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A monolayer of molecules or quantum dots sandwiched between electrodes can be driven out of equilibrium by
the application of a bias voltage between the electrodes. We study charge ordering, i.e., the spontaneous formation
of a charge density wave, and the perpendicular current in such a system within a master-equation approach
augmented by mean-field and classical Monte Carlo methods. Our approach is suitable for weak tunneling
between the monolayer and the electrodes. For a square lattice with nearest-neighbor Coulomb repulsion, we
present a comprehensive study of the zero-temperature phases controlled by the onsite energy, the bias voltage,
and the degeneracy of the occupied single-site state. One of the most interesting results is the prediction of a
conducting charge-density-wave phase that only occurs at a finite-bias voltage. We also study the universality
classes of the phase transitions towards charge-ordered states at zero and nonzero temperatures. While all
transitions at T > 0 and some at T = 0 belong to the two-dimensional Ising universality class, we also find an
absorbing-to-active phase transition in the Z2 symmetric directed percolation (DP2) class at T = 0.
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I. INTRODUCTION

Layers of quantum dots or single molecules sandwiched
between conducting electrodes form promising systems for
applications as well as for fundamental research. For the past
20 years, experimentalists have investigated the perpendicular
current through self-organized layers of quantum dots in
semiconductor systems [1–12]. These quantum-dot arrays
were strongly disordered, though. Molecular layers offer at
least two advantages: certain molecules readily form highly
ordered self-assembled monolayers on semiconducting or
metallic substrates [13–18] and individual molecules are,
in principle, identical. On the other hand, it has proven
to be difficult to fabricate a reliable second (top) contact.
Novel methods, such as low-energy, indirect-path thermal
evaporation [19], rolled-up nanomembranes [20–23], lift-off–
float-on techniques [24–26], nanotransfer printing [27,28], and
transfer of multilayer graphene [29] have been used to create
reasonably homogeneous top contacts to molecular layers.
Controlled contacts are a prerequisite for the application of
molecular monolayers in electronic devices. Such applications
are driven, on the one hand, by the trend to further miniatur-
ization, and, on the other, by the possibility to functionalize
the molecules [30].

Layers of molecules or quantum dots in sandwich structures
also constitute model systems for nonequilibrium statistical
physics: a bias voltage applied to the electrodes drives the
system out of equilibrium. For time-independent bias, the
system approaches a stationary state, which is characterized
by a stationary current in the direction perpendicular to the
monolayer. For noninteracting quantum dots or molecules, the
individual entities conduct independently and the theoretical
description can fall back on transport theory for single dots or
molecules [31,32]. The case of interacting dots or molecules
is much more interesting in that it combines interactions
with driving. Such a system can show spontaneous symmetry
breaking, begging the questions whether the corresponding
phase transitions belong to a universality class that is known
from equilibrium physics or to a genuinely nonequilibrium
one [33–36].

In this paper, we study a relatively simple model in this
class, namely, a square array of sites that are either empty or
singly occupied due to a high charging energy and that interact
through nearest-neighbor Coulomb repulsion. We allow for
arbitrary (spin or orbital) degeneracy of the occupied states.
The system is sandwiched between electrodes under an applied
bias voltage. As we shall see, this nonequilibrium situation can
induce spontaneous breaking of translational symmetry [34]
by the formation of a charge density wave with ordering vector
(π,π ), in which the two checkerboard sublattices have different
average occupation. We employ a mean-field approximation in
the framework of rate equations to obtain an overview of the
possible phases, and classical nonequilibrium Monte Carlo
simulations as an unbiased method to study them in more
detail.

Our model is similar to the one studied by Kießlich
et al. [37] and by Wetzler et al. [38], but their systems were
relatively small or disordered. Their focus was on small arrays
of quantum dots in semiconductor heterostructures, while we
are interested in the statistical physics of clean systems in the
thermodynamic limit. Leijnse [39] has more recently studied a
square array without degeneracy. This work did not address the
possibility of charge ordering and did not employ Monte Carlo
simulations. A two-dimensional (2D) layer with interactions
and hopping was studied within a Keldysh approach by Mitra
et al. [40]. Their interest was in ferromagnetic order in the
2D layer and in the universality class of the nonequilibrium,
voltage-driven phase transition.

The structure of this paper is as follows: In Sec. II, we define
the model and methods. Section III gives a comprehensive dis-
cussion of the phases and phase transitions at zero temperature.
Section IV presents results for nonzero temperatures. We give
a summary in Sec. V.

II. MODEL AND METHODS

Our model consists of a 2D square lattice of quantum dots
or molecules sandwiched between two conducting electrodes,
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FIG. 1. Sketch of the model system, a square-lattice monolayer
of quantum dots or molecules sandwiched between two conducting
electrodes. A bias voltage V is applied between the electrodes.

as sketched in Fig. 1. The Hamiltonian H = Hleads + Hlayer +
Htun consists of the three terms

Hlayer = Ed

∑
iσ

n̂iσ + U0

2

∑
i

∑
σ �=σ ′

n̂iσ n̂iσ ′

+U1

∑
〈ij〉

∑
σσ ′

n̂iσ n̂jσ ′ , (1)

Hleads =
∑
αkσ

(εk − μα)a†
αkσ aαkσ , (2)

Htun =
∑
kσ iα

tkiα a
†
αkσ ciσ + H.c., (3)

where Ed is the single-particle energy of the individual dots
or molecules, U0 is the onsite Coulomb interaction, U1 is
the nearest-neighbor Coulomb interaction, εk is the dispersion
of electrons in the electrodes, μα is the chemical potential
in electrode α = 1,2, and tkiα is the tunneling amplitude
between the electrodes and the monolayer. For simplicity,
the tunneling amplitude t̃ ≡ tkiα and the density of states
of the electrodes are assumed to be constant. ciσ is the
electronic annihilation operator for a state in the monolayer
at site i with quantum numbers σ , which could include the
spin but, importantly, may also include an orbital index, and
n̂iσ ≡ c

†
iσ ciσ is the corresponding number operator. aαkσ is the

annihilation operator for a state with spin σ and momentum k
in electrode α. We use U1 as our unit of energy and measure Ed

relative to the chemical potential in equilibrium. We consider
the limit U0 → ∞ so that each site can only be empty or singly
occupied. The voltage drop is assumed to be symmetric and
the applied bias voltage is given by eV = μ1 − μ2.

The Hamiltonian for the layer, Eq. (1), does not contain
intralayer hopping. For quantum dots, this situation is easily
realized by making the separation between dots sufficiently
large. On the other hand, molecular layers are typically closely
packed. It is nevertheless possible to reduce the overlap
between the relevant orbitals of neighboring molecules by
choosing appropriate side groups. In the absence of wave-
function overlap and tunneling within the layer, the exchange
interaction between different sites also vanishes and we are
left with the direct Coulomb interaction in Eq. (1). The spin
thus only enters by causing a twofold degeneracy. From a
theoretical perspective, inclusion of intralayer hopping would
transform the system into an extended Hubbard model out
of equilibrium, a much more difficult problem. The methods
we will discuss below rely on the decomposition of the

many-particle dynamics into single-site processes (coupled by
their dependence on the occupation of neighboring sites). This
would not be possible in the presence of intralayer hopping,
which would instead require us to consider the many-body
eigenstates of an extended Hubbard model.

