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Under certain conditions, Hg(Cd)Te quantum wells (QWs) are known to realize a time-reversal symmetric, two-
dimensional topological insulator phase. Its low-energy excitations are well described by the phenomenological
Bernevig-Hughes-Zhang (BHZ) model that interpolates between Schrödinger and Dirac fermion physics. We
study the polarization function of this model in the random phase approximation (RPA) in the intrinsic limit
and at finite doping. While the polarization properties in RPA of Dirac and Schrödinger particles are two
comprehensively studied problems, our analysis of the BHZ model bridges the gap between these two limits,
shedding light on systems with intermediate properties. We gain insight into the screening properties of the system
and on its characteristic plasma oscillations. Interestingly, we discover two different kinds of plasmons that are
related to the presence of intra- and interband excitations. Observable signatures of these plasmons are carefully
analyzed in a variety of distinct parameter regimes, including the experimentally relevant ones for Hg(Cd)Te
QWs. We conclude that the discovered plasmons are observable by Raman or electron-loss spectroscopy.
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I. INTRODUCTION

Topological insulators (TIs) are among the most actively
investigated systems in condensed matter physics [1–3]. In
reality, there is evidence for their existence in two [4] and three
[5] spatial dimensions. Due to bulk-boundary correspondence,
nontrivial topological states of matter have edge states at their
boundaries with peculiar transport and optical properties. For
instance, the two-dimensional (2D), time-reversal symmetric
quantum spin Hall state—that is realized in Hg(Cd)Te quantum
wells (QWs)—is known to come along with helical edge
states that are protected against elastic backscattering of
nonmagnetic impurities [6,7]. However, not only the edge-state
physics of these systems is interesting but also the 2D bulk
physics bears exciting novelties. The low-energy excitations
of Hg(Cd)Te QWs are described by a model—the Bernevig-
Hughes-Zhang (BHZ) model [8]—that interpolates between
the limiting cases of Schrödinger and Dirac fermions. This
interplay between Schrödinger and Dirac physics constitutes
an opportunity for new phenomena to emerge. We have, for
instance, recently discovered collective charge excitations at
zero doping, i.e., intrinsic plasmons, in this system which are
absent in both separate limits [9].

In this article, we complement our study of the screening
properties and the collective charge excitations of Hg(Cd)Te
QWs on the basis of the random phase approximation (RPA),
and hence present a comprehensive analysis of its polarization
function in the static and full dynamic limit, at zero and finite
doping. Continuously tuning the parameters of the BHZ model,
we reproduce the limits of pure Dirac and pure Schrödinger
fermions and explore intermediate regimes, in order to un-
derstand how analogies and differences emerge. We support
our numerical calculations of the polarization functions with
analytical expressions derived by f -sum rules. In the static
limit, we calculate the screening properties due to the intrinsic
system and at finite doping, analyzing the induced charge den-
sity (with Friedel oscillations) in response to a charged impu-
rity. Different from the Dirac fermion system graphene, where
static screening in the intrinsic limit is momentum independent
and can therefore be absorbed into an effective dielectric

constant [10,11], the BHZ model shows a significant momen-
tum dependence that translates into a finite extent of the in-
duced charge density. In the dynamic limit, we are particularly
interested in a better understanding of the plasmon excitations
of this system away from zero doping where we previously
found a new plasmon due to the interplay between Schrödinger
and Dirac fermion physics [9]. At finite doping, under
certain conditions specified below that are, e.g., applicable
to Hg(Cd)Te QWs, we find a coexistence between this novel
(interband) plasmon and an ordinary (intraband) plasmon.
Both plasmons can be rather weakly damped by single-particle
excitations and should therefore be observable. Interestingly,
the two plasmons respond to the topology of the band structure
with a distinctive behavior. They seem to merge one into the
other in a normal insulating phase, while they remain clearly
resolved when the system realizes a topological insulator.

Generally, RPA is known to provide reliable predictions at
large densities and in systems with a large number of fermionic
degrees of freedom. While its validity was indeed questioned
for the intrinsic Dirac limit, where the system is unable to
screen the Coulomb interaction and strong renormalization
effects are expected [12], RPA has been shown to yield a
quantitative description of many-body effects in graphene
[13,14]. It has been widely used for the study of plasmons in the
Dirac model, including various forms of (multilayer) graphene
and TI surface states; see Ref. [15] for a comprehensive review.
Closely related to our work, the intraband plasmons of black
phosphorous have been studied on the basis of RPA and an
extended version of the BHZ model including anisotropy [16].
A similar study has been done for MoS2 [17].

Our article is organized as follows. In Sec. II, we introduce
the BHZ model and present the general formalism we employ
to calculate the static and dynamical dielectric function and
the induced charge density. The nature of the nontrivial
pseudospin, the origin of possible interband plasmons, exper-
imentally relevant parameters, and the different contributions
to the f -sum rule are also discussed here. Subsequently,
in Sec. III, we present the static screening properties, the
dynamical excitation spectrum (new interband plasmon), and
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the f -sum rule in the undoped regime. Here we revisit and go
beyond the results from Ref. [9]. In Sec. IV, this analysis
is extended to the case of finite doping where inter- and
intraband excitations equally matter. We begin by discussing
the ability of the BHZ model to interpolate between Dirac
and Schrödinger physics. Afterwards, we have a closer look
at parameters which are experimentally relevant for Hg(Cd)Te
QWs; see Sec. IV E. In this limit, we find a coexistence of inter-
and intraband plasmons occurring for energies and momenta
which are suitable for Raman or electron-loss spectroscopy.
We close this section by investigating the influence of a
nontrivial topology on the plasmonic excitation spectrum.
Finally, in Sec. V, a conclusion and a brief outlook are given.

II. MODEL AND FORMALISM

The BHZ Hamiltonian [8] for a two-dimensional electron
gas (2DEG) near the � point has the form

H =
(

h (k) 0
0 h∗ (−k)

)
,

h (k) = V (k) + dk · �σ , (1)

dk = (Akx, Aky, M(k)).

Here �σ are the Pauli matrices associated with the band-
pseudospin degree of freedom [band E1 and H1 in Hg(Cd)Te
quantum wells (QWs)], V (k) = C − Dk2, M(k) = M − Bk2

with B,D < 0. The system possesses time-reversal symmetry
and H is block diagonal in the Kramer’s partner or spin degree
of freedom. Restricting ourselves to the block h(k), the results
can be extended to the other one by applying the time-reversal
operator. h(k) describes fermions with intermediate properties
between a Dirac and a conventional 2DEG system. The
off-diagonal term (A parameter) is typical for a Dirac system
(A =̂ �vf in graphene), with M the Dirac mass (corresponding
to a gap of 2|M|). We consider positive and negative masses,
where the latter corresponds to an inversion of the band
structure and the system is topologically nontrivial [8]. For
simplicity, we restrict ourselves to a band structure with a
minimum at the � point, which limits the mass to M > − 1

2
A2

|B| .
In analogy to a 2DEG, the diagonal elements bear kinetic
energy elements which preserve (B parameter) and break (D
parameter) particle-hole (p-h) symmetry (−B ∓ D =̂ 1

2m
for

Schrödinger fermions with m the quasiparticle mass).
The eigenstates of Eq. (1) are described by the following

dispersion and pseudospin

Ek,λ = V (k) + λ|dk|, (2)

λd̂ k = 〈k,λ|�σ |k,λ〉 (3)

with λ = ± for conduction and valence band. Note that
we consider electrons to be perfectly localized on the 2D
X-Y plane and therefore we neglect the real shapes of the
envelope functions due to the quantum confinement along the
Z direction [18].

A. Energy and momentum scales

The BHZ model is characterized by intrinsic scales for
momentum, q0 = A

|B| , and energy, E0 = Aq0, which reflect

the interpolating character of the model between Dirac (A
parameter) and Schrödinger (B parameter) system. Fermi
momentum kf and chemical potential μ provide externally
tunable momentum and energy scales, which we call Fermi
scales in the following. We expect the ratio between Fermi
and intrinsic scales to govern the physics of this system. We
therefore define the dimensionless quantities

X = q
q0

, � = ω

E0
, Xf = kf

q0
,

(4)
�f = μ

E0
, ξM = M

E0
, ξD = D

|B| ,

where we set � = 1 in the following. �f is defined to be
the energy to the wave vector Xf , such that �f = ±|ξM | if
Xf = 0. For X ∼ 1, we therefore expect intermediate physics,
while in the limit X,� → 0 (X,� → ∞) the Dirac (2DEG)
physics should be recovered.

B. Polarization function

The linear response of a homogeneous system to an external
applied potential is described by the density-density general-
ized susceptibility or retarded polarization function �R(q,ω).
This response comprises two main phenomena: screening,
described by the real part Re[�R(q,ω)], and dissipation by
single-particle excitations (SPEs), given by the imaginary part
Im[�R(q,ω)]. For the BHZ model, the polarization function
in RPA yields the expression

�R(X,�) = gs

|B|
∑
λ,λ′

∫
d2X̃

4π2
Fλ,λ′

X̃,X̃ ′
f (εX̃,λ) − f (εX̃′,λ′ )

� + i0+ + εX̃,λ − εX̃′,λ′
,

(5)

with X̃ ′ = X̃ + X , 0+ a positive infinitesimal, gs =
2 for spin degeneracy, εX̃,λ = Eq0X̃,λ/E0 = −ξDX2 +
λ
√

(ξM + X2)2 + X2, and f (ε) = 1
e
β̄(ε−�f )+1

the Fermi-Dirac

function with β̄ = E0
kBT

and kB the Boltzmann constant. In
the following we will assume zero temperature, T = 0. The
overlap factor is given by

Fλ,λ′
X,X ′ = |〈k,λ|k′,λ′〉|2 = 1

2 [1 + λλ′ d̂q0 X · d̂q0 X ′ ]. (6)

Equation (5) implies that |B|�R(X,�) is only a function of the
reduced dimensionless variables X and � and parametrically
depends on ξM , ξD , and Xf .

