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Violation of Onsager’s theorem in approximate master equation approaches
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The consistency with Onsager’s theorem is examined for commonly used perturbative approaches, such as the
Redfield and second-order von Neumann master equations, for thermoelectric transport through nanostructures.
We study a double quantum dot, which requires coherences between states for a correct description, and we find
that these perturbative approaches violate Onsager’s theorem. We show that the deviations from the theorem scale
with the lead-coupling strength in an order beyond the one considered systematically in the respective approach.
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I. INTRODUCTION

Understanding transport in nanoscale systems is cru-
cial for applications ranging from nanoscale electronics to
high-efficiency thermoelectric devices [1]. With experimental
progress over the last decade, more and more theoretical
suggestions become realizable in practice [2]. Moreover,
transport in nanostructures provides an ideal stage for the study
of the fundamental physics of open quantum systems far from
equilibrium. For device design and optimization, as well as
for the study of fundamental questions, a reliable theory for
charge and energy transport in nanostructures is essential.

One such theory is the master-equation (ME) approach.
Formally, MEs rely on a perturbative expansion in the coupling
strength between a quantum system and its environment, e.g.,
connected leads. It has been shown for noninteracting systems
that even such an approximate treatment can give charge
currents that agree with an exact calculation [3,4]. However,
the predictions for energy transport have not been examined
as much, although this is also important for applications.

The Wangsness-Bloch-Redfield (WBR) equation [5–9] is a
frequently used variant of the ME. It has long been known
that, without a rotating-wave approximation, this equation
is not of Lindblad form [10] and does not conserve the
positivity of the reduced density matrix [11]. In some cases
this can lead to unphysical behavior, such as large negative
currents [12]. A rotating-wave approximation corresponds
to neglecting all off-diagonal elements [11], which suggests
that the behavior of the WBR equation very much depends
on the treatment of coherences. More recently, Hussein
and Kohler [13] found that a full WBR equation including
coherences predicts charge currents that are not consistent
with the exchange fluctuation theorems [14]. In this paper,
we examine the influence of coherences on the energy current
predicted by such approaches. A special focus is on whether the
currents satisfy certain Onsager relations [15,16]. As a direct
consequence of Onsager’s theorem from 1931, such relations
between linear response functions have been a cornerstone
of nonequilibrium thermodynamics for decades. We solve the
MEs numerically and, for the noninteracting limit, compare
analytical results to the exact transmission formalism [17–19].

The paper is organized as follows. In Sec. II the model for
the spin-polarized two-level quantum dot and the considered
Onsager relations are introduced. Numerical results for the
violation of Onsager’s theorem using various approximate
master-equation approaches are presented in Sec. III. An

analytical examination of the violation in the noninteracting
case U = 0 is given in Sec. IV and the scaling behavior
of the violation with the coupling strength � is discussed
in Sec. V. Concluding remarks are given in Sec. VI. We
present more explicit equations for the Redfield, first-order
von Neumann (1vN), and Pauli master-equation approaches,
and briefly discuss the second-order von Neumann approach
(2vN) in Appendixes A–C. Furthermore, we provide a short
derivation of the currents for the noninteracting case of U = 0,
using both the transmission-function formalism (Appendix D)
and first-order master equations (Appendix E). Throughout the
paper our units are such that � = e = kB = 1.

II. MODEL

We consider the example of a fully spin-polarized, serial
double-dot structure coupled symmetrically to source (L) and
drain (R) leads, as shown in Fig. 1. The Hamiltonian is [20–23]
H = Hdot + Hleads + Hhyb, where

Hdot = Vg(d†
l dl + d†

r dr ) − �(d†
l dr + d†

r dl )

+U d
†
l dl d

†
r dr , (1a)

Hleads =
∑
�k

E�k c
†
�kc�k, (1b)

Hhyb =
∑

k

t(d†
l cLk + d†

r cRk) + H.c. (1c)

Here, c
†
�k creates an electron with quantum numbers k

in the lead � ∈ {L,R} and d
†
i creates an electron in the

dot i ∈ {l,r}. The coupling between the left dot (l) and
the right dot (r) is given by the hybridization �, while
the level positions are controlled by the gate voltage Vg .
Additionally, there is a charging energy U when both dots
are occupied. The energy dispersion in the leads is given by
E�k and the electrons can tunnel between dots and leads with
a tunneling amplitude t . The latter is expressed in terms of the
tunneling rate � = 2π

