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Spin-flip scattering of charge carriers in metals with magnetic defects leads to the low-temperature saturation
of the decoherence time τϕ of electrons at a value comparable to their spin relaxation time τs . In two-dimensional
(2D) conductors such a saturation can be lifted by an in-plane magnetic field B‖, which polarizes spins of
scatterers without affecting the orbital motion of free carriers. Here, we show that in 2D conductors with
substantially different values of the g factors of electrons (ge) and magnetic defects (gi), the decoherence time
τϕ(B‖) (reflected by the curvature of magnetoconductance) displays an anomaly: It first gets shorter, decaying on
the scale B‖ ∼ �/|gi − ge|μBτs , before becoming longer at higher values of B‖.
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The electron interference results in a quantum correction
to the Drude conductivity and a positive magnetoconductivity
(MC) of disordered metals [1]. In particular, the constructive
interference of electron waves propagating in time-reversed
fashion along closed diffusive loops in two-dimensional (2D)
conductors brings about a logarithmically divergent weak
localization (WL) correction. In the absence of external
magnetic flux piercing the electron trajectories, this divergence
of WL correction is cut off by the electron decoherence
time τϕ . Application of the flux breaks the time-reversal
symmetry, thus further diminishing the WL correction and
leading to the low-temperature MC, σ (B⊥), where B⊥ is the
magnetic field component perpendicular to the plane of a
2D sample. The MC curvature, κ ≡ ∂2σ

∂B2
⊥
|
B⊥=0

∝ τ 2
ϕ , gives a

measure for the electron coherence time in 2D conductors:
doped semiconductor quantum wells, charge accumulation
layers near semiconductor interfaces, thin metallic films, or
atomically thin 2D crystals such as graphene and transition-
metal dichalcogenides monolayers.

The two leading decoherence processes at low temperatures
stem from the inelastic scattering of electrons off each other
and off magnetic impurities. The electron-electron scattering
results [2,3] in the linear temperature dependence of the
decoherence rate, τ−1

T = kT
�

e2/h

σ
ln σ

2e2/h
, with τ−1

T →0 → 0. In
contrast, the contact exchange interaction with paramagnetic
defects results in an apparent [4] low-temperature saturation
[5–14] of the electron decoherence rate at τ−1

ϕ (T → 0) ∼ τ−1
s .

The rate τ−1
s characterizes the electron spin relaxation due to

the spin flips in the course of electron scattering off randomly
oriented magnetic moments of impurities.

*okashuba@physik.uni-wuerzburg.de

It is common knowledge [15–17] that electron spin relax-
ation may be suppressed and τϕ extended by the polarization
of magnetic impurities. In 2D conductors, this can be achieved
by using an in-plane magnetic field B‖, which polarizes the
spins of the impurities but does not create any flux through the
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FIG. 1. Dependence of the B⊥ = 0 MC curvature, κ ∝ τ 2
ϕ on the

in-plane magnetic field [see Eq. (14)], calculated for spin- 1
2 impurities

with various g factors: red, yellow, and blue solid lines. Dotted
and dashed blue lines demonstrate the magnetic field dependence
of Cooperons without [C1,1(B‖) + C1,−1(B‖)] and with [−C0,0(B‖) +
C1,0(B‖) + C1,1(0) + C1,−1(0)] spin-exchange processes for the case
gi = 2. The inset shows the respective contributions to the full MC
curve in the absence of an in-plane magnetic field [see Eq. (12) and
text for details]. Here, T = 0.5 K, D = 100 cm2/s, and τs = 0.1 ns.
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electron orbits. Measurements of κ in various low-dimensional
materials [10–14] have shown a gradual increase of τϕ(B‖)
associated with the spin polarization at giμBB‖S � T (here,
gi and S are respectively the g factor and spin of a magnetic
impurity; μB = |e|�/2mc is the Bohr magneton).

Here, we show that in some 2D materials the dependence of
decoherence time on the in-plane magnetic field τϕ(B‖) may
be nonmonotonic: The naively expected polarization-induced
increase of τϕ with B‖ is preceded by its decrease at weak
fields (see Fig. 1). This acceleration of decoherence comes
from the precession dynamics of localized magnetic moments
and requires the g factors of the impurities (gi) and electrons
(ge) to differ from each other. To mention, if gi = ge, then
the local moments are static in the frame rotating together
with the precessing electron spins, and in this case the
τϕ(B‖) dependence remains monotonic, being caused solely
by the impurity spin polarization. For gi �= ge, electrons
witness the landscape of magnetic moments that varies in time
with the frequency

�B = (ge − gi)μBB‖
�

. (1)

This temporal variation shortens τϕ , if �Bτs � 1. The latter
condition is satisfied already at nonpolarizing fields, assuming
that |1 − ge/gi |kT τs/�S 	 1.

