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I. MEAN-FIELD THEORY FOR THE BULK

In this section we sketch the MF theory for the bulk NCS. We assume spatially uniform pairing potentials ∆s
j = ∆s

and ∆t
ij = ∆t. Using this ansatz to decouple the interaction Hamiltonian Hint, we obtain the Bogoliubov-de Gennes

(BdG) Hamiltonian [S1]
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with the number of sites, N , and the block matrix

H(k) =

(
h(k) ∆(k)

∆†(k) −hT (−k)

)
(S2)

written in terms of h(k) = ξkσ
0 − λ lk · σ, ∆(k) = (∆sσ

0 + ∆t lk · σ) iσy, ξk = −2t (cos kx + cos ky + cos kz) − µ,

lk = x̂ sin ky − ŷ sin kx, and the Nambu spinor Φk = (ck↑, ck↓, c
†
−k,↑, c

†
−k,↓)

T . Here, σ0 is the 2 × 2 identity matrix.

The dispersion Ekν , ν = 1, . . . , 4 is obtained by diagonalizing H(k). ∆s and ∆t are then obtained by minimizing the
free energy
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where the momentum sum is over half the BZ, km > 0. This restriction of the sum makes use of particle-hole

symmetry, which relates the Hamiltonian in Eq. (S2) at k and −k by [S1] UC HT (−k)U†C = −H(k) with the unitary
matrix UC = σx ⊗ σ0.

II. MEAN-FIELD THEORY FOR THE SLAB

We now set up the MF Hamiltonian for the (101) slab and describe the determination of the gap parameters ∆s
l ,

∆x
l+1/2, and ∆y

l in the MF approximation. After Fourier transformation in the directions parallel to the surfaces, the

MF Hamiltonian reads
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where N‖ is the number of unit cells of the slab and Φkl = (ckl↑, ckl↓, c
†
−k,l,↑, c

†
−k,l,↓)

T is the partially Fourier-

transformed Nambu spinor. The sums over l containing Φ†k,l±1 are restricted in such a way that l±1 ∈ {0, . . . ,W −1}.
The coefficient matrices appearing in HMF are

Hll(k) =

 −2t cos ky − µ −λ sin ky −∆y
l sin ky ∆s

l
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l ∆y
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We next construct the 4W × 4W block matrix

H(k) ≡


H00(k) H01(k) 0 · · ·
H10(k) H11(k) H12(k) · · ·

0 H21(k) H22(k) · · ·
...

...
...

. . .

 (S7)

and denote its eigenvalues by Ekν , ν = 1, . . . , 4W and the corresponding eigenvectors by |kν〉. The MF Hamiltonian

satisfies particle-hole symmetry [S1], UC HT (−k)U†C = −H(k) with the unitary matrix UC = 1W ⊗ σx ⊗ σ0, where
1W is the W ×W identity matrix. This symmetry again allows to restrict the momentum sums to half the BZ. The
free energy can then be written as
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where the momentum sum is restricted to half the BZ, km > 0. Minimization of FMF gives the gaps ∆s
l , ∆x

l+1/2,

and ∆y
l . The derivatives of FMF with respect to the complex conjugate gaps can be calculated with the help of the

Hellmann-Feynman theorem, for example
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The momentum sums are performed on a 50× 50 mesh, referring to the full surface BZ. Quadrupling the number of
points in the mesh to 100× 100 leads to changes in the MF gaps on the order of only 0.1%.

Solving the resulting MF equations by iteration turns out to be prohibitively slow for the required W , essentially
because the minimum of FMF is very shallow in some directions in the high-dimensional space of gap parameters. On
the other hand, numerical minimization making use of the explicitly known gradient is reasonably efficient. We use
the Broyden-Fletcher-Goldfarb-Shanno method implemented in Numerical Recipes [S2]. It requires an initial guess
for the inverse Hessian. When we scan over ranges of temperatures, we use not only the converged values of the gaps
but also the best approximate inverse Hessian from one step as starting values for the next, which significantly speeds
up the convergence. We assume that the method has converged when no real or imaginary part of any gap parameter
changes by more than (double) machine precision in the last step.