∑
k t2 δ(E − E�k), which is assumed

to be independent of the energy E (wideband limit). We
also assume that the leads are thermalized according to a
Fermi-Dirac occupation function f�(E) = [e(E−μ�)/T� + 1]

−1

with different temperatures TL/R and chemical potentials μL/R

for the two leads.
In the presence of a bias V = μL − μR or a temperature

difference between the leads, �T = TL − TR , particle and
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FIG. 1. Spin-polarized double-dot structure. The energy of the
dot states is shifted by a gate voltage Vg . Both dots are coupled to
each other (�) and to one lead each (�). The two leads are described as
electron reservoirs at distinct temperatures T� and chemical potentials
μ�, where � ∈ {L,R}. A difference in either of the two parameters
between the two leads can result in the flow of particle and energy
currents, I� and Ė�, respectively. An interaction energy U can be
present for the double-occupied state (not shown).

energy currents flow. The currents are defined as

I�(t) = − ∂

∂t
〈N�〉 = −i〈[H,N�]〉, (2a)

Ė�(t) = − ∂

∂t
〈H�〉 = −i〈[H,H�]〉, (2b)

where N� = ∑
k c

†
�kc�k and H� = ∑

k E�k c
†
�kc�k . Throughout

this paper we consider the stationary state, where particle
and energy conservation require IL = −IR and ĖL = −ĖR ,
respectively. In practice, we use the currents emanating from
the left lead, I = IL and Ė = ĖL. In linear response to an
applied bias V and a temperature difference �T , these currents

can be expressed as(
I

Ė

)
=

(
L0 L1

L′
1 L2

)(
V

�T/T

)
. (3)

To determine L1 ≈ T I/�T and L′
1 ≈ Ė/V in linear response,

we calculate the particle current for μL = μR = 0 and
TL/R = T ± �T/2 using �T = 0.01 T . The energy current is
determined for μL/R = ±V/2 and TL = TR using V =
0.01 T . Onsager’s theorem predicts that the off-diagonal
coefficients L1 = T (∂I/∂�T )�T =0 and L′

1 = (∂Ė/∂V )V =0

are equal, i.e., that

� ≡ L′
1 − L1= 0. (4)

Note that for our choices of μL and μR , the energy and the
heat current are identical within linear response. This can be
seen by expanding the heat current in powers of �T and �μ,
where the only contribution to L′

1 of order unity is due to the
energy current (see Appendix A).

III. NUMERICAL RESULTS

In this work, we evaluate the coefficients L′
1 and L1

using the Pauli, Redfield, first-order von Neumann (1vN), and
second-order von Neumann (2vN) MEs. All the mentioned
first-order approaches can be derived from the Wangsness-
Bloch-Redfield (WBR) equation [5–8,24]. Projecting this
equation onto dot eigenstates gives equations for the elements
of the reduced density matrix. The Redfield approach uses
the resulting equations for all diagonal elements (populations)
and those off diagonals (coherences) that link states with
equal charge. All other off diagonals decay rapidly due
to superselection rules [25]. One can derive a similar set

× × × ×

FIG. 2. Off-diagonal Onsager coefficient L1 (top row) and the deviation from Onsager’s theorem, � = L′
1 − L1 (bottom row), as functions of

the charging energy U and the gate voltage Ṽg = Vg + U/2, calculated using the indicated approaches. The maximum deviation �max uncovers
significant violations of the Onsager relation (4) for the first-order Redfield and 1vN approaches. Neglecting the principal-value integrals (“No
P”) or including second-order contributions (“2vN”) significantly reduces the violation. In all calculations we set � = 2� = T/2.
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of equations using a different Markov approximation, the
so-called first-order von Neumann (1vN) approach [26]. In
both approaches, we can obtain negative diagonal elements,
a known problem of WBR-type equations [11]. Another
common feature of both approaches is the appearance of
principal-value integrals over the lead states, which are often
neglected [12,13,27]. For our system, doing so yields the same
steady-state currents in both Redfield and 1vN approaches,
referred to as “No P .” Neglecting the off-diagonal elements
of the reduced density matrix reduces both approaches to the
Pauli ME.

The 1vN equations can also be derived in a hierarchical
approach where all processes corresponding to single-electron
or single-hole excitations in the leads are taken into account.
Similarly, the 2vN approach includes all processes of up to two
electron and hole excitations. This extension captures level
broadening as well as coherent effects and cotunneling [28].

