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Topological surface states and Andreev bound states in superconducting iron pnictides
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The nontrivial topology of the electronic structure of iron pnictides can lead to the appearance of surface states.
We study such states in various strip geometries with a focus on the superconducting phase. In the presence of
unconventional superconducting pairing with s±-wave gap structure, the topological states are quite robust and
partly remain in the superconducting gap. Furthermore, Andreev bound states appear, which coexist with the
topological states for small superconducting gaps and merge with them for larger gap values. The bulk and surface
dispersions are obtained from exact diagonalization for two-orbital and five-orbital models in strip geometries.
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I. INTRODUCTION

In the past few years, the iron pnictides [1,2], on the one
hand, and topological properties of matter [3,4], on the other,
have been two of the most active fields in condensed-matter
physics. Iron pnictides feature unconventional multiband su-
perconductivity with high transition temperatures competing
with itinerant antiferromagnetism. Topology is of particular
interest for condensed matter since nontrivial topological
properties of the band structure in the bulk are related to the
existence of surface or edge states. Previously, we predicted
that iron pnictides in the paramagnetic and antiferromagnetic
states can have surface states of topological origin at (100) sur-
faces [5]. Here, we investigate the surface states in the super-
conducting phase. We focus on the interplay of surface states
of topological origin with Andreev bound states enabled by
unconventional superconductivity.

The surface states in the paramagnetic phase and in the
antiferromagnetic spin-density-wave (SDW) phase result from
winding of the momentum-dependent Hamiltonian in orbital
space, in particular with respect to the iron dxz and dyz orbitals,
noted already by Ran et al. [6]. The surface states are of
topological origin in the sense that the model Hamiltonian can
be deformed, without closing the gap existing in certain ranges
of surface momenta, into one that is topologically nontrivial
and has flat bands of surface states at the Fermi energy.
Reversing the deformation, the topological protection of these
surface states is lost, but they evolve continuously as a function
of the deformation. Thus the surface bands become dispersive
and generally move away from the Fermi energy but are not
destroyed until they merge with the continuum of bulk bands
[5]. The same type of argument can explain the edge states
at graphene zigzag edges, which form nearly but not quite
flat bands [7,8]. Since we are using two-dimensional models,
the surface states of slabs emerge as edge states of strips.
Using two-dimensional models corresponds to neglecting the
dispersion in the kz direction. If we took the kz dispersion of
the bulk bands into account, the surface states would survive
but also become dispersive.

Many iron pnictides show superconductivity in the vicinity
of, or even coexisting with, antiferromagnetism [9–15]. It
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is therefore of interest how the surface states are modified
when a superconducting gap opens. The superconducting order
parameter of the 1111 family of iron pnictides is thought
to be of s±-wave form; that is, it has opposite signs on the
electronlike and the holelike Fermi pockets [16,17]. The gap
does not have nodes on the Fermi surface. Andreev bound
states have been studied for a simple two-band model by Onari
and Tanaka [18] and, within a quasiclassical approximation,
by Nagai and Hayashi [19]. The latter group has extended
their study to a five-orbital model [20]. Huang and Lin [21]
consider Anreev bound states for a two-orbital model. We
here find Andreev bound states inside the superconducting
gap that coexist with the topological surface states for small
gap magnitudes and merge with them at larger gap values. We
also present additional results for the paramagnetic and SDW
phases for strip orientations not considered in Ref. [5]. We
will employ a simple two-orbital model and a more realistic
five-orbital model [5,6,22].

The remainder of this paper is organized as follows.
In Sec. II, we introduce the two-orbital and five-orbital
models used in our study. We then discuss the mean-field
approximations for the SDW and superconducting phases and
the exact diagonalization for strip geometries. In Sec. III, we
present numerical results for the dispersion of strips in the
superconducting state, compare them to the paramagnetic and
antiferromagnetic states, and discuss the origin of the different
types of surface states. In Sec. IV we summarize the results
and draw conclusions.