For certain parameter values, we find nonvanishing gradients of the phases of the order parameters in the l direction,
normal to the surfaces. Specifically, we find four metastable solutions, which are mapped onto each other by inverting
the phase gradients at one or both surfaces. In the limit W → ∞, the four solutions are degenerate. For finite W ,
they split into two degenerate pairs with phase gradients that are even and odd, respectively, under reflection at the
center of the slab. We here choose a solution with even phase gradients since then the selfconsistent solution ensures
that the phases of ∆s

l , ∆x
l+1/2, and ∆y

l become equal at the center of the slab; equal phases of all gaps at the center

are expected since the bulk MF solution has equal phases. By a global phase change we can then make the phase of
all gaps zero at the center. The phases and imaginary parts of the gaps are then odd under reflection at the center.
Finally, of the two remaining solutions differing in the sign of the imaginary parts of the gaps, we select the solution
with Im ∆s

0 ≥ 0 for definiteness. The other solution leads to inverted spin polarizations and currents.

III. SPIN POLARIZATION

Here, we present expressions for the spin polarization. The operator of the spin per site, averaged over the directions
parallel to the surfaces, is

sl =
1

N‖

∑
k

c†kl
σ

2
ckl. (S10)

Using particle-hole symmetry, the thermal spin average can be written as

〈sl〉 = − 1
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where Pll′ is a W ×W matrix with the components (Pll′)nn′ = δlnδl′n′ . We also consider the momentum-dependent
contributions to the spin polarization of the half slab defined by 0 ≤ l < W/2. These contributions are obtained by
summing 〈sl〉 over l = 0, . . . ,W/2− 1 and removing the factor 1/N‖ and the momentum sum.
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IV. EQUILIBRIUM CURRENT

The second observable of interest is the current. The operators jαij denote the electron-number current from site j
to its nearest neighbor i in the α = x, y, z direction. They can be read off from H0 in Eq. (1) in the main text,

jxij = −i c†i
(
−t λ/2
−λ/2 −t

)
cj + i c†j

(
−t −λ/2
λ/2 −t

)
ci, (S12)
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(
−t iλ/2
iλ/2 −t

)
ci, (S13)

jzij = −i c†i
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−t 0
0 −t

)
cj + i c†j

(
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0 −t

)
ci. (S14)

The interaction term Hint conserves charge locally and therefore does not contribute to the current operator. After the
MF decoupling, the anomalous terms do not conserve charge—they describe creation or annihilation of two electrons
either at the same site or at neighboring sites. Such processes do not lead to currents but do introduce a source term,
which is discussed in the main text. We average the current over layers parallel to the surface, taking into account
that jxij and jzij connect adjacent layers, whereas jyij describes a current within a single layer. We then obtain the
thermal averages, again using particle-hole symmetry,

〈jxl+1/2〉 = − 1

2N‖

∑
kν

′
tanh

βEkν

2
〈kν|

i e−ikm/
√
2 Pl+1,l ⊗

 t −λ/2 0 0
λ/2 t 0 0
0 0 t −λ/2
0 0 λ/2 t

+ H.c.

 |kν〉, (S15)
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where 〈jx,zl+1/2〉 denotes currents connecting layers l and l + 1. The components with respect to the slab coordinates
are

〈jll+1/2〉 =
〈jxl+1/2〉+ 〈jzl+1/2〉√

2
, 〈jml+1/2〉 =

〈jxl+1/2〉 − 〈j
z
l+1/2〉√

2
. (S18)

We note that 〈jyl 〉 vanishes for any choice of gap parameters for our model, even non-selfconsistent ones. This is based
on mirror symmetry in the xz plane. The current in the y direction changes sign under this symmetry operation and
thus vanishes.

The momentum-dependent contributions to the current in the half slab 0 ≤ l < W/2 are obtained by summing
〈jl〉 over l = 0, . . . ,W/2 − 1 and removing the factor 1/N‖ and the momentum sum. The momentum-resolved m
component, which sums to a nonzero current, is shown in Fig. 5(c) in the main text. We present the momentum-
resolved y and l components in Fig. S1. The y components chancel by symmetry, as noted above. The cancelation
of the l components, which is required by charge conservation, is only ensured for selfconsistent gaps [S3]. Large
positive contributions from bulk states within the projected (small) positive-helicity Fermi surface are canceled by
small negative contributions from the flat bands and from bulk states within the projected (large) negative-helicity
Fermi surface. This shows that the bulk states must be included to satisfy charge conservation.
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FIG. S1. Momentum-resolved contributions to (a) the y component and (b) the l component of the current in half the slab
(0 ≤ l < W/2).