C. Overlap factor

In the massless Dirac limit (B = M = 0), eigenspinors are
characterized by their helicity and consequently the overlap
factor Fλ,λ′

k,k′ = 1
2 (1 + λλ′ cos θ ) only depends on the angle θ

between k and k′. It is strictly 1 (zero) for states with the same
(opposite) helicity.

In the BHZ model, the quadratic terms have the effect
of turning the pseudospin of the eigenstates out of plane in
opposite directions for conduction and valence bands at large
X; see Fig. 1. This results in a decay of the overlap factor down
to 0 in the limit of a conventional 2DEG system (A → 0 or
X → ∞).
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FIG. 1. (Color online) Dispersion relation and pseudospin of a NI
(a), ξM = 4

9 , and a TI phase (b), ξM = − 4
9 . The bands are separated

by an additional 2εX,λ for better illustration of the pseudospin.

A finite mass ξM �= 0 has a similar effect, but in the limit
of X � |ξM |. The pseudospin turns in the same (opposite)
direction as for the quadratic term for positive (negative) mass;
see Fig. 1. This has the direct consequence that for a normal
insulator (NI) phase the interband overlap factor is reduced,
while it is increased for a TI phase. On the contrary, a positive
(negative) mass enhances (diminishes) the intraband overlap
factor. This picture is also confirmed in Sec. II G by calculating
the f -sum rule.

D. Coulomb interaction

The bare Coulomb interaction v(q) = e2

2ε0q
in an electron

gas is modified by screening into the effective interaction
veff(q,ω) = v(q)

ε(q,ω) . There, screening is described by the dy-
namical dielectric function. Employing dimensionless units, it
acquires the form

ε(X,�)

εr

= 1 − αg(X,�), (7)

where we have introduced the interaction strength parameter
α (effective Dirac fine structure constant [19]) and the
dimensionless function g(X,�):

α = 1

A

e2

4πε0εr

, (8)

g(X,�) = 2π
|B|
X

�R(X,�). (9)

In graphene one finds [20] α = 2.2/εr , while in Hg(Cd)Te
QWs it is of the order α ≈ 4/εr [21,22]. Here, εr is the
background dielectric constant, accounting for screening of
internal electronic shells, while −αg(X,�) gives the dynamic
screening due to electrons in the low-energy bands. Zeros of
ε(X,�) describe a density-density (longitudinal) perturbation
of the system that it is able to sustain itself, which forms a
collective mode called plasmon. It is defined by

ε(X,�p − i�) = 0 (10)

with the plasma frequency �p, and the finite imaginary part
� = γ

E0
accounts for the possible damping due to single-

particle excitations [23].
The dissipation of the interacting system, including both

single-particle excitation and the plasmon mode, is then

described by the imaginary part of the interacting polarization
function �RPA(X,�) = �R (X,�)

ε(X,�) . In order to compare to the
noninteracting one, we will plot the normalized functions

�Im
rpa ≡ εr Im[�RPA], �Im ≡ Im[�R], �Re ≡ Re[�R]

in the following, with εr�
RPA =

α→0
�R .

1. (Anti)Screening and intrinsic plasmons

In RPA, Eq. (7) characterizes the screening of the
interaction between two electrons exchanging momentum
X and energy �, by the creation of electron-hole pairs
in the electron gas with the same momentum X. If these
pairs are resonant in energy �eh = �, they correspond to
a physical process leading to dissipation and a lowering of
the Coulomb interaction—described by the imaginary part of
the polarization function, Eq. (5). When �eh �= �, we have
only virtual electron-hole pairs, which either still screen the
interaction, if �Re < 0, or even enhance it (antiscreening
effect), if �Re > 0. These effects depend on the energy
of the created pair: for �eh < � one finds antiscreening,
while �eh > � leads to a screening of the bare Coulomb
interaction. This can be directly seen from the definition of the
polarization function, Eq. (5). For every allowed excitation,
the real part of the integrand in Eq. (5) becomes

F1,λ

X̃,X̃ ′
2�eh[X̃,X̃ ′]

�2 − �eh[X̃,X̃ ′]2
, (11)

with λ = 1 (λ = −1) for intraband (interband) excitations.
Therefore every process with energy less than � increases
�Re, lowering ε and thus increasing the interaction.

In the intrinsic Dirac system within RPA one finds �Re = 0
for all energies � where electron-hole excitations are allowed
[15]. Thus the screening effect of virtual excitations with
�eh > � cancels exactly with the one from excitations with
�eh < �, such that the only screening comes from the
resonant process �eh = �. In the BHZ model, the high-energy
excitations become less likely as the electron and the hole
band get decoupled for large �. Additionally their excitation
energy is higher as in the Dirac case for the same momentum X,
leading to an additional reduction of their influence on �Re due
to the Lorentzian in Eq. (11). Further, low-energy excitations
become more important, as processes are allowed that were
forbidden in the Dirac system by helicity (see Sec. IV D 3
for details). Combining these effects, one finds the virtual
excitations which increase the Coulomb interaction, �eh < �,
dominating for larger frequency �, leading to an increased
effective interaction and the possibility of intrinsic plasmons
in the BHZ model [9].

More mathematically speaking, the described effects alter
the high-energy behavior of �Im from a decay like �−1 in the
Dirac case to a �−2 decay in the BHZ model, as is shown in
Sec. III C. Taking the Kramers-Kronig relation �Re(X,�) =
1
π

∫ ∞
0 d�′ 2�′

�′2−�2 �
Im(X,�′) one finds directly that the real part

of the polarization changes sign for �Im ∝ �−2, but not for
�Im ∝ �−1. In more general terms, one can expect intrinsic
interband plasmons to appear in all models for which �Im

decays faster as �−1 for high energies.
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E. Static limit and screening

The static limit of the polarization function is obtained
by sending � → 0 at finite momentum X in Eq. (5). In this
limit we can easily analyze the response of the system to the
application of a static (or sufficiently slowly varying) external
potential. An important physical problem of this kind is the
screening of a charged impurity by the electronic system.

The static polarization is a strictly real function, that we
define as

�(X) ≡ �R(X,0) = �0(X) + �μ(X). (12)

In a multiband system, like the BHZ model, it is useful to
separate the contributions to the static polarization coming
from the intrinsic neutral system, �0(X) (obtained for μ = 0),
and the contribution due to a finite charge density, �μ(X)
(finite μ). Consistently with the notation of Eq. (12), the
dielectric function, Eq. (7), can therefore be rearranged into

ε(X) ≡ ε(X,0) = εr [1 − αg0(X) − αgμ(X)]. (13)

From the static dielectric constant we can find the induced
charge density in response to a test charge Ze placed at
the origin. The variation of the electronic charge density in
momentum space corresponds to Zen(X), where n(X) is given
by [23]

n(X) = 1

ε(X)
− 1 = 1

εr [1 − αg(X)]
− 1

= nr (X) + n0(X) + nμ(X). (14)

Here the induced charge density can be seen as a sum of three
contributions of different physical nature. The first is due to
the background polarization nr (X) (high-energy polarization
of the system), the second to the intrinsic polarization n0(X)
(polarization of the neutral system), and the third to the polar-
ization of the finite charge density in the system nμ(X), with

nr (X) = 1

εr

− 1, (15)

n0(X) = 1

εr

αg0(X)

1 − αg0(X)
, (16)

nμ(X) = 1

εr

1

1 − αg0(X)

αgμ(X)

1 − αg(X)
. (17)

In real space, the density fluctuation (using physical
dimensional units) is given by

n(r) = 1

2π

∫
dqqJ0(qr)n(q),

with J0 the zeroth-order Bessel function.

F. Experimental parameters

Including Coulomb interaction, we now have a 4-
dimensional parameter space consisting of ξM , ξD , Xf , and
α. This parameter space will be explored systematically in
the following. While the exploration of the different physical
behaviors featured by the BHZ model in different regions
of this parameter space has a clear theoretical significance,
we want to stress that our discussion is also relevant for
experiments. In particular, realistic parameters for Hg(Cd)Te

QW structures [21,22] are roughly ξD � −0.5, q0 ≈ 0.4 1
nm ,

E0 ≈ 140 meV, and masses M with absolute values up to
several meV. The interaction strength is around α ≈ 4/εr ≈
0.3 with an average εr = 15 from the CdTe substrate (εr = 10)
and HgTe (εr = 20). Considering the experimental acceptable
damping rate for plasmons, we refer to experiments on the
surface states of a 3D TI [24]. There, plasmons with a ratio of
�
�p

= 0.5 are perfectly resolvable.

G. f -sum rule

The f -sum rule for the polarization function provides the
total spectral weight of all excitations in the system. It is
identical for the interacting and noninteracting system, as the
interaction conserves the number of particles. Thus the sum
rule is a powerful tool to check our numerics. Additionally, it
offers a deeper insight concerning the shift of spectral weight
between the inter and intra SPEs as well as the different
plasmons in the system.

1. Definition and calculation

The f -sum rule is defined by [25]

− 2

π

∫ ∞

0
dω ωIm[�(q,ω)] = gs〈0|[[nq,H

0],n†
q]|0〉 (18)

with the density operator n
†
q = ∑

k �
†
k+q�k and the Hamil-

tonian H 0 = ∑
k �

†
kh (k) �k with h (k) as defined in Eq. (1).