Figure 2 compares the results of the different approaches.
The calculated values for L1 agree fairly well for all ap-
proaches shown. The 2vN results are slightly more smeared out

due to the inclusion of level broadening, which is an effect of
second order in �. The first-order Redfield and 1vN approaches
exhibit significant violations of the Onsager relation (4), where
the deviations � reach 22% and 40% of the maximum of
L1, respectively. Neglecting the principal-value integrals in
either of the two approaches (No P) reduces the violation to
3%. The 2vN approach satisfies the Onsager relation for the
noninteracting system U = 0 but moderate violations, up to
5%, arise for U > 0. All results are antisymmetric with respect
to the line Vg = −U/2 due to electron-hole symmetry. Results
for the Pauli ME are not shown since Eq. (4) is satisfied exactly
for this approach. For a quantitative comparison of the different
approaches, we plot the peak values L1,peak = maxVg

|L1(Vg)|
and �peak = maxVg

|�(Vg)| in Fig. 3.
Column (a), which is based on the data displayed in Fig. 2,

shows the dependence on U . In this figure, we also show the
predictions of the Pauli ME, which satisfy Onsager’s theorem
but yield completely different values for the coefficients L1

and L′
1 compared to the other approaches, as discussed further

below.

FIG. 3. Dependence of the peak values L1,peak,L
′
1,peak of the Onsager coefficients and their difference �peak on U (left column) and � (right

column) upon varying the gate voltage Vg for given parameters T , �, U . For increasing U , the deviation �peak saturates in all approaches.
Increasing � leads to saturated �peak for Redfield and 1vN approaches and decaying �peak for the 2vN and “No P” approaches.
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We see that the Redfield and 1vN approaches give similar
results for L1 but very different behaviors of L′

1. As a result, the
two approaches do not predict the same difference �peak. We
also note that the predictions of these two approaches are very
different from those of the other ones. For all methods, �peak

remains finite and saturates for large U . Column (b) of Fig. 3
shows the dependence of �peak on the dot hybridization � for
U = 5 T . Again, the Redfield and 1vN approaches essentially
differ in L′

1 and show a strong violation of the Onsager relation
for all values of �. The coefficients L1 and L′

1 drop to zero for
vanishing �, i.e., for decoupled dots, in all approaches except
for the Pauli ME. This is a general failure of the Pauli ME
if the level spacing 2� becomes smaller than � (see also the
discussion in Ref. [12] and references therein). For large �,
the Pauli ME agrees with the first-order approaches only if the
principal-value parts are neglected.

IV. ANALYTICAL RESULTS FOR U = 0

In order to gain more insight, we consider the noninteracting
case, U = 0, where exact results for the currents can be
obtained using the transmission formalism [17–19,29]. A
straightforward calculation in Appendix D gives

IT = �

4π
Re[b(	L− − 	R−) − b∗(	L+ − 	R+)], (5a)

ĖT = �

4π
Re[b(Vg − � − i�/2)(	L− − 	R−)

− b∗(Vg + � − i�/2)(	L+ − 	R+)], (5b)

where b = (i + γ )/(1 + γ 2), γ = �/(2�), and

	�± = 	

(
1

2
+ μ� − (Vg ± � − i�/2)

2πiT�

)
, (6)

with the digamma function 	(z). This gives the off-diagonal
Onsager coefficients

L1,T = L′
1,T = �

4π
Re

[
b 	 ′

−
Vg − � − i�/2

2πiT

− b∗ 	 ′
+

Vg + � − i�/2

2πiT

]
, (7)

where 	 ′
± is the derivative of the digamma function in

Eq. (6) at TL = TR = T and μL = μR = μ. Thus, the Onsager
relation (4) is satisfied exactly. The exact results for U = 0
allow for a comparison to the analytical expressions obtained
in the ME approaches (see Appendix E).

The 2vN approach gives the exact stationary current
for noninteracting systems. This was shown analytically in
Ref. [3] and explains the vanishing of � calculated within the
2vN approach for U = 0, as seen in Fig. 2.

The Pauli ME gives the steady-state currents

IP = �

4
(g+ + g−), (8a)

ĖP = �

4
[(Vg + �)g+ + (Vg − �)g−], (8b)

where g± = fL(Vg ± �) − fR(Vg ± �). Clearly, the two cur-
rents satisfy Eq. (4). However, for vanishing coupling between
the dots, � → 0, the currents stay finite. As noted, this is

unphysical and thus contradicts the exact result, Eqs. (5), where
I,Ė → 0 [30].

