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Inflated nodes and surface states in superconducting half-Heusler compounds
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Two topics of high current interest in the field of unconventional superconductivity are noncentrosymmetric
superconductors and multiband superconductivity. Half-Heusler superconductors such as YPtBi exemplify both.
In this paper, we study bulk and surface states in nodal superconducting phases of the half-Heusler compounds,
belonging to the A1 (s + p-like) and T2 (kzkx + ikzky-like) irreducible representations of the point group. These
two phases preserve and break time-reversal symmetry, respectively. For the A1 case, we find that flat surface bands
persist in the multiband system. In addition, the system has dispersive surface bands with zero-energy crossings
forming Fermi arcs, which are protected by mirror symmetries. For the T2 case, there is an interesting coexistence
of point and line nodes, known from the single-band case, with Bogoliubov Fermi surfaces (two-dimensional
nodes). There are no flat-band surface states, as expected, but dispersive surface bands with Fermi arcs exist. If
these arcs do not lie in high-symmetry planes, they are split by the antisymmetric spin-orbit coupling so that their
number is doubled compared to the inversion-symmetric case.
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I. INTRODUCTION

Topologically nontrivial superconducting states are cur-
rently receiving a lot of attention, in part motivated by the
vision of topologically protected quantum computation [1].
Several different approaches concern heterostructures in which
topological superconductivity is induced at the interface [2–5].
The present paper belongs to another research direction, which
focuses on superconductors that are intrinsically topologically
nontrivial. For fully gapped superconductors in any number of
dimensions, the possible topological states can be classified
[6,7] on the basis of the ten Altland-Zirnbauer symmetry
classes [8]. However, many unconventional superconductors
do not have a full gap but are nodal, i.e., they feature
quasiparticle states at the Fermi energy. It has been realized
that such superconductors can also be topologically nontrivial
and topological invariants associated with nodes of dimension
zero (points), one (lines), and two (surfaces) have been
constructed [9–18].

An important class of unconventional superconductors
are the noncentrosymmetric materials [19,20], in which the
absence of inversion symmetry allows for the appearance of
antisymmetric spin-orbit coupling (ASOC). In single-band
systems, due to the ASOC, the spin of a Cooper pair is
not a good quantum number, leading to the mixing of
(time-reversal-invariant) singlet and triplet pairing. If the
triplet component is sufficiently large, the superconducting
gap develops line nodes that are topologically protected
by an integer (Z) winding number and are accompanied
by flat zero-energy surface bands [11,12,14,15,21,22]. Lat-
tice symmetries can induce additional topological invariants
protecting points and lines of zeros of the surface-state
dispersion [21,22].
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A particularly promising candidate in this class is the
half-Heusler compound YPtBi. Measurements of the upper
critical field versus temperature indicate a sizable triplet
component [23]. This is consistent with the observed linear
temperature dependence of the London penetration depth [24],
which is attributed to line nodes. Moreover, tunneling spectra
between a normal conductor and superconducting YPtBi show
a pronounced, though broadened, zero-bias peak [24], which
agrees with expectations for an extended flat zero-energy
surface band [11,12,14,15,21,22]. This motivates the present
study of the surface dispersion of two superconducting states
that conventionally are expected to have line nodes. The pos-
sible pairing states can be classified according to irreducible
representations (irreps) of the crystallographic point group
Td . The two states we consider are a time-reversal-symmetric
A1, s + p-like pairing state with line nodes [24,25] and a
T2, kzkx + ikzky-like pairing state that breaks time-reversal
symmetry and, in the limit of infinitesimal gaps, has both
point and line nodes [25].

The T2 state with broken time-reversal symmetry is also
interesting from the perspective of nodal excitations. In
particular, it has been shown that when inversion symmetry
is present, this state exhibits topologically protected nodal
Bogoliubov Fermi surfaces [16–18], i.e., two-dimensional
Fermi surfaces of neutral Bogoliubov quasiparticles. The
inversion symmetry is required for the topological protection
of these Fermi surfaces [16–18], and their fate is unknown
once this protection is removed, as is the case in YPtBi. Here
we show that with noncentrosymmetric Td symmetry, this state
exhibits a fascinating coexistence of point nodes, line nodes,
and Bogoliubov Fermi surfaces.

Another very interesting aspect of the half-Heusler super-
conductors is their topologically nontrivial normal state. Due
to the absence of inversion symmetry in the tetrahedral point
group Td and the resulting ASOC, the degeneracy of energy
bands is lifted, except at high-symmetry points in the Brillouin
zone. The most relevant band here is the four-component �8
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band. Among the large family of half-Heusler compounds,
some show band inversion of the �8 and the two-component �6

bands [26,27]. The Fermi energy for the undoped compounds
then lies at the �8 point, assuming there is no accidental band
overlap away from the � point. The compounds with inverted
bands can thus be viewed as semimetals with a quadratic band
touching point at the Fermi energy or as zero-gap semiconduc-
tors. Due to the inverted bands, topologically protected surface
states are expected [28]. Band-structure calculations within
density-functional theory (DFT) predict the band inversion to
be particularly large in YPtBi and LuPtBi [26,27]. Bands of
dispersive surface states have indeed been observed for YPtBi
and LuPtBi using angle-resolved photoemission spectroscopy
(ARPES) [28]. Superconductivity occurs both in YPtBi [29]
and in LuPtBi [30], with transition temperatures of Tc = 0.77
and 1.0 K, respectively. The irreducible multiband character
of these compounds due to the dominant �8 band should have
interesting consequences for superconductivity. Some of the
authors have recently shown that multiband systems allow
for novel pairing states that are impossible for a single band
[17,24,25].

Nontrivial surface states are characteristic for topological
materials and provide the most important route to the ex-
perimental verification of the topological state, e.g., through
tunneling spectroscopy and ARPES. Since superconducting
YPtBi and LuPtBi are promising candidates, it is worthwhile
to study their surface states in some detail. Not only should
nontrivial superconductivity have signatures in the surface
dispersion but also the question arises as to what happens to the
surface bands of the normal state. In this paper, we analyze the
bulk and surface dispersion of half-Heusler superconductors.
For numerical calculations, we take parameters appropriate for
YPtBi. As mentioned above, we consider two representative
pairing states: a time-reversal-symmetric A1 pairing state
with line nodes [24,25] and a T2 pairing state that breaks
time-reversal symmetry [25]. Since the bands, including the
surface bands, are nondegenerate, it makes sense to ask about
the spin polarization of the Bloch states. Specifically, we obtain
the spin polarization of the surface states for the A1 state.

The rest of this paper is organized as follows. In Sec. II, we
introduce the normal-state tight-binding Hamiltonian for the
half-Heusler compounds and then the Bogoliubov-de Gennes
Hamiltonian for their superconducting states. We give the
Hamiltonians both for the extended system and for slabs with
(111) and (100) surfaces. In Sec. III, we present and discuss our
results for the bulk and the surface, for the A1 and T2 pairing
states. Finally, we give a summary and draw conclusions in
Sec. IV

II. MODEL

We start by setting up an effective tight-binding model on
the fcc lattice, which is the Bravais lattice of the half-Heusler
structure. The edge length of the conventional, nonprimitive
fcc unit cell is set to 2, the nearest-neighbor separation
on the fcc lattice is then

√
2. The four-component electron

field of the �8 band is described in terms of an effective
angular momentum of j = 3/2 [17,25,31–35]. This angular
momentum is due to the coupling of the electron spins with
l = 1 p orbitals of the main-group Z ion in the half-Heusler

materials with sum formula XYZ, in the present case Bi. The
same model applies to materials with zinc-blende structure. As
noted in Ref. [17], it can also be used to formally describe the
four-component electronic fields generated by two orbitals and
spin 1/2. The mapping between the j = 3/2 representation
and the orbital-spin representation is given in Ref. [17].