The degeneracy of the occupied states, i.e., the number of
possible realizations of an occupied site, is denoted by G, while
we assume the unoccupied state to be nondegenerate. Hence,
for L2 lattice sites (L is the linear size of the system), there
are (G + 1)L

2
possible many-particle states. It is, however,

advantageous to view the G occupied states as a single one and
include the degeneracy factor G explicitly in the equations.
The case of a single orbital per site, spin 1

2 , and vanishing
magnetic field corresponds to G = 2. A strong magnetic field
that shifts one spin orientation up to high energies would lead
to G = 1. Orbital degeneracies and effective degeneracies due
to vibrational modes [41–43] and local magnetic moments can
result in larger values of G. Degeneracies of both the occupied
and the unoccupied states are easily included and lead to the
same results, except for overall constant factors, where G is
now the ratio of the degeneracies of occupied and unoccupied
states. A degeneracy of what we call the unoccupied state is
naturally realized if the transition is not between an empty and
a singly occupied orbital but between a singly occupied and a
doubly occupied orbital. We conclude that it is meaningful to
allow G to take any positive real value.

A. Master equation

For weak tunneling to the electrodes but strong inter-
actions U0 and U1, the master-equation formalism is most
suitable [31,32,44,45]. The master equation is the equation
of motion for the reduced density operator of the monolayer
ρred = Trleads ρ, where ρ is the density operator of the whole
system. In the limit of weak tunneling, a perturbative expansion
in the tunneling amplitude t̃ can be employed. The sequential-
tunneling approximation is obtained by truncating this expan-
sion after the second order. Furthermore, we make the standard
assumption that the monolayer and the electrodes are in a
product state with the electrodes in separate equilibrium at an
early time ti → −∞. By suitably organizing the expansion
(or, alternatively, by a Markov assumption), we can make the
resulting master equation local in time [44,45]. The result is
the Wangsness-Bloch-Redfield master equation [46–48]

dρred

dt
= −i [Hlayer,ρred(t)]

−
∫ ∞

0
dτ Trleads

[
Htun,

[
e−i(Hlayer+Hleads)τ

×Htune
i(Hlayer+Hleads)τ ,ρred(t) ⊗ ρ0

leads

]]
, (4)

where ρ0
leads describes the initial equilibrium state of the

electrodes and we have set � = 1. We focus on the stationary
state, which is obtained by setting dρred/dt = 0. The result is
a linear algebraic equation for ρred.

We employ the basis of occupation-number states in real
space, i.e., of eigenstates of all number operators n̂iσ . The
corresponding eigenvalues are denoted by niσ = 0,1. These
states are also eigenstates of Hlayer. In this work, we assume
that the stationary reduced density operator ρred is diagonal in
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this basis, i.e., we will neglect all coherences. In the following,
we discuss the conditions for this assumption to be valid.

First of all, coherences |a〉〈b| between states with different
total particle numbers Na , Nb dephase nearly instantaneously
due to superselection rules [49–51]. Such coherences are also
seen to decouple from the diagonal components of ρred (i.e., the
probabilities) and from the coherences between states with the
same total particle number in Eq. (4). Coherences of the latter
type do couple to the diagonal components and are generated
with time even if they are not present in the initial state.
The relevant processes involve the tunneling of an electron
out of site i of the molecular layer into a typically adjacent
site i ′ in electrode α and then back out of a site j ′ in the
electrode into site j in the molecular layer (or in the opposite
temporal order). Mathematically, they are controlled by the
lesser and greater Green functions of lead electrons, which
appear in the integral term of the master equation (4) [45].
In a clean system, the Green functions for states close to the
chemical potential decay in real space as sin kF r ′/kF r ′, where
r ′ is the distance between points i ′ and j ′ in the electrode.
This means that the terms generating nonlocal coherences are
small if the distance between neighboring molecules, or more
precisely between the points in the electrodes connected to
neighboring molecules by tunneling, is large compared to the
Fermi wavelength λF = 2π/kF in the electrodes. Moreover,
in the presence of disorder in the leads, the Green functions
are additionally cut off at the scale of the mean-free path l.
We conclude that nonlocal coherences can be neglected if the
separation between neighboring molecules is large compared
to the Fermi wavelength or to the mean-free path in the
electrodes.

This leaves the possibility of coherences between states
that only differ by the local quantum numbers σ . Let us
first consider the case that σ in Eq. (1) only refers to the z

component of the real spin. It is easy to check that coherences
between spin states decouple from the diagonal components if
the full Hamiltonian H conserves spin. This means that such
coherences are not generated if they are not present in the initial
state and, moreover, decay to zero if there is any arbitrarily
weak spin relaxation. This conclusion carries over to the case
with σ containing additional (orbital) degrees of freedom:
coherences can be neglected if H conserves the full set of
quantum numbers σ . This, for example, applies to a model
involving molecules with px and py (or dxz and dyz) orbitals
where the interface is the xy plane. Tunneling only occurs to
lead orbitals with the same mirror symmetries with regard to
the xz and yz planes so that the pseudospin distinguishing
between the two orbitals is conserved, in addition to the real
spin.

If coherences are neglected, the master equation simplifies
to rate equations for the probabilities Pa ≡ 〈a|ρred|a〉 of the
many-body states |a〉 of the monolayer:

d

dt
Pf =

∑
i

(Ri→f Pi − Rf →iPf ). (5)

In the sequential-tunneling approximation, the rates take the
form [45,52,53]

Ri→f =
∑

α

Rα
i→f , (6)

with

Rα
i→f = t̃ 2D

h

∑
j

(
G |c†j |2if fα(Ed + zjU1)

+ |cj |2if [1 − fα(−Ed − zjU1)]
)

= t̃ 2D

h

∑
j

(
G |c†j |2if + |cj |2if

)
fα(Ed + zjU1), (7)

where D is the density of states per electrode and spin, fα(x) ≡
f (x − μα) is the Fermi function f (x), and |c†j |2if ≡ |〈f |c†j |i〉|2.
We have dropped the index σ because the rates do not depend
on it and the degeneracy G is already included explicitly in the
in-tunneling rates. Furthermore, we have used that sequential
tunneling only connects many-body states |i〉, |f 〉 that differ
by a single electron at a single site j and only depends on
the local energy contributions Ed and zjU1, where zj is the
number of occupied sites neighboring j .

It is easy to check that in the case of V = 0, i.e., for μ1 =
μ2, the rates Ri→f satisfy detailed balance so that the system
relaxes into its equilibrium state at the temperature of the
electrodes. For G = 1 and V = 0, our system is equivalent to
an Ising model in equilibrium. The role of the Ising magnetic
field is played by the onsite energy Ed . The degeneracy G

can be absorbed into this magnetic field as a temperature-
dependent term, as we discuss below.

Our model satisfies a particle-hole symmetry. The symme-
try operation consists of interchanging in-tunneling and out-
tunneling processes and mapping the onsite energy according
to Ed → −4U1 − Ed . For G �= 1, the degeneracy of the
unoccupied state becomes G after the mapping. At the level of
the rate equations, this is equivalent to setting the degeneracy
of the occupied state to 1/G and multiplying t̃ 2D/h by G.