Both the Redfield and 1vN approaches give

IRed = �

4π
Re[b(ψL− − ψR−) − b∗(ψL+ − ψR+)], (9a)

ĖRed = �

4π
Re[b(Vg − � − i�/2)(ψL− − ψR−)

− b∗(Vg + � − i�/2)(ψL+ − ψR+)], (9b)

where ψ�± is the expression 	�± from Eq. (6) with � = 0.
This is the only difference to the exact transmission result (5).
This yields

�Red = L′
1,Red − L1,Red = − �2

8π2T
Re(bψ ′

− − b∗ψ ′
+). (10)

Here, ψ ′
± = 	 ′(1/2 − (Vg ± �)/2πi T ) is the derivative of

the digamma function. The main finding is that the violation
of the Onsager relation is proportional to �2 and thus goes
beyond the terms of first order in � that are fully taken into
account in the Redfield and 1vN approaches. Indeed, the terms
−i�/2 in Eq. (9b) provide higher-order terms in �, and the
finite value of �Red can be traced back to precisely these
terms [31]. This also suggests that the energy current is more
problematic than the particle current in these approaches.

Finally, the “No P” variant gives

INo P = �

4(1 + γ 2)
(g+ + g−), (11a)

ĖNo P = �

4(1 + γ 2)
[(Vg + �̃)g+ + (Vg − �̃)g−], (11b)

where �̃ = �(1 + γ 2). In the limit � 
 �, i.e., γ → 0, this
agrees with the result (8) of the Pauli ME. In the opposite case
� � �, i.e., γ → ∞, the currents drop as expected, curing
the failure of the Pauli approach. It is worth noting that the
energy carried by the two resonances at Vg ± � is shifted to
Vg ± �̃. This shift results in a difference between L′

1,No P and
L1,No P ,

�No P = L′
1,No P − L1,No P = − �3

16T �̃
(f ′

+ − f ′
−), (12)

where f ′
± = f ′(Vg ± �) is the derivative of the Fermi function

for μ� = 0 and T� = T . This is of third order in �, an
improvement in comparison to �Red.

V. SCALING WITH �

The analytical results for U = 0 of the previous section
show that deviations from the Onsager relation are of order
�2 for the Redfield and 1vN approaches and of order �3 if the
principal-value integrals are neglected. Numerical solutions
for the various ME approaches, which exhibit the dependence
on �/T , are shown in Fig. 4. For U = 0, column (a), the
numerical solutions of the Redfield, 1vN, and No P methods
fully agree with the analytical results of Eqs. (10) and (12).
Redfield and 1vN provide identical results and �Red scales
as �2 for small �. The 2vN approach satisfies the Onsager
relation, as the currents agree with the exact result, while �No P
scales as �3. For an interacting system with U = 5 T , column
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FIG. 4. � dependence of the peak values L1,peak, L′
1,peak, and �peak for U = 0 (left column) and U = 5 T (right column) for 2� = T/2.

The Pauli ME (not shown) gives L1 = L′
1 ∝ � with L1 and L′

1 having the same slope as in all other approaches at � = 0. For the Redfield and
1vN approaches the scaling of �peak/L1,peak is of order � and for “No P” and 2vN approaches the scaling is of order �2. However, for U = 0
Onsager’s theorem is satisfied in the 2vN approach as the conductances agree with the exact transmission formalism, Eq. (7).

(b), the deviations � scale with small � as for U = 0. Here,
the 2vN approach is no longer exact and violates the Onsager
relation but the order of deviation �2vN scales as �3, i.e., these
are terms of higher order than the second-order perturbation
expansion in the coupling.

Finally, we zoom into the region of small �/T in Fig. 4
to demonstrate the scaling behavior of �peak/L1,peak more
clearly. A double logarithmic plot of this region is presented
in Fig. 5. We see that for the Redfield and 1vN approaches the
scaling follows �peak/L1,peak ∼ �1 while for the “No P” and
2vN approaches we observe �peak/L1,peak ∼ �2. Since L1,peak

scales with �, the resulting dependence of the violation of
Onsager’s theorem, �peak, is �2 and �3, respectively.