II. MODELS AND METHOD

The two-orbital model of Ran et al. [6] is formulated for
a two-dimensional iron square lattice and involves only the
3dXZ and 3dYZ orbitals in a single-iron unit cell. The X and
Y axes are rotated by 45◦ relative to the x and y axes of
the lattice. The noninteracting Hamiltonian used to model the
paramagnetic phase reads H0 = ∑

kσ

∑2
a,b=1 H0

ab(k) d
†
kaσ dkbσ

with the 2 × 2 matrix [6]

H0(k) = 2t1(cos kx − cos ky) τ 1

−2(t2 − t ′2) sin kx sin ky τ 3

+[2(t2 + t ′2) cos kx cos ky

+2t ′1(cos kx + cos ky)] τ 0 (1)
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in orbital space. Here, τ 1, τ 2, τ 3 are Pauli matrices, τ 0 is
the unit matrix, the index 1 corresponds to 3dXZ , and the
index 2 corresponds to 3dYZ . The hopping parameters are
chosen to be t1 = 0.30 eV, t ′1 = 0.06 eV, t2 = 0.51 eV, and
t ′2 = 0.09 eV [6]. Note that the band structure of this model
features quadratic band touching points in the center and at
the corners of the Brillouin zone (BZ).

In order to model the antiferromagnetic phase, we use the
interacting Hamiltonian H = H0 + HI with [6]

HI = U

2

∑
j

(
n̂2

j1 + n̂2
j2

) + (U − 2J )
∑

j

n̂j1 n̂j2

+ J
∑

j

∑
σσ ′

d
†
j1σ d

†
j2σ ′dj1σ ′dj2σ

+ J
∑

j

(d†
j1↑d

†
j1↓dj2↓dj2↑ + H.c.), (2)

where n̂ja ≡ ∑
σ d

†
jaσ djaσ . For the interaction parameters,

we take U = 1.20 eV and J = 0.12 eV [6]. A mean-field
decoupling of the form [5] 〈d†

jaσ djbσ 〉 = nab + σ
2 (−1)jx mab,

where we have assumed an SDW ordering vector Q = (π,0)
and spins pointing along the Sz axis, then leads to the
mean-field Hamiltonian

HMF = H0 +
∑

j

∑
a,b

(−1)jx Mab (d†
ja↑djb↑ − d

†
ja↓djb↓), (3)

with M11 = −(Um11 + Jm22)/2, M22 = −(Um22 +
Jm11)/2, and M12 = M21 = −Jm12 = −Jm21 [5]. The
mean-field coefficients mab are calculated self-consistently
assuming half filling.

For the superconducting phase, we employ the BCS mean-
field Hamiltonian

HBCS =
∑
kσ

∑
ab

[
H0

ab(k) − δabμ
]
d
†
kaσ dkbσ

−
∑

k

∑
ab

[
�ab(k) d

†
ka↑d

†
−k,b,↓ + �∗

ab(k) d−k,b,↓dka↑
]
,

(4)

where μ denotes the chemical potential at half filling. For the
superconducting gap function we use �ab(k) = �δab for con-
ventional s++-wave pairing and �ab(k) = �δab cos kx cos ky

for the unconventional s±-wave pairing likely realized in
1111 iron pnictides [16,17]. The sign structure of the gap
function with s±-wave gap structure is illustrated in Fig. 1
along with typical Fermi surfaces for the two-orbital and
five-orbital models. Note that there is a sign change of
the superconducting gap between electron and hole Fermi
pockets. The corresponding Bogoliubov–de Gennes (BdG)
Hamiltonian for our model is a 4 × 4 matrix, which reads [21]

HBdG =
(
H0(k) − μτ 0 −�(k)

−�†(k) −H0(−k) + μτ 0

)
(5)

with respect to the basis {d†
k1↑, d

†
k2↑, d−k,1,↓, d−k,2,↓}. The

two-orbital model [6] used here and in Ref. [21] is different
from the model employed for the study of Andreev bound
states in Refs. [18,19]. The latter has only one electron and
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FIG. 1. (Color online) Sign structure of the superconducting gap
function with s±-wave structure. The red (blue) areas denote regions
in the BZ where the sign of cos kx cos ky is negative (positive). The
dashed lines show the nodes of this function. In addition, the Fermi
surfaces of (a) the two-orbital model and (b) the five-orbital model
are plotted.

one hole Fermi pocket each and is effectively rotated by 45◦
compared to our model.

The more realistic five-orbital model of Kuroki et al. [22]
includes all hopping amplitudes larger than 10 meV up to
fifth neighbors. Along with the on-site energies, they are
obtained from density-functional calculations for LaFeAsO
and are tabulated in Ref. [22]. Moreover, the orbital indices
now assume values a,b = 1, . . . ,5, corresponding to 3d3Z2−R2 ,
3dXZ , 3dYZ , 3dX2−Y 2 , 3dXY , respectively. Note that the band
structure of the five-orbital model exhibits, besides quadratic
band touching points, Dirac points.