�k is a spinor associated with the band-pseudospin degree
of freedom [bands E1 and H1 in Hg(Cd)Te QWs]. The spin
degree of freedom enters via the degeneracy factor gs = 2. For
the calculation we follow the steps outlined in the Appendix
of Ref. [26], where the f -sum rule for the Dirac model is
obtained. For the BHZ model the computational steps are the
same; therefore we only present important intermediate results
and differences to the Dirac limit. The commutator in Eq. (18)
is given by

[[nq,H
0],n†

q] =
∑

k

(
�

†
kH

0
k,q�k − �

†
k+qH

0
k+q,q�k+q

)
− 2q2

∑
k

�
†
k+q (Dσ0 + Bσz) �k+q, (19)

with H 0
k,q = Aq · σ − Dq (2k + q) σ0 − Bq (2k + q) σz. A

simple shift of the momentum sums in Eq. (19) would put
the first line to zero, but this is not allowed. In the same way
as in the Dirac system, the operators are unbounded and one
has to work with a large momentum cutoff κ . While in the
Dirac limit one finds simply H 0

k,q = Aq · σ and the second
line of Eq. (19) would be zero, now the latter gives rise to a
contribution depending on the chemical potential, as one would
expect for a 2DEG. The sums in Eq. (19) are then converted
into integrals and solved in the limit of large κ . Care has to
been taken when converting the momentum cutoff κ into the
frequency cutoff λ, such that both integrals cover the same
phase space.
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2. Formulas

For a pure Dirac system one finds the f -sum rule [26]∫ λ

0
dω ωIm [� (q,ω)] = −gsq

2λ

16
, (20)

where the cutoff λ is needed as the Dirac spectrum is
unbounded. In a 2DEG system one finds∫ ∞

0
dω ωIm [� (q,ω)] = gs

4
(B ± D) k2

f q2 = −πNq2

2m

(21)

with N = gs

4π
k2
f the electron density and Im[�(q,ω)] �= 0 only

over a finite range of ω. Similar to a Dirac system, the BHZ
spectrum is unbounded which complicates the evaluation of
the sum rule and makes it necessary to introduce a high-energy
cutoff � = λ

E0
. We find approximately for � � 1

f
∑

≡ −
∫ λ

0
d� �|B|Im [�(X,�)]

= gs

8
X2

[
ln

(
2�e−1−2ξM+2|�f |

1 + 2X2
f (1 + γ ξD) + 2ξM + 2|�f |

)

+ 1 − X2 + 4ξM

�

−2X4 + (1 + 4ξM )2 − 4X2(2 + 7ξM )

4�2

]

+ O

(
ξD

�2

)
+ O

(
1

�3

)
, (22)

with γ = sgn[�f ] and Euler’s number e, so the leading order
term diverges logarithmically with �. This is due to the fact
that Im[�(X,�)] decays like �−2 for � � 1, and not as �−1

as for a Dirac system. The sum rule is exact up to order �−1

(�−2) for finite (zero) ξD .
The f -sum rules for BHZ, Dirac and 2DEG models are

always proportional to q2 ∝ X2 in the leading order, but
otherwise distinct from one another. Taking the limit A → 0
in the BHZ result, Eq. (22), gives the 2DEG case, Eq. (21)
[34].

3. Comparing different orders in cutoff �

We begin our discussion of Eq. (22) by comparing the
contributions from the different orders O( ln(�)), O(�−1),
and O(�−2). In the limit of ξM = ξD = Xf = 0 we find
f
∑

O(�−1)

f
∑

O( ln(�))
= − X2−1

�[ln(2�)−1] and
f
∑

O(�−2)

f
∑

O( ln(�))
= − 2X4−8X2+1

4�2[ln(2�)−1] ; thus

the ratio X2

�
determines the importance of higher order

corrections for X � 1. We take � = 2(βX)2 for the cutoff in
the following. Already for β = 2 and a maximal momentum
X = Xmax = 6, the corrections of order O(�−1) are 2% of
order O( ln(�)), while contributions of order O(�−2) are
smaller than 0.1%. A modest cutoff 2 � β � 5 works best
for comparing Eq. (22) to numerical data, as the latter is only
given over a finite range of �. A larger � makes it necessary
to extrapolate the data, providing a source for errors.

-0.4 -0.2 0 0.2 0.4
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))
/f 

Σ Ο
(ln
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X
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FIG. 2. (Color online) (a) Ratio
f
∑

O(ln(�))

f
∑ξM=0

O(ln(�))

of the lowest order

f-sum rule including mass over the one without mass. ξD = 0 and

Xf = 0. (b) Ratio
f
∑

O(ln(�))

f
∑Xf =0

O(ln(�))

of the lowest order f-sum rule including

finite doping over the one without doping, �f > 0 (�f < 0) as a
black, solid (red, dashed) line. ξM = 0 and ξD = −0.5. β = 2 and
Xmax = 6 in both plots.

4. Influence of finite ξM , ξD, and X f

Next, we investigate changes to the f -sum rule and
therefore to the total spectral weight by varying the mass.
The influence of a finite mass is studied in Fig. 2(a) for ξD = 0
and Xf = 0. A positive mass lowers the f -sum rule, while a
negative mass increases it linearly. This is a direct consequence
from the change of the overlap factor: a negative mass enhances
the coupling between the two bands, while a positive mass
diminishes it, as in the latter case the pseudospins do not match.
It is also consistent with the increase in the optical conductivity
observed in the undoped limit with negative mass [9].

Last, we consider the effects of finite doping. It blocks
interband transitions close to the Dirac point, but due to the
small density of states, these transitions carry only a small
spectral weight. On the other hand, doping enables intraband
transitions, which carry a large spectral weight due the
combined effects of larger overlap factor, density of states, and
smaller excitation energies compared to interband transitions.
Therefore, finite doping usually increases the f -sum rule,

as seen in Fig. 2(b), where we plot
f
∑

O( ln(�))

f
∑Xf =0

O( ln(�))

for positive

(black, solid line) and negative (red, dashed line) doping with
ξD = −0.5 and XM = 0. A finite ξD adds a term ± gs

4 |ξD|X2
f X2

to the leading order of the f -sum rule, + (−) for positive
(negative) doping. It can be seen as an increased (decreased)
contribution from the 2DEG part of the spectrum, Eq. (21),
and leads to the slight decrease of the f -sum rule for negative
doping in panel (b).

5. Comparing the spectral weight of excitations

In order to compare the importance of different excitations
in the system, one should compare their spectral weight and
thus their contribution to the f -sum rule. The latter has
the benefit of being independent of the Coulomb interaction
strength and of the position of the excitation peaks, in contrast
to the polarization function �Im

rpa . As an example, we assume
that the excitation spectrum, �Im

rpa , is governed by a single
plasmonic peak following a Lorentzian shape with width �

and peak height 1
c�

. Then the f -sum rule is proportional to∫ ∞
0 d�� 1

c
�

�2+(�−�p)2 = �p

c

∫ ∞
0

d�
�p

�
�p

�
�p

( �
�p

)2+( �
�p

−1)2 . The value

of this integral should be independent of α and thus of �p.
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FIG. 3. (Color online) Static intrinsic polarization function of the
BHZ model for variable ξM and ξD = 0.

Therefore we find c ∝ �p, such that the peak height of a
resonance in �Im

rpa naturally has to scale with 1/�p to fulfill
the f -sum rule.

We conclude that the importance of a resonance in �Im
rpa

should be judged by its spectral weight, which can be estimated
by multiplying the peak height with its position �p. The
relevant width of the peak is given by �

�p
, with � being the

width of the resonance in �Im
rpa .

III. UNDOPED SYSTEM

In this section, we focus on an intrinsic (undoped limit μ =
0) BHZ model system. First, we analyze the static polarization
function and the static screening properties. Then we consider
the long-wavelength limit of the dynamical polarization
function, providing an analytical expansion. Finally, we add
some complementary arguments elucidating the origin of the
new interband plasmon (absent both in the Dirac and 2DEG
cases), whose appearance for the intrinsic BHZ model has
been proposed in Ref. [9].

A. Static limit

In order to set a reference with a closely related and
analytically solvable model, we discuss the static intrinsic
polarization for a massive Dirac limit, given by [27,28]

�0(q) = −gq

8πA

[
1

χ
+

(
1 − 1

χ2

)
arctan χ

]
χ→∞−→ −gq

16A
, (23)

where the index 0 stands for intrinsic limit μ = 0, g accounts
for possible spin and band degeneracy, and χ = Aq

2M
. When the

Dirac system is massless (M = 0), �0(q) is a linear function
of the momentum q. A finite Dirac mass suppresses the
polarization for q � M/A, where �0(q) shows a superlinear
behavior. For q � M/A, the mass is negligible instead and
the result of the massless limit is reproduced.

The static polarization function of the BHZ model is simply
obtained by direct numerical evaluation of Eq. (5) at zero
frequency. In Fig. 3, we show �0(X) calculated for a particle-
hole symmetric BHZ system (ξD = 0). Note that we obtain the
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FIG. 4. (Color online) Static intrinsic polarization function of the
BHZ model for a finite ξD value.

massless Dirac case in the limit B → 0 (and therefore X → 0),
where limX→0 |B|�0(X)/X = − gs

16 . A finite B parameter
determines a fundamental qualitative change with respect to a
Dirac system. Indeed, �0(X) reaches a maximum at X ≈ 1 and
then decays as 1/X2 for x � 1 as shown in the inset of Fig. 3. A
finite and positive Dirac mass M leads to a general suppression
of the polarization function with respect to the massless case.
In the region X < 1 (where quadratic terms are less important),
�0(X) resembles the massive Dirac case, with a superlinear
increase in the region X � ξM , due to the suppression of
the interband overlap factor determining a reduction of the
polarization at small momentum. For intermediate values
ξM � X � 1, analogously to the massive Dirac limit, �0(X)
is approximatively linear in X. Considering larger momenta
X � 1, the behavior is dominated by the quadratic terms and
the polarization eventually vanishes for X → ∞. In general,
the interplay of quadratic terms and a finite Dirac mass shifts
the maximum of �0(X). When the Dirac mass M is negative
(topological insulator phase), we observe a less pronounced
suppression of the polarization for X < ξM , with respect to a
massive Dirac system (normal insulator) with equal modulus
of M . Moreover, on the contrary to the M > 0 case, �0(X) is
enhanced at large X with respect to the massless, particle-hole
symmetric limit. This behavior is due to the enhanced overlap
factor between electron and hole bands in the TI phase.