VI. CONCLUSIONS

In conclusion, we have shown that MEs that take into
account coherences generically fail to satisfy Onsager’s
theorem. For small coupling to the leads, the deviations

scale as a power of � that is higher than the order of
perturbation theory in the respective approach. In first-order
approaches, such as Redfield and 1vN, the deviations scale as
�2. For thermoelectric systems, this restricts the applicability
of popular first-order approaches to the weak-coupling limit
� � T , even if the particle currents frequently exhibit good
results up to moderate couplings. For our model, the violation
of Onsager’s theorem is pushed to a higher order in � if the
occurring principal-value integrals are neglected. It should be
noted that they are required to catch essential physics such
as level energy renormalization in some systems [26,32–35],
meaning an ad hoc neglect is not always justified. For the
2vN approach, the deviation is of order �3 and provides
an extended range of applicability. Our results show that
MEs formally contradict a well-established theory for systems
out of equilibrium. However, the scaling behavior of the
resulting deviations suggests that such approaches can still
be confidently used to calculate transport for sufficiently weak
coupling.
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FIG. 5. Dependence of �peak/L1,peak on � shown in a double
logarithmic plot. The figure corresponds to Fig. 4(b) zoomed into
the region of small �/T . The values of parameters are U = 5 T and
2� = T/2.
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APPENDIX A: REDFIELD AND “NO P” APPROACHES

We obtain the Redfield approach by projecting the
Wangsness-Bloch-Redfield (WBR) [5–8] equation for the
reduced density operator ρ(t) of the dot,

∂tρ(t) = −i[Hdot,ρ(t)] −
∫ ∞

0
dτ trE

[
Hhyb,[

e−iH0τHhybe
iH0τ ,ρ(t) ⊗ ρ0

E

]]
, (A1)

given here with all operators in the Schrödinger picture, onto
the dot many-particle eigenstates |b〉,|b′〉. In terms of these
states, the dot Hamiltonian reads as Hdot = ∑

b Eb|b〉〈b|.
Furthermore, H0 = Hdot + Hleads, trE denotes the trace over
the degrees of freedom of the environment, i.e., the leads,
and ρ0

E is a density operator describing the leads in possibly
separate thermal equilibrium. The hybridization Hamiltonian,
expressed in the basis of these states, becomes

Hhyb =
∑
i,k�

(ti� d
†
i c�k + H.c.)

=
∑
ab,k�

(
T �

ba|b〉〈a|c�k + H.c.
)
, (A2)

with T �
ba = ∑

i ti�〈b|d†
i |a〉 and T �

ab = T �∗
ba [36]. The reduced

density matrix has to satisfy ∂tρ = 0 for a steady-state solution.

Explicitly, this gives the equations

0 = ρbb′ (Eb − Eb′ )

+
∑
b′′�

ρbb′′

[∑
a

��
b′′a,ab′I

�−
b′′a −

∑
c

��
b′′c,cb′I

�+∗
cb′′

]

+
∑
b′′�

ρb′′b′

[∑
c

��
bc,cb′′I

�+
cb′′ −

∑
a

��
ba,ab′′I

�−∗
b′′a

]

+
∑
aa′�

ρaa′ ��
ba,a′b′

[
I �+∗
b′a′ − I �+

ba

]
+

∑
cc′�

ρcc′ ��
bc,c′b′

[
I �−∗
cb − I �−

c′b′
]
, (A3)

which we combine with the normalization condition∑
b

ρbb = 1. (A4)

In Eq. (A3), the tunneling-rate matrix is defined as

��
ba,a′b′ = 2πνF T �

baT
�
a′b′ , (A5)

and we use

2πI�±
ba = P

∫ D

−D

dE f (±E)

E − ξ�
ba

− iπf
( ± ξ�

ba

)
θ
(
D − ∣∣ξ�

ba

∣∣),
(A6)

ξ�
ba = Eb − Ea − μ�, (A7)

f (E) = (exp[E/T ] + 1)−1. (A8)

We have replaced k sums using the approximation of a flat
density of states, i.e.,

∑
k → νF

∫ D

−D
dE. Here, νF denotes the

density of states at the Fermi energy and 2D is the symmetric
bandwidth of the leads. We assume D to be the largest
energy scale in our system and take the limit D → ∞. In this
wideband limit the results become independent of bandwidth.
Lastly, we have assumed lead-electron dispersions of the form
E�k = Ek + μ�, with Ek ∈ [−D,D], leading to Eq. (A6).

The particle and energy currents, as defined in Eqs. (2a)
and (2b) in the main text, have the explicit forms

I� = 2 Im

[∑
cbb′

ρb′b�
�
bc,cb′I

�+
cb′ −

∑
bcc′

ρcc′��
c′b,bcI

�−
c′b

]
(A9)

and

Ė� = 2 Im

[∑
cbb′

ρb′b�
�
bc,cb′

(
D + Ecb′I �+

cb′
)

−
∑
bcc′

ρcc′��
c′b,bc

(
D + Ec′bI

�−
c′b

)]

= 2 Im

[∑
cbb′

ρb′b�
�
bc,cb′Ecb′I �+

cb′

−
∑
bcc′

ρcc′��
c′b,bcEc′bI

�−
c′b

]
, (A10)

where Ecb = Ec − Eb. The terms proportional to the band-
width D cancel since for every term ρbb′�bc,cb′ , the sum
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also contains its complex conjugate, and the sum of the two
vanishes when taking the imaginary part.