The interaction Hamiltonian for the antiferromagnetic
phase is basically the same as for the two-orbital model, except
that the interorbital terms in Eq. (2) now become sums over
all pairs of five orbitals. For the interaction parameters we
take U = 1.0 eV and J = 0.2 eV [6]. A decoupling as above
then yields a mean-field Hamiltonian analogous to Eq. (3).
The corresponding coefficients Mab are given in Ref. [5]. The
mean-field parameters mab are calculated self-consistently,
assuming six electrons per iron, corresponding to zero doping.
The BCS Hamiltonian for the superconducting phase is
analogous to the two-orbital case, taking the larger number
of orbitals into account.

We are interested in edge states of strips described by the
two models. Specifically, we investigate strips of width W

with (10), (01), and (11) edges. We assume that the SDW
and superconducting strips are described by the same uniform
order parameters mab and � as the bulk systems. We briefly
return to this point in Sec. IV.

For a strip with (10) edges, ky is still a good quantum
number since the strip is extended along the y axis. Therefore,
we carry out a Fourier transformation in the y direction, d†

ja =
N

−1/2
y

∑
ky

e−ikyjy d
†
jxkya

, giving a block-diagonal Hamiltonian
with blocks enumerated by ky . The dimension of the blocks is
a multiple of W . The energy bands of the (10) strip are then
obtained by exact diagonalization of these blocks. For strips
with (01) edges, we simply interchange the roles of x and y.

Strips with (11) edges require a different treatment since the
edges cut diagonally through the lattice. It is convenient to use
a unit cell with two sides parallel to the (11) edges (see Fig. 2).
The new unit cell contains two iron sites. For this reason, we
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FIG. 2. New unit cell and (11) edges: (a) Comparison of the old
unit cell (dashed square) and the new unit cell (solid square). The
new unit cell is rotated by 45◦, and its sides are stretched by a factor
of

√
2. a is the lattice constant. (b) Strip with two (11) edges in the

rotated coordinate system. Black (gray) dots belong to sublattice A

(B). The strip width is W = NX . The new unit cell is depicted by a
solid square.

can describe the lattice in terms of two quadratic sublattices, A
and B. We further introduce a new coordinate system, whose
axes, denoted by X and Y , are rotated by 45◦ with respect to
the old coordinate system and are thus aligned with the sides
of the new unit cell. After representing H0, HMF, and HBCS in
the new coordinates, we perform a Fourier transformation in
the Y direction,

d
†
jXjY aA = 1√

NY

∑
kY

e−i
√

2 kY jY d
†
jXkY aA, (6)

d
†
jXjY aB = 1√

NY

∑
kY

e
−i

kY√
2 e−i

√
2 kY jY d

†
jXkY aB, (7)

where kY ∈ (−π/
√

2,π/
√

2] and NY is the number of unit
cells along the Y axis. This leads to a block Hamiltonian,
which we diagonalize to obtain the energy bands.

III. RESULTS AND DISCUSSION

A. Strips with (10) or (01) edges

1. Paramagnetic and antiferromagnetic phase

Our results for strips with (10) edges in the paramagnetic
and in the antiferromagnetic phase, obtained in Ref. [5], are
briefly summarized in the following. In the two-orbital model,
four bands of edge states are present in the paramagnetic
phase. They are exactly degenerate in pairs due to SU(2)
spin-rotation symmetry. The two pairs are bonding and
antibonding combinations of states localized at the two edges
and become degenerate in the limit of a broad strip. In the
five-orbital model, two such groups of four nearly degenerate
bands appear. As noted in the Introduction, the existence of
surface states can be understood from an argument based on
a continuous deformation, which does not close the gap, of
the Hamiltonian into a topologically nontrivial one. Upon
turning on SDW order with ordering vector Q = (π,0), the
asymptotically degenerate bundles of bands split due to the
coupling of the spin of the electrons localized at the surface
to the SDW order parameter, which is uniform along the (10)

edges. However, they remain exactly degenerate in pairs since
the corresponding mean-field Hamiltonian is still invariant
under combined spin rotation by π about the x axis and spatial
reflection x → −x.

For the antiferromagnetic phase with ordering vector (π,0),
the (01) edge is not equivalent to the (10) edge. For the (01)
edge, the magnetic unit cell is doubled in the x direction,
and thus, the one-dimensional (1D) edge BZ is halved. As a
consequence, the number of surface bands doubles due to the
folding of the spectrum, and the resulting degeneracy at the
boundaries of the magnetic BZ is lifted by the SDW. Unlike for
the (10) edge, the original fourfold degeneracy of the surface
bands for W → ∞ remains intact (not shown). This is because
the magnetization at the (01) edges is staggered so that states
of opposite spin localized at the same edge are not split. These
observations hold for both models.