Restricting ourselves to only nearest-neighbor hopping on
the fcc lattice, the normal-state Hamiltonian HN is given as
a bilinear form of the four-component spinor operator ci =
(ci,3/2,ci,1/2,ci,−1/2,ci,−3/2)T (T denotes transposition) and its
Hermitian conjugate c

†
i . The coefficients are expressed in terms

of the standard 4 × 4 angular-momentum j = 3/2 matrices Jx ,
Jy , and Jz. The specific form in real space is

HN =
∑
ij

c
†
i hij cj = −t1

∑
〈ij〉

(
c
†
i cj + H.c.

)

− t2
∑
〈ij〉

(
c
†
i J

2
ηij

cj + H.c.
)

− t3
∑
〈ij〉

(
c
†
i

∑
ν �=ν ′

rij,νJν rij,ν ′Jν ′ cj + H.c.

)

− t4
∑
〈ij〉

(ic†i rij · K cj + H.c.)

− t5
∑
〈ij〉

[
ic

†
i

∑
ν

rij,ν

(
r2
ij,ν+1 − r2

ij,ν+2

)
Jν cj + H.c.

]

− μ
∑

i

c
†
i ci , (1)

where rij ≡ Ri − Rj in terms of the fcc lattice sites Ri ,
ηij = x, y, and z for rij perpendicular to the x, y, and z axes,
i.e., lying in the yz, zx, and zx planes, respectively, K is
the vector of matrices Kν ≡ Jν+1JνJν+1 − Jν+2JνJν+2, where
the notation “ν + 1” and “ν + 2” pertains to the cyclic group
{x,y,z}, and

∑
〈ij〉 denotes a sum over nearest-neighbor bonds,

counting each bond once. This Hamiltonian is compatible
with the space group F 4̄3m of half-Heusler compounds. The
t4 and t5 terms represent the ASOC. Our numerical results
are obtained for t5 = 0 and we drop the t5 term from now
on. However, all statements on symmetries and topological
protection remain valid in the presence of this term.

The superconducting state is described by the second-
quantized Hamiltonian

H = 1

2

∑
ij

�
†
i Hij �j , (2)

in terms of the Nambu spinor

�i =
(

ci

c
†T
i

)
(3)

and the Bogoliubov-de Gennes Hamiltonian

Hij =
(

hij �ij

�
†
ji −hT

ji

)
, (4)
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where hij is defined in Eq. (1). In this paper, we are not
concerned with the origin of the superconducting pairing. This
has recently been considered in Refs. [33,34,36].

The effective angular momentum j = 3/2 allows for
Cooper pairs with total angular momenta J = 0 (singlet),
J = 1 (triplet), J = 2 (quintet), and J = 3 (septet)
[25,31–34]. By subducing the irreps of O(3) of order J to
the point group Td and reducing them into irreps of Td , one
finds the appropriate irreps for any J . In this way, one finds
that, for a purely local (s-wave) pairing potential, there must be
one singlet pairing state transforming according to the trivial
irrep A1 and five quintet pairing states transforming according
to the two-dimensional irrep E and to the three-dimensional
irrep T2. The on-site pairing Hamiltonian can be written as

Hs
pair =

∑
i,r

(
�0∗

r cT
i �†

r ci + �0
r c

†
i �rc

†T
i

)
, (5)

where the index r enumerates the possible local pairing terms,
specifying the irrep and also an index counting components
for the higher-dimensional irreps. The matrices �r = DrUT

can be written as products of irreducible tensor operators Dr

of the appropriate irreps [37–39] and the unitary part

UT =

⎛
⎜⎜⎜⎝

0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

⎞
⎟⎟⎟⎠ (6)

of the antiunitary time-reversal operator T = UTK (K is
complex conjugation). We hence find the matrices

�A1 = UT , (7)

�E,1 = 1

3

(
2J 2

z − J 2
x − J 2

y

)
UT , (8)

�E,2 = 1√
3

(
J 2

x − J 2
y

)
UT , (9)

�T2,1 = 1√
3

(JyJz + JzJy) UT , (10)

�T2,2 = 1√
3

(JzJx + JxJz) UT , (11)

�T2,3 = 1√
3

(JxJy + JyJx) UT . (12)

�A1 belongs to the singlet (J = 0) irrep A1, whereas the other
five belong to the quintet (J = 2) irreps E and T2. All six
matrices are invariant under time reversal. This local pairing
enters �ij in Eq. (4) as

�s
ij = 2δij

∑
r

�0
r �r . (13)

A local pairing term that transforms according to a certain
irrep will generically be accompanied by nonlocal pairing
transforming in the same manner. The best studied example
is singlet-triplet mixing in single-band noncentrosymmetric
superconductors [14,15,21,22,40,41]. Frigeri et al. [42] have
shown for the single-band case that pair breaking due to the
ASOC is avoided for triplet pairing with the same momentum

(and hence spatial) dependence as the ASOC. This is thus
expected to be the most favorable triplet pairing state.

The natural generalization to the j = 3/2 case is the pairing
matrix �

p

ij ∝ hASOC
ij UT , where hASOC

ij is the ASOC part of hij .
The superscript p stands for p wave. We thus write

�
p

ij = −i �0
p rij · K UT , (14)

where i and j are nearest-neighbor sites. This pairing term
satisfies time-reversal symmetry. By construction, it is also
invariant under the lattice symmetries of the normal state.
For this reason, it will generically coexist with the local A1

singlet pairing, which also transforms trivially under the lattice
symmetries [25].

The real-space formulation can be used for both extended,
bulk system and for slabs of various orientations. We now
discuss these two cases in turn.

A. Extended system

For the extended system, we Fourier transform the Hamil-
tonian in all three directions. The normal-state tight-binding
Hamiltonian is then

HN =
∑

k

c
†
k h(k) ck, (15)

where

h(k) = −4t1
∑

ν

cos kν cos kν+1

− 4t2
∑

ν

cos kν cos kν+1 J 2
ν+2

+ 4t3
∑

ν

sin kν sin kν+1 (JνJν+1 + Jν+1Jν)

− 4t4
∑

ν

sin kν (cos kν+1 + cos kν+2) Kν − μ (16)

and ck = (ck,3/2,ck,1/2,ck,−1/2,ck,−3/2)T is the four-component
spinor operator. The momentum sum is over the fcc Brillouin
zone. The energy of the �8 band-touching point is EN

0 =
−12t1 − 15t2. The expansion of the coefficients for small k
gives the k · p Hamiltonian

hk·p(k) = αk2 + β
∑

ν

k2
νJ

2
ν + γ

∑
ν �=ν ′

kνkν ′JνJν ′

+ δ
∑

ν

kνKν − μ̃, (17)

where t1 = α/4 + 15β/16, t2 = −β/2, t3 = γ /4, t4 = −δ/8,
and μ = μ̃ − 3α − 15β/4. We set h̄ = 1 throughout this
paper. Identity matrices are suppressed in the first and last
terms. This is the k · p Hamiltonian used in Ref. [25].