The staggered magnetization of an antiferromagnetic Ising
model maps to 〈nA − nB〉, where nA and nB are the occupation
numbers of any site on the checkerboard sublattices A and B,
respectively. The brackets 〈. . . 〉 denote the statistical average,
over space and time, in the stationary state. Due to U0 → ∞,
we have 0 � 〈nA,B〉 � 1. We call 〈nA − nB〉 the checkerboard
order parameter from now on. The corresponding susceptibil-
ity χ is

χ ≡ 〈(nA − nB)2〉 − 〈nA − nB〉2. (8)

Furthermore, we denote the total electron number in the
molecular layer by N , the number of nearest-neighbor bonds
of type X ∈ {00,01,10,11}, corresponding to empty-empty,
empty-occupied, etc., by NX, and the associated concentra-
tions by n = N/L2 and nX = NX/L2. Lastly, the average
current per site from the monolayer into the electrode α is
given by

〈Iα〉 = e

L2

∑
if

(Nf − Ni) Rα
i→f Pi, (9)

where Ni (Nf ) is the total electron number in the monolayer
in the initial (final) state.

B. Mean-field approximation versus Monte Carlo simulations

We solve the rate equations (5) employing two complemen-
tary methods. First, we apply a mean-field approximation at
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the level of probabilities (mean-field master equation, MFME).
Specifically, we trace out all sites except for a single site j in the
rate equations (5). The resulting probability for site j having
the occupation number nj = 0,1 is P

j
nj

≡ ∑
{ni=0,1|i �=j} P�n,

where �n = (n1, . . . ,nL2 ) represents a many-body state of
the whole layer in the occupation-number basis. The rate
equations then take the form dP

j
nj

/dt = F (P�n), where the
right-hand side still depends on the full configuration. The
main approximation then consists of the product ansatz P�n =∏

j P
j
nj

in F . This approximation leads to coupled equations

for the single-site probabilities P
j
nj

for all sites j . Using

P
j

0 + P
j

1 = 1, these are L2 independent probabilities. To
simplify the problem further, we only consider specific spatial
variations of the probabilities P

j
nj

. Since we are interested in

checkerboard order, we assume P
j
nj

to be the same for all j on

the same checkerboard sublattice A or B, i.e., P
j
nj

= P A
nA

for

j ∈ A and P
j
nj

= P B
nB

for j ∈ B. This only permits uniform
and checkerboard-ordered solutions, where the uniform state
corresponds to P A

n = P B
n . Since P s

0 + P s
1 = 1 for s = A,B,

we have now reduced the problem to finding two unknowns
P A

1 and P B
1 . The product ansatz constitutes a mean-field-

type approximation since it replaces the spatial correlations
included in P�n by much simpler ones that only depend on the
averaged occupation on each sublattice. This approximation
goes beyond a Hartree approximation, which would replace the
nearest-neighbor Coulomb interaction by the interaction with
the average charge density. Here, we retain the information
that the sites are always either occupied or unoccupied.

The resulting equation of motion for the probability of a
site on sublattice s = A,B, here denoted as site 0, having the
occupation n0 reads as

dP s
n0

dt
=

∑
n1,...,n4

(
R|n̄0,z0〉→|n0,z0〉P

s
n̄0

− R|n0,z0〉→|n̄0,z0〉P
s
n0

)

×P s̄
n1

. . . P s̄
n4

. (10)

In deriving this equation, we have used that under sequen-
tial tunneling only the occupation number of a single site
changes. The transition rate for this process depends on
whether an electron tunnels in or out and on the number of
occupied neighboring sites. We can thus parametrize the rates
R|n0,z0〉→|n̄0,z0〉 by the initial and final occupation numbers n0

and n̄0 ≡ 1 − n0, respectively, and the number z0 ≡ ∑4
i=1 ni

of occupied neighboring sites on the square lattice, enumerated
by i. In Eq. (10), s̄ = B,A for sublattice s = A,B since the
neighboring sites are always on the other sublattice. Here
and in the following, we use |nj ,zj 〉 as a shorthand notation
for the full many-body state |n1,n2, . . .〉, which highlights
the quantities that affect the sequential tunneling at site j .
Stationary states are fixed points, which are obtained by
setting the time derivatives to zero. We solve the equations
numerically, discarding any unstable fixed points. We note
that this procedure is different from the one used in Ref. [39],
which is formulated in terms of the conditional occupation
probabilities of the sites, depending on the occupation of their
neighbors.

Second and foremost, we use Monte Carlo simulations.
While they are numerically more expensive, they have the

advantage of being free from approximations beyond those
made in the derivation of the sequential-tunneling rate equa-
tions (5), apart from finite-size effects. Moreover, the solutions
are not restricted to uniform or checkerboard order. As the sys-
tem size is finite, we have to evaluate the average 〈|nA − nB |〉
instead of 〈nA − nB〉. We consider linear system sizes L

between 16 and 16 384 and periodic boundary conditions.
The straightforward algorithm for local updates is the

following: randomly choose a site j . If this site is initially
occupied (unoccupied), the only possible transition is to the
unoccupied (occupied) state. Calculate the rate Rj ≡ Ri→f for
this transition from Eqs. (6) and (7); the result depends on the
occupations of the neighboring sites. Accept the transition with
the probability Ri→f / max(R), where max(R) = 2Gt̃ 2D/h is
the maximum possible rate.

This algorithm is highly inefficient if the rate Rj chosen
as described above often turns out to be small compared
to max(R) since then many Monte Carlo steps are rejected.
Hence, we instead employ the rejection-free update scheme
described in the following. First, note that there are only
10 distinct local updates in sequential tunneling, which
are enumerated by the initial occupation nj = 0,1 and the
number of occupied neighbors zj = 0, . . . ,4. We first ran-
domly select one of the 10 update types with the proper
branching fraction R̃nj ,zj

/
∑

nk,zk
R̃nk,zk

, which is determined
from the total rates of processes of each of the types R̃nj ,zj

≡
R|nj ,zj 〉→|n̄j ,zj 〉

∑
p δnp,nj

δzp,zj
, where p enumerates the sites of

the system. These quantities are easily updated in each Monte
Carlo step. Then, we randomly choose a site with occupation
nj and zj occupied neighbors. This step is rejection free since
the program keeps lists of all sites that are in each of the
10 states |nj ,zj 〉. Lastly, we update this site and advance the
simulation time by the average waiting time 1/

∑
nk,zk

R̃nk,zk

[54]. This algorithm is related to the one introduced by Bortz
et al. [55] and independently by Gillespie [56], and further
improved by Schulze [57]. We measure all times in units of
t0 ≡ h/(t̃ 2D), which is the average waiting time between two
tunneling events at a single site if the transition is inside the
bias window and T = 0 and G = 1. To our knowledge, more
efficient update algorithms, such as cluster updates [58,59], do
not exist for the rates in Eq. (6), which do not satisfy detailed
balance.