In principle, we have to compare the charge current to
the heat current instead of the energy current Ė� in order
to check the validity of Onsager’s theorem. The heat current
is

Q̇� = −∂t 〈H� − μN�〉 = −i〈[H,H� − μ�N�]〉

= 2 Im

[∑
cbb′

ρb′b�
�
bc,cb′ξ

�
cb′I

�+
cb′

−
∑
bcc′

ρcc′��
c′b,bcξ

�
c′bI

�−
c′b

]
, (A11)

and has the energies Ecb replaced by ξ�
cb = Ecb − μ� in

comparison to Eq. (A10). However, within linear response
around μ = 0, the term proportional to μL/R = ±V/2 is of
second order in the applied bias V and thus irrelevant. Thus it
is sufficient to calculate the energy current and compare it to
the charge current.

Finally, the “No P” approach corresponds to neglecting the
principal-value integral in Eq. (A6).

APPENDIX B: FIRST-ORDER AND SECOND-ORDER VON
NEUMANN APPROACHES

The usual derivation of (A1) (see, e.g., Refs. [9,11]), uses a
Markov approximation to obtain a time-local equation. More
precisely, this approximation is done for the reduced density
matrix expressed in the interaction picture, i.e., ρI(t ′) ≈ ρI(t)
with the local time t . A different possible choice, ρ(t ′) ≈ ρ(t),
leads to the first-order von Neumann (1vN) approach. In op-
erator form, this Schrödinger-picture Markov approximation
leads to the equation

∂tρ(t) = −i[Hdot,ρ(t)] −
∫ ∞

0
dτ trE

× [
Hhyb,e

−iH0τ
[
Hhyb,ρ(t) ⊗ ρ0

E

]
eiH0τ

]
. (B1)

By projecting Eq. (B1) onto dot eigenstates we obtain

0 = ρbb′ (Eb − Eb′ )

+
∑
b′′�

ρbb′′

[∑
a

��
b′′a,ab′I

�−
ba −

∑
c

��
b′′c,cb′I

�+∗
cb

]

+
∑
b′′�

ρb′′b′

[∑
c

��
bc,cb′′I

�+
cb′ −

∑
a

��
ba,ab′′I

�−∗
b′a

]

+
∑
aa′�

ρaa′ ��
ba,a′b′

[
I �+∗
b′a − I �+

ba′
]

+
∑
cc′�

ρcc′ ��
bc,c′b′

[
I �−∗
c′b − I �−

cb′
]
. (B2)

Just as in the Redfield case, we solve Eq. (B1) under the
constraint Eq. (A4). The definitions of �, I , and f are the
same as in Eqs. (A6)–(A8). As a result of the different Markov
approximation, both the equation of motion and the currents
are different. The explicit expressions for the particle and

energy currents read as

I� = 2 Im

[∑
cbb′

ρb′b�
�
bc,cb′I

�+
cb −

∑
bcc′

ρcc′��
c′b,bcI

�−
cb

]
, (B3)

Ė� = 2 Im

[∑
cbb′

ρb′b�
�
bc,cb′EcbI

�+
cb −

∑
bcc′

ρcc′��
c′b,bcEcbI

�−
cb

]
,

(B4)

where bandwidth-dependent terms cancel by the same sym-
metry as in Eq. (A10). The same remark about the heat and
energy currents as in the Redfield approach applies to the 1vN
approach.

Comparison to the Redfield equation shows that the main
difference between the two approaches is the energy assigned
to processes involving coherences. As an example, consider
the contribution of a single nondiagonal element ρb′b,b

′ �= b

to the energy current. In the Redfield approach Eq. (A10)
contains

ρb′b�
�
bc,cb′Ecb′I �+

cb′ = ρb′b�
�
bc,cb′Ecb′

[
P

∫ D

−D

dE f (±E)

E − ξ�
cb′

− iπf
(±ξ�

cb′
)
θ
(
D − ∣∣ξ�

cb′
∣∣)]. (B5)

In the 1vN approach, we instead obtain

ρb′b�
�
bc,cb′EcbI

�+
cb = ρb′b�

�
bc,cb′Ecb

[
P

∫ D

−D

dE f (±E)

E − ξ�
cb

− iπf
( ± ξ�

cb

)
θ
(
D − ∣∣ξ�

cb

∣∣)], (B6)

which has all occurrences of the energy Ecb′ in Eq. (B5)
replaced by Ecb. A similar difference is found in the con-
tributions of coherences to the equations of motion, Eqs. (A3)
and (B2). Note that Eqs. (B2)–(B4) were originally derived in a
framework that focuses on the number of excitations involved,
in contrast to the perturbative derivation of the WBR equation.
For a concise derivation, see the Supplemental Material of
Ref. [12].