2. Superconducting phase

We now consider the superconducting phase, starting
with the two-orbital model. Quasiparticle spectra of the
superconducting (10) strip are shown for s++-wave pairing
in Fig. 3(a) and for s±-wave pairing in Figs. 3(b)–3(d). In
all cases, the bands for the strip are compared to the bulk
bands projected onto the 1D BZ for the strip. Large values of
the gap � have been considered to more clearly exhibit the
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FIG. 3. (Color online) Quasiparticle spectra in the superconduct-
ing phase for the two-orbital model. Bands of a (10) strip of width
W = 40 (red) are compared to the bulk bands projected onto the
1D BZ for the strip (blue). Only the low-energy part of the spectra
is shown. (a) � = 0.5 for s++-wave pairing. For comparison, the
topological surface bands, modified according to ξ → ±

√
ξ 2 + |�|2,

are also plotted (dashed green lines). (b) � = 0.5 for s±-wave pairing,
(c) � = 2.0 for s±-wave pairing, and (d) � = 6.0 for s±-wave pairing.
In (b)–(d), the dashed dark blue lines denote topological surface bands
of the normal state.
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effects of interest. The spectra show the typical doubling and
particle-hole symmetry induced by the BdG description.

In the case of s++-wave pairing, a full gap opens without
any edge states inside the gap. The bulk states are pushed out
of the gap according to ξ → ±

√
ξ 2 + |�|2. Interestingly, the

surface bands are modified in the same way, as emphasized by
the dashed green lines in Fig. 3(a). We can understand this by
noting that the s++-wave pairing interaction is purely local and
is therefore not affected by the introduction of edges. Hence,
one would indeed expect s++-wave pairing to induce similar
gaps for bulk and surface states. In this process, the edge bands
from the normal state (dashed green lines) become resonant
with bulk states, which destroys their localization at the edges.
Moreover, there are no Andreev bound states. This is expected
since for Andreev bound states to appear Andreev reflection
involving gaps of opposite sign has to be possible [23].

Let us now discuss the realistic case of s±-wave supercon-
ductivity. First, Figs. 3(b)–3(d) show that the bulk gap is no
longer constant in the BZ. Moreover, there are states inside
the bulk gap. In contrast to the s++-wave case, the topological
surface bands from the normal state are not pushed away.
In fact, they coincide closely with the normal-state bands
and their charge conjugates, as indicated by the dashed dark
blue lines. Although they are still mostly hidden in the bulk
continuum in Fig. 3(b), parts of them become visible within the
gap. Near zero energy, we observe a gap for the surface bands,
which is much smaller than the bulk gap. Furthermore, we find
additional edge bands in ranges of ky without edge states in
the normal phase, but connected to them. They merge with the
bulk continuum at ky = 0 and ky = π . On the whole, there is
a pair of surface bands for E > 0, which is doubled at E < 0.
Within the pairs, we find bonding and antibonding states whose
energy difference is exponentially small for large width.

It is reasonable that s±-wave and s++-wave pairing differ-
ently affect the surface states resulting from the normal phase.
The s±-wave pairing interaction is not local but connects next-
nearest-neighbor sites. Thus, the interaction is cut off at the
edges so that it affects edge states less strongly than bulk states.

The additional surface bands can be explained as Andreev
bound states [18,19,23]: The Fermi surface of the normal state
along with the sign structure of the gap function are illustrated
in Fig. 4. The edge is parallel to the y axis, and, hence, ky is a
constant of motion during the scattering processes. Therefore,
we have to consider lines through the BZ with constant ky in
order to find the available states. Furthermore, for small gap
amplitudes �, only states at the Fermi surfaces are relevant.
From Fig. 4(a), we see that sign-changing scattering processes
are possible for all ky except where the line ky = const does
not cross a Fermi surface. But the latter is exactly the region
where we have found topological surface states. In other words,
topological states are only possible if the ky = const line
corresponds to a gapped system with no states available at the
Fermi energy, whereas Andreev states require a gapless system
where states at the Fermi level do exist. Hence, topological
surface states inherited from the normal phase and Andreev
bound states coexist, but their ky ranges do not overlap in the
limit of small �.

