ+−
(f,c,1,↑),(c,f,1,↓), and χ+−

(f,c,1,↑),(f,c,1,↓), and their sum, diverge
for q → 0 in the magnetic BZ. This begs the question of
whether these components lead to a singular contribution
to the effective pairing interaction. We first note that this
question only pertains to the singlet and sz = 0 triplet pairing
interactions, �s(k,k′) and �t0 (k,k′), respectively, as only
these terms include the contribution V +−

ν,μ;σ,−σ (k − k′) from
the transverse susceptibilities. Furthermore, a possible diver-
gence of these interactions can only occur at k = ±k′. At these
points, the contribution of the divergent susceptibilities to the
interaction is proportional to∑

A �=B

{[Û+−χ̂+−(0) Û+−](A,B,1,↓),(A,B,1,↑)

− [Û+−χ̂+−(0) Û+−](A,B,1,↓),(B,A,1,↑)}. (36)

For the special case gcf �= 0 and g1 = g2a = g2b = 0, this is
in turn proportional to the difference χ+−

(A,B,1,↑),(A,B,1,↓)(0) −
χ+−

(A,B,1,↑),(B,A,1,↓)(0), where A �= B. Using the RPA equations
(14), this difference can be rewritten as

χ+−
(A,B,1,↑),(A,B,1,↓)(0) − χ+−

(A,B,1,↑),(B,A,1,↓)(0)

= χ
+−(0)
(A,B,1,↑),(A,B,1,↓)(0) − χ

+−(0)
(A,B,1,↑),(B,A,1,↓)(0)

1 − gcf

[
χ

+−(0)
(A,B,1,↑),(A,B,1,↓)(0) − χ

+−(0)
(A,B,1,↑),(B,A,1,↓)(0)

] .

(37)

The denominator of Eq. (37) is nonzero, however, as the
individual interband susceptibilities and their sum diverge if

χ
+−(0)
(A,B,1,↑),(B,A,1,↓)(0) + χ

+−(0)
(A,B,1,↑),(A,B,1,↓)(0) = 1

gcf

. (38)

Since the denominator contains the difference instead of the
sum, we hence conclude that the contribution of Eq. (36)
to the effective interaction remains finite. We note that a
nonvanishing contribution to the interaction does not violate
Adler’s theorem, which states that the vertex function describ-
ing the coupling of electrons to a Goldstone mode vanishes
for zero transferred momentum [40,41], since a divergence of
the magnon propagator compensates for the vanishing vertex
function. A similar compensation has been found for the
single-band Hubbard model applied to cuprates [30,31,42].

In the general case in which all of the interaction potentials
are allowed to be nonzero, we have found numerically that the
pairing interaction remains finite at k = k′ and is a smooth
function of the momenta. In Fig. 3, we plot V +−

ν,μ;σ,−σ (k − k′)
for k close to k′ and k′ lying on one of the banana-shaped
electron pockets for various combinations of the interaction
parameters. We see that the effective interaction is indeed a
smooth function of momentum. This also justifies dropping
the exclusion of the point q = Q from the momentum sums in
Sec. II A.
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FIG. 3. (Color online) Effective pairing interaction
V +−

ν,μ;σ,−σ (k − k′) around the banana-shaped electron pocket
due to transverse spin fluctuations for small k − k′ as a function
of the polar angle φk′ of k′, which is shown in the inset. The
second momentum k is indicated by a black cross. We show two
curves for each combination of the bare interaction strengths, one
corresponding to the inner and the other to the outer part of the
pocket.

V. NUMERICAL RESULTS

In this section, we present numerical results for the SC gap
structure and its dependence on the interactions gcf , g1, g2a ,
and g2b. For the numerical solution of the mean-field equations
for the SDW order parameters �, we use a 400 × 400 k-point
mesh in the paramagnetic BZ. The calculation of the bare
susceptibilities is performed using a 100 × 100 k-point mesh.
Finally, to solve the SC gap equation (10), we discretize the
Fermi surface into 158 points. A total of 128 of these points
are chosen on the small banana-shaped Fermi pockets because
the calculations are much more sensitive to changes in the
number of k points on these strongly reconstructed pockets.
The doping is chosen as δn = 0.085. The SDW interaction is
set to gSDW = 3.49tc, which gives an ordering temperature of
kBTN ≈ 0.065tc and a reasonable ratio of the zero-temperature
SDW gap to the bandwidth [35]. The effective pairing
interaction is calculated for a temperature of kBT = 0.06tc.