In Figs. 4(a)–4(c), we analyze the effects of a finite value
of the parameter ξD in the BHZ model, for ξM = −0.2, 0, and
0.2. A finite ξD breaks particle-hole symmetry by changing
the effective masses of conduction and valence bands. We only
found quantitative changes to �0(X), which is progressively
reduced for increasing ξD .

B. Screening

In a massless Dirac system, where the static polarization is
linear in q [Eq. (23)], the dielectric function is a constant,

ε(q) = εr

(
1 + gsgvπ

8
α

)
≡ ε; (24)

therefore the intrinsic polarization contribution can be ab-
sorbed into an effective background dielectric constant ε. As

115425-6



SCREENING PROPERTIES AND PLASMONS OF Hg(Cd)Te . . . PHYSICAL REVIEW B 90, 115425 (2014)

a consequence, a test charge Ze, placed at the origin, induces
a screening electronic density

Ze [n0(q) + nr ] = Ze

(
1 − ε

ε

)
,

which in real space corresponds to a screening image charge
[a fraction (1 − ε)/ε of the external one] placed exactly at the
same position,

n(r) = −
(

1 − ε

ε

)
δ(r). (25)

Note that the screening charge only due to the electronic system
(without background contribution) is a fraction −(ε − εr )/εεr

of the external one.
In a massive Dirac system, the large q behavior of �0(q)

reproduces the massless limit and therefore a screening charge
given by Eq. (25) is also developed at vanishing distances
r in response to an external test charge. However, in the
long-wavelength limit (q < M/A) �0(q) has a superlinear
behavior and thus n0(0) ∝ limq→0 �0(q)/q = 0. Thus an
induced charge density of the same sign as the external
charge is developed at finite distances [27] [summing up
to Ze(ε − εr )/εεr ], so that the test charge feels only the
background screening over long distances, as expected in an
insulator.

For the BHZ model, we find similarly to Eq. (24)

lim
X→0

ε(X) = εr

(
1 + gsπ

8
α

)
(26)

in the long-wavelength limit, but limX→∞ ε(X) = εr . This fact
is reflected in the real space behavior of the induced charge
density, which is given by

n0(r) = η0

∫
dXJ0(Xrq0)

|B|�0(X)

1 − αg0(X)
(27)

with η0 = α
εr

q2
0 a natural charge density constant of the model.

We note that n0(r) is proportional to q2
0 and α, but n0(r) has

an additional dependence on α (and thus on A) through its
integrand. It also parametrically depends on ξM and ξD through
�0(X) and g0(X).

In Fig. 5, we plot the induced charge density n0(r) in real
space for ξD = ξM = 0 with different values of α. Opposite to
a Dirac system, the induced charge density has a finite extent
over a distance of the order of 1/q0, which is clearly related
to the decay of �0 at large wave vector due to the presence of
quadratic B terms. n0(r) decays at large distances as r−2. An
electron far away from this induced charge, r � 1/q0, does
not see the finite extent of it and is therefore screened in the
same way as in the Dirac system, leading to the similarity of
Eqs. (24) and (26). In the opposite limit where the electron sits
on top of the induced charge, r � 1/q0, it does not feel it at
all, resulting in no screening besides εr .

In the inset of Fig. 5, we study the effect of a finite Dirac
mass term. With a finite ξM , the induced density (as in the
case of pure Dirac systems) shows a qualitatively different
behavior. n0(r) changes sign for sufficiently large r , ensuring
a vanishing total induced charge. From a quantitative point
of view, a finite negative (positive) M enhances (suppresses)
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FIG. 5. (Color online) Induced charge n0(r) due to a test charge
in the intrinsic limit of the BHZ model for ξD = ξM = 0. The plot
is invariant under a change of B parameter and only depends on the
effective fine structure constant α. In the inset, r n0(r) calculated for
α = 1 and finite Dirac mass.

the features of n0(r), due to its effect on the interband overlap
factor.

C. Long-wavelength expansion

An analytic discussion of the polarization function is only
possible in the limit X → 0. Here, we focus on the limit
of vanishing mass ξM → 0 to extract an analytic formula of
the plasmon dispersion. An expansion of �R in X gives, for
� > X,

�R = − gs

8|B|X
2

(
2
� − √

1 + �2ArcSinh(�)

π�3

+ i
1

�(1 + √
1 + �2)

)
+ O(X4)

=
��1

− gs

8|B|
X2

�2

(
2

1 − ln(2) − ln(�)

π
+ i

)
+ O(�−3) + O(X4), (28)

where one finds an �−2 behavior with an additional logarith-
mic correction for the real part in the high-frequency limit.

Calculating the plasmon dispersion by performing an
expansion of Eq. (10) up to second order in �

�
, one finds

the linear dispersion

�p = 1
8πgαX + O(X2), (29)

which is only valid for sufficiently large α, such that the
conditions Re[�R(X,�p)] > 0 and � > X are fulfilled. The
linearity of the dispersion follows from Eq. (28) only by
inclusion of the damping via �. Without the substitution
� → � − i�, Re[ε(X,�p)] = 0 has no sensible solution for
�p. The damping ratio is given by

�

�
=

��1
1 − �2

8
+ O(�3), (30)

underlining the importance of damping in this limit. The
plasmon is only well defined for a finite �p > �c, with
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(b) and α = 10 (c). (d) shows line cuts for fixed X = 0.7 with α ∈
{0,0.2,0.4,10} in black solid, red dot-dashed, blue long-dashed, and
green short-dashed lines, respectively. ξM = 0 and ξD = −0.5.

�
�

|�=�c
� c where 0 < c < 1 sets the limit for the detectability

of the plasmons; for example in the recent experiment
[24] c was shown to be of the order 0.5. Equation (29)
translates this into a finite momentum scale q >

q0

gα

8�c

π
with the

intrinsic plasmon length scale l0 = gα

q0
, given by the Coulomb

interaction strength times the charge decay length 1
q0

; see
Sec. III B. We interpret l0 as the length scale up to which charge
separation due to Coulomb interaction can occur and give rise
to the interband plasmons, in an undoped and therefore overall
neutral system.

In the opposite limit of high frequencies, the term ln(�)
spoils a simple

√
X behavior of the plasmon dispersion. In

this limit, we can extract the analytic form of the damping rate

�

�
=

��1

1

3π

[
− ln

(
4�2

e3

)
+

√
3π2 + ln

(
4�2

e3

)2]
+ O

(
1

�

)
=

�→∞
π

2 ln
(

4�2

e3

) (31)

with Euler’s number e, yet the plasmon dispersion can only be
calculated numerically.

In the following discussion of the different excitation
spectra, we will use these analytic results to check our numerics
in the limits of small momenta and low and high frequencies.

D. Excitation spectrum

The noninteracting single-particle excitation spectrum is
given by �Im, which we plot in Fig. 6(a) for ξM = 0 and ξD =
−0.5. Due to energy conservation, there are no excitations
beneath a frequency �min. In contrast to graphene, where one
observes a diverging behavior of the polarization at �min, here
�Im increases continuously from 0. This is due to the broken

particle-hole symmetry (ξD < 0) which ensures that the lowest
energy excitations correspond to processes exciting particles
from the valence band to the proximity of the Dirac point,
where, however, the density of states is zero. The excitation
spectrum shows a maximum for small momenta X < 1 which
lies beneath the plasmon dispersion given by the black line,
perturbatively calculated from Eq. (10) up to order ( �

�
)2 for

α = 0.4.
Considering a finite Coulomb interaction, the excitation

spectrum is given by �Im
rpa plotted in Fig. 6(b) for α = 0.4 and

Fig. 6(c) for α = 10. The maximum of the spectrum shifts to
higher energies compared to the noninteracting one, indicating
the formation of a collective excitation in the system, i.e.,
a plasmon. This is proven by solving the plasmon equation
[Eq. (10)] perturbatively up to order ( �

�
)2, with the dispersion

plotted as a black line on top of the spectrum. Additionally, the
dispersions based on the expansion of �R in the limit X → 0
for � � 1 and � � 1 are plotted as gray lines in Fig. 6(c).

The plasmon dispersion relation starts linearly for small
q, as one would expect for a neutral system without doping.
At high energies on the other hand, a free-particle behavior
could be expected, leading to the usual

√
q dispersion known

from doped systems. Although Eq. (28) shows that this picture
is only partly true due to the logarithmic correction of �Re,
Fig. 6(c) indicates a qualitative agreement.

Figure 6(d) shows line cuts of �Im
rpa for fixed X = 0.7

with α ∈ {0,0.2,0.4,10}. Additionally, the black vertical lines
indicate the plasmon frequency for α � 0.4 (left line) and α =
10 (right line). For α = 0.2 the maximum of the interacting
spectrum lies between the maximum of the noninteracting
spectrum and the plasmon frequency, indicating that single-
particle and collective excitations are equally strong. Increas-
ing the interaction to α = 0.4, the maximum of the interacting
spectrum and the plasmon frequency almost coincide; there-
fore the plasmon dominates over the single-particle excitation.
At very large interactions α = 10, the plasmon is the only
relevant excitation in the system.

Increasing the Coulomb interaction broadens the plasmon
peak and reduces its height as shown in Fig. 6(d). This seems
contrary to the picture of a plasmon as a sharp interaction-
induced charge resonance, suggesting that these interband
plasmons may not be well defined for high energies. Yet
this is a false conclusion. In Sec. II G 5 we discussed that the
contribution of the resonance to the f -sum rule is the actual
measure of importance of a resonance. It can be estimated
by multiplying the peak height in �Im

rpa by �p, while the
relevant peak width is given by �

�p
. The latter is decreasing

with �p according to Eq. (31). From this normalization of
the peak we conclude that the discussed interband plasmons
fulfill the interpretation as sharp interaction-induced charge
resonances, with the width �

�p
decreasing with increasing

plasmon frequency, above the critical frequency �c as defined
in Sec. III C.