Brydon et al. [25] have performed band structure cal-
culations for YPtBi and LuPtBi within DFT, using various
approximations for the exchange-correlation functional. The
results show significant quantitative differences but agree on
the band topology, in particular on the band inversion. The
modified Becke-Johnson local-density approximation [43],
which was developed to improve the calculated band gaps,
predicts stoichiometric YPtBi to be a semimetal with its Fermi
energy at the quadratic band-touching point [25].
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To be specific, for YPtBi, we take the same parameters as
in [25], which correspond to t1 = −0.918 eV, t2 = 0.760 eV,
t3 = −0.253 eV, and t4 = −3.98 meV. These parameters give
reasonable quantitative agreement with the results of the
modified Becke-Johnson local-density approximation at small
momenta k and avoids spurious large Fermi surfaces away
from the � point. Inclusion of the cubic ASOC (t5) does not
significantly improve the agreement. The chemical potential
is taken to be μ = EN

0 − 0.02 eV, corresponding to weak hole
doping, as seen in experiments [23,29]. Note that the descrip-
tion of LuPtBi, which has a much more complex normal-state
Fermi surface, would require longer-range hoppings in the
Hamiltonian.

The four eigenenergies in momentum space are generically
nondegenerate. They are strongly split into two pairs by the
symmetric t2 and t3 terms. In YPtBi, one pair of bands curves
up and the other down. The pairs are more weakly split by the
antisymmetric t4 term. All four bands are degenerate at k = 0.
This band-touching point is protected by a combination of
time-reversal and lattice symmetries: splitting it would require
a (mass) term in the Hamiltonian that is independent of k
and not proportional to the identity matrix. One can easily
convince oneself that there are only six linearly independent
4 × 4 matrices that are hermitian and satisfy time-reversal
symmetry. A possible choice for the six matrices is J 2

x , J 2
y ,

J 2
z , JxJy + JyJx , JyJz + JzJy , and JzJx + JxJz. One can then

check that there is no combination except for the identity
matrix that also satisfies all symmetries of the point group Td .

For weak electron or hole doping, the model develops
two small, nested Fermi pockets. The pockets have first-order
(conical) touching points on the kx , ky , and kz axes, which are
protected by the twofold degeneracy of bands on these axes
following from the splitting of the four-dimensional irrep �8

of Td into two-dimensional irreps �5 + �5 of C2v .
The superconducting system is described by the

Hamiltonian

H = 1

2

∑
k

�
†
k H(k) �k, (18)

in terms of the Nambu spinor �k = (cT
k ,c

†
−k)T , and the

Bogoliubov-de Gennes Hamiltonian

H(k) =
(

h(k) �(k)

�†(k) −hT (−k)

)
. (19)

Here, h(k) is the normal-state Hamiltonian defined in Eq. (16)
and the pairing potential is �(k) = �s(k) + �p(k) with

�s(k) = 2
∑

r

�0
r�r , (20)

�p(k) = −4�0
p

∑
ν sin kν (cos kν+1 + cos kν+2) KνUT .

(21)

Note that the p-wave gap �p(k) is only present in the A1 state.

k1

k2

Γ K

K’M

k1

k2

(a)

(b)

ky

kx

Γ X

X’ M

FIG. 1. (a) Two-dimensional Brillouin zone of a slab with
(a) (111) and (b) (100) surfaces.

B. Slabs of finite thickness

In the following section, we will show results of the
numerical diagonalization of the Bogoliubov-de Gennes tight-
binding model on slabs with (111) and with (100) surface
orientations. The thickness W of the slabs has to be chosen
large enough to suppress the hybridization of states localized at
opposite surfaces. Since the slabs have translation symmetry in
the directions parallel to the surfaces, we block diagonalize the
Hamiltonian in Eq. (1) by performing a Fourier transformation
in these two directions. The corresponding wave vector parallel
to the surfaces is denoted by k‖ = (k1,k2).

We start with a slab with (111) surfaces. The primitive
bulk unit cell compatible with the symmetry of the (111) slab
is hexagonal and contains three fcc sites. The thickness W

is here defined as the number of triangular layers parallel
to the surfaces, which means that the unit cell has a height
of 3 layers and the slab is W/3 hexagonal unit cells thick.
The layers are enumerated by l = 0, . . . ,W − 1. Momentum
sums are taken over the two-dimensional Brillouin zone of
the slab, with is a hexagon. The components (k1,k2) are
defined in Fig. 1(a). Special points have the two-dimensional
coordinates K = (2

√
2 π/3,0), K′ = (

√
2 π/3,

√
2/3 π ), and

M = (0,
√

2/3 π ). In terms of the bulk coordinate system, the

094526-4



INFLATED NODES AND SURFACE STATES IN . . . PHYSICAL REVIEW B 96, 094526 (2017)

momentum reads

k‖ = k1
1√
2

⎛
⎜⎝

1

−1

0

⎞
⎟⎠ + k2

1√
6

⎛
⎜⎝

1

1

−2

⎞
⎟⎠. (22)

The second-quantized Hamiltonian for the slab is

Hslab = 1

2

∑
k‖

∑
ll′

�
†
k‖l H

(111)
ll′ (k‖) �k‖l′ , (23)

with the obvious definition of �k‖l and the matrices

H(111)
ll′ (k‖) =

(
h

(111)
ll′ (k‖) �

(111)
ll′ (k‖)

�
(111)
l′l (k‖)† −h

(111)
l′l (−k‖)T

)
, (24)

which can be expressed in terms of 4 × 4 blocks h
(111)
ll′ (k‖) and

�
(111)
ll′ (k‖). The construction of these blocks is a straightfor-

ward exercise and their explicit forms are omitted here.
We next consider a slab with (100) surfaces. The (nonprimi-

tive) bulk unit cell compatible with the symmetry of this slab is
centered tetragonal and contains two sites. The thickness W is
defined as the number of square layers parallel to the surfaces,
which means that the slab is W/2 tetragonal unit cells thick.
The layers are again enumerated by l = 0, . . . ,W − 1. The
momentum vector parallel to the surface is

k‖ = k1
1√
2

⎛
⎜⎝

0

1

1

⎞
⎟⎠ + k2

1√
2

⎛
⎜⎝

0

−1

1

⎞
⎟⎠. (25)

The two-dimensional Brillouin zone of the slab is a square,
which is shown in Fig. 1(b). Note that the k1 and k2 axes for the
slab are rotated by 45◦ with respect to the conventional cubic
axes of the bulk. The two-dimensional coordinates (k1,k2) of
special points are M = (π/

√
2,π/

√
2), X = (π/

√
2,0), and

X′ = (0,π/
√

2). The Hamiltonian reads

Hslab = 1

2

∑
k‖

∑
ll′

�
†
k‖l H

(100)
ll′ (k‖) �k‖l′ , (26)

with

H(100)
ll′ (k‖) =

(
h

(100)
ll′ (k‖) �

(100)
ll′ (k‖)

�
(100)
l′l (k‖)† −h

(100)
l′l (−k‖)T

)
. (27)

To distinguish surface from bulk states, we use the total
weight in all bands in the central third of the slab. This quantity
shows a large contrast between the two types of states and only
weak finite-size effects. For time-reversal-symmetric pairing,
we take into account the two states with lowest energy by
absolute value since the spectrum is symmetric about the Fermi
energy.

III. RESULTS

The model system possesses surface states even in the
normal phase. This was already found for related gapless
semiconductors by D’yakonov and A. V. Khaetskii [44] and
recently within DFT for (Y,Lu)PtBi [28]. It is worth pointing
out that the DFT calculations [28] indicate that the dispersion
of the surface bands depends on the termination of the surface,
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k 1
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(e

V
)

FIG. 2. Band structure for the normal state of a slab with (100)
surfaces along the k1 axis. The thickness is W = 400. The zero of
energy is set to the Fermi energy (dashed horizontal line). The split-off
surface bands are clearly visible.

an aspect that is missed by our simple tight-binding model.
In addition, DFT calculations as well as ARPES [28] show
a topological Dirac cone of surface states located below the
holelike �8 band. These surface states connect the bulk �8

bands to the �6 bands below and are thus not captured by
our �8-only tight-binding model. That the Dirac cone indeed
derives from these bands is shown by Chu et al. [45], who use
a six-band continuum model containing the �8 and �6 bands.