III. RESULTS FOR ZERO TEMPERATURE

In the limit of zero temperature, the Fermi distribution
becomes a step function and thus the rates change discon-
tinuously. Consequently, the stationary state is the same for
all values of Ed and eV within each of the regions defined
in Fig. 2. This allows us to give a complete discussion of
all possible stationary states. The regions are labeled by the
numbers of transition energies below the chemical potentials of
the two electrodes. As an example, Fig. 3 shows the relevant
energies for the region (4,1): four transitions lie below the
chemical potential of the top electrode but only one transition
lies below the chemical potential of the bottom electrode.

To get an overview, we present in Fig. 4 the MFME phase
diagram for the case G = 2. We find all possible combinations
of phases with and without checkerboard charge order and
with and without a charge current through the monolayer.

155444-4



CHARGE ORDER IN AN INTERACTING MONOLAYER . . . PHYSICAL REVIEW B 94, 155444 (2016)

FIG. 2. Crossings of the transition energies of the square-lattice
monolayer and the chemical potentials of the electrodes, as functions
of the onsite energy Ed and the bias voltage V . In the limit T → 0,
the transition rates Ri→f are constant within each region. The labels
(m,n) specify the numbers of transition energies below the chemical
potentials m for the top electrode 1 and n for the bottom electrode 2.

In the presence of checkerboard order, the MFME has two
stationary solutions, which are related by interchanging the
two sublattices. In the region labeled “coexistence,” the
stationary MFME has both checkerboard blocked and uniform
conducting solutions. In the following, we discuss each phase
based on rigorous results and Monte Carlo simulations.

A. Uniform conducting phase at large bias

For fixed onsite energy Ed and sufficiently high bias voltage
V , the system is always in the region (5,0) (see Fig. 2). In
this regime, an analytical solution of the rate equations (5)
is possible. Since the in-tunneling and out-tunneling rates are
independent of the occupation numbers of the neighboring

E top
eV/2

bottom
−eV/2

|0, 0〉 → |1, 0〉

|0, 1〉 → |1, 1〉

|0, 2〉 → |1, 2〉

|0, 3〉 → |1, 3〉

|0, 4〉 → |1, 4〉

E = 0

Ed

FIG. 3. Sketch of the chemical potentials and the transition
energies for in-tunneling processes for the region (4,1) of Fig. 2.
|nj ,zj 〉 denotes a many-particle state for which the site j involved in
the tunneling has occupation number nj and zj occupied neighbors
(all other occupation numbers are irrelevant for this process and are
suppressed).

FIG. 4. Phase diagram obtained from the MFME for a monolayer
with degeneracy G = 2 and temperature T = 0. The phases for
negative bias voltage, eV/U1 < 0, are the mirror image of the
phases shown. The terms “uniform” and “checkerboard” refer to
the checkerboard order parameter 〈nA − nB〉, where nA and nB are
the occupation numbers per site on sublattices A and B, respectively.
This order parameter is zero (nonzero) in the uniform (checkerboard)
phases. The term “conducting” (“blocked”) characterizes phases that
carry (do not carry) a current through the monolayer. In the region
labeled “coexistence,” checkerboard blocked and uniform conducting
stationary states coexist.

sites, the dynamics of the individual sites is decoupled. In the
stationary state, the probabilities of a site j being occupied
or unoccupied are P (nj = 0) = 1/(G + 1) and P (nj = 1) =
G/(G + 1), respectively. These are the same values one finds
for the equilibrium (V = 0) state in the limit T → ∞. The av-
erage current per site is 〈I 1〉 = eDt̃ 2G/h(G + 1). The system
is clearly in the uniform conducting phase. The solution of the
rate equations (5) is given by the product of the aforementioned
single-site probabilities since the sites are decoupled.

B. Quasiequilibrium, blocked phases

All regions connected to the zero-bias line, i.e., the regions
(m,m) and (m + 1,m) in Fig. 2, can be mapped onto an equilib-
rium Ising-type model with degeneracy G of one of the states
and an applied magnetic field, as we show in the following.
The equilibrium Ising model with G = 1 has of course been
investigated thoroughly [60–62]. The mapping between our
monolayer Hamiltonian and the Ising Hamiltonian

HIsing = −J
∑
〈ij〉

SiSj − B
∑

i

Si (11)

reads as

Si = 2ni − 1 = ±1, (12)

J = −U1/4, (13)

B = −Ed/2 − U1. (14)

The state Si = +1 has degeneracy G.
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We first consider the regions (m,m), which contain parts
of the line eV/U1 = 0. Recall that the T = 0 stationary state
is the same throughout each region. It is thus sufficient to
investigate the case eV/U1 = 0, which corresponds to the
model in equilibrium, in the limit T → 0. But, this state
is just the ground state of HIsing. For Ed/U1 < −4, this is
the fully occupied state. For −4 < Ed/U1 < 0, there are two
degenerate ground states with checkerboard charge order with
one sublattice occupied and the other unoccupied. Finally,
for Ed/U1 > 0 the ground state is completely empty. The
degeneracy G is irrelevant in these cases since the energy of the
microstates does not depend on it. The corresponding currents
[Eq. (9)] vanish in all these regions since all transition rates
out of the respective ground states go to zero for T → 0 [63].

Next, we turn to the regions (m + 1,m), which touch
the line eV/U1 = 0 at a single point. While the stationary
state is still the same throughout each of these regions, the
equilibrium state now lies at a corner of the region, which may
be distinct from its interior. These corner points at V = 0 have
fine-tuned values of Ed/U1 = −4,−3,−2,−1,0 (see Fig. 2),
and correspond to one transition energy being resonant with
the chemical potential, which is the same for both electrodes.
One can see from Eq. (7) that the rates in the interior, i.e., for
V �= 0, and at the corner, i.e., for V = 0, have the same limit
for T → 0. This result relies on the symmetric coupling to
the electrodes: For V = 0, the Fermi functions involving the
resonant transition approach 1

2 for both electrodes in the limit
T → 0, whereas for V �= 0, one of them approaches unity
and the other zero. Since for symmetric coupling only their
sum enters, the results are the same. For the regions (2,1),
(3,2), and (4,3), the stationary states are thus identical to the
ground states for fine-tuned onsite energies Ed/U1 = −1, −2,
and −3, respectively. However, these ground states are not
different from the rest of the range −4 < Ed/U1 < 0: they
are the two states with checkerboard order. The current again
vanishes, by the same argument as above. The regions (1,0)
and (5,4) are special in that their corner points at V = 0 lie
right on the transition between different ground states. We will
investigate these cases in Sec. III C.

In summary, in the regions (1,1), (2,1), (2,2), (3,2),
(3,3), (4,3), and (4,4) we find checkerboard charge order
and vanishing current, in agreement with the MFME phase
diagram in Fig. 4. This phase can be understood in terms of
Coulomb blockade due to the nearest-neighbor repulsion U1.
In the region (5,5), the sites are fully occupied and the current
vanishes. This is the Coulomb-blockade regime due to the
onsite repulsion U0. Finally, in the region (0,0) we find an
empty lattice and vanishing current.