Note that the bands of topological states and of Andreev
bound states are connected. This is easy to understand: As
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0- /2-
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- /2
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0- /2-
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FIG. 4. (Color online) Scattering processes in the two-orbital
model for the (10) strip. The shaded regions indicate ky values for
which surface states of topological origin exist in the normal, para-
magnetic phase. The bold lines are exemplary lines with constant ky

for which sign-changing scattering processes are possible. Relevant
states are indicated by white circles. (a) Small �: sign-changing
processes can only occur outside of the shaded regions. Topological
states and Andreev bound states are separated. (b) Larger �: states
in a broader region around the Fermi surfaces become relevant.
Topological states merge with Andreev bound states.

discussed above, the bands of topological surface states are
less strongly affected by the nonlocal s±-wave pairing. On the
other hand, the bands must be continuous in ky and thus cannot
suddenly terminate. Consequently, in the superconducting
state additional states must appear in the gap that complete
the bands of topological states.

For larger �, states from a broader range of k values in
the vicinity of the normal-state Fermi surface are relevant for
Andreev scattering, as illustrated by Fig. 4(b). Consequently,
the ky range for Andreev bound states grows, as does the
transition region between them and the topological surfaces
states. In Figs. 3(b)–3(d), the effect of a growing gap amplitude
is depicted. We observe that the gap in the surface bands gets
larger. Moreover, in the ky range for topological surface states,
the edge bands lose their resemblance to the normal state
(dashed dark blue lines). This is due to both the large gap
amplitude, which now also strongly affects the topological
surface states, and the growing contribution of Andreev
scattering.

The bands of Andreev bound states in Fig. 3 are similar to
the ones found in Ref. [21]. They are also qualitatively similar
to the bands in Ref. [18] for the (11) edge, which corresponds
to our (10) edge due to the 45◦ rotation of the BZ. Surface
states resulting from the normal phase are not addressed in
either work.

We now turn to the five-orbital model. Quasiparticle spectra
of the superconducting (10) strip are shown for s++-wave
pairing in Fig. 5(a) and for s±-wave pairing in Figs. 5(b) and
5(c). For s++-wave pairing, we observe that bulk and surface
states are affected similarly by superconductivity, as for the
two-orbital model. In the five-orbital model, there are two
bundles of surface bands in the normal, paramagnetic phase
[5]. In the s++-wave superconducting state, one of these bun-
dles vanishes in the bulk continuum. However, in contrast to
the two-orbital model, the lower bundle remains visible in the
bulk gap. Its dispersion is well represented by modifying the
normal-state band according to ξ → ±

√
ξ 2 + |�|2 (dashed
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FIG. 5. (Color online) Quasiparticle spectra in the superconduct-
ing phase for the five-orbital model. Bands of a (10) strip of width
W = 40 (red) are compared to the bulk bands projected onto the
1D BZ for the strip (blue). Only the low-energy part of the spectra
is shown. (a) � = 0.15 (s++ pairing). For comparison, some of the
topological surface bands modified according to ξ → ±

√
ξ 2 + |�|2

are also plotted (dashed green lines). (b) � = 0.15 (s± pairing) and
(c) � = 0.4 (s± pairing). In (b) and (c), the dashed dark blue lines
denote topological surface bands of the normal state.

green lines). Andreev bound states are not present due to the
absence of sign-changing scattering processes.

The case of s±-wave superconductivity is illustrated in
Figs. 5(b) and 5(c). Like for the two-orbital model, we see
that the topological surface bands are hardly affected by
superconductivity, except close to the Fermi energy, where
the bands are pushed to higher energies. The effect is weaker
than for the two-orbital model because the normal-state surface
bands do not lie close to the Fermi energy. The higher-energy
topological surface band is not visible since it is resonant
with the bulk continuum. As for the two-orbital model, we
observe Andreev bound states outside of the ky range for
which we have found topological edge states in the normal
phase. The explanation is analogous to the two-orbital model.
For increasing gap amplitude, the Andreev bound states merge
with the lower-energy topological surface band, which loses its
resemblance to the normal state, as for the two-orbital model.
Eventually, the entire band separates from the bulk continuum,
as seen in Fig. 5(c). Along with this, a second band of Andreev
bound states appears.

B. Strips with (11) edges

1. Paramagnetic and antiferromagnetic phase

For the (11) strip, we begin with the discussion of the
two-orbital model. In Fig. 6, the energy dispersion of the

4

2

0

-2

-4

-6

-8
-π/√2 -π/2√2 π/2√2 π/√20

kY

E/
t 1

FIG. 6. (Color online) Energy bands in the paramagnetic phase
for the two-orbital model. Bands of a (11) strip of width W = 40
(red) are compared to the bulk bands projected onto the 1D BZ for
the strip (blue). The black dash-dotted line denotes the Fermi energy
at half filling.

paramagnetic strip is plotted along with the energies of the
extended system projected onto this BZ. We find energy gaps
close to the borders of the BZ. However, there are no edge
bands for the paramagnetic (11) strip. The same holds for the
SDW phase (not shown).