A. Interband Coulomb repulsion gcf and interband hopping g2a

We first discuss the case in which the interactions that
do not support a SDW vanish, and so we set g1 = g2b = 0
while fixing the sum of the Coulomb repulsion gcf and the
pair-hopping amplitude g2a to be gcf + g2a = gSDW = 3.49tc.
Since a negative value of g2a leads to a charge-density wave
instead of a SDW state [33,39], we only consider g2a � 0.

In Fig. 4, we plot the largest eigenvalues obtained from
the SC gap equation (10) in the quasi-spin-singlet and -triplet
channels as functions of the ratio g2a/gcf . For very small pair-
hopping amplitudes, the triplet pairing dominates. Although
the strict degeneracy of the triplet states with sz = 0 and
1 is broken, they are nearly degenerate over the complete
parameter range and exhibit the same gap structure. The gap

FIG. 4. (Color online) Largest eigenvalues of the linearized gap
equation in the singlet and triplet channels as functions of g2a/gcf .
We have set g1 = g2b = 0. The inset shows the largest eigenvalues
obtained if only longitudinal fluctuations and the bare interaction are
considered.

structure of the leading triplet state is shown in Fig. 5(a). It
has the symmetry of a px-wave state with most of the gap
weight on the small electron pockets. Upon increasing the
ratio g2a/gcf , the eigenvalues belonging to the sz = 0 triplet
states decrease, while the eigenvalues for the singlet states
increase. At g2a/gcf ≈ 0.013, a singlet state becomes the
leading SC instability. The gap structure of the leading singlet
state is shown in Fig. 5(b); it has the structure of the s±-type
state predicted earlier [22,23,34]. Below g2a/gcf ≈ 0.004 and
above g2a/gcf ≈ 0.016, the largest eigenvalue exceeds unity.
This means that the system becomes unstable toward a SC
state. While this formally contradicts the assumption of a
normal conducting state made in the derivation, the eigenvector
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FIG. 5. (Color online) Gap structure of (a) the dominant sz = 0
triplet state and (b) the dominant singlet state for g2a/gcf = 0.016.
We have set g1 = g2b = 0.
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FIG. 6. (Color online) Effective pairing interaction on the Fermi surface as a function of k′. The value of the momentum k is indicated
by the black cross and the first band index is set to ν = 1. From left to right we plot the interaction on the Fermi surface for g2a/gcf = 0,
g2a/gcf = 0.009, and g2a/gcf = 0.016 in (a) the singlet channel and (b) the sz = 0 triplet channel. We have set g1 = g2b = 0.

to the largest eigenvalue still gives a good indication of the
leading instability. Since the predicted SC critical temperature
becomes much higher than experimentally observed values for
g2a/gcf � 0.016, we exclude this parameter range.

The inset in Fig. 4 shows the evolution of the largest
eigenvalues as functions of g2a/gcf when the transverse
contribution to the interaction is set to zero. In this case, the
sz = 0 triplet pairing channel is most strongly reduced while
the sz = 1 triplet is completely unaffected because it originates
only from the longitudinal fluctuations. The singlet channel
lies in between these extremes. If only the bare interactions
are considered, the eigenvalues in the triplet channels are
strictly zero while the largest eigenvalue in the singlet channel
is proportional to g2a/gcf and is reduced by a factor of about

10−2 compared to the calculation with the full interaction. This
shows that the spin and charge fluctuations strongly promote
the pairing in the SDW phase.