C. Degeneracy-driven phase transitions
in the conducting phases

We now consider the regions (1,0), (2,0), (3,0), and (4,0)
and their particle-hole-symmetry partners (5,4), (5,3), (5,2),
and (5,1) in Fig. 2. The regions (1,0) and (5,4) are interesting
since the discussion in Sec. III B suggests that their stationary
states inherit properties from an equilibrium Ising model fine
tuned to its critical point. Moreover, for the region (1,0) [as
well as (2,0)] the MFME for G = 2 predicts a state with
checkerboard charge order that is nevertheless conducting

(see Fig. 4). On the other hand, the state in region (5,4) is
uniform and conducting, according to the MFME. Since the
region (5,4) with degeneracy G is equivalent to the region
(1,0) with degeneracy 1/G by a particle-hole transformation,
the MFME results imply the existence of a phase transition
between uniform and checkerboard states as a function of G.
Indeed, by determining the stationary state of the MFME for
various G, we find the critical degeneracy Gc ≈ 1.054. It is
then interesting to characterize this phase transition without
making a mean-field approximation. In particular, we want to
determine its universality class.

Before turning to the simulations, we first present an
analytical estimate for the critical degeneracy Gc for the region
(1,0). The critical value for the region (5,4) is then just 1/Gc.
As noted in Sec. III B, in the limit T → 0 the rates in the
interior of region (1,0) are the same as at the corner point
eV/U1 = 0, Ed/U1 = 0. The critical value Gc can be related
to the critical magnetic field Bc of an antiferromagnetic Ising
model. We set kB = 1 and consider the partition function
Z = ∑

a GNae−Ea/T , where Ea is the energy of microstate
|a〉 and Na is the number of occupied sites in this microstate.
The energy is given by Ea = NaEd + ZaU1, where Za is the
number N11 of bonds between two occupied neighboring sites
in microstate |a〉. The partition function can be written as

Z =
∑

a

exp

(
−Na (Ed − T ln G) + ZaU1

T

)
. (15)

According to Eq. (14), the Ising magnetic field is now B =
−(Ed − T ln G)/2 − U1. At the corner point of the region
(1,0), we have Ed = 0. The equivalent Ising model shows a
phase transition between checkerboard and uniform order as
a function of magnetic field. The critical field |B| = Bc is
determined by the temperature T and the coupling constant
J = −U1/4. Taking into account that B is negative for small
T , we can then write the critical degeneracy as

Gc(U1,T ) = exp

(−2Bc(U1,T ) + 2U1

T

)
. (16)

This expression is exact but, to the best of our knowledge,
the analytical form of the function Bc is not known [61,64].
The conjectured low-temperature expansion proposed by
Müller-Hartmann and Zittartz [61], Bc

∼= 4|J | − T ln 2 =
U1 − T ln 2, gives limT →0 Gc = e2 ln 2 = 4.

The above discussion is based on the mapping to an
equilibrium Ising model. This is not possible for the regions
(2,0) and (3,0), which should, however, be physically similar
to (1,0) since all out-tunneling transitions are energetically
possible while only some in-tunneling transitions are allowed.
[The region (4,0) will be discussed below.] We have performed
Monte Carlo simulations to study the degeneracy-driven
transition in these regions. Figure 5 shows the checkerboard
order parameter raised to the power 8 and the corresponding
susceptibility to the power − 4

7 . For all three regions (1,0),
(2,0), and (3,0), we find a transition to checkerboard order for
increasing degeneracy G. The critical degeneracy Gc ≈ 3.6 for
the region (1,0) is slightly smaller than the value of Gc ≈ 4
based on the low-temperature expansion of Ref. [61]. On
the other hand, the MFME prediction Gc ≈ 1.054 is clearly
much too small. Indeed, for the case of G = 2 with pure spin
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degeneracy, our simulations do not find checkerboard order in
any conducting region, in contrast to the MFME phase diagram
in Fig. 4.

Figure 5 shows some finite-size effects, in particular in
the susceptibility. Nevertheless, the transitions in the regions
(1,0), (2,0), and (3,0) are consistent with critical exponents
of 1

8 for the order parameter and − 4
7 for the susceptibility,

respectively, and thus with 2D Ising critical behavior [60]. The
nonequilibrium transition is indeed expected to belong to the
classical 2D Ising universality class based on the arguments of
Ref. [40]: integrating out the microscopic degrees of freedom,
one obtains a description in terms of a classical field coupled
to noise. Generically, the spectrum of this noise is nonzero
in the zero-frequency limit, which corresponds to the Ising
universality class (“model A” in the terminology of Hohenberg
and Halperin [33]). Newer works show that this is indeed
true for a scalar (Ising) model, such as ours, but not for
multicomponent order parameters [65].

Moreover, Gc increases with increasing bias voltage V ,
i.e., from region (1,0) to (2,0) and even more to (3,0).
This dependence can be understood as follows: For a perfect

FIG. 5. Monte Carlo results for (a) the checkerboard order
parameter 〈|nA − nB |〉 to the power 8 and (b) the corresponding
susceptibility to the power − 4

7 as functions of the degeneracy G

of the occupied states. The values eV/U1 = 1,3,5 correspond to the
regions (1,0), (2,0), and (3,0) in Fig. 2, respectively. The remaining
parameters are T/U1 = Ed/U1 = 0 and L = 64. The results are
consistent with the 2D Ising universality class.

checkerboard-ordered state, a current flows through the occu-
pied sublattice, as the out-tunneling transition is in the bias
window. In contrast, the in-tunneling transition needed to fill a
site on the empty sublattice, i.e., to create an occupied defect,
is forbidden, except when there are enough empty defects at
the surrounding sites on the occupied sublattice. Raising the
bias voltage lowers the required number of empty defects and
thus makes it easier to destroy the checkerboard order. On
the other hand, raising G increases the in-tunneling rate for
filling an empty site, i.e., for removing an empty defect, which
stabilizes the order [66].

In the region (4,0), checkerboard order is even more
strongly destabilized than in the previous cases since an
occupied defect on the empty sublattice is possible as soon
as one empty defect on the occupied sublattice exists. Fur-
thermore, the average concentration of empty defects on the
occupied sublattice is high since the out-tunneling transition
is in the bias window. This concentration is suppressed by a
large G but at the same time the creation rate for occupied
defects neighboring an empty defect is enhanced. The latter
effect evidently prevents charge order even at large G. Our
simulations do not show any sign of a transition for G

up to 108.
The regions (5,4), (5,3), (5,2), and (5,1) are related to

the regions (1,0), (2,0), (3,0), and (4,0), respectively, by
interchanging empty and occupied states and replacing G

by 1/G. This means that degeneracy-driven transitions in
regions (5,4), (5,3), and (5,2) take place at critical values
Gc < 1, which correspond to higher degeneracy of the empty
state compared to the occupied state of a single site (see the
discussion of G in Sec. II).

D. Absorbing phase transitions

We now turn to the three diamond-shaped regions highest in
the bias voltage, i.e., regions (3,1), its particle-hole-symmetry
partner (4,2), and (4,1) in Fig. 2. In all three and indeed in
all regions (m,n) with m < 5 and n > 0, the rates for the
transitions |1,0〉 → |0,0〉 and |0,4〉 → |1,4〉 both vanish (for
the notation |nj ,zj 〉, see Fig. 3). Consequently, there are no
allowed transitions out of the perfect checkerboard states. This
is the defining property of absorbing states [35,36]. Absorbing
states are necessarily stationary, but for an infinite system it
is possible that the stationary state approached from nearly
all (namely, all except for a fraction that vanishes in the
thermodynamic limit) initial states is not one of the absorbing
states. Such a nonabsorbing stationary state is called active. If
an active state only exists in part of the parameter range, then
an absorbing-to-active phase transition has to occur [35,36].