We can understand the absence of surface states from a
topological perspective. The argument is similar to the one
for the (10) strip [5]. Following Ran et al. [6], we rewrite
Eq. (1) asH0(k) = a(k) τ 0 + b(k) [sin φ(k) τ 1 + cos φ(k) τ 3].
In Ref. [5], we considered the winding of φ(k) at constant ky .
For the (11) strip, we have to analyze paths through the BZ
at constant kY , i.e., diagonal lines through the BZ associated
with the unrotated unit cell, as illustrated in Fig. 7. We see
immediately that the winding number for φ(k) vanishes for
all relevant paths. Hence, a continuous deformation of the
Hamiltonian similar to the (10) case, establishing particle-hole
and time-reversal symmetry without closing the gap, leads to
a Hamiltonian in Altland-Zirnbauer class BDI [24,25], but
with a trivial topological invariant of n = 0. Thus, there are no
zero-energy end states in the corresponding finite chain, and
we do not obtain edge states after reversing the deformation.

For the five-orbital model, Fig. 8 shows the band structure
of the system along with the projected bulk spectrum. Contrary

kY

ky

kx

kX

FIG. 7. (Color online) Vector field (cos φ(k), sin φ(k)) (green ar-
rows) and exemplary path at constant kY (black arrow) in the extended
BZ. The shaded regions are the areas for which an effective 1D system
with fixed kY has a bulk gap. The gap is not necessarily at the Fermi
energy.
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FIG. 8. (Color online) Energy bands in the paramagnetic phase
for the five-orbital model. Bands of a (11) strip of width W = 20
(red) are compared to the bulk bands projected onto the 1D BZ for
the strip (blue). The black dash-dotted line denotes the Fermi energy
at a filling factor of 0.6.

to the results in the two-orbital model, there are two bundles
of surface bands. They are connected to the bulk bands at
the projected Dirac points of the paramagnetic system, which
do not exist in the two-orbital model. As for the (10) edge,
each bundle consists of two pairs of degenerate states with
exponentially small splitting between them for large W .

The existence of edge states for the (11) strip can again be
understood based on a topological argument [5]: We obtain
effective 1D Hamiltonians by considering paths through the
BZ at constant kY . Edge states could, in principle, exist
whenever there is a gap in the bulk spectrum for this value
of kY . This is the case for all kY except where the path contains
Dirac points, at kY ≈ ±1.8 (see Fig. 8). There are two classes
of gapped 1D Hamiltonians: the ones for kY in the interval
spanned by the projected Dirac points, and the ones outside
of this interval. We consider one representative for each class,
corresponding to the paths C1 at kY = 0 and C2 at kY = π/

√
2,

respectively. All of the following deformations are continuous
and do not close the energy gap. We first decouple the
3d3Z2−R2 orbital from the others in order to get effective
four-orbital Hamiltonians. We then tune all on-site energies
and all hopping amplitudes beyond next-nearest neighbors to
zero. The components of the 4 × 4 matrices now consist of
linear combinations of cos k, cos 2k, sin k, sin 2k, and constant
terms.

For the Hamiltonian for path C1, we continue by tuning
the cos 2k, sin 2k, and constant terms to zero. After tuning all
remaining coefficients to 1/4, the resulting matrix is unitarily
equivalent to

Ĥ1(k) =

⎛
⎜⎜⎝

0 e−ik 0 0
eik 0 0 0
0 0 0 e−ik

0 0 eik 0

⎞
⎟⎟⎠, (8)

which consists of two topologically nontrivial two-orbital
systems in class BDI [24,25] with winding numbers n = 1.
This deformed model has four zero-energy edge bands, two at
each edge. These numbers are doubled if we include the spin.
Upon reversing the deformation, the symmetries defining class
BDI are lost, so that the edge states are no longer required to
have zero energy. The edge bands thus become dispersive. The

degeneracy between the two sectors in Eq. (8) is also broken,
and we therefore end up with two bundles of edge states.