The presence of surface states derived solely from the
�8 band can be understood based on a deformation of the
Hamiltonian into a topologically nontrivial one. Such an
argument can be used to explain the states localized at
zigzag edges of graphene and also to predict surface states
at certain surfaces of iron pnictides [46]. The procedure
starts by fixing the wave-vector components k‖ parallel to the
surface. This produces an effectively one-dimensional model
with coordinate l, for which the states in reciprocal space are
enumerated by a wave number k⊥. We consider wave vectors
k‖ �= 0, for which this one-dimensional model is gapped.
The corresponding Hamiltonian is then deformed, without
closing the gap, into one that has additional symmetries and
is topologically nontrivial. We do not give the details here
since the manipulations are very similar to Ref. [46]. We
end up with two decoupled one-dimensional Hamiltonians in
Altland-Zirnbauer class BDI, which allows a Z topological
invariant [6,7,16], which in this case turns out to be ±1. Hence
the deformed model has two zero-energy surface state per
surface, i.e., four in total, for each k‖ �= 0. Now reversing
the deformation, the topological protection of these surface
states is lost but they evolve continuously as a function of
the deformation. Hence, for small deformations, surface states
survive but are no longer pinned to zero energy, nor do they
remain degenerate. We thus generically expect four surface
states at k‖-dependent energies, i.e., four dispersive surface
bands. These surface bands only vanish if the deformation is
so large that they become resonant with bulk states.

A cut through the band structure along the positive k1 axis
for a (100) slab in the normal state is plotted in Fig. 2. The
plot is restricted to energies close to the Fermi energy and to
momenta in the region of the Fermi sea. The quasicontinuous
regions correspond to bulk states that are weakly modified by
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FIG. 3. Dispersion of surface states of YPtBi in the normal state
for (a) the (111) surface and (b) the (100) surface, for a thickness of
W = 2000. The gray region in the center is the projection of the bulk
Fermi sea, i.e., in this region the states at the Fermi energy are bulk
like. Note that this does not preclude the presence of surface states
away from the Fermi energy. In the white regions, there is no bulk
Fermi sea but the states closest to the Fermi energy are still bulk like.

the presence of surfaces. The surface bands are clearly visible
in the gap between the bulk bands.

Numerical results for the energy of surface states at (111)
and (100) surfaces in the normal phase are shown in Fig. 3.
Here and in the following, we only show the central region
of the two-dimensional Brillouin zone, in the vicinity of the
normal-state Fermi sea. The plot only pertains to the state
closest to the Fermi energy for each k‖. These states are
extended through the bulk in the region of the projected Fermi
sea (gray in Fig. 3) but also in small regions outside of this
projection (white). The color denotes the energy of the surface
state closest to the Fermi energy. These correspond to the
surface bands found by ARPES [28] and also seen in Fig. 2. In
agreement with the ARPES experiments and DFT calculations
[28], the surface bands cross the Fermi energy from positive
to negative values for increasing momentum k‖ = (k1,k2). In
Fig. 3, this is indicated by a smooth change of color from red
through black to blue.

The additional abrupt change of color seen for the (100)
surface in Fig. 3(b) is an artifact of the presentation: here,
two surface bands have energies of the same absolute value
but opposite sign. The white regions in Fig. 3(b) are not a
finite-size effect. Figure 2 shows clearly what is happening
here: the surface bands continue but the states closest to
the Fermi energy are now bulk like. At smaller momentum,
the continuum of bulk states reaches the Fermi energy,
corresponding to the gray region in Fig. 3, but the surface bands
still continue and approach the quadratic band-touching point.

A. A1 pairing: flat-band surface states and mirror Fermi arcs

For the superconducting state, we first consider the A1 gap
matrix, in real space,

�ij = 2δij �0
A1

�A1 − iδ〈ij〉 �0
p rij · KUT , (28)

where δ〈ij〉 is unity (zero) if i and j are (not) nearest-neighbor
sides. The amplitudes �0

A1
and �0

p are both taken to be real.
As noted above, both terms have the same, namely, trivial,
transformation properties under all lattice symmetries and thus
generically coexist [25]. The state also preserves time-reversal
symmetry. The superconducting gap has line nodes when
�0

p/�0
A1

is sufficiently large. We take �0
A1

= 3 meV and
�0

p = 7 meV, which leads to six closed line nodes on the
larger Fermi surface, surrounding the bulk cubic axes [25]. The
smaller Fermi surface is fully gapped. Inverting the sign of �0

A1

or �0
p moves the nodes to the smaller Fermi surface. Figure 4

shows the absolute value of the gap on the normal-state Fermi
surfaces for infinitesimal pairing amplitudes with the same
p-wave–to–s-wave ratio �0

p/�0
A1

= 7/3. The gap is obtained
by treating the pairing in first-order perturbation theory.
Infinitesimal amplitudes are used here for illustration since
for larger amplitudes the energy minima and in particular the
nodal rings move away from the normal-state Fermi surfaces.
However, the six nodal rings persist for the larger amplitudes
used in the following.

Figure 5 shows the dispersion of surface states at the
(111) and (100) surfaces. Outside of the projection of
the normal-state Fermi surface, we find weakly modified
descendants of the normal surface states shown in Fig. 3.
Figure 5(b) shows that the surface bands are mostly gapped
out by superconducting pairing. However, there are eight
symmetry-related points where the gap closes. For the (111)
surface, Fig. 5(a), the projections of the six nodal rings
are clearly visible as overlapping ellipses. For k‖ points
within the projection of a single nodal ring, we observe
nondegenerate flat bands. These are reminiscent of the
flat bands predicted for spin-1/2 noncentrosymmetric nodal
superconductors [11,12,14,15,21,22,47,48]. They indeed have
the same origin: The model Hamiltonian is invariant under
time reversal and charge conjugation and thus also under their
product, i.e., chiral symmetry, which acts as

S H(k) S† = −H(k), (29)

where the unitary matrix S reads

S =
(

0 UT

UT 0

)
. (30)
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FIG. 4. Superconducting gap for the A1 pairing state with p-wave
to s-wave ratio �0

p/�0
A1

= 7/3 on (a) the smaller and (b) the larger
normal-state Fermi surface. Infinitesimal pairing amplitudes have
been used for reasons explained in the text.