Our Monte Carlo simulations suggest that the stationary
state in regions (3,1) and (4,2) is an absorbing checkerboard
state for G = 1 but is a uniform, and thus active, state in the
region (4,1). However, the results have to be analyzed with
care since for any finite system, the simulation will eventually
end up in one of the absorbing states, possibly after a very long
time.

To check that the regions really lie on different sides of an
absorbing phase transition, it is desirably to tune continuously
through the purported transition. In addition, this would allow
us to determine its universality class. However, the naive idea
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of fixing the temperature T to a small nonzero value and tuning
the bias voltage V does not work since at T > 0 the transitions
out of the perfect checkerboard states occur with nonzero
rates so that these states are no longer absorbing. Instead,
we define �V ≡ V − Vc, where Vc is a bias voltage on the
boundary between the regions (4,1) and (3,1) for a suitably
chosen Ed . The boundary between regions (4,1) and (4,2) is
analogous. The rates R|0,4〉→|1,4〉 and R|1,0〉→|0,0〉, which make
the checkerboard state nonabsorbing, are then proportional to
the Fermi function f (U1 + �V ). These rates are tuned to zero
by letting T → 0. On the other hand, the rates R|0,1〉→|1,1〉 and
R|1,1〉→|0,1〉 are proportional to f (�V ) and are kept constant
by taking �V → 0 while keeping �V/T fixed.

Now, being able to tune our system continuously by chang-
ing �V/T , we use a dynamical-scaling analysis [35,67–70]
to clarify the occurring phases and transitions. Two standard
critical exponents of an absorbing phase transition are defined
by the scaling relations [35,70]

Psurv ∼ t−δ, (17)

ρact ≡ n00 + n11 ∼ t� (18)

for large times t . They pertain to a system prepared in an
initial state that differs from an absorbing (checkerboard) states
by a localized defect. Psurv is the survival probability, i.e.,
the probability that the system does not reach an absorbing
state until the time t , and ρact = n00 + n11 is the density of
active sites [35], which in our model correspond to empty-
empty and occupied-occupied nearest-neighbor bonds. Note
that both exponents are free from finite-size effects since in
our simulations the lattice was always larger than any grown
cluster of active sites.

We concentrate on simulations for G = 1. Figure 6
shows results for Psurv. Since the exponent δ is close to
unity, we have plotted Psurv multiplied by t/t0. Figure 7
shows results for ρact = n00 + n11. We find a clear transition
at �V/T ≈ −3.49 that agrees with the 2D Z2 symmet-
ric directed-percolation universality class (DP2) [35,71,72].
Dornic et al. [73] conjecture that transitions with two symmet-
ric absorbing states belong to the universality class of the gen-
eralized voter model. The latter has an upper critical dimension
of two so that one expects mean-field exponents δ = 1 and � =
0 with logarithmic corrections [71,72]. Previous work supports
either mean-field behavior with logarithmic corrections or
exponents rather close to the mean-field ones [71,72], where
the best estimate is δ = 0.900(15) and � = −0.100(25) [71].

While our focus is not on this debate, we briefly comment
on the critical behavior. If Psurv followed mean-field scaling
with logarithmic corrections, Fig. 6(a) would show a straight
line for large t , at the critical value of �V/T . If Psurv instead
satisfied the power law (17), Fig. 6(b) would show a straight
line. Similarly, Fig. 7(a) [Fig. 7(b)] would show a straight line
at the critical �V/T if n00 + n11 showed mean-field scaling
with logarithmic corrections (power-law scaling). While tPsurv

in Fig. 6 appears to depend logarithmically on t for small
t [note the straight line in Fig. 6(a)], Psurv crosses over to
pure mean-field scaling with exponent δ = 1 and without
logarithmic corrections for t/t0 � 104 (horizontal line in
both panels for �V/T = −3.4910625). On the other hand,

FIG. 6. Survival probability Psurv multiplied by t/t0 vs time t/t0
in (a) single- and (b) double-logarithmic plots. The results have been
obtained from Monte Carlo simulations for G = 1 and various values
of �V/T (see text), starting with a single site deviating from the
checkerboard state. The unit of time is t0 ≡ h/(t̃ 2D).

the scaling of n00 + n11 shown in Fig. 7 does not clearly
discriminate between the two scaling forms. The data for
�V/T = −3.4910625 are not consistent with the mean-field
exponent � = 0 without logarithmic corrections, i.e., with
n00 + n11 = const, for t/t0 > 105, unlike in Fig. 6. We suggest
that either the large-t scaling regime has not been reached in
our simulations or the corrections are more complicated than
a simple logarithm ln(t/t0).

To check the critical behavior further, we have investigated
the time evolution of the concentration ρact = n00 + n11 of
active sites, i.e., of empty-empty and occupied-occupied
bonds, when we start from a completely empty or completely
occupied lattice, in which all bonds are active. In this case,
the mean-field plus logarithmic form of the scaling relation at
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FIG. 7. Concentration of active bonds vs time t/t0 in (a) single-
and (b) double-logarithmic plots. The results have been obtained from
Monte Carlo simulations for G = 1 and various values of �V/T (see
text), starting with a single site deviating from the checkerboard state.

criticality reads as

n00 + n11 ∼ 1

ln t
, (19)

whereas the power-law form is

n00 + n11 ∼ t−α, (20)

where the best estimate is α = 0.080(4) [71]. Our results are
presented in Fig. 8. Figure 8(a) [8(b)] would show a straight
line at the critical �V/T if n00 + n11 satisfied mean-field plus
logarithmic (power-law) scaling. The data agree better with
mean-field scaling with logarithmic corrections for smaller t

but do not exclude a crossover to power-law scaling at larger
times.

In any case, while we cannot resolve the critical behavior,
the transition between regions (4,1) and (3,1) shows clear
characteristics of the 2D DP2 universality class. This is
reasonable since a key feature of DP2 is the existence of

FIG. 8. Inverse of the concentration of active bonds vs. time t/t0
in (a) single- and (b) double-logarithmic plots. The results have been
obtained from Monte Carlo simulations for G = 1 and L = 8192 and
various values of �V/T (see text), starting with an empty lattice,
which corresponds to all bonds being active.

two symmetry-related absorbing states. Our model obviously
has two absorbing checkerboard states that are related by
a lattice translation. The DP2 character of the transition
supports our conclusion that the system in region (4,1) is
in the active, uniform state, whereas in region (3,1) it is in
the absorbing, checkerboard state. It is interesting that we
find a DP2 transition in view of the expectation that the
nonequilibrium phase transitions of our model are generically
of Ising type [40,65]. We conjecture that this is made possible
by the fine tuning inherent in taking �V and T to zero with
�V/T fixed.
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The question arises as to whether the system in the regions
(3,1), (4,2), and (4,1) can be driven across the DP2 absorbing
phase transition by varying G. Increasing G favors occupied
over empty sites. We would thus expect it to destabilize
checkerboard order in favor of a uniform state with occupancy
close to unity. Since region (4,1) is in the active phase even for
G = 1 we do not expect the active phase to be destroyed for
any G. Indeed, we have not found any sign of checkerboard
order for G values up to 108.