The crossover from px-wave to s±-wave pairing can be un-
derstood from the evolution of the effective pairing interaction
with g2a/gcf , which is shown in Fig. 6 as a function of k′, for
k lying on the inner part of the right banana-shaped electron
pocket. The interaction is peaked at k′ = ±k. This peak
extends to the other side of the banana-shaped electron pocket,
where it takes the opposite sign due to the SDW transformation
factors multiplying the susceptibilities. The peak appears
in the transverse contribution to the pairing interaction and
therefore enters with opposite signs in the singlet and sz = 0
triplet channels; see Eq. (20). For g2a/gcf = 0, the peak is
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strongly negative (positive) and therefore attractive (repulsive)
for k′ ≈ k (k′ ≈ −k) in the triplet channel, which supports a
sign change of the gap under k → −k and therefore favors
a p-wave state. At the same time, the interaction with the
other Fermi pockets is weak and thus does not suppress the
p-wave state. Upon increasing g2a/gcf , the repulsive peak in
the singlet interaction at k′ ≈ ±k is suppressed, while the
attractive interaction for k′ on the other (outer) side of the
banana-shaped electron pocket remains strong; see Fig. 6(a).
Overall, this leads to a stronger attractive pairing interaction
between the two small electron pockets, which favors a singlet
state. The repulsion between the small electron and hole
pockets then stabilizes an s±-type structure. In contrast, there
is little change in the form of the triplet interaction with
increasing g2a/gcf , although the strength is overall slightly
reduced; see Fig. 6(b).

In Fig. 4, we also plot smaller eigenvalues in each channel.
In the sz = 0 triplet channel, the second largest eigenvalue is
clearly separated from the largest eigenvalue and corresponds
to a py-wave gap with a line node along the kx axis. In
the singlet channel, the three largest eigenvalues are nearly
degenerate for g2a/gcf = 0, but at finite g2a/gcf ≈ 0.004
they split up. The second and third eigenvalues are nearly
degenerate for the interval 0.004 � g2a/gcf � 0.011. For
larger g2a/gcf , the second largest eigenvalue has a dxy-type
structure with nodes along the kx and ky axes.

B. Intraband Coulomb repulsion g1

We next discuss the intraband Coulomb repulsion with
interaction strength g1. This term does not affect the SDW
order at the mean-field level but can change the SC pairing.
We choose the ratio g2a/gcf = 0.016, for which we have found
an s±-type singlet state as the leading SC instability, and we set
g2b = 0. According to Ref. [32], g1 ≈ gcf holds if the electron
and hole pockets have the same shape. Since we assume weakly
elliptical electron pockets, we allow for a slightly larger g1

and restrict ourselves to the range of 0 � g1 � 3.5tc in the
following.

In Fig. 7 we plot the largest eigenvalues from the SC gap
equation in the singlet and triplet channels as functions of g1.
The figure shows that a finite g1 leads to the suppression of
singlet pairing, while the quasi-spin-triplet states are hardly
affected. Consequently, at g1 ≈ 0.1tc the triplet states become
the dominant pairing instabilities again. The gap structure
of the dominant triplet state is still the px-wave depicted in
Fig. 5(a). The suppression of the singlet state can be understood
from the interaction in the singlet channel, which we plot in
Fig. 8(a) for g1 = 2tc: The intrapocket interaction is enhanced
by the finite g1, and the interaction between the electron and
the hole pockets becomes less strongly repulsive. Also, the
interaction between the small electron pocket and the large
electron pocket becomes weakly repulsive. These tendencies
disfavor a sign change of the SC gap between electron and
hole pockets and hence suppress the eigenvalue corresponding
to s±-type pairing.

The intraband Coulomb repulsion also significantly modi-
fies the dominant singlet pairing state. Already for moderate
g1 ≈ 0.5tc, the s±-type state develops accidental nodes on the
small electron pockets, as shown in Fig. 9(a). At g1 ≈ 0.7tc,

FIG. 7. (Color online) Largest eigenvalues of the linearized gap
equation as functions of the intraband Coulomb interaction g1. The
ratio of the pair hopping and the interband repulsion has been set to
g2a/gcf = 0.016 with gSDW = 3.49tc and g2b = 0.

the two largest eigenvalues in the quasi-spin-singlet channel
cross, and a state with nodes along the kx and ky axes becomes
the dominant singlet state. The gap is plotted in Fig. 9(b).
After the crossing, when the s±-type state is subdominant, it
assumes the structure shown in Fig. 9(c). The two largest eigen-
values in the singlet channel remain very close to each other
up to g1 = 3.5tc. The appearance of nodes in the gap can be at-
tributed to the increase of the intraband repulsion seen in Fig. 8.

