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Quantum XX model with competing short- and long-range interactions:
Phases and phase transitions in and out of equilibrium
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1Wigner Research Centre for Physics, Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary
2Institute of Theoretical Physics, Szeged University, H-6720 Szeged, Hungary
3Theoretische Physik, Saarland University, D-66123 Saarbrücken, Germany

4Institute of Theoretical Physics, Technische Universität Dresden, D-01062 Dresden, Germany

(Received 7 August 2018; revised manuscript received 11 October 2018; published 15 November 2018)

We consider the quantum XX model in the presence of competing nearest-neighbor and global-range
interactions, which is equivalent to a Bose-Hubbard model with cavity mediated global-range interactions in
the hard-core boson limit. Using fermionic techniques the problem is solved exactly in one dimension in the
thermodynamic limit. The ground state phase diagram consists of two ordered phases: ferromagnetic (F) and
antiferromagnetic (AF), as well as an XY phase having quasi-long-range order. We have also studied quantum
relaxation after sudden quenches. Quenching from the AF phase to the XY region remanent AF order is observed
below a dynamical transition line. In the opposite quench, from the XY region to the AF phase beyond a
static metastability line AF order arises on top of remanent XY quasi-long-range order, which corresponds to
dynamically generated supersolid state in the equivalent Bose-Hubbard model with hard-core bosons.
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I. INTRODUCTION

Recently there is an increased interest to study the phase
diagram and nonequilibrium dynamics of quantum many-
body systems with competing short- and long-range inter-
actions. Experimentally, such systems have been realized
with ultracold atoms in optical lattices inside a high-finesse
optical cavity [1–3]. The strength of the short-range (on-
site) interaction is related to the depth of the optical lat-
tice, while long- (infinite) range interactions are controlled
by a vacuum mode of the cavity. The interplay of short-
and long-range interactions may result in a rich phase di-
agram with exotic phases and interesting nonequilibrium
dynamics.

Classical many-body systems with competing short- and
ferromagnetic global-range interactions have been studied
earlier and in the thermodynamic limit the order parameter
is obtained through a self-consistent treatment, like in mean-
field models [4,5]. Theoretical results for the phase diagrams
of quantum many-body systems with competing short-range
and global-range interactions are rare and up to now confined
to the aforementioned bosonic system [6–11], to the global-
range extension of the spin-boson model [12], as well as to
generalized quantum Ising chains [13].

The nonequilibrium dynamics of closed quantum many-
body systems after sudden quenches has attracted a lot of
attention in the last decade [14]. Here one is interested in
the time evolution of different observables, such as the order
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parameter or some correlation function, after the quench.
Fundamental questions concerning quantum quenches include
(i) the functional form of the relaxation process in early times,
and (ii) the properties of the stationary state of the system
after sufficiently long time. The latter problem is related to the
question of thermalization, which is expected to be different
for integrable and nonintegrable quantum systems. Noninte-
grable systems are expected to evolve into a thermalized state,
in which local observables can be characterized by thermal
expectation values [15–25], but there are some counterex-
amples [26–30]. On the other hand, integrable systems in
the stationary state are generally described by a so-called
generalized Gibbs ensemble, which includes all the conserved
quantities of the system. Recently it has been observed that in
certain models both local and quasilocal conserved quantities
have to be taken into account to construct an appropriate
generalized Gibbs ensemble [31–40].

Sudden quenches have been studied for bosons in optical
lattices experimentally [41] and theoretically [42]. The un-
derlying Hamiltonian, the Bose-Hubbard model with nearest-
neighbor interactions, is known to be nonintegrable, and thus
the dynamics expected to thermalize, but numerical stud-
ies, comprising DMRG in one dimension [43], t-VMC in
higher dimensions [44], or numerical dynamical MFT [45]
indicate nonthermal behavior for strong quenches. Nonequi-
librium dynamics of the bosonic system in the cavity setup
has been studied [46] and metastability effect similar to
those predicted theoretically by us in Ref. [47] have been
observed.

In this paper we study theoretically quantum many-body
systems with competing short- and long- (infinite) range
interactions. The system we consider is the quantum XX
model, which is closely related to the Bose-Hubbard model.
For hard-core bosons, when the lattice sites have only single
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occupation the boson operators can be represented by spin-
1/2 operators. In the actual calculation the quantum XX
model is put on a one-dimensional lattice and we solve its
ground state and quench dynamics exactly by free-fermionic
techniques. A brief account of our results translated into the
bosonic language has been given by us recently [47].

The paper is organized as follows. In Sec. II we present the
model and show how the term with global-range interaction
is transformed to an effective field, the strength of which is
calculated self-consistently in the thermodynamic limit. In
Sec. III we solve the one-dimensional model exactly and in
Sec. IV we calculate the quantum phases and phase transitions
in the ground state. In Sec. V we study nonequilibrium
dynamics of the model after a quench and properties of
dynamical phase transitions are calculated. Our results are
discussed in Sec. VI and detailed derivation of