We now turn to the regions (4,2) and (3,1), in which a
DP2 transition as a function of G might occur. We present
simulation results for the surviving concentration n00 + n11

of active bonds for a fully occupied (hence, active) starting
configuration in Fig. 9. There is no indication of a phase
transition for G up to 106. Note that the time evolutions shown
in Fig. 9 sometimes get trapped in a seemingly stationary
state with nonzero active sites. These states consist of an even
number of straight domain walls of the checkerboard order
spanning the finite, periodic system. These domain walls are
very long lived under local updates since their annihilation

FIG. 9. Concentration of active sites for (a) region (3,1) and (b)
region (4,2), from Monte Carlo simulations starting with a fully
occupied lattice, for L = 8192, T/U1 = 0, and various values of G.

requires them to first deform and reconnect. They clearly
would not be possible in an infinite system. Thus, we conclude
that the regions (4,2) and (3,1) are in the absorbing phase for
all G. In particular, the coexistence regime found in the MFME
phase diagram in Fig. 4 does not exist, only the checkerboard
blocked phase is stable here. This general result is further
supported by the power-law decay of n00 + n11 with time,
in the limit of large t but before finite-size effects occur,
with an exponent of approximately 1

2 . This behavior was
previously interpreted as being characteristic for the absorbing
regime [73].

E. Phase diagram, occupation, and current

In the previous subsections, we have discussed the station-
ary state at T = 0 for all the regions in Fig. 2. The results are
summarized in the phase diagram in Fig. 10, which partially
anticipates results for the current that are presented below.
We mention in passing that, although the simulations are not
restricted to uniform and checkerboard-ordered phases, we
did not find any other type of charge order. One of the most
intriguing results is the possibility of bias-induced charge
order: consider for example an onsite energy Ed > 0. If the
degeneracy G is sufficiently large and we increase the bias
voltage V starting from zero, the system is initially in a
uniform blocked phase with all sites empty. But, at eV = 2Ed

it enters a conducting phase with checkerboard charge order
(see Sec. III C). At a higher bias, there is a second transition
towards a uniform conducting phase.

While the applied bias voltage V is easily varied, this is
not the case for the onsite energy Ed . One could, however,
prepare series of devices with different onsite energies. In
molecular monolayers, one can tune Ed by interchanging side
groups, as studied experimentally in Ref. [74] and theoretically
in Ref. [75]. Tuning Ed in situ is more difficult. Note that

FIG. 10. Phase diagram obtained from Monte Carlo simulations
for the monolayer with degeneracy G = 2 and temperature T = 0.
Compare the MFME phase diagram in Fig. 4. In the region marked
“active,” the layer is in the uniform conducting state even though the
two states with perfect checkerboard charge order (and no current)
are absorbing.
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tuning Ed and V is equivalent to changing the potential drops
between the molecules and the two electrodes independently.
This could be done by asymmetrically changing the molecule-
electrode distances: If the molecules are covalently bound to
one electrode but only van der Waals coupled to the other,
changing the electrode-electrode separation would have the
desired effect. This would of course also change the tunneling
amplitudes.

We now present simulation results for the most relevant
observables in the stationary state for G = 2, corresponding
to pure spin degeneracy of the occupied sites. The average
imbalance between the occupation numbers per site on the
two sublattices 〈|nA − nB |〉 is shown in Fig. 11, the average
occupation in Fig. 12, and the average current in Fig. 13.
As discussed before, there is a uniform fully occupied phase
for Ed/U1 < −4, a corresponding uniform completely empty
phase for Ed/U1 > 0, and a perfectly checkerboard-ordered
phase in-between. All of them are blocking the current due
to the absence of allowed transitions in the bias window.
For increasing bias, the monolayer will eventually become
conducting and disordered as more and more transitions enter
the bias window. Note that 〈|nA − nB |〉 is not identically zero
in the conducting phases since the nonzero current implies
fluctuations in the occupation numbers. All three quantities
plotted in Figs. 11–13 clearly show a double-peaked blocked
region resulting from the appearance of an active phase
in region (4,1) (see Fig. 2). The current and the average
occupation approach and finally reach the noninteracting
single-site limit as the number of transitions in the bias window
is increased. The observables are asymmetric in the onsite
energy relative to Ed/U1 = −2 since the degeneracy G = 2
breaks particle-hole symmetry.

It would be desirable to verify the checkerboard charge
order experimentally. The charge order implies the presence
of two populations of molecules or quantum dots with distinct
average charge, each comprising 50% of the monolayer. In
the blocked phase, charge fluctuations are suppressed. For

FIG. 11. Monte Carlo results for the average imbalance between
the occupation numbers per site on the two sublattices 〈|nA − nB |〉,
for T = 0, L = 64, and G = 2. In the central region, the system ends
up in one of the two absorbing checkerboard-ordered states so that
the order parameter is exactly 1

2 .

FIG. 12. Monte Carlo results for the average occupation per site
〈n〉 for the same parameters as in Fig. 11. The occupation is 0 and 1 in
the regions (0,0) and (5,5), respectively, and 1

2 in the checkerboard-
ordered region. The average occupation assumes a nonuniversal value
in the other regions, which grows for smaller onsite energy Ed and
tends toward G/(G + 1) = 2

3 for increasing bias voltage V .

molecular layers, the resulting equal distribution of charge
states could be seen by optical spectroscopy, for example,
in reflection geometry with a transparent conductor as top
electrode. On the other hand, in the checkerboard conducting
phase, the occupation number of one population fluctuates
due to the current, whereas the other is essentially fixed.
Spectroscopy should thus see two charge states but with
different probabilities. For a layer of metallic nanoparticles,
one could similarly try to observe the presence of two
populations with distinct surface-plasmon frequencies. A more
challenging idea is to observe the diffraction pattern due to the
diffraction grating formed by the charge density wave.

FIG. 13. Monte Carlo results for the average current per site
through the lead α = 1 [Eq. (9)] for the same parameters as in
Fig. 11. The current vanishes in the absorbing phases and grows
with the number of transitions in the bias window, i.e., with the bias
voltage V .
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FIG. 14. Checkerboard order parameter 〈|nA − nB |〉 from Monte
Carlo simulations for T/U1 = 0.35 and L = 64. The degeneracy is
(a) G = 1 and (b) G = 20. The dashed lines denote the boundary
between the checkerboard-ordered and uniform phases for T = 0.
Note that even though the temperature is a sizable fraction of the
zero-field critical temperature of the Ising model, the large degeneracy
in panel (b) still stabilizes the checkerboard conducting phase.