E. f -sum rule

The f -sum rule provides a check for our numerics. In

Fig. 7 we plot the ratio
�num

f
∑

f
∑ , with �num

f
∑ = f

∑num −f
∑

where f
∑num is the numerical calculated f -sum rule and
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FIG. 7. (Color online) The ratio
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∑

f
∑ , with �num

f
∑ being the

difference between the numerical and analytical f -sum rule. Black
dots are for the noninteracting spectrum, while blue stars stand for
α = 0.4 and green triangles for α = 10. β = 3, Xmax = 6, ξM = 0,
and ξD = −0.5. The deviations around X � 1 stem from numerical
instabilities, which are however negligibly small.

f
∑

the analytic one. The deviation are of the order 10−3,
comparable to the analytical uncertainty, see Sec. II G, and
thus negligible. The f -sum has to be the same for interacting
and noninteracting systems. We find a slight dependence on
the interaction strength α, which could be a numerical artifact,
depending on �, or a real α dependence like in graphene, where
spectral weight is missing for small frequencies; cf. Eq. (14) in
Ref. [26] (�RPA < �R ∀q,ω for the undoped Dirac model).
As the effect declines with increasing cutoff �, we conclude
that the RPA approximation in the BHZ model misses no
spectral weight compared to the full Coulomb interaction, even
in the undoped limit.

IV. DOPED SYSTEM

In this section, we extend our analysis to finite doping
μ > 0, where a net charge density is present in the system.
Doping the system has two effects: one is the Fermi blocking
of interband excitations [red arrow in Fig. 12(a)] for small X

and �. The other is the appearance of intraband excitations
[green arrow in Fig. 12(a)], which are absent in the intrinsic
limit. Again, first we study the polarization and screening
properties of the system in the static limit, where we also
study Friedel oscillations due to the scattering on a charged
impurity. Then, we study the dynamical polarization function
in the long-wavelength limit, where we obtain an analytical
expression for the collective plasmonic modes of the system.
Finally we numerically compute the dynamical polarization
function in the full range of momenta and frequencies in the
full parameter space of the BHZ model, analyzing the effect
of each of the model parameters. Particular emphasis is put on
the coexistence of interband and intraband plasmons and on
how the BHZ model interpolates between the Dirac and 2DEG
behavior.

A. Static limit

In Fig. 8, we present the static polarization function �̃(X) =
�(X)/G(μ) at finite doping, conveniently normalized by the
density of states at the Fermi level G(μ). This normalization
stands out naturally from the long-wavelength property of the
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FIG. 8. (Color online) Static polarization function �̃(X) of the
BHZ model for ξM = ξD = 0 at finite doping for different value of
XF , normalized by the DOS G(μ). In the inset, details on the value
of �(2XF ) as a function of XF are given.

polarization function

lim
q→0

�(q) = �μ(0) = G(μ). (32)

For the BHZ model at finite doping, �̃(X) has a pronounced
dependence on the extrinsic parameter XF = kF /q0. For
XF � 1 (XF � 1) the Fermi level falls in a region where
locally the dispersion curve has predominant Dirac (2DEG)
character. In a 2DEG system, the static polarization assumes
the following analytic form [29],

�̃(q) = 1 − �(q − 2kF )

√
q2 − 4k2

F

q
, (33)

while in the Dirac limit we have [30,31]

�̃(q) = 1 − �(q − 2kF )

×
⎡⎣
√

q2 − 4k2
F

2q
− q

4kf

arctan

√
q2 − 4k2

F

2kF

⎤⎦. (34)

Our calculations for the BHZ model with ξM = ξD = 0
correctly reproduce the Dirac and 2DEG limits for XF � 1
and XF � 1, respectively. We note that with a finite B term and
nonzero XF the polarization will always have a decay behavior
for q > q0. In the 2DEG and Dirac limit one finds �̃(q) = 1 for
q < 2kF , coincidence due to the balancing effect of dispersion
curve and overlap factor. Interestingly, in the BHZ model we
observe instead a deviation from unity, shown in details in
the inset of Fig. 8, which has a maximum for XF ≈ 0.5. In
the 2DEG limit, XF � 1, �̃(X) has a strong discontinuity in
its first derivative at X = 2XF , while for decreasing XF this
discontinuity decreases and finally vanishes in the Dirac limit,
where the discontinuity affects only the second derivative.

B. Screening

We already analyzed in Sec. III B the intrinsic response of
a BHZ system to a test charge, when no net charge density is
present in the system. While the intrinsic response is realized
on intrinsic scales of the model 1/q0, the “metallic” response
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FIG. 9. (Color online) Induced charge density in real space for
the BHZ model for ξM = ξD = 0 and α = 0.3, 0.5, and 1. Data in
different panels belong to systems with XF = 0.05, 0.5, 1, 2, 10,
and 50. All calculation are obtained by keeping εr = 10 and kF =
0.1 nm−1, and varying A ≈ 0.143, 0.29, and 0.47 eV nm, for α = 0.3,
0.5, and 1, respectively, while varying the parameter B accordingly
to XF . In the panel XF = 50 (2DEG limit), the three curves with α =
0.3, 0.5, and 1 are quite close and correspond to similar β parameter
(β = 0.01, 0.008, and 0.007, respectively).

(at finite electronic density) is characterized by the Fermi wave
length π/kF . Therefore it is convenient to express nμ(X) as
a function of dimensionless units X̃ = X/XF = k/kF , due
to the presence of a discontinuity at �μ(2XF ). The induced
charge density nμ is given by

nμ(r) = ημ

∫
dX̃

J0(rkF X̃)

1 − αg0(X̃XF )

�̃μ(X̃XF )

1 − αg(X̃XF )
, (35)

where, using the property Eq. (32), we have emphasized
the dependence of the induced density on the DOS at the
Fermi level, which now appears in the scaling factor ημ =
η0|B|G(μ)XF = e2kF

4πε0ε2
r
G(μ). We note that the integral also

depends on the parameters α and XF (and naturally on ξM and
ξD , when finite).

In Fig. 9, we present the induced screening electronic
radial density for the BHZ model for ξM = ξD = 0 due to
a pointlike test charge. Each panel corresponds to a different
value of the ratio XF = kF /q0, and within each panel curves
differing by the Dirac fine structure constant α are presented.
Friedel oscillations appear of period π/kF , which become
more defined for larger α. We also note that density oscillations
are more prominent for kF ≈ q0 than in the Dirac (XF � 1)
and 2DEG limits (XF � 1). In the 2DEG limit the α parameter
is ill defined and should be replaced by the more general
parameter β = e2G(μ)

2εoεr kF
, characterizing the dielectric response

of the system.
The presence of Friedel oscillations and their asymptotic

behavior are related through the Lighthill theorem [32] to
discontinuities in the static polarization function and its deriva-
tives (see for example Ref. [33] for a detailed discussion). A
discontinuity like |q − 2kF |ν�(q − 2kf ) in �(q), with � the
Heaviside step function and ν ∈ R, translates into a decay
of the oscillations in n (r) with leading order r−ν−3/2. One
finds ν = 1/2 (ν = 3/2) for the leading order discontinuity

of a 2DEG (Dirac) system, such that the first (second) and
all higher derivatives of the static polarization function are
discontinuous at q = 2kF . Analyzing the Friedel oscillations
for the BHZ model, one finds a composition of two different
contributions with an asymptotic decay at large distances
as r−2 (2DEG contribution) and r−3 (Dirac contribution),
respectively. As a consequence, the discontinuity in the RPA
polarization function of the BHZ model at q = 2kF can be
very well approximated by a combination of 2DEG (ν = 1/2)
and Dirac (ν = 3/2) contribution. In the Dirac (2DEG) limit,
the effect of the discontinuity in the second (first) derivative
becomes predominant and oscillations purely decay in leading
order as r−3 (r−2).

C. Long-wavelength expansion, plasmon dispersion

At finite doping, for small momenta X, the polarization
function is governed by intraband excitations, as the interband
excitations are Fermi-blocked. We perform an expansion in
this limit, for � > X, to gain an analytical insight into the
physics at finite doping and derive an analytical formula for
the plasmon dispersion. In particular, intraband plasmons are
expected to be the dominant excitation for small momenta,
similarly to the 2DEG and Dirac case. We expand the
polarization function up to order X4,

|B|Re[�R(X,�)] = �44
X4

�4
+ �42

X4

�2
+ �40X

4

+�22
X2

�2
+ �20X

2 + O(�2),

and use it to solve Eq. (10). We obtain the plasmon dispersion

�=
√

2πα�22

√
X +

⎛⎝�44

�
3
2
22

1√
8πα

+
√

2π3α3�22�20

⎞⎠X
3
2

(36)
with the leading coefficient

�22 = gs�(Xf )

⎛⎝ X2
f

(
1 + 2X2

f + 2ξM

)
4π

√
X2

f + (
ξM + X2

f

)2
− γ ξD

X2
f

2π

⎞⎠

= gs�(Xf )
1

4π

⎛⎜⎝|�f | + �inter(Xf )︸ ︷︷ ︸
−|ξM |<...<|�f |

⎞⎟⎠
=

ξM=0
Xf →0

gs

Xf

4π
+ O

(
X2

f

) = gs

|�f |
4π

+ O
(
X2

f

)
(37)

=
ξM=0
Xf →∞

gs

X2
f

2π
(1 − γ ξD) + O

(
1

X2
f

)
= gs

|�f |
2π

+ O

(
1

X2
f

)

(38)

with γ = sgn[�f ] and �inter(Xf ) = X4
f −ξ 2

M√
X2

f +(ξM+X2
f )2

−
γ ξDX2

f . In the limit of zero mass, �inter(Xf ) interpolates
smoothly between 0 for Xf → 0 and |�f | for Xf → ∞. The
former case corresponds to the Dirac limit, where one finds
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the plasmon frequency

ω = A

√
gαkf

2
√

q =
√

ge2μ

8πε0εr

√
q

in the literature [10], being identical to Eqs. (36), (37). The
latter case is the 2DEG limit, where one finds the plasmon
dispersion

ω =
√

e2N

2mε0εr

√
q =

√
ge2μ

4πε0εr

√
q

in the literature [29], with N = g

4π
k2
f the carrier density and

m = 1
2|B+D| . This is in agreement with Eqs. (36), (38).