Polarization of the magnetic impurities renders them
ineffective in the electron phase relaxation, thus leading to
a strong increase of the magnetoconductance signal [10–17].
Contrary to that, the effect of spin dynamics is quite subtle.
We find the limitation on the magnitude of the corresponding
change in the magnetoconductance, evaluate analytically the
dependence of the τϕ on B‖, and relate it to the basic parameters
of the itinerant electrons and magnetic impurities.

To analyze the influence of spin-flip scattering in a
conductor on the WL effect, we consider an electron wave
propagating along a closed-loop trajectory, scattering from dis-
order, V (r) = ∑

ri
Uδ(r − ri) + ∑

rj
J Sj · σ δ(r − rj ). The

Zeeman terms for electrons and impurities are −geμBB‖σz

and −giμBB‖(Sj )z, respectively (the z axis is chosen along
the in-plane magnetic field), and σ is the electron spin operator
acting on the ± 1

2 spin states quantized along the z axis.
To quantify the τϕ(B‖) dependence, we express the WL

correction δσ to conductivity [5] in terms of two-electron
propagators, “Cooperons” Cσσ ′;ηη′ (ε,q; ω′,ω) [see Fig. 2(i)]:

δσ = e2

2πh
[C0,0 − C1,0 − C1,1 − C1,−1],

CS,M = ζS,M;σσ ′Ĉζ T
S,M;σσ ′ ,

Ĉ = −γ v2
F τ 3

∫
dεd2qn′

F (εσ ′)Ĉ(ε,q). (2)

Here, Clebsch-Gordan coefficients ζS,M;σσ ′ =
〈S,M| 1

2 ,σ ; 1
2 ,σ ′〉 select from the Cooperon matrix

Ĉ(ε,q) ≡ ∫
dω Cσσ ′;ηη′ (ε,q; ω,ω) the singlet (S = 0) and

triplet (S = 1, M = −1,0,1) components defined in terms of
the total spin carried by the two-electron propagator and its
projection onto the external magnetic field B‖. Also,

εσ = ε − σgiμBB‖, (3)

σ, q−p, εσ+ω

σ, q−p, εσ+ω

σ′, p, εσ′

σ′, p, εσ′

A

R

R(K)

K(A)

σ, εσ+ω′

σ′, εσ′+ω−ω′ η′, εη′+ω

η, εηA

R

Cσσ′;ηη′(ε,q;ω′,ω)

A Rjα jβ
Cσσ′;σ′σ(ε,q;ω,ω)

 K

A

Rμ′

ε
+′′

ω
−′

ω 
σ

ε
−

μ 
   

Cμμ′;ηη′(ε,q;ω′′,ω′)
μ

+=

A

R

 K
1
2= + +

A

K

 A
1
2

K

R

 R
1
2(iii)

(ii)

(i)

FIG. 2. Disorder perturbation theory diagrams for the WL cor-
rection to conductivity. (i) WL correction related to the Cooperon
Cσσ ′;ηη′ (ε,q; ω′,ω). Bold dots stand for the current operators, and bold
lines are the disorder-averaged Keldysh functions. (ii) Bethe-Salpeter
equation for the Cooperon. (iii) Combination of components of
Keldysh functions involved in the kernel of the Cooperon equation.
The first diagram in the right part of the equation contains all types
of scattering described in Figs. 3(a)–3(d), while the second and third
contain the spin-exchange processes (c) and (d) only.

and n′
F (ε) ≡ ∂nF (ε)/∂ε is a derivative of the Fermi distribu-

tion function [18].
The diagrammatic form of the Bethe-Salpeter equation for

the Cooperon matrix C is shown in Fig. 2(ii). Its important
element is the disorder correlation function represented by the
dashed lines in Fig. 3, which is assumed to be short ranged
and includes the following elements:

(a) Correlator of spinless disorder, nUU 2δ(ω)δ(r − r′),
where nU is the density of the pointlike potential scatterers.