Let US be a unitary matrix that diagonalizes the chiral operator
S so that

US S U
†
S =

(
i14 0

0 −i14

)
, (31)

where 14 is the 4 × 4 identity matrix. US transforms the
Hamiltonian into block-off-diagonal form,

US H(k) U
†
S =

(
0 D(k)

D†(k) 0

)
. (32)

For any k‖ for which det D(k) �= 0 for all k⊥, i.e., any k‖ not
on a projected node, we can define the winding number

W (k‖) = 1

2π
Im

∫
dk⊥

∂

∂k⊥
ln det D(k), (33)

FIG. 5. Dispersion of surface states of YPtBi in the supercon-
ducting A1 state for (a) the (111) surface and (b) the (100) surface,
for a thickness of W = 4000. At each momentum, the states occur
in pairs with energies differing in their sign. The positive energy is
plotted. Black regions correspond to flat surface bands. In the white
regions, the states closest to the Fermi energy are bulk like.

where the integral is over the direction perpendicular to the k‖
plane and

k = k‖ + k⊥
1√
3

⎛
⎜⎝

1

1

1

⎞
⎟⎠. (34)

Continuity of the function k → D(k) and the properties of
the branch point of the logarithm imply that W (k‖) ∈ Z. For
our model, W (k‖) = ±1 for k‖ within the projection of a
single nodal ring and W (k‖) = 0 otherwise. We indeed find
nondegenerate flat bands in exactly these regions. In the limit
of infinite thickness, these surface states are at zero energy.
They then formally become twofold degenerate but this is just
due to the double counting of states in the Nambu formalism.
One can interpret them as a pair of Majorana states for each
k‖, which are localized at opposite surfaces. In the regions
where the projected nodal rings overlap, there are no flat-band
surface states. Here, winding numbers +1 and −1 from the
two rings add up to zero and the effective one-dimensional
system is trivial.
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For the (100) surface, Fig. 5(b), four of the nodal rings are
viewed edge on and therefore do not lead to flat surface bands.
The other two are projected on top of each other. The winding
numbers ±1 from these two nodal rings add up to zero, and
so the argument used for the (111) surface does not predict
zero-energy flat bands. In agreement with this, we do not find
flat bands in this region and in fact also no dispersive surface
bands. The small green circle in the center of Fig. 5(b) is likely
a finite-size effect; the spectrum here does not show a split-off
band.

Furthermore, there are dispersive surface bands for small
k‖, where the normal-state Fermi surface has been gapped
out. For the (111) surface, Fig. 5(a), their energy goes to zero
along lines (“arcs”) connecting the � point with the flat bands.
These arcs are not of the same origin as the ones predicted
for noncentrosymmetric superconductors with C4v symmetry
in Refs. [14,21], which result from a Z2 invariant protected by
an additional time-reversal-like symmetry in two-dimensional
planes in momentum space. Instead, they rely on the presence
of mirror symmetries. Of the six mirror planes in Td , the three
defined by the equations kx − ky = 0, ky − kz = 0, and kz −
kx = 0 are perpendicular to the (111) plane, i.e., the k‖ plane,
and thus their projections are straight lines. We observe that
the arcs form parts of these lines. For example, the mirror
symmetry with respect to the (11̄0) plane with kx − ky = 0 is
expressed as

M H(ky,kx,kz) M† = H(kx,ky,kz), (35)

with the unitary matrix

M =
(

e−iπ(Jx−Jy )/
√

2 0

0 (e−iπ(Jx−Jy )/
√

2)∗

)

=
(

e−iπ(Jx−Jy )/
√

2 0

0 eiπ(Jx+Jy )/
√

2

)
. (36)

The (11̄0) plane corresponds to k1 = 0, i.e., the k2 axis in
Fig. 5(a), while k2 and k⊥ do not change under this reflection.
Hence we can write

M H(k1 = 0,k2,k⊥) M† = H(k1 = 0,k2,k⊥). (37)

This is now a symmetry at a single k point, not one connecting
two points. Let UM be a unitary matrix that diagonalizes M in
such a way that

UM M U
†
M =

(
i14 0

0 −i14

)
. (38)

Applying this transformation to the Hamiltonian on the mirror
plane makes it block diagonal,

UM H(0,k2,k⊥) U
†
M =

(H+(k2,k⊥) 0

0 H−(k2,k⊥)

)
, (39)

where H+(k2,k⊥) [H−(k2,k⊥)] is the Bogoliubov-de Gennes
Hamiltonian in the sector with mirror eigenvalue i (−i). The
chiral operator is also invariant under reflection and is block
diagonalized by the same transformation,

UM S U
†
M =

(
S̃ 0

0 −S̃

)
. (40)

Note that the diagonal blocks are identical up to an irrelevant
sign. The blocks H±(k2,k⊥) possess chiral symmetry with
respect to S̃:

S̃ H±(k2,k⊥) S̃† = −H±(k2,k⊥). (41)

With the 4 × 4 unitary matrix US̃ that diagonalizes S̃, we can
now separately transform the Hamiltonians H±(k2,k⊥) in the
two mirror-parity sectors into block-off-diagonal form,

US̃ H±(k2,k⊥) U
†
S̃

=
(

0 D±(k2,k⊥)

D
†
±(k2,k⊥) 0

)
. (42)

The winding number in Eq. (33) can also be written as

W (k‖) = − 1

4πi

∫
dk⊥ Tr S H(k)−1 ∂

∂k⊥
H(k). (43)

We now rewrite this winding number on the mirror plane,
suppressing the arguments (k2,k⊥) of H±,

W (k2) = − 1

4πi

∫
dk⊥ Tr

[(
S̃H−1

+ 0

0 −S̃H−1
−

)

× ∂

∂k⊥

(H+ 0

0 H−

)]

= W+(k2) − W−(k2), (44)

with

W±(k2) ≡ − 1

4πi

∫
dk⊥ Tr S̃ H−1

±
∂

∂k⊥
H±

= 1

2π
Im

∫
dk⊥

∂

∂k⊥
ln det D±(k2,k⊥). (45)

We find that W+(k2) = W−(k2) = −1 on the arcs. Here, the
normal winding number is W (k‖) = −1 + 1 = 0 but the two
nontrivial mirror winding numbers W±(k2) = −1 leads to two
zero-energy states. The arcs are indeed twofold degenerate if
the double counting introduced by the Nambu formalism is
corrected for: two pairs of helical Majorana bands cross at
k1 = 0. The splitting between the Majorana bands is due to
the ASOC. In the flat-band regions, one of W±(k2) equals −1
and the other vanishes, leading to W (k‖) = ±1, as discussed
above. For larger k2, outside of the flat-band regions, we find
W+(k2) = W−(k2) = 0 and there is no arc.

The surface states are nondegenerate, except at the arcs. In
particular, the flat bands are nondegenerate, as noted above.
Therefore the states are spin polarized and the absolute value
of the spin polarization is 1/2. Physically, the spin polarization
of states results from the ASOC. For the single-band case and
various point groups, the spin polarization has been calculated
in Ref. [49]. In the present case, we have to distinguish between
the effective spin J of length 3/2 and the electronic spin S of
length 1/2. In the half-Heusler compounds, the total angular
momentum J results from the combination of the electronic
spin S with an orbital angular momentum L of length 1.
The spin operators are then obtained by projecting Sν ⊗ 13,
ν = x,y,z onto the subspace of total angular momentum 3/2
[50,51]. This simply gives S = J/3 [52].

We show the z component of the spin polarization 〈S〉 at the
(111) surface in Fig. 6. Making use of the threefold rotation
symmetry of the slab with respect to the (111) direction,
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FIG. 6. Spin polarization in the z direction, 〈Sz〉 = 〈Jz/3〉 vs
surface momentum k‖ of the lowest-energy state for a (111) slab with
W = 4000 of YPtBi in the A1 state. At each momentum, the spectrum
is symmetric. For states of nonzero energy, the negative-energy state
is used, whereas for degenerate zero-energy states, the superposition
localized at the l = 0 surface is used.

which is perpendicular to the k‖ = (k1,k2) plane, the x and
y components can be obtained by rotating the plot by ±120◦
(not shown). Moreover, the mirror planes perpendicular to
the surface are visible in the plot. For example, the mirror
symmetry of the Bogoliubov-de Gennes Hamiltonian with
respect to the (11̄0) plane is expressed by Eq. (35). In the
mirror plane that intersects the k‖ plane along the k2 axis, this
relation turns into the invariance (37) at fixed momentum.
The same transformation also leaves the spin component
(Jx − Jy)/

√
2 invariant. The surface states must therefore

be eigenstates of (Jx − Jy)/
√

2. Noting that the components
Jz and (Jx + Jy)/

√
2 are orthogonal to (Jx − Jy)/

√
2, it is

elementary to show that the operators Jz and (Jx + Jy)/
√

2
have vanishing diagonal matrix elements in an eigenbasis of
(Jx − Jy)/

√
2 so that 〈Jz〉 = 0 and 〈Jx〉 = −〈Jy〉.