Figure 10 shows the evolution of the eigenvalues corre-
sponding to the singlet and triplet channels as functions of
g2a/gcf for g1 = 3.49tc = gSDW. It becomes clear that even
when the intraband Coulomb repulsion g1 takes a rather large

FIG. 8. (Color online) Effective pairing interaction on the Fermi
surface in the singlet channel as a function of k′ for (a) g2a/gcf =
0.016, g1 = 2tc, and g2b = 0 and (b) g2a/gcf = 0.016, g1 = 0, and
g2b = 2tc. The value of momentum k is indicated by the black cross
and the first band index is set to ν = 1.
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FIG. 9. (Color online) Gap structure of (a) the dominant singlet state for g2a/gcf = 0.013, g1 = 0.77tc, and g2b = 0; (b) the dominant singlet
state for g2a/gcf = 0.022, g1 = 3.49tc, and g2b = 0; and (c) the subdominant singlet state for g2a/gcf = 0.022, g1 = 3.49tc, and g2b = 0.

value, a small g2a is sufficient to make a quasi-spin-singlet state
the dominant SC instability. The leading singlet state then has
the structure shown in Fig. 9(b). It is closely followed by a state
with the gap depicted in Fig. 9(c), illustrating the tendency
of the intraband repulsion to favor nodal gap structures. The
close proximity of the eigenvalues for the two different gap
structures suggests that small changes in the model, e.g., in the
band structure, may change the order of the two eigenvalues.

C. Interband-hopping transitions g2b

Finally, we study the effect of the second type of correlated
interband-hopping transition with coupling constant g2b, given
in Eq. (25). We take g2a/gcf = 0.013 as in Sec. V B, set
g1 = 0, and vary g2b. As with the correlated pair hopping
g2a , the SDW order is only stable for non-negative values of

FIG. 10. (Color online) Largest eigenvalues of the linearized gap
equation as functions of g2a/gcf . The intraband repulsion has been
set to g1 = 3.49tc and g2b = 0.

g2b [33,39]. Furthermore, it has been pointed out that for the
iron pnictides, the inequality g2b < gcf is most likely satisfied
[32]. Therefore, we only consider the interval 0 � g2b < gcf =
3.445tc.

In Fig. 11 we plot the largest eigenvalues from the SC gap
equation in the singlet and triplet channels as functions of
g2b. This shows that a finite g2b breaks the near-degeneracy of
the triplet states with sz = 0 and |sz| = 1. We also find that a
nonzero g2b leads to a strong suppression of the s±-type state:
Almost immediately upon switching on g2b, the px-wave state
becomes the dominant SC state again. Similarly to the effect of
the intraband repulsion g1, we see from Fig. 8(b) that g2b > 0
leads to a reduction of the repulsion between the small electron
and hole pockets, hence reducing the tendency toward a sign
change between these pockets and therefore suppressing the
s±-type pairing. At g2b ≈ 2.1tc, the two largest eigenvalues in

FIG. 11. (Color online) Largest eigenvalues of the linearized gap
equation in the singlet and triplet channels, as functions of g2b. The
ratio of the pair hopping and the interband repulsion has been set to
g2a/gcf = 0.013, with gSDW = 3.49tc and g1 = 0.
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the singlet channel cross and a state with the structure shown
in Fig. 9(b) becomes the dominant singlet state again.

VI. SUMMARY AND CONCLUSIONS

We have presented a method that allows us to derive
an effective pairing interaction for a multiband system in a
symmetry-broken SDW phase. Our approach is to decouple
an interacting multiband system with general two-particle
interactions in the spin channel and to apply a saddle-point
approximation to describe the SDW phase. The remaining fluc-
tuations in the decoupling field are integrated out to obtain the
quasiparticle interactions in the ordered phase. In the presence
of the SDW, we calculate the susceptibilities for transverse and
longitudinal particle-hole excitations within the RPA. These
susceptibilities determine the effective pairing interaction in
the quasi-spin-singlet and quasi-spin-triplet channels. The
pairing interactions are then inserted into the linearized gap
equation in order to find the leading SC instability. This
approach allows us to study the effect of spin and charge
fluctuations on the pairing in the SDW phase. In particular, it is
an unbiased tool for finding the gap structure of the leading SC
instability since the gap structure is obtained as an eigenvector
from the gap equation. In this respect, our approach is advanta-
geous compared to Ginzburg-Landau calculations, which only
allow for a limited number of different gap structures.