The 1vN approach can be extended to the 2vN approach. A
detailed derivation of this approach can be found in Ref. [28]
and a description of the numerical procedure used to solve the
resulting equations is given in Appendix A of Ref. [37]. The
source and drain leads are assumed to have a bandwidth of
2D with E�k = Ek ∈ [−D,D] and a constant density of states
νF within this energy range. The chemical potentials are set
to μL/R = ±V/2 for the energy current, and μ� = 0 for the
charge current. In the present work, we set the bandwidth to
2D = 80 T and use a lead-electron energy grid of N = 213

points.
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APPENDIX C: PAULI MASTER EQUATION

The Pauli master equation can be obtained from both the
Redfield and 1vN approaches by neglecting all coherences
ρbb′ , b �= b′. By doing so, we obtain

∂tPb =
∑
a�

[
Pa�

�
a→bf

( + p�
ba

) − Pb�
�
b→af

( − p�
ba

)]
+

∑
c�

[
Pc�

�
c→bf

( − p�
cb

) − Pb�
�
b→cf

( + p�
cb

)]
(C1)

for the probabilities Pb = ρbb of dot many-particle states. In
this case, ��

a→b = ��
ab,ba = ��

b→a = ��
ba,ab. In the steady state,

we again set ∂tPb = 0 and solve the resulting equations under
the constraint Eq. (A4). The steady-state currents then read as

I� =
∑
bc

[
Pb�

�
b→cf

( + p�
cb

) − Pc�
�
c→bf

( − p�
cb

)]
, (C2)

Ė� =
∑
bc

[
Pb�

�
b→cEcbf

( + p�
cb

) − Pc�
�
c→bEcbf

( − p�
cb

)]
.

(C3)

APPENDIX D: TRANSMISSION-FUNCTION FORMALISM

Here we present the main steps that lead to Eqs. (5a)
and (5b) in the main text. The transmission-function formal-
ism [29,38,39] gives

I = 1

2π

∫ D

−D

dE T (E)[fL(E) − fR(E)], (D1)

Ė = 1

2π

∫ D

−D

dE T (E)E[fL(E) − fR(E)] (D2)

for the currents. We evaluate these integrals in the wideband
limit D → ∞. For the double-dot structure described in the
main text, the transmission function reads as

T (E) =
∣∣∣∣ �/2

E − E− + i�/2
− �/2

E − E+ + i�/2

∣∣∣∣2

, (D3)

where E± = Vg ± �. This transmission function can be
rewritten as

T (E) = b

E − E− + i�/2
+ b∗

E − E− − i�/2

− b∗

E − E+ + i�/2
− b

E − E+ − i�/2
, (D4)

where

b = i + γ

1 + γ 2
, γ = �

2�
. (D5)

For D 
 � and D 
 E± − μ�, the integrals in Eq. (D1) can
be expressed in terms of the digamma function 	 [40] using∫ D

−D

dE f (E/T�)

E − (E± − μ�) + i�/2
≈ 	�± − ln

D

2πT�

− i
π

2
,

(D6)
where

	�± ≡ 	

(
1

2
+ μ� − E± + i�/2

i2πT�

)
. (D7)

For the energy-current integrals in Eq. (D2), we use

∫ D

−D

dE
(E + μ�)f (E/T�)

E − (E± − μ�) + i�/2

≈ D + (E± − i�/2)

(
	�± − ln

D

2πT�

− i
π

2

)
. (D8)

From the transmission function, Eq. (D4), and the identities
Eqs. (D6)–(D8), we get the particle and energy currents given
by Eqs. (5) in the main text.