(b) Correlator of the z-spin components of local magnetic
moments that characterizes spin-dependent scattering of elec-
trons without spin flip, nJ J 2〈TKSz(t)Sz(t ′)〉δ(r − r′). Here,
nJ is the density of the magnetic defects of spin S. The spin
correlator 〈TKSz(t)Sz(t ′)〉 is independent on the positions t

and t ′ on the Keldysh contour, hence, it has only a Keldysh
component with the Fourier transform nJ J 2〈S2

z 〉δ(ω)δ(r − r′).
(c), (d) Spin correlators nJ J 2〈TKS+(t)S−(t ′)〉δ(r − r′),

where D(t,t ′) = 〈TKS+(t)S−(t ′)〉 is mapped from the Keldysh
time contour onto the matrix Keldysh space with components

DR/A(ω) = 2i〈Sz〉(ω − giμBB ± i0)−1,
(4)

DK (ω) = 4π
[
S(S + 1) − 〈

S2
z

〉]
δ(ω − giμBB).

Here, 〈Sn
z 〉 = [Z(a)]−1∂n

a Z(a), a = giμBB‖/kT , and Z(a) =∑S
Sz=−S eaSz is the partition function for a paramagnetic

scatterer.
The thick solid lines in Fig. 2 stand for disorder-averaged

electron Green’s functions Gσ , obtained from the solution of
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FIG. 3. Disorder correlation functions. First line: (a) Keldysh part
of spin-independent scattering; (b) elastic spin-dependent scattering
without spin-flip; (c), (d) spin-flip scattering, with the energy transfer
in the spin-flip process shown along the dashed line. Second line: (c),
(d) Retarded/advanced correlator components. All (c) and (d) lines
being implemented in Fig. 2(iii) describe the spin exchange between
two electrons and appear only in the Cooperons C1/0,0.

the Dyson equation shown in Fig. 4,

GR/A
σ =

(
εσ − vF ξp + geμBB‖σ ± i

2
(τ−1 + τ−1

σ )

)−1

,

GK
σ = [1 − 2nF (εσ )]

(
GR

σ − GA
σ

)
, (5)

where τ = 1/2πγnUU 2 is the mean free time, τs =
1/2πγnJ J 2S(S + 1) is the spin relaxation time, γ is the
electron density of states,

τ−1
σ = [1 − 2σM1(1 − 2nF (ε−σ ))]τ−1

s ,
(6)

Mn = 〈Sn
z 〉/S(S + 1), ξp ≈ vF (|p| − pF ),

and σ = ±1/2 is the electron’s spin projection on the direction
of the in-plane magnetic field.
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FIG. 4. First line: Diagrammatic representation of Dyson’s equa-
tion for the single electron Green’s functions calculated in the
main order in �/vpF τ � 1. Second line: Keldysh structure of the
self-energy of the retarded/advanced Green’s functions.

The spin structure of the Cooperons C1,±1 allows only for
the (a) and (b) contributions to the dashed line in the bottom
row in Fig. 2(iii), forbidding the spin exchange (c) and (d),
and thus securing Cσσ ′;σσ ′(ε,q; ω′,ω) ∝ δ(ω′). The kernel of
the Bethe-Salpeter equation for Cooperons C1/0,0 includes
spin-exchange contributions (c) and (d). Summing up all
three possible combinations of Keldysh function components
GADKGR , GADAGK , and GKDRGR in Fig. 2(iii), where
the frequency argument of the spin correlator is DR/K/A ≡
DR/K/A(ω + giμBB), we get

nJ J 2

2
(DK + [1 − 2nF (ε− + ω)](DA − DR))

= 2πnJ J 2(S(S + 1) − 〈
S2

z

〉 − [1 − 2nF (ε−)]〈Sz〉
)
δ(ω).

The frequency dependence of this kernel enforces
Ĉσσ ′;−σ,−σ ′ (ε,q; ω′,ω) ∝ δ(ω′), i.e., the energy transferred
through the impurity spin correlator can be only ±giμBB‖,
where the sign depends on whether the spin transferred to the
defect is +1 or −1. After taking this into account, the equation
for the Cooperon takes the form[

D

(
−i�∂r − 2e

c
A⊥

)2

+ R̂

]
Ĉ(ε,r)

= 1

2πγ τ 2
δ(r),Rσσ ′;ηη′ = δσηδσ ′η′

(
(τ−1

σ + τ−1
σ ′ )/2 + τ−1

T

)

+ δσ+σ ′,η+η′ ( − 4σσ ′τ−1
s M2 + |σ − η|τ−1

σ

+ i(σ − σ ′)�B), (7)

where D = v2
F τ/2 is the diffusion coefficient, Ĉ(ε,r) is the

Fourier transform of Ĉ(ε,q), and A⊥ = (0,B⊥x) is the vector
potential of the perpendicular magnetic field (note that B⊥ �
B‖).