B. T2 pairing: inflated bulk nodes and Chern Fermi arcs

For the half-Heusler compounds, time-reversal-symmetry-
breaking states are realized by forming linear combinations of
the pairing matrices �r in Eqs. (8)–(12) belonging to the same
irrep, with complex coefficients. We here focus on the pairing
states belonging to the three-dimensional irrep T2. They are
characterized by the gap matrix

�ij = 2δij �0
T2

(
l1�T2,1 + l2�T2,2 + l3�T2,3

)
(46)

in terms of the complex three-component order parameter l =
(l1,l2,l3). A free-energy expansion [53] shows that the possible
equilibrium states are l = (1,0,0), (1,1,1), (1,e2πi/3,e4πi/3),
(1,i,0), and states related to these by point-group operations.
The third and fourth state in the list break time-reversal
symmetry because of the complex phase factors. For weak
pairing, one of these states has the lowest free energy of all T2

pairing states [25]. As a representative of pairing that breaks
time-reversal symmetry, we examine the state with l = (1,i,0),

i.e.,

�ij = 2δij �0
T2

(
�T2,1 + i �T2,2

)
. (47)

1. Bulk nodal structure

In the centrosymmetric limit, where the ASOC vanishes,
and for infinitesimal pairing amplitude �0

T2
, the supercon-

ducting gap has both point and line nodes [25]. The point
nodes are located at the intersections of the kz axis with
the Fermi surfaces, which have first-order touching points at
these intersections. The line nodes exist at the intersections
of the kxky plane with both Fermi surfaces. The same nodal
structure is found also for stronger pairing if the pairing
is purely intraband. Point nodes are not surprising since
the superconductor belongs to class D [8], for which point
nodes away from high-symmetry points are protected by a Z
topological invariant [16,22,54]. The invariant is a first Chern
number, which for our model evaluates to −2 (+2) for the
point node on the positive (negative) kz axis [55]. However,
class D does not yield a topological invariant for line nodes
in high-symmetry planes. These rely on a lattice symmetry,
namely on the twofold rotation axis along ẑ, which acts as

P̃ H(−kx,−ky,kz) P̃† = H(kx,ky,kz), (48)

with

P̃ =
(

ie−iπJz 0

0 −ieiπJz

)
. (49)

In the kxky plane, the twofold rotation maps (kx,ky,0) onto
(−kx,−ky,0) and hence acts like spatial inversion. The product
of charge conjugation C and the pseudoinversion P̃ maps
(kx,ky,0) onto itself and causes the spectrum to be symmetric
for each momentum in the kxky plane. We further find that this
product squares to (CP̃)2 = +1 since the antiunitary charge-
conjugation operator reads C = UCK with UC = τ1 ⊗ 14,
where τ1 is a Pauli matrix in particle-hole space. Such a
symmetry ensures that nodes of codimension 1 can have
a Z2 topological invariant [56,57]. In the two-dimensional
kxky plane, line nodes can thus be topologically stable in
the presence of a twofold rotation axis perpendicular to the
plane. The method of Ref. [17] can be applied to construct this
invariant in terms of a Pfaffian of H(kx,ky,0).

The T2 state of Eq. (47) is of particular relevance since there
is experimental evidence for line nodes in YPtBi [24]. The
other symmetry-allowed and energetically favorable E and T2

pairing states do not have symmetry-protected line nodes for
vanishing ASOC [25].

For the centrosymmetric variant with point group Oh,
for which the ASOC is forbidden by symmetry, nodes of
the superconducting gap are generically inflated into two-
dimensional Bogoliubov Fermi surfaces for multiband pairing
[17,18]. In centrosymmetric multiband superconductors that
spontaneously break time-reversal symmetry but satisfy CP
symmetry (the product of charge conjugation and inversion)
squaring to (CP)2 = +1, nodal points and nodal lines are re-
placed by spheroidal and toroidal Bogoliubov Fermi surfaces,
respectively. These Fermi surfaces are protected by a Z2 to-
pogical invariant, which can be expressed in terms of a Pfaffian
[17,18,56,57]. These results do not carry over to the present
case since the Td point group is not centrosymmetric and thus
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inversion and CP symmetry are absent. TheZ2 number [17,18]
cannot even be defined. Nevertheless, Bogoliubov Fermi
surfaces can exist: Volovik [58] has pointed out that Fermi
surfaces can appear in multiband systems if both inversion and
time-reversal symmetry are broken and the interband pairing
potential is sufficiently large. Examples of this are realized in
Fulde-Ferrell [59] pairing states in single-band systems with
Rashba spin-orbit coupling in an applied magnetic field [60],
as well as in the proposed [61] coexistence state of d-wave su-
perconductivity and loop-current order in YBa2Cu3O7−δ [62].
Note that these proposals require both the inversion and the
time-reversal-symmetry breaking to be extrinsic to the super-
conducting state; in contrast, in our system the time-reversal-
symmetry breaking is intrinsic to the superconductivity.

The presence of Fermi surfaces in these systems can
be understood as follows: due to the absence of CP and
CT symmetries, the spectrum at fixed momentum k is
not symmetric. Hence band crossings or avoided crossings
generically do not occur at the Fermi energy and symmetry
thus does not dictate any gap opening there. It is thus possible
for bands to cross the Fermi energy. Since the band energies
are continuous functions of momentum, the crossings are
generically two-dimensional Fermi surfaces. Of course, one
expects that superconductivity is only energetically favorable
if gaps do open at the Fermi energy, but this need not happen
everywhere on the normal-state Fermi surface.

The nodal structure both for infinitesimal and finite pairing
is best analyzed in terms of the determinant of the Bogoliubov-
de Gennes Hamiltonian H(k) given in Eq. (19). The determi-
nant is of course the product of the eigenenergies and thus its
zeros coincide with the nodes. The determinant is expanded in
the pairing amplitude �0

T2
, which is assumed to be real,

detH(k) = detH(k)|�=0 + g2(k)
(
�0

T2

)2 + g4(k)
(
�0

T2

)4
.

(50)

This expansion is exact; higher orders do not occur since

�(k) = 4�0
T2

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 i

0 0 0 0

0 −i 0 0

⎞
⎟⎟⎟⎠ (51)

so that the matrix H(k) only contains �0
T2

linearly in four
components. The determinant must be even in �0

T2
due to

invariance under global phase changes. The zero-order term
in Eq. (50) is non-negative since the spectrum is symmetric
and contains an even number of pairs of eigenvalues. Hence
detH(k)|�=0 generically (not at the touching points) has
second-order zeros forming a two-dimensional manifold,
namely the Fermi surface.

The determinant detH(k) of the full Hamiltonian is
positive sufficiently far from the normal-state Fermi surface
since superconductivity is then a small correction. A nega-
tive determinant at some momentum k thus implies, using
the continuity of the function k → detH(k), the existence of
a Bogoliubov Fermi surface surrounding it. For small �0

T2
,

this can only happen on the normal-state Fermi surface, where
the zero-order term vanishes. To leading order, the existence
of Fermi surfaces is determined by the coefficient g2(kF )
on the Fermi surface. If g2(kF ) > 0 then the normal-state

FIG. 7. Coefficient g2 in the expansion of detH(k) in the pairing
amplitude, Eq. (50), for the T2 pairing state with order parameter
l = (1,i,0) on (a) the smaller and (b) the larger normal-state Fermi
surface. The plots exhibit the nodal structure for infinitesimal pairing.