We have applied this approach to a two-band minimal model
for iron pnictides. The effective pairing interaction has been
calculated for various combinations of four symmetry-allowed
types of interactions: interband and intraband Coulomb repul-
sion and two types of correlated interband-hopping terms. Our
results show that there is a complex interplay between the
bare interactions, the susceptibilities, and the transformation
factors that arises from the folding of the BZ in the SDW
phase. The description of this interplay is the key difference of
our approach compared to previous microscopic approaches to
describe the coexistence region in the pnictide phase diagram.
The effect of the electron-electron interactions on the pairing is
not included in a spin-fermion model [28]. Decoupling the bare
interaction within a mean-field approximation [23–25] ne-
glects the crucial role of fluctuations in promoting the pairing.

Note that although the interband components of the
transverse spin susceptibility diverge, the magnons do not
lead to a divergence in the effective pairing interaction. The
fluctuation-enhanced interaction leads to the appearance of a
quasi-spin-triplet px-wave pairing state that is not found if
only the bare interactions are considered. The px-wave state
competes with the quasi-spin-singlet states, which are much
more sensitive to the strengths of the bare interactions. In
particular, a finite pair-hopping amplitude g2a is crucial for the
formation of singlet pairs, and the singlet eigenvalues react
sensitively to changes in the ratio g2a/gcf . We expect that
this competition can be found also in the spin-fermion model
proposed by Wu and Phillips [28] because the key features of

the spin susceptibility are present in both models. However,
unlike the itinerant picture, the spin-fermion model is based on
the assumption of localized spins. Hence, the physical basis of
the two models is quite different and there is no direct mapping
between the interaction strengths in our Hamiltonian and the
parameters of the spin-fermion model.

Although g1 and g2b suppress the singlet pairing, the
parameter range in which a triplet state is the dominant
instability is limited, as a small increase in g2a/gcf always
leads to a dominant singlet state. For g1 = g2b = 0 and
g2a/gcf � 0.005, the singlet channel is clearly dominated by a
nodeless s±-type state suggested to be the most likely pairing
state in earlier works [22,23,34]. However, if either g1 or g2b

is sufficiently large, nodal gap structures are favored. The
dominant state for large g1 or g2b has nodes along the kx

and ky axes.
In conclusion, we find that a nodeless s±-type singlet

pairing state, several nodal singlet states, and a px-wave triplet
state can be the leading SC instability in the SDW phase
of a two-band model for the iron pnictides. The dominant
instability depends sensitively on the four coupling strengths.
Hence, these coupling strengths could be constrained by the
experimental determination of the gap structure in the coex-
istence region, which has hitherto not been studied in much
detail. Although there are reports of a transition from a nodal
to a nodeless state in Ba1−xKxFe2As2 with decreasing hole
doping based on thermal-conductivity measurements [27], it
is unclear where these nodes appear on the Fermi surface.
Momentum-resolved measurements of the gap to distinguish
between the different structures are therefore highly desirable,
with angle-resolved photoemission spectroscopy being the
method of choice. The transition from a nodal to a nodeless
structure was explained by Maiti et al. [26] as a result of the
change in the SDW gap size with doping. Our work suggests an
alternative explanation: we find that the gap structure depends
strongly on details of the interactions. In view of our results, it
is intriguing that the nodes appear when the hole concentration
is reduced [27]. A reduction of the hole concentration is
expected to increase the effective Coulomb repulsion in our
Hubbard-type model due to weaker screening. This should
result in an increase of the intraband Coulomb repulsion g1

relative to the SDW interaction gSDW, which we find to stabilize
nodal singlet states.
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