APPENDIX E: DETAILED CALCULATION FOR
THE REDFIELD AND 1vN APPROACHES

In this Appendix we present more detailed calculations
for the double-dot structure using the Redfield and 1vN
approaches. The dot Hamiltonian Hdot, Eq. (1a) in the main
text, has four many-particle eigenstates,

|0〉, E0 = 0, (E1)

|1〉 = d
†
1 |0〉, E1 = Vg − �, (E2)

|1′〉 = d
†
1′ |0〉, E1′ = Vg + �, (E3)

|2〉 = d
†
1′d

†
1 |0〉, E2 = 2Vg + U, (E4)

where

(
d1

d1′

)
= 1√

2

(
dl + dr

dl − dr

)
. (E5)

The matrices of the many-particle tunneling amplitudes are, in
this basis,

T L = t√
2

⎛⎜⎝ 0 +1 +1 0
+1 0 0 +1
+1 0 0 −1
0 +1 −1 0

⎞⎟⎠, (E6)

T R = t√
2

⎛⎜⎝ 0 +1 −1 0
+1 0 0 −1
−1 0 0 −1
0 −1 −1 0

⎞⎟⎠. (E7)

There are six nonvanishing elements of the reduced density
matrix ρ, which we collect into the column vector ρ =
(ρ00,ρ11,ρ1′1′ ,ρ22,ρ11′ ,ρ1′1)T . Then the master equation takes
the form

∂tρ = Lρ, (E8)

with the Liouvillian L.
In the noninteracting case, U = 0, after using Eq. (A3) for

the Redfield approach and Eq. (B2) for the 1vN approach,

165435-8
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respectively, we obtain the Liouvillians

LRed = �

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−f+ − f− f̄− f̄+ 0 −C∗ −C

f− −f̄− − f+ 0 f̄+ C∗ C

f+ 0 −f̄+ − f− f̄− C∗ C

0 f+ f− −f̄+ − f̄− −C∗ −C

C C C C 2i/γ − 2 0

C∗ C∗ C∗ C∗ 0 −2i/γ − 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (E9)

L1vN = �

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−f+ − f− f̄− f̄+ 0 −C −C∗

f− −f̄− − f+ 0 f̄+ C C∗

f+ 0 −f̄+ − f− f̄− C C∗

0 f+ f− −f̄+ − f̄− −C −C∗

C C C C 2i/γ − 2 0

C∗ C∗ C∗ C∗ 0 −2i/γ − 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (E10)

Here, we have used the limit D → +∞ and the definitions

γ = �/2�, (E11)

f± = 1 + 1

2πi
[(ψ∗

L± + ψ∗
R±) − (ψL± + ψR±)]

= fL(Vg ± �) + fR(Vg ± �), (E12)

f̄± = 2 − f±, (E13)

C = 1

2πi
[(ψ∗

L+ − ψ∗
R+) − (ψL− − ψR−)], (E14)

ψ�± = 	

(
1

2
+ μ� − E±

i2πT�

)
. (E15)

For the Redfield approach, the steady-state solution of
Eq. (E8), i.e., the solution of ∂tρ = 0 satisfying the normal-
ization condition (A4), reads as

ρ00 = 1

4
f̄+f̄− − 1

2
Re (Cρ1′1), (E16)

ρ11 = 1

4
f−f̄+ + 1

2
Re (Cρ1′1), (E17)

ρ1′1′ = 1

4
f+f̄− + 1

2
Re (Cρ1′1), (E18)

ρ22 = 1

4
f+f− − 1

2
Re (Cρ1′1), (E19)

ρ11′ = ρ∗
1′1 = iγC

2(1 + iγ )
. (E20)

The steady-state solution of the 1vN approach is obtained
by replacing all terms Re (Cρ1′1) in Eqs. (E16)–(E19) by
Re(C∗ρ1′1). Since ρ1′1 is the same in the two approaches, this
change C → C∗ corresponds to changing the energy assigned
to ρ1′1 from Vg + � to Vg − �. This is exactly what has
been noted using Eqs. (B5) and (B6), i.e., the two approaches
assigning different energies to processes involving coherences.
In this case, the symmetric splitting of 2� around Vg results
in the symmetry between the solutions.

Inserting the solution (E16)–(E19) into Eqs. (A9) and (A10)
gives the particle current, Eq. (9a), and the energy current,
Eq. (9b), of the main text. We note that in the Redfield
approach

Re (Cρ1′1) = 1

2

γ 2|C|2
1 + γ 2

≡ 2|ρ1′1|2, (E21)

and hence we see that the inclusion of coherences cor-
rects the diagonal elements by terms proportional to
±|ρ1′1|2. Lastly, the “No P” result of a calculation in
which principal-value integrals are neglected, is obtained
by making the replacement ψ�± → −iπf�(Vg ± �), which
yields

2CNo P = fL(Vg + �) − fR(Vg + �)

+ fL(Vg − �) − fR(Vg − �)

≡ g+ + g−. (E22)
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