Fermi surface is gapped out in the vicinity of kF . For
g2(kF ) < 0, there must be a Bogoliubov Fermi surface in the
superconducting state. If g2(kF ) = 0 then it is necessary to go
to higher orders.

It can be shown that g2(kF ) � 0 everywhere on the normal-
state Fermi surface. Moreover, g2 vanishes where the kx , ky ,
and kz axes intersect the Fermi surfaces. The proof of these
statements is given in the Appendix. Numerical results for g2

on the Fermi surfaces are shown in Fig. 7. The plots show the
nodal structure for infinitesimal pairing. Besides the zeros on
the coordinate axes found rigorously, g2 also vanishes along
the equator of both surfaces and on additional nodal rings
surrounding the coordinate axes only on the larger surface.
These new nodal rings are reminiscent of the case of A1 pairing
in that they do not lie in high-symmetry planes. However,
unlike for A1 pairing, their size is controlled by the ASOC.
Everywhere else, the coefficient g2 is positive and the Fermi
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FIG. 8. (a) Nodes for the T2 pairing state with order parameter l =
(1,i,0), which breaks time-reversal symmetry, and pairing amplitude
�0

T2
= 3 meV. Red dots represent point nodes, blue lines line nodes,

and orange surfaces Bogoliubov Fermi surfaces. Momentum axes are
omitted for clarity. Note, however, that the point nodes coincide with
the ones in Fig. 7. (b) Enlargement of the system of Fermi pockets
and line nodes close to the kx and ky axes. (c) Enlargement of one of
the sickle-shaped Fermi pockets close to the point nodes.

surface is gapped out in the superconducting state. Hence, for
infinitesimal pairing, the point and line nodes of the single-
band T2 state survive but we obtain additional nodal rings on
one of the Fermi surfaces.

If the pairing amplitude is not infinitesimal, we have to
go beyond second order in �0

T2
. However, using Eq. (50) is

inconvenient since the minima of detH(k) generically occur
off the Fermi surface, necessitating a double expansion in the
pairing amplitude and the deviation of k normal to the Fermi
surface. Instead, we have numerically examined detH(k). The
results for �0

T2
= 3 meV are shown in Fig. 8.

In more detail, we find the following results. (i) The two
line nodes along the equators survive but the breaking of
time-reversal symmetry splits their touching points on the kx

and ky axes. (ii) In the vicinity of these points, regions with
detH(k) < 0 emerge, where the number of bands below (and
above) the Fermi energy is odd. These regions are bounded by

two-dimensional Bogoliubov Fermi surfaces (inflated nodes)
of complex shape. Figure 8(b) shows an enlarged view of one
set of these pockets, consisting of a large platelike pocket and
a smaller pocket that touches the larger one at two points.
The surface of each of the two pockets crosses itself at one of
the nodal lines. The pockets evolve from the additional nodal
rings around the kx and ky axes in Fig. 7(b), which are inflated
for growing �0

T2
, and transform into the shapes in Fig. 8(b)

through a series of Lifshitz transitions. (iii) There are still two
point nodes on the kz axis. The quasiparticle dispersion close to
these nodes is linear in the kz direction but quadratic in the two
orthogonal directions. The point nodes have Chern numbers
of ±2 [55]. (iv) The nodal rings surrounding the kz axis on the
larger Fermi surface, see Fig. 7(b), are inflated into Bogoliubov
Fermi surfaces with four pinch points for |kx | = |ky |, resulting
in four sickle-shaped pockets for each ring. An enlargement
of one of these pockets is shown in Fig. 8(c).

It is worth emphasizing that point and line nodes coexist
with Bogoliubov Fermi pockets. As discussed above, point
nodes protected by an integer Chern number are allowed for
class D, while line nodes are protected by class D in conjunc-
tion with a twofold rotation symmetry. Neither the multiband
character nor the breaking of inversion symmetry by the ASOC
affect these symmetries. The point nodes inherit the Chern
numbers ±2 from the inversion-symmetric, weak pairing limit.
Since the model stays in class D when multiband pairing and
ASOC are switched on, these topological invariants could only
vanish by merging in the kxky plane. However, generically the
point nodes can split into two each with Chern numbers ±1.
We find that this splitting is disallowed by the combination
of charge-conjugation symmetry and fourfold rotoinversion
symmetry about the z axis. On the other hand, the Bogoliubov
Fermi pockets are not topologically protected. As noted above,
bands crossing the Fermi energy are allowed by the breaking
of time-reversal symmetry, which generically makes avoided
band crossings happen away from the Fermi energy.

2. Surface states

Figure 9 shows the dispersion of surface states at the (111)
and (100) surfaces. Note that for the T2 pairing state, (100)
is not equivalent to (001). Outside of the projection of the
normal-state Fermi surface, we again find weakly modified
descendants of the normal surface states shown in Fig. 3. Also
visible are the projections of the inflated nodes allowed by
the broken time-reversal symmetry. There are no flat bands
associated with the line nodes in the high-symmetry plane. Flat
bands are not expected since the line nodes are not protected
by a winding number [63], unlike the line nodes in the A1

state, but by a Z2 invariant that only exists in the kxky plane.
Hence this Z2 number does not induce a global invariant on
gapped one-dimensional subsystems and one cannot construct
an argument for flat bands in analogy to the A1 case. There
are also no flat bands from the inflated nodal rings that are not
lying in the symmetry plane, i.e., the small orange rings at the
top and bottom of Fig. 8(a). Their projections are visible in
Fig. 9(a) as two ellipses that cross the k1 = 0 line and intersect
the projections of the outer nodal line in the symmetry plane.
We conclude that these inflated rings are also not protected by
a winding number.
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FIG. 9. Dispersion of surface states of YPtBi in the superconduct-
ing T2 state for (a) the (111) surface with a thickness of W = 16 000
and (b) the (100) surface with W = 4000. A larger thickness was
considered for the (111) surface because of large finite-size effects.
The spectra at fixed momentum are not symmetric. The signful energy
closest to the Fermi energy is plotted. The gray regions are the
projections of the Bogoliubov Fermi pockets shown in Fig. 8 onto
the surface Brillouin zone. In these regions, states exist at the Fermi
energy and are bulk like. In the white regions, there are no Fermi
pockets but the states closest to the Fermi energy are still bulk like.

Furthermore, we observe dispersive surface states where the
normal-state Fermi sea has been gapped out. Their dispersion
crosses the Fermi energy at arclike lines emanating from the
projections of the point nodes for both the (111) and the (100)
slab. These arcs show up as black lines separating yellow
and green regions in Figs. 9(a) and 9(b). For the (111) slab,
Fig. 9(a), the projections of the point nodes lie within the
projections of the inflated rings. Two arcs start from each
point node, consistent with its Chern number ±2. One arc,
which is clearly visible, connects to the inflated ring. The
other connects to the projection of the outer ring in the kxky

plane and is obscured by bulk states (white region). The arcs
are straight lines lying in the projection of a mirror plane, cf.
Sec. III A. Due to the mirror symmetry, the spectrum and in
particular the arcs are twofold degenerate. Correcting for the
double counting in the Nambu formalism, this corresponds to
a single arc; a single pair of helical Majorana bands crosses

here. For the (100) slab, Fig. 9(b), four arcs are associated
with each point node, where the point nodes themselves are
obscured by bulk states. The appearance of four arcs instead
of two can be understood as follows: The centrosymmetric
variant of the model has a symmetric spectrum at each k‖ and
thus wherever a Majorana surface band with dispersion E(k‖)
crosses the Fermi energy, forming an arc, another band with
dispersion −E(k‖) also crosses the Fermi energy. In the present
case the centrosymmetric variant has two arcs associated with
each point node. The simultaneous breaking of inversion and
time-reversal symmetry shifts this crossing to finite energy
and thus splits each arc into two. This is consistent with the
observation that neighboring arcs in Fig. 9(b) have opposite
velocities. The crossing of the surface bands happens between
these arcs.