Thus the BHZ model as a function of its parameters
reproduces the plasmon dispersion in the Dirac and 2DEG
limits and interpolates between them. We note that for kf → 0
the term �22 is zero and the intraband plasmon disappears. In
this limit, the leading order contribution O(X2

�2 ) of the intrinsic
polarization, Eq. (28), takes the place of �22. The crucial
difference between the extrinsic and the intrinsic polarization
is that the latter has a finite imaginary part of order O(X2

�2 ),
leading to the linear dispersion of the interband plasmons. Yet
for finite kf > 0, these interband plasmons are suppressed due
to the Fermi blockade of the interband excitations and only
exist if their plasmon frequency exceeds both the chemical
potential �f and the critical frequency �c as defined in
Sec. III C; see for example Fig. 14.

Besides the different scaling with momenta in the limit
q → 0, also the scaling with α is different for the inter-
and intraband plasmons, Eqs. (29) and (36): linear versus
square root. This will have important consequences in the
following when we will discuss how to separate the two
different collective excitations.

D. Excitation spectrum: Interpolation between
Dirac and 2DEG regime

We begin the discussion of the doped spectrum by looking
at the limiting results of the 2DEG and Dirac systems. From
this, we then find that we can interpolate between them by
changing the Fermi momentum. Interestingly, by considering
the cases of broken particle-hole symmetry and large masses,
we also find regimes which are distinct from the Dirac and
2DEG limit. As an example, these regimes support both inter-
and intraband plasmons at parameters which are realistic for
HgTe QWs.

In all the following plots, the boundaries of the single-
particle spectrum will be indicated by faint black lines, the
isolines �Re = 0 by red lines. The plasmon dispersions are
plotted as black curves (full result from perturbation theory)
and gray curves (expanded result in limit X → 0).

1. Limiting case: 2DEG

In the 2DEG limit, only intraband excitations are possible.
The polarization function has a well-known analytical form
[29]; therefore we can easily plot the noninteracting spectrum
in Fig. 10(a). �Im is peaked for q,ω → 0 closely to the upper
boundary of the spectrum. It decays to zero instead for large

FIG. 10. (Color online) Spectrum of a 2DEG. (a) Imaginary part
of �R with N = gsm

2π�2 and gs the degeneracy factor. (b) �Im
rpa for

rs = 2, with vq = rs kf

Nq
the Coulomb interaction. We add an artificial

damping in the region of �Im = 0 to make the plasmons visible.

momenta and frequencies like �Im ∝ q−1, if one considers a
fixed ratio ω ∝ q2 within the SPE region.

The interacting spectrum is shown in Fig. 10(b). An
intraband plasmon appears with the usual

√
q dispersion for

q → 0. It absorbs all of the spectral weight in this limit;
thus �Im

rpa is suppressed in the SPE region. For intermediate
momenta, the plasmon dispersion lies in the SPE region and
the plasmon decays and broadens. For larger momenta and
frequencies, the interacting and noninteracting spectra agree
qualitatively.

2. Limiting case: Dirac

The Dirac spectrum comprises both inter- and intraband
excitations. The polarization function still has a well-known
analytical expression [10,11], of which we plot the noninter-
acting spectrum �Im in Fig. 11(a). The intraband excitations
occur for higher energies ω > vf q, while for intraband
excitations less energy is needed, ω < vf q. Both excitation
spectra touch at vf q = ω, where they diverge. Only the Fermi
blockade suppresses the interband transitions in �Im for
q < 2kf and cures the divergency; see Fig. 11(a) for ω > vf q.
One finds a ω−1 decay for high frequencies.

The interacting spectrum �Im
rpa is plotted in Fig. 11(b) for

α = 0.6. Similarly to the 2DEG, all of the intraband spectral
weight is absorbed by a plasmon in the limit q → 0 and the
divergence at vf q = ω is cured. Interestingly, for sufficient
large interaction strength α the plasmon decays in the interband

FIG. 11. (Color online) Plots for Dirac case. (a) �Im with N =
gs kf

�vf
and gs the degeneracy factor. In the gray area, the color scale is

exceeded due to the divergency of �Im. (b) �Im
rpa for rs = 2πgsα =

4π 0.6, with vq = rs kf

Nq
the Coulomb interaction. We add an artificial

damping in the regions of �Im = 0 to make the plasmons visible.
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spectrum. For larger momenta and frequencies, we note that
the intraband polarization does not recover the noninteracting
value, as it does for the 2DEG, but remains much smaller.
Therefore single-particle intraband excitations are blocked
altogether for all momenta and frequencies in this limit. The
missing spectral weight goes into a charge resonance at higher
frequencies in the interband spectrum [26]. Yet, this resonance
is not a solution of the plasmon equation and therefore not a
plasmon [15].

3. BHZ model, ξM = ξD = 0

The band structure of the BHZ model without mass and
particle-hole symmetry breaking is shown in Fig. 12(a). The
interband single-particle excitations lying lowest in energy
are symmetric in momentum as shown by the red arrow
in Fig. 12(a), going from −X to X . Due to particle-hole
symmetry, this leads to nesting and thus one expects these
excitations to dominate the interband spectrum. Interband
excitations as indicated by the dashed, black arrow on the other
hand, going from momentum X + X f to X f with X‖X f ,
are suppressed due to imperfect nesting of the different sized
electron and hole cones, as well as by a small overlap factor.
The latter can be cured by introducing a large negative mass,
as will be shown in Sec. IV F. Then these excitations have a
considerable influence on the polarization for small energies,
helping with the formation of interband plasmons, following
the ideas presented in Sec. II D 1. In the pure Dirac system,
these processes are forbidden by helicity.

By varying the doping level we can modify the excitation
spectrum of the system [see Figs. 12(b)–12(d)] to resemble
that of a Dirac system (Xf � 1) or of a 2DEG (Xf � 1), or
to obtain an intermediate behavior (Xf ∼ 1). In the pictures
we highlight the boundaries of the excitation spectra, with
the red area corresponding to the interband spectrum and the
blue area to the intraband spectrum. The overlap between
the two is indicated by the purple area. The boundaries of
the spectra vary from the linear graphene behavior to the q2

dependence of the 2DEG. In general, the mixing of linear
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FIG. 12. (Color online) (a) Band structure of the BHZ model
with indicated intraband (interband) transitions, green arrow (red
and black, dashed arrow), and finite chemical potential. (b)–(d)
Boundaries of the spectrum for Xf ∈ {0.1,1,3}. Interband spectrum
in red, intraband spectrum in blue, and mixed area in purple.

FIG. 13. (Color online) Imaginary (a) and real part (b) of the
polarization function for Xf = 0.1. The red line indicates �Re = 0.

and quadratic dispersion leads to an overlap of the inter- and
intraband spectrum. This affects the visibility of the interband
plasmons, which can be hidden due to strong single-particle
damping.

(a) Weak doping of Xf = 0.1. The extrinsic (kf ) and
intrinsic (q0) scales of the system are separated by one order of
magnitude. As the Fermi surface lies in the (almost) linear part
of the spectrum, we expect that on the kf scale we resemble
graphene. The physics on the q0 scale on the other hand should
be more or less untouched by the doping, and the system should
behave as in the intrinsic limit.

We plot �R in Fig. 13. Comparing panel (a) to Fig. 11,
one finds good agreement with the Dirac case. The biggest
deviation is found in the peak of �Im at �inter

min , which is not
symmetric as for a Dirac system due to the overlap of inter-
and intraband spectrum [Fig. 12(b)]. The finite quadratic part
in the spectrum cures the divergency formerly occurring in the
Dirac limit. The real part of −�R is strongly negative only at
the upper boundary of the intraband spectrum. This indicates
that for small interactions, only one plasmon will dominate the
excitation spectrum on the Fermi scale.

As we are interested in the regime where both inter- and
intraband plasmons are visible, we look at the interacting spec-
trum, given in Fig. 14 by plotting �Im

rpa , for a strong interaction
α = 10. On the Fermi scale [panel (a)], the intraband plasmon
absorbs all spectral weight from the intraband spectrum. The
dispersion agrees with the perturbative dispersion from the
expansion in Eq. (36) in the limit X → 0, plotted as a gray
curve. The green, dashed line shows the linear dispersion
of the interband plasmon in the undoped limit, based on
Eq. (29). On the Fermi scale, it is not obvious that there is
an interband plasmon, although the interacting polarization
function develops a smeared resonance around the perturbative

FIG. 14. (Color online) �Im
rpa for Xf = 0.1 with α = 10 on the

kf scale (a) and the q0 scale (b). We add an artificial damping in the
regions of �Im = 0 to make the plasmons visible.
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FIG. 15. (Color online) The imaginary (a) and real part (b) of the
polarization function for Xf = 3. The red line indicates �Re = 0.

interband plasmon dispersion for high momenta. Switching to
the intrinsic scale, Fig. 14(b), one finds the interband plasmon,
corresponding to the single peak in −�Im

rpa , unperturbed by
doping for momenta much larger than kf . The dispersion is the
same as for a plasmon in the undoped limit [9]. The two black
lines near the peak are just the boundaries of the intraband
excitation spectrum, which does not play a role here.