Diagonalization of a matrix R̂ produces Cooperons C1,±1

decoupled from all other Cooperon components and having
decay rates

τ−1
1,±1 = [1 − M2 ∓ M1(1 − 2nF (ε∓))]τ−1

s + τ−1
T . (8)

Here, ε± [see Eq. (3)] accounts for the energy transfer to an
impurity in the process of spin-flip scattering. The Cooperon
components C0,0 and C1,0 are coupled with each other by
spin-flip processes. The coupling generates combined modes
decaying with the rates

τ−1
0,± = [1 + M2 − M1(nF (ε+) − nF (ε−))]τ−1

s

±
√

τ−1
1,+1τ

−1
1,−1 − �2

B + τ−1
T . (9)

Note that at B‖ = 0 the average values 〈Sz〉 = 0 and 〈S2
z 〉 =

1
3S(S + 1), so that τ−1

1,±1 = τ−1
0,− = 2

3τ−1
s + τ−1

T and τ−1
0,+ =

2τ−1
s + τ−1

T , in agreement with earlier theories [5–8,15].
Relaxation rates τ−1

1,±1 and τ−1
0,± vary with B‖ over two

parametrically different field scales. For τ−1
1,±1, the scale

is determined by the polarization of impurity spins. The
polarization takes place at giμBB‖S 	 kT , and Eq. (8)
then yields τ−1

1,±1 − τ−1
T � τ−1

s . On the contrary, the field
dependence of τ−1

0,± is defined by the electron and impurity spin
dynamics. Under the condition |1 − ge/gi |kT τs/�S 	 1, the
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corresponding field scale is much smaller. Neglecting the spin
polarization, we may simplify Eq. (9) to

τ−1
0,± = 4

3τs

±
√(

2

3τs

)2

− �2
B + τ−1

T . (10)

As expected, the effect of the magnetic field depends on
�B , the difference between the precession frequencies of the
impurity and electron spins [see Eq. (1)]. The effect is absent
if the corresponding g factors are identical.

When substituted in Eqs. (2), the four Cooperon modes
obtained using Eq. (7) yield the WL correction to the
conductivity at B⊥ = 0 (the first term in square brackets comes
from C1,±1 and the second from C1/0,0),

δσ = e2

2πh

∫
dε

∑
α=±

n′
F (εα)

[
ln

τ1,α

τmin
+ Aα ln

τ0,−
τ0,+

]
,

A± = (
τ−1

1,±1 − τ−1
T

)
/
(
τ−1

0,+ − τ−1
0,−

)
. (11)

Here, the ultraviolet cutoff under the logarithm is typically
τmin ∼ τ , but for the description of the WL effect in graphene
[19–24], one should use for τmin in Eq. (11) the intervalley
scattering time τiv, instead of the mean free path time τ . The
MC, studied as a function of B⊥ for fixed B‖, takes the form

σ (B⊥,B‖) − σ (0,B‖)

= − e2

2πh

∫
dε

∑
α=±

n′
F (εα)

×
{
F

(
B⊥
B1,α

)
+

[
F

(
B⊥
B0,−

)
− F

(
B⊥
B0,+

)]
Aα

}
,

F (z) = ln z + ψ

(
1

2
+ 1

z

)
, Bβ,α = �/4e

Dτβ,α

, (12)

where ψ is the digamma function.
One may see that the part stemming from C1/0,0 (square

brackets) saturates at high B⊥; it contributes (in units of
e2/2πh) at most (3/4) ln 3 ≈ 0.82 to the MC. This should
be contrasted with the logarithmic growth with B⊥ of the term
coming from C1,±1 (the first term in braces). That peculiarity of
the field dependence sets the dynamic range of MC useful for
extracting the MC curvature, κ(B‖) ∝ τ 2

ϕ , using the expansion
F (z) ≈ z2/24 + O[z3], as illustrated in the inset of Fig. 1.

In the “high-temperature” limit,

kT � �S/τs |1 − ge/gi |, (13)

the expression for κ can be simplified further for all values of
B‖, if inelastic e−e collisions are neglected (τ−1

T → 0),

κ ≈ e2

πh

(
Dτs

�/e

)2
{

2

9

WB

M2
1

+ 4/3(
1 + 3

4�2
Bτ 2

s

)2

}
,

WB = ch(2a) − ch(a), a = giμBB‖/kT , (14)

M1 =
(
S + 1

2

)
coth

[(
S + 1

2

)
a
] − 1

2 coth
(

1
2a

)
S(S + 1)

,

where (S + 1)M1 is the Brillouin function [see Eq. (6)]. The
first term in braces in Eq. (14) comes from Cooperons C1,±1 of
Eq. (2) and has two asymptotes: 3 + 29+8S(1+S)