IV. SUMMARY AND CONCLUSIONS

Bulk and surface states of two plausible superconducting
states of half-Heusler compounds have been analyzed, taking
YPtBi as a specific example. Their partially filled �8 band
is described in terms of the effective angular momentum
j = 3/2. The inverted band structure of YPtBi and several
other half-Heusler compounds [26–28] leads to the appearance
of surface states of topological origin even in the normal phase.
These compounds are also noncentrosymmetric and thus allow
us to study the fate of characteristic properties of noncen-
trosymmetric superconductors, such as flat surface bands, in a
multiband system. YPtBi is a particularly promising candidate
for topological superconductivity based on experimental re-
ports of a zero-bias peak in tunneling [24], which hints at such
flat surface bands. Technically, we have performed numerical
diagonalization of Bogoliubov-de Gennes Hamiltonians for
slabs with (111) and (100) oriented surfaces.

We consider a A1 pairing state that leaves time-reversal
symmetry intact and a T2 pairing state that breaks time-
reversal and also lattice symmetries. The two states have in
common that they allow for line nodes of the superconducting
gap, which are supported by measurements of the London
penetration depth [24].

For the A1 state, the line nodes require the symmetry-
allowed admixture of nonlocal p-wave pairing [25]. The A1

state has six nodal rings surrounding the cubic coordinate axes.
The nodal rings are associated with nonzero winding numbers
±1. These protect flat zero-energy surface bands bounded by
the projections of a single nodal ring onto the surface Brillouin
zone. Such flat bands have been found for single-band
noncentrosymmetric models [14,15,21,22,47,48]. We here
find that they persist in the multiband case, in particular, they
are not gapped out by interband pairing. On the other hand,
the multiband character allows for additional pairing states
that are not possible for single-band superconductors. The A1

state considered here is a superposition of singlet (J = 0) and
septet (J = 3) pairing, where the latter is possible because
of the effective spin j = 3/2 of the electrons. In addition,
we have obtained dispersive surface states. They are in part
derived from the normal-phase surface states, but interesting
new effects emerge where the normal-phase Fermi sea is
gapped out by superconductivity. Here, Fermi arcs appear
when mirror planes are perpendicular to the surface. They are
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restricted to the projection of the mirror plane onto the surface
Brillouin zone and are protected by a mirror parity.

The time-reversal-symmetry-breaking T2 state has interest-
ing nodal structure already in the bulk. Even for infinitesimal
pairing, the ASOC changes the nodal structure compared to the
centrosymmetric variant of the model or the case of vanishing
ASOC [25]: besides point nodes generic for topological super-
conductors in class D and line nodes in a high-symmetry plane,
which rely on a twofold rotation axis, the system has additional
nodal rings, reminiscent of the A1 case. If the pairing amplitude
is not infinitesimal, we find that the point nodes and the line
nodes in the high-symmetry plane survive but now coexist with
two-dimensional Bogoliubov Fermi pockets (inflated nodes).
At surfaces, the T2 superconductor does not show flat bands,
due to the lack of winding numbers that could protect them.
There are dispersive surface states with Fermi arcs associated
with projections of the point nodes. The arcs for the (100)
surface are split due to the absence of time-reversal and
inversion symmetry so that their number is doubled compared
to systems with time-reversal or inversion symmetry and the
same Chern numbers of the point nodes. For the (111) surface,
the arcs lie in a mirror plane, which prevents the splitting.

Note added: Recently, a preprint by Yang et al. [64]
appeared that also addresses the flat-band surface states for
A1 pairing.
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APPENDIX: EXPANSION OF THE DETERMINANT
OF THE BOGOLIBOV-DE GENNES HAMILTONIAN

We here show that the coefficient

g2 = 1

2

d2

d�2
detH

∣∣∣∣
�=0

(A1)

in the expansion (50) is non-negative everywhere on the Fermi
surface and is zero where the cubic axes intersect the Fermi
surface. The short-hand notation � = �0

T2
is used and the

momentum argument is suppressed.
Take E to be a real energy but not an eigenvalue of H(k).

Then H(k) − E is invertable (an identity matrix is suppressed)
and we have

d

d�
det(H − E) = det(H − E) Tr (H − E)−1 dH

d�
(A2)

and

d2

d�2
det(H − E) = det(H − E)

[
Tr (H − E)−1 dH

d�

]2

− det(H − E) Tr (H − E)−1

× dH
d�

(H − E)−1 dH
d�

. (A3)

Note that

dH
d�

= 4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 i
0

0 0 0 0

0 −i 0 0

0 0 0 0

0 0 0 i

0 0 0 0
0

0 −i 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A4)

Setting � = 0 we thus get

d

d�
det(H − E)

∣∣∣∣
�=0

= Tr

(
h − E 0

0 −hT − E

)−1
dH
d�

= Tr

(
(h − E)−1 0

0 (−hT − E)−1

)

dH
d�

= 0 (A5)

and, using this,

d2

d�2
det(H − E)

∣∣∣∣
�=0

= − det(H − E) Tr (H − E)−1 dH
d�

(H − E)−1 dH
d�

∣∣∣∣
�=0

.

(A6)

We denote the eigenvalues and eigenvectors of H for � = 0
by Ei and |i〉, respectively. The spectrum is symmetric; we
enumerate the eigenvalues in such a way that E−i = −Ei .
Then

d2

d�2
det(H − E)

∣∣∣∣
�=0

= −
∏
k

(Ek − E)

×
∑
ij

|〈i|dH/d�|j 〉|2
(Ei − E)(Ej − E)

. (A7)

Now take k on the normal-state Fermi surface. There are
two cases: the corresponding normal-state eigenvalue can be
nondegenerate or twofold degenerate. The latter happens at
the intersection of the Fermi surface with the cubic axes.

Case 1: nondegenerate eigenvalue. We take E1 = E−1 = 0
and write ∏

k

(Ek − E) = E2
∏

k �=±1

(Ek − E). (A8)

In the sum over i, j , the terms with i,j ∈ {1,−1} have the
denominator E2, which cancels with the E2 in the prefactor.
The terms with only one of i or j from {1,−1} contain only
one factor E in the denominator, with leaves an overall factor
of E. The terms with i,j /∈ {1,−1} retain a prefactor of E2. We
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now take the limit E → 0, i.e., E goes to the Fermi energy.
Only the first term survives so that

g2 = 1

2

d2

d�2
detH

∣∣∣∣
�=0

= −1

2

∏
k �=±1

Ek

∑
i,j=±1

∣∣∣∣〈i|dHd�
|j 〉

∣∣∣∣
2

.

(A9)

Using that the spectrum is symmetric, this yields

g2 = 1

2
E2

2E
2
3E

2
4

∑
i,j=±1

∣∣∣∣〈i|dHd�
|j 〉

∣∣∣∣
2

� 0. (A10)

Case 2: degenerate eigenvalue. We take E±1 = E±2 = 0
and write

∏
k

(Ek − E) = E4
∏

k �=±1,±2

(Ek − E). (A11)

The terms in the sum over i, j in Eq. (A7) are at most of order
1/E2 for small E. Hence all terms vanish in the limit E → 0
and we obtain g2 = 0.
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