For path C2, we tune all nonzero hopping parameters to the
same value denoted by t . This is followed by smoothly tuning
the vanishing matrix elements between 3dX2−Y 2 and 3dXY to
−2t cos k. Next, the cos 2k, sin 2k, and constant terms are
tuned to zero. After fixing t to 1/2 and a unitary transformation,
we obtain the block Hamiltonian

Ĥ2(k) =

⎛
⎜⎜⎝

0 e−ik 0 0
eik 0 0 0
0 0 0 −e−ik

0 0 −eik 0

⎞
⎟⎟⎠, (9)

which comprises two topologically nontrivial two-orbital
systems with winding numbers n = 1. This deformed system
has the same number of zero-energy edge bands as Ĥ1(k), and
the original system thus has two bundles of edge states also in
this kY range.

In the antiferromagnetic phase, the 1D surface BZ is halved
due to the ordering vector Q′ = (π/

√
2, − π/

√
2) in the

rotated (kX,kY ) coordinate system. Hence, the number of bands
is doubled, and one would, in principle, find four bundles of
surface bands. However, two of them become resonant with the
bulk states. The degeneracy of the remaining two bundles at
the boundaries of the new BZ is lifted by the SDW. Moreover,
we find that the original fourfold degeneracy for W → ∞ is
still intact since the magnetization at the (11) edge is staggered.
All of this is similar to the (01) case discussed above.

2. Superconducting phase

For the superconducting phase, we start with the two-orbital
model. In the superconducting phase with s++-wave gap, no
surface states appear [see Fig. 9(a)]. This is expected since, on
the one hand, this model does not have edge states at the (11)
edge in the normal phase and, on the other, the condition for
the existence of Andreev bound states is not satisfied.

In the case of s±-wave pairing, there are no surface states
for a small gap �, as shown in Fig. 9(b). This can again be
understood from evaluating the sign-changing condition for
Andreev bound states. We consider paths through the extended
BZ at constant kY [see Fig. 10(a)]. All such lines either cross
Fermi pockets with the same sign or do not cross a Fermi
surface at all. Hence, sign-changing scattering processes are
not possible if the gap is small and one does not find Andreev
bound states. For larger �, also states away from the Fermi
surface become relevant, as indicated in Fig. 10(b). Thus,
scattering processes with a sign change of the gap function
can occur, leading to the emergence of Andreev bound states.
In this case, the Andreev states are, of course, not connected
to topological states.

Finally, we turn to the superconducting (11) strip in the
five-orbital model. In Fig. 8, we found two bundles of surface
states in the normal phase. In the superconducting state, the
upper bundle vanishes completely into the bulk continuum,
whereas the lower bundle remains partly in a bulk gap. This is
similar to the (10) system in the five-orbital model. However,
the present case is particularly interesting since the normal-
state edge bands cross the Fermi energy.
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FIG. 9. (Color online) Quasiparticle spectra in the superconduct-
ing phase for the two-orbital model. Bands of a (11) strip of width
W = 40 (red) are compared to the bulk bands projected onto the 1D
BZ for the strip (blue). (a) � = 0.5 (s++ pairing), (b) � = 0.1 (s±
pairing), (c) � = 0.5 (s± pairing), and (d) � = 2.0 (s± pairing). Only
the low-energy part of the spectra is shown. Note that there were no
surface states in the normal phase (see Fig. 6).

For s++-wave superconductivity, bulk and edge states are
again gapped in the same way [see Fig. 11(a)]. For s±-wave
pairing, we observe that a larger part of the lower bundle
of topological surface bands remains inside the gap, hardly
affected by the superconducting pairing [see Fig. 11(b)].
However, a very small gap opens, which is much smaller than
the bulk gap. This can again be attributed to the weakening of
the nonlocal s±-wave pairing interaction at the edge, discussed
in Sec. III A.
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FIG. 10. (Color online) Scattering processes in the two-orbital
model for the (11) strip. The extended BZ is illustrated along with the
Fermi surfaces. The bold lines are exemplary lines with constant kY .
Relevant states are drawn as white circles. (a) Small �: sign-changing
processes can never occur. (b) Larger �: relevant states are also found
in the vicinity of the Fermi surfaces, and sign-changing scattering
processes become possible. Andreev bound states can emerge.

0.4

0
kY

E/
eV 0.0

-0.2

-0.4

(a)

-π/√2 -π/2√2 π/2√2 π/√2

0.2

0.4

0
kY

E/
eV 0.0

-0.2

-0.4

(b)

-π/√2 -π/2√2 π/2√2 π/√2

0.2

FIG. 11. (Color online) Quasiparticle spectra in the supercon-
ducting phase for the five-orbital model. Bands of a (11) strip of
width W = 20 (red) are compared to the bulk bands projected onto
the 1D BZ for the strip (blue). Only the low-energy part of the spectra
is shown. (a) � = 0.15 (s++ pairing). For comparison, some of the
topological surface bands modified according to ξ → ±

√
ξ 2 + |�|2

are also plotted (dashed green lines). (b) � = 0.15 (s± pairing). The
dashed dark blue lines denote topological surface bands of the normal
state.

Furthermore, we find additional surface bands near kY =
±π/2

√
2 very close to the bulk continuum. These can be

understood as Andreev bound states, as discussed for the
two-orbital model. We note that the behavior of the surface
bands for larger � is similar to the (10) strip. The surface
band gap grows, and the resemblance of the topological bands
to the normal phase gets weaker (not shown). In addition,
the Andreev bands separate more strongly from the bulk
continuum.

IV. CONCLUSIONS

We have studied various strip geometries of iron pnictides
with small-index edges in the paramagnetic, antiferromag-
netic, and superconducting phases with regard to the possible
existence of surface states. For this, we have used both a simple
two-orbital model [6] and a more realistic five-orbital model
[22].

For the paramagnetic phase, we have found that the number
of surface bands depends both on the strip geometry and the
specific model considered. The (10) strip shows edge states
in both models [5]. The two-orbital model predicts one spin-
degenerate band of edge states at each edge (in the limit of large
width), resulting from nontrivial winding in the 3dXZ , 3dYZ

orbital space. The five-orbital model has additional nontrivial
winding with regard to the 3dX2−Y 2 and 3dXY orbitals, which
doubles the number of edge bands [5]. The results for the (11)
strip show that the winding in the sector of 3dXZ and 3dYZ is
also different between the two models: the two-orbital model
is topologically trivial and thus has no edge states, whereas
the five-orbital model has two spin-degenerate edge bands at
each (11) edge. This indicates that the two-orbital model is
too simple to account for the full topological structure of the
pnictide bands.

The presence or absence of surface states can be explained
by considering a continuous deformation of effective 1D
Hamiltonians into Hamiltonians in symmetry class BDI
[5,24,25]. However, these states are no longer topologically
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protected and thus move away from the Fermi energy when
the deformation is reversed. It is worth pointing out that this
type of argument is rather robust since it only relies on the
existence of a continuous deformation that does not close a gap.
Therefore, the qualitative results, in particular the existence of
surface states, would not change if we included (i) changes in
the model parameters close to the surface, describing possible
reconstruction and relaxation, (ii) order parameters mab and
� calculated self-consistently for the strip geometry, or (iii)
weak coupling in the third dimension.

In the antiferromagnetic phase, the degeneracy of the
surface bands in the limit of large width is strongly lifted
if the presence of the SDW leads to a net spin polarization of
the edges, which for (π,0) order is the case for (10) edges but
not for (01) or (11) edges. Nevertheless, the remaining twofold
degeneracy is protected by a combination of spin rotation and
spatial reflection.

In the superconducting phase with s±-wave gap structure,
the topological surface states are less strongly affected by the
superconducting pairing than the bulk states. Only a small gap
opens in the surface bands so that they are almost identical
to the normal state and partially remain inside the gap. In
addition, Andreev bound states appear for certain edges, which
can be understood from the changing gap sign for Andreev
reflection [18–21,23]. For small gaps, the Andreev bound
states coexist with the topological states in different ranges
of the momentum component parallel to the edge. For larger,
for pnictides unphysical, gap values, the Andreev bound states
and topological surface bands merge and lose their individual
character.

The edges studied here correspond to (100), (110), and
(010) surfaces in the real three-dimensional system. However,
these surfaces are challenging to prepare since the natural
cleavage plane is (001). More promising is the examination
of single-unit-cell steps on pnictide (001) surfaces, which are
indeed occasionally seen in scanning-tunneling-microscopy
experiments [26]. Since the coupling between layers in 1111
pnictides is weak, it would only weakly perturb the bound
states at the edge of the incomplete layer. Hence, it should
be possible to detect bound states at step edges with scanning
tunneling spectroscopy. For the detection of bound states in
the superconducting phase, it might be possible to perform
tunneling experiments on normal-superconducting interfaces
at the edges of a (001) pnictide sample.

On a more general level, our results emphasize that
topological signatures, such as surface states, can occur in
materials that are not topological in the sense of the topological
classification of gapped systems [25]. Iron pnictides and
graphene are examples of gapless materials that have topolog-
ical properties. In the pnictides, the topologically nontrivial
properties come from the multiorbital character of the band
structure close to the Fermi energy. It is promising to search
for other materials with topological features related to their
multiorbital structure.
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