20 (giμBB‖/kT )2

at B‖ � kT /giμBS and 1
9 (S + 1)2 exp(2giμBB‖/kT ) at

B‖ 	 kT /giμB . The latter exponential asymptote is cut off

by inelastic e−e scattering resulting in κ = 2e2

3πh
(DτT

�/e
)
2
. The

second term in braces originates from C1/0,0 and its contri-
bution to κ(B‖) decays with increasing B‖. Together, the two
contributions provide the nonmonotonic dependence of mag-
netoconductance curvature (which is conventionally consid-
ered as the measure of coherence time) over the in-plane field
scale B‖ ∼ �/|gi − ge|μBτs . This nonmonotonic dependence
includes a local maximum at B‖ = 0 and a minimum at B‖ ∼

kT
giμBS

(|1 − ge

gi
| kT τs

�S
)
−2/3

, which is followed by the increase of
κ(B‖) due to the polarization of defect spins [cf. Eqs. (13)
and (14)]. Eventually MC curvature saturates at the scale
set by the inelastic electron-electron scattering decoherence
time τT .

The above-described anomalous behavior of the decoher-
ence rate occurs only when the electron or/and magnetic
defects have g-factor values different from the free electron
g = −2. The values of gi �= −2 may be caused by the
crystalline anisotropy effect on a heavy ion embedded in a
2D metal or semiconductor (e.g., graphene). For example,
crystalline anisotropy splits states of a spin- 3

2 magnetic ion
into two Kramers doublets with spin projections ± 1

2 and
± 3

2 onto the direction perpendicular to the plane of the 2D
electron system. Then, the Zeeman splitting by the in-plane
magnetic field realizes the cases of gi = −4 (yellow line in
Fig. 1) and gi = 0 (orange line in Fig. 1) for the two doublets,
respectively [25]. The case of ge = −2, gi �= −2 was realized
in graphene exfoliated on a SiO2/Si substrate [26], where the
nonmonotonic magnetoconductance is well described [27] by
the theory presented here. Alternatively, the situation ge = 0
(green line in Fig. 1) can appear in p-doped transition metal
dichalcogenides MoS2, MoSe2, WS2, or WSe2, where, due
to a large spin-orbit splitting, Kramers doublets of the hole
states correspond to opposite spins in the opposite valleys, and
the external in-plane magnetic field does not lift the Kramers
degeneracy [28].

In conclusion, the difference in the precession frequencies
of the electron and impurity spins results in a nonmonotonic
dependence of the electron decoherence time on the magnetic
field causing the precession. We find the magnitude and
the functional form of that dependence, and relate it to the
parameters of the itinerant electrons and magnetic impurities.
Despite being small, the effect is important, as a manifes-
tation of the very basic physics of magnetic moments in
solids.

We thank I. Aleiner, B. Altshuler, and M. Vavilov for useful
discussions. This work has been supported by the Deutsche
Forschungsgemeinschaft and Research Training Group GRK
1621, ERC Synergy Grant Hetero2D, Royal Society, and U.S.
NSF DMR-1206612.

045206-4



INFLUENCE OF SPIN DYNAMICS OF DEFECTS ON WEAK . . . PHYSICAL REVIEW B 93, 045206 (2016)

[1] B. L. Altshuler, D. Khmel’nitzkii, A. I. Larkin, and P. A. Lee,
Phys. Rev. B 22, 5142 (1980).

[2] B. Altshuler and A. Aronov, in Electron-Electron Interactions in
Disordered Systems, edited by A. Efros and M. Pollak, Modern
Problems in Condensed Matter Sciences Vol. 10 (Elsevier/
North-Holland, Amsterdam, 1985), Chap. 1, pp. 1–153.

[3] I. L. Aleiner, B. L. Altshuler, and M. E. Gershenson, Waves
Random Media 9, 201 (1999).

[4] In fact, this contribution to the decoherence rate also vanishes
at T → 0, but the characteristic temperature scale is defined by
the Kondo temperature [15] and in many cases is extremely low.

[5] S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63,
707 (1980).

[6] P. A. Lee, A. D. Stone, and H. Fukuyama, Phys. Rev. B 35, 1039
(1987).

[7] A. D. Stone, Phys. Rev. B 39, 10736 (1989).
[8] V. I. Fal’ko, Pis’ma ZhETF 53, 325 (1991) [JETP Lett. 53, 340

(1991)].
[9] V. Chandrasekhar, P. Santhanam, and D. E. Prober, Phys. Rev.

B 42, 6823 (1990).
[10] A. K. Geim, S. V. Dubonos, and I. Y. Antonova, Pis’ma ZhETF

52, 873 (1990) [JETP Lett. 52, 247 (1990)].
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