As in the limit of X → 0 the interband plasmon dispersion
scales linearly with α, �p ∝ α, see Eq. (29), while the
intraband plasmon frequency is proportional to

√
α; lowering

the interaction strength will lead to an overlap of the two
resonances below some critical α.

(b) Strong doping of Xf = 3. Strong doping of the system
significantly increases the spectral weight, as shown in
Fig. 2(b), with the increase of intraband excitations, while
most of the interband excitations are Fermi-blocked, leading
therefore to an effective decoupling of the two bands. We
expect the overall spectrum to be governed by intraband
excitations and to resemble the spectrum of a 2DEG, as
the Fermi surface lies in the (almost) quadratic part of the
spectrum.

The corresponding �R is plotted in Fig. 15. The single-
particle spectrum in panel (a) is peaked at small momenta and
at energies close to the upper bound of the intraband spectrum.

The interband part of the spectrum leads only to minor
deviations from the 2DEG case [compare with Fig. 10(a)].
The real part of −�R in panel (b) is strongly negative at
the upper boundary of the intraband spectrum, indicating that
only a single intraband plasmon will dominate the interacting
spectrum. We additionally note that the static limit property for
which the polarization is a constant �̃(X) = 1 for X < 2XF ,
discussed in Sec. IV A, extends also to an area of finite �.

The interacting spectrum is shown in Fig. 16 by plotting
�Im

rpa for the interaction strength α = 10. Even for this large
Coulomb interaction, we only find the intraband plasmon. This
is as expected due to the combined effects of Fermi blocking
of interband excitations and increased spectral weight for
intraband transitions. The interband plasmon lies in the large
overlap of inter- and intraband spectrum, cf. Fig. 14(b), and
it is therefore heavily damped and not visible in the overall
spectrum.

(c) Intermediate doping of Xf = 1. For intermediate doping
levels like Xf = 1, a mixture of Dirac and 2DEG behavior is
expected, due to the similar importance of inter- and intraband
excitations.

We plot the polarization function �R in Fig. 17. Indeed, the
single-particle spectrum in panel (a) looks like a combination

FIG. 16. (Color online) �Im
rpa for Xf = 3 and α = 10. We add an

artificial damping in the regions of �Im = 0 to make the plasmons
visible.

of Figs. 13(a) and 15(a). While the the shape of the polarization
resembles the one of the 2DEG, the interband spectrum is
now more pronounced and even dominating for X > 2Xf .
Therefore we could expect both kinds of excitations giving rise
to a plasmon mode. The real part of −�R in panel (b) shows
again just a single minimum, following the upper boundary
of the intraband spectrum. The deviations from the constant
behavior �̃(X) = 1 for X < 2XF in the case of intermediate
doping, see Sec. IV A, are also found for finite �.

The interacting spectrum is shown in Fig. 18 by plotting
�Im

rpa for an interaction strength α = 10. It is dominated by
a single resonance, lying above the intraband part of the
single-particle spectrum. For small momenta, this resonance
corresponds to the intraband plasmon. Yet for intermediate
momenta, a comparison with the interband plasmon dispersion
in Fig. 14(b) indicates that also the interband plasmon
contributes to the resonance. A clear distinction between the
two is then not possible anymore.

In summary, doping the system offers the possibility to
change the excitations spectrum on the Fermi scale from a
Dirac to a 2DEG type. The interacting excitation spectrum
is usually governed by a single intraband plasmon, while the
interband plasmon is hidden in the single-particle background.
Only large interaction strengths offer a possibility to see both
plasmons in the spectrum. In the following, we will now
analyze the influence of both broken p-h symmetry and finite
masses, which both offer a way to separate the two plasmons
and make them visible in the total spectrum.

FIG. 17. (Color online) Imaginary (a) and real part (b) of the
polarization function for Xf = 1. The red line indicates �Re = 0.

115425-13



JUERGENS, MICHETTI, AND TRAUZETTEL PHYSICAL REVIEW B 90, 115425 (2014)

FIG. 18. (Color online) �Im
rpa for Xf = 1 with α = 10. We add

an artificial damping in the regions of �Im = 0 to make the plasmons
visible.

E. Hg(Cd)Te quantum wells: BHZ model with finite ξD

A broken particle-hole symmetry, ξD �= 0, with small or
vanishing mass is the experimental relevant case for HgTe
QWs. It also offers the possibility of blocking the interband
SPE spectrum close to the minimal excitation energy �inter

min ,
resulting in less damped interband plasmons [9].

1. Spectrum

Here, we want to use a similar effect for the intraband
excitations in order to separate the inter- and intraband
spectrum as well as the two plasmon modes. The broken p-h
symmetry introduces an inflection point into the spectrum,
∂2

∂X2 εX,λ = 0|X=Xinf , with momentum Xinf and energy �inf . For
ξD < 0, it lies in the hole part [λ = −1] of the spectrum.
With a sufficiently small Fermi momentum, Xf � Xint, the
highest energy intraband excitations involve the Dirac point
for momenta on the order of the Fermi momentum; see
Fig. 19. The same is true for the lowest energy interband
excitations. Due to the vanishing density of states at the
Dirac point, both kinds of excitations are suppressed, and
therefore inter- and intraband SPE spectrum are effectively
separated in energy and momentum. This situation is shown
in Fig. 20(a) and Figs. 21(c)–21(e), where the imaginary part
of the polarization goes to zero between inter- and intraband
parts of the spectrum, fully separating them. There, we choose
Xf = 1

2Xinf , ξD = −0.5, and ξM = 0. This blocking effect
holds for small momenta up to roughly 2Xinf , indicated by the

1 1 X

1

1
E E0

Xin fXin f

f

FIG. 19. (Color online) Band structure for ξD = −0.5. Both low-
energy interband excitations (red arrow) and high-energy intraband
excitations (green arrow) involve the Dirac point.

FIG. 20. (Color online) �Im (a) and �Re (b) for Xf = 1
2 Xinf =

0.185 and ξD = −0.5. The red line indicates �Re = 0.

black vertical line in Fig. 20 at X ≈ 3.2. For larger momenta
the high-energy intraband excitation go from deep in the
valence band directly to the Fermi surface—the blocking effect
of the Dirac point is gone; see dashed arrow in Fig. 19.

In Fig. 20(b), �Re shows one major difference in compar-
ison to the p-h symmetric case of weak doping in Fig. 13(b).
At the border of intra- and interband spectrum a strong
antiscreening region is formed. For sufficiently low α a
plasmon should exist there, clearly separated from the second
antiscreening region at higher �, giving rise to the possibility
of observing both intra- and interband plasmons. This can
be seen in Fig. 21, where we plot �Im

rpa for α = 2 (a)

FIG. 21. (Color online) Interacting polarization function �Im
rpa

for Xf = 1
2 Xinf = 0.185, ξD = −0.5, ξM = 0, and α = 2 (a) and

α = 0.4 (b). (c)–(e) show line cuts for fixed X = Xf , X = 1.4Xf ,
and X = 3Xf , respectively, with α ∈ {0,0.2,0.4,2} in black solid line,
red dot-dashed line, blue long-dashed line, and green short-dashed
line, respectively. The black, vertical line separates the inter- and
intraband SPE region.
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and α = 0.4 (b). Panels (c)–(e) show line cuts for fixed
momenta X ∈ {1,1.4,3}Xf and different interaction strengths
α ∈ {0,0.2,0.4,2}.

For large interaction strength α = 2, the intraband plasmon
decays into the interband SPE spectrum; see panel (a) for
X ≈ Xf and the green short dashed line in panel (c). Most
of the spectral weight stays there also for larger momenta, as
�Im

rpa is close to 0 in the intraband SPE region and the resonance
between inter- and intraband SPE spectrum is weak. The latter
can be best seen in the insets of panels (d) and (e), represented
by the green short dashed line peaked slightly above [panel
(d)] or below [panel (e)] the black vertical line separating
intra- and interband SPE region. Yet even with the peak being
small, it indicates the formation of a slightly damped plasmon,
but with small spectral weight. The missing spectral weight is
transferred to higher energies into the interband SPE region.
For intermediate momenta, a second plasmon branch forms;
see panel (a) for Xf < X < 2Xf and the second peak of the
green short-dashed line in the inset of panel (d). For even higher
momenta, X > 2Xf , it overlaps with the forming interband
plasmon leading to a broad charge resonance without clear
peak; see green short-dashed line in panel (e) for � > 0.7.

The picture changes for smaller interaction strength. For
α = 0.4, the intraband plasmon decays in the region between
inter- and intraband SPE spectrum, indicated by the strong
peak of the blue long-dashed line in panel (c). As the
single-particle excitations in this region are suppressed due
to the Dirac point, the plasmon leads to a high and narrow
peak of �Im

rpa . Considering larger momenta X > Xf , the
resonance is split: one part forms an intraband plasmon in
the intraband SPE region; see blue long-dashed line peaked
slightly below the black vertical line in panels (d) and (e).
The second part stays in the interband SPE region, where
it enhances the SPE peak [black line in the inset of panel
(d)] for intermediate momenta Xf < X < 2Xf . For momenta
X � 2Xf , an interband plasmon forms, as shown in panel
(e). There, the broad single-particle peak (black line) around
� = 0.6 gets reshaped into a clear peaked resonance (blue
long-dashed line)—the interband plasmon.

2. Experimental parameters

Taking the experimental parameters from Sec. II F, q0 ≈
0.4 1

nm and E0 ≈ 140 meV, one finds for the plots in Fig. 21
the Fermi momentum kf ≈ 0.07 1

nm and chemical potential
μ ≈ −24 meV = −� × 36 THz. The plot range is therefore
q ∈ [0,0.74]q0 = [0,0.3] 1

nm and ω ∈ [0,1] E0
�

= [0,210] THz
and thus of the right order of magnitude for experimental tech-
niques like Raman spectroscopy or electron-loss spectroscopy.