IV. RESULTS FOR NONZERO TEMPERATURES

In this section, we present results for nonzero temperatures.
While this is clearly required for comparison with experiments,
the case of T > 0 is less interesting from the point of view
of statistical physics. The nontrivial DP2 transition found
for T = 0 in Sec. III D relies on the perfect checkerboard
states being absorbing, which is no longer the case for T > 0.
Hence, we expect all (equilibrium and nonequilibrium) phase
transitions to be in the 2D Ising universality class [40].
This also holds for those transitions that were trivially
discontinuous for T = 0 due to the jump in the Fermi
function. At T > 0, the Fermi functions and consequently the
transition rates Ri→f in Eq. (6) are continuous functions of
the parameters Ed/U1, eV/U1, and T/U1.

Figure 14 shows results for the checkerboard order pa-
rameter for a temperature of approximately two thirds of
the Ising critical temperature Tc ≈ 0.567 U1 and two values
of G, the particle-hole symmetric case G = 1 and the large
degeneracy G = 20. The observed shrinking of the regime

FIG. 15. Monte Carlo results for (a) the checkerboard order
parameter 〈|nA − nB |〉 to the power 8 and (b) the corresponding
susceptibility to the power − 4

7 as functions of the bias voltage
V for various values of G and T . The remaining parameters are
Ed/U1 = 2.2 and L = 64. The results are consistent with the 2D
Ising universality class.

with checkerboard order compared to T = 0 is of course
expected since higher temperatures allow additional tunneling
processes that tend to destabilize charge order. For G = 20, the
ordered regime is also shifted to larger Ed , in accordance with
the effective onsite energy Ed − T ln G (see Sec. III C). Inter-
estingly, for this large value of G, the checkerboard conducting
phase is found to be rather robust against thermal fluctuations.

The character of the phase transitions can obviously not be
inferred from Fig. 14. We exemplarily consider the transition
between checkerboard and uniform phases driven by the bias
voltage V at a fixed onsite energy Ed and several values of
T and G. As in Sec. III C, we plot the checkerboard order
parameter to the power 8 and the corresponding susceptibility
to the power − 4

7 in Fig. 15. The results are consistent with the
2D Ising universality class [40,60,65].

We finally turn to the checkerboard conducting regions,
specifically the region (1,0), at nonzero temperatures. We
found in Sec. III C that at T = 0 there is a transition between
uniform and checkerboard-ordered conducting states as the
degeneracy G is increased. For this, it is important that a
checkerboard state cannot be destroyed by electrons tunneling
in to create occupied defects in the empty sublattice since
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FIG. 16. Phase diagram in the G-T plane for eV/U1 = Ed/U1 =
0, i.e., in region (1,0). The crosses denote the location of the phase
transition determined from the maximum of the susceptibility χ

obtained from Monte Carlo simulations for L = 64. The continuous
line is based on the conjecture for the critical magnetic field in
Ref. [61].

the corresponding rate vanishes. This is no longer true for
T > 0; for low temperatures there is now an exponentially
small rate for creating such occupied defects. However, this
in-tunneling rate contains a factor of G so that for increasing
G the checkerboard state should eventually be destabilized
in favor of a uniform state with occupancy close to unity.
The same conclusion is reached by considering the effective
onsite energy Ed − T ln G in the equivalent Ising model.
This expectation is indeed borne out by the results presented
in Fig. 16. We find a reentrant transition to the uniform
conducting state at large G, which shifts to smaller G for
increasing temperature. On the other hand, the transition to
checkerboard order at lower G shifts upwards with tempera-
ture. Both trends are consistent with the expectation that higher
temperatures disfavor ordering. Above the corresponding
critical temperature of the 2D Ising model, checkerboard order
does not exist for any G. Since Fig. 16 shows results for V = 0,
i.e., in equilibrium, the critical temperature versus G should
map to the critical temperature versus applied magnetic field
for the Ising model. Our simulation results indeed agree well
with the conjecture of Müller-Hartmann and Zittartz [61].

V. SUMMARY AND CONCLUSIONS

In summary, we have studied a square lattice of quantum
dots or molecules under a bias voltage applied perpendicular to
the layer. We have assumed infinite onsite repulsion and finite
nearest-neighbor Coulomb interaction within the layer, as well
as vanishing intralayer hopping and weak monolayer-electrode
hopping. The indirect hopping from a site in the monolayer
to one of the electrodes and further to a different site of the
monolayer is assumed to be fully incoherent, which is the case
in the limits of short Fermi wavelength or strong disorder
in the electrodes. By employing Monte Carlo simulations,
we avoid mean-field approximations. The interactions lead

to the appearance of charge-density-wave phases. Apart from
the charge order, the main quantity of interest is the current
perpendicular to the layer.

The resulting zero-temperature phase diagram, Fig. 10,
shows blocked phases with vanishing current and zero,
single, or checkerboard-ordered occupancy. The latter can
be understood as a Coulomb-blockade state induced by the
nearest-neighbor repulsion. These phases are connected to an
equilibrium Ising model at V = 0. At larger bias voltages, they
give way to conducting phases. Interestingly, it is possible
for these phases to possess checkerboard charge order. This
requires a high degeneracy G � 3.6 of the occupied single-site
states, which could be realized by combining charge and orbital
degeneracies. The transition between the uniform conducting
phase and the checkerboard conducting phase as a function
of G is in the 2D Ising universality class. The checkerboard
conducting phase only exists out of equilibrium. In a large
parameter range we find a transition from a uniform blocked
phase to a checkerboard conducting phase at a finite critical
bias voltage. This constitutes an interesting case of bias- or
current-induced charge order. Furthermore, there is a region at
finite bias voltage for which the two symmetry-related blocked
checkerboard states are absorbing but the stationary state is
nevertheless conducting and uniform. The presence of this
active phase is evident in the current-voltage characteristics. It
is interesting that such an active phase could be realized in a
monolayer under bias, as there are not many experimental
realizations. By judiciously taking the limit T → 0, we
determine the phase transition between the absorbing and
active phases to be in the 2D DP2 universality class.

The features found at T = 0 are robust for small nonzero
temperatures, except that absorbing states no longer exist for
T > 0 and that, as a consequence, the absorbing-to-active
phase transition transforms into a 2D Ising transition between
checkerboard blocked and uniform conducting phases. Apart
from this change, the ordered phases shrink and, for degen-
eracies G > 1, shift to higher onsite energies for increasing
temperature.

It would be desirable to extend the underlying dynamics to
contain coherences as well as higher-order tunneling processes
such as cotunneling and pair tunneling. Even in the absence
of intralayer hopping, tunneling via the electrodes can induce
coherences between eigenstates of the local particle numbers,
i.e., delocalized charges in the monolayer. Intralayer hopping
of course also favors delocalization in the monolayer. Higher-
order processes and coherences are required for a study of
Kondo-type effects in tunneling through the layer. Coherent
hopping, be it direct or indirect through the electrodes, would
turn the system into a much more difficult extended Hubbard
model out of equilibrium. This would call for nonequilibrium
quantum Monte Carlo simulations, which would suffer from
the sign problem. On the other hand, a higher-order MFME
including coherences seems feasible. In any case, even the
quasiclassical model considered here should be valuable for
further studies. On the one hand, comparison with experiments,
for example, on rolled-up structures, calls for a realistic
description of electronic, spin, and vibrational degrees of
freedom of molecular layers. On the other, further studies
of the considered model might help to constrain the critical
behavior of the 2D DP2 universality class.
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