3. Spectral weight and the f-sum rule

Both plasmonic resonances in Fig. 21(b) overlap for X ≈
Xf , before they separate for higher momenta. Therefore
the question arises whether one can really speak of a clear
distinction between inter- and intraband plasmons for larger
momenta. Here, we want to study the f -sum rule and thus the
spectral weight of the different excitations.
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FIG. 22. (Color online) (a) The ratio f
∑RPA

inter

f
∑0

inter
of interacting over

noninteracting f -sum rule of the interband excitations. Black dots
are for α = 0.2, blue stars stand for α = 0.4, and green triangles for

α = 2. (b) The same for the ratio f
∑RPA

intra

f
∑0

intra
of the intraband excitations.

For all plots: Xmax = 4Xf and β = 4.

The relative deviations of numerical to analytical f -
sum rule are again of the order 10−3 and thus negligible.
Figure 22(a) shows the ratio of spectral weight in the interband
SPE region for the interacting over the noninteracting case,
f
∑RPA

inter

f
∑0

inter
, and panel (b) the same for the intraband SPE region.

The intraband plasmon lying between these two regions for
X < Xf is excluded. As for cutoffs β > 1 one usually has
f
∑0

inter � f
∑0

intra, transfer of spectral weight from one
region to the other can lead to quantitatively different relative
changes of spectral weight in panels (a) and (b). As a key
result, we find that there is always spectral weight missing
in the intraband SPE region. For small momenta, X < Xf ,
the weight goes into the undamped intraband plasmon (this
follows directly from the conservation of the f -sum rule
for interacting and noninteracting systems), while at larger
momenta it is transferred to higher energies into the interband
SPE region. Yet, the increase is only about 2% at X � 2Xf ,
such that we can conclude that the plasmon between the inter-
and intraband SPE region is a pure intraband plasmon with a
reduced spectral weight. The plasmon in the interband region
is the interband plasmon we know already from the undoped
system, see Fig. 6, with a slight increased spectral weight from
the intraband SPE region.

4. Small gap ξM �= 0

Deviations in the thickness of a Hg(Cd)Te QW lead to the
opening of a small gap in the band structure, resulting in a
topological trivial ξM > 0 or nontrivial ξM < 0 system. Apart
from the possible appearance of edge states, which is beyond
the scope of this paper, a small mass works in opposition to
the blocking effect of finite ξD , as it generates a finite density
of states for X = 0. In the following, we therefore show that
the blocking effect of a finite ξD is robust against the opening
of small gaps.

In Fig. 23 we plot the noninteracting and interacting
spectrum for ξD = −0.5 and a small mass ξM = 0.01 ≈
1.4 meV

E0
. A comparison with Figs. 20 and 21 shows that the

small mass has just the effect of separating the inter- and
intraband SPE region additionally. Thus we conclude that
the idea of observing both plasmons in experiments is robust
against slight deviations in the mass and therefore the thickness
of the Hg(Cd)Te QW.
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FIG. 23. (Color online) The imaginary part of the noninteracting
polarization �Im (a) and the interacting one �Im

rpa (b) with α = 0.4.
Xf = 0.133 < 1

2 Xinf , ξM = 0.01, and ξD = −0.5.

F. Topology: BHZ model with large ξM �= 0

A finite Dirac mass opens a gap in the band structure and
changes the pseudospin, and therefore the overlap factor, in
a nontrivial fashion. Thus we can expect in general a quite
different behavior for positive and negative mass. Yet, for these
differences to occur on the intrinsic scale and thus influence
the interband plasmons, |ξM | should be of the order of 1.
In the following, we study such large masses, both negative
and positive, with p-h symmetry. While not experimentally
relevant for HgTe QWs, it offers the possibility to study
the effect of a topological band structure on the electronic
excitations, including plasmons. We also note here that the
dispersion of the BHZ model becomes purely parabolic for
the mass ξM = − 1

4 : εX,λ = λ
4 + X2(λ − ξD). In this limit, the

polarization function, Eq. (5), can be calculated analytically.

1. Large, negative mass

For the parameters Xf = 0.33 and ξM = − 4
9 we plot the

polarization �R in Figs. 24(a) and 24(b). The mass separates
intra- and interband SPE regions for X � 2Xf . Compared
to the massless cases of Xf = 0.1, Fig. 13, and Xf = 1,
Fig. 17, the interband SPE spectrum is enhanced due to the
combination of enhanced overlap factor and low doping, thus

FIG. 24. (Color online) (a) Imaginary and (b) real part of the
polarization �R . (c) and (d) show �Im

rpa with α = 10 and α = 2,
respectively. ξM = − 4

9 and Xf = 0.33 in all plots.

FIG. 25. (Color online) (a) Imaginary and (b) real part of the
polarization �R . (c) and (d) show �Im

rpa with α = 10 and α = 2,
respectively. ξM = 4

9 and Xf = 0.33 in all plots.

small Fermi blockade. Due to the flat band structure, even
for Xf = 0.33 the chemical potential is just barely above
the gap. An interesting consequence of this strong interband
transition can be seen in panel (b), where we find two distinct
areas where −�Re becomes negative. As a consequence, inter-
and intraband plasmons will always be separated, with the
intraband plasmon being confined to low energies. This stems
from the fact that the electrons in the conduction band are
pseudospin polarized, such that intraband excitations to much
higher momenta and energies, where the pseudospin shows in
the opposite direction, are not possible.

This is confirmed in panels (c) and (d), where we plot �Im
rpa

with α = 10 and α = 2, respectively. All the spectral weight
of the intraband SPE region goes into the plasmon, which at
least for α = 2 follows very well the

√
X law. The interband

spectrum is dominated by the interband plasmon, having of
course a much broader peak due to damping (finite Im[�R]).

The dashed, green line in the interband spectrum in Fig. 24
indicates the energy at which excitation processes going from
momentum X + X f to X f with X‖X f are possible; see
black, dashed arrow in Fig. 12(a). Usually suppressed by the
overlap factor, a large negative mass enhances these excitations
by increasing the overlap of the bands to near unity for
small Fermi momenta. Figures 24(b) and 24(d) show that the
interband plasmons mainly occur above this line, indicating
that the described excitation process is important for the
collective excitation. As the process is forbidden by helicity
in the pure Dirac system, it is one reason why the BHZ model
supports intrinsic plasmons while the Dirac model does not.

2. Large, positive mass

For the parameters Xf = 0.33 and ξM = 4
9 we plot the

polarization in Figs. 25(a) and 25(b). Compared to the negative
mass case, the interband spectrum is much weaker. This is a
result of the lower overlap factor and the higher chemical
potential (the band structure is not as flat as in the TI phase),
leading to a stronger Fermi blockade. For the real part of the
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polarization, this has the effect that the two former distinct
areas of sign reversal now almost merge. The interband
excitations are so weak that the minimum −�Re always lies
closely above the intraband SPE region, indicating that it is
the main source for plasmons.

In panel (c) for α = 10, one can identify both inter- and
intraband plasmon. Interestingly, the polarization is clearly
higher in the pure interband SPE region than in the mixed inter-
and intraband SPE spectrum, suggesting that the latter serves
as an additional damping for the interband plasmon. Going to
the smaller interaction strength α = 2 in panel (d), one finds
just a single resonance following the upper boundary of the
intraband SPE spectrum. Thus we conclude that the interacting
spectrum for moderate interaction strength is governed by just
intraband plasmons. The interband excitations are too weak to
support an additional plasmon but for very high interactions—
a consequence of the effective decoupling of the bands by the
overlap factor.

V. CONCLUSION

We have analyzed the dynamical and static polarization
properties in the random phase approximation of Hg(Cd)Te
quantum wells described by the Bernevig-Hughes-Zhang
(BHZ) model. In the static undoped limit, due to the presence
of quadratic terms in the BHZ model and hence to the
natural length scale B/A, the induced charge density in
response to a test charge has a finite spatial extent. This is
in contrast to the pointlike screening charge obtained with the
continuous Dirac model of graphene. In the doped regime, we
have observed Friedel oscillations with an intermediate decay
behavior between the Dirac (r−3) and the 2DEG (r−2) cases.

The discussion of the full dynamical polarization function
has been focused on the appearance of new interband plasmons
due to the interplay of Dirac and Schrödinger physics. In
principle, we expect these plasmons to appear in multiband
systems where the imaginary part of the polarization function
decays faster with energy than the one in the Dirac case

(ω−1), which is the case for the BHZ model (decay as ω−2).
These plasmons appear already in the undoped system at
experimentally relevant parameters, but it is also possible
to observe them in the doped regime, where they coexist
with the usual intraband plasmons. This is favored by broken
particle-hole symmetry in the BHZ model, which allows for
the presence of both a Dirac point and an inflection point
in the band structure. The behavior of these two collective
modes is also influenced by the topology of the band structure.
Indeed the two plasmons tend to merge into one another in a
gapped trivial insulator, while they remain distinct resonances
in the topological insulator phase. We have shown that these
new plasmons should appear for momenta and energies on
the right order of magnitude for experimental techniques
like Raman spectroscopy or electron-loss spectroscopy on
Hg(Cd)Te quantum wells.

The wide range of parameters considered in this paper,
including the regime of topologically trivial and nontrivial
insulators, should make our results applicable to all kinds of
materials described by phenomenological models interpolat-
ing between Dirac and Schrödinger fermion physics.

Throughout this article, we have only discussed bulk
excitations of this peculiar two-dimensional system. Hence,
we have totally ignored the influence of edge states in the
topologically nontrivial regime of the model in the presence
of physical boundaries.

An extension of our analysis to finite-size systems might
yield exciting new physics, where we expect an interplay
of one-dimensional and two-dimensional collective charge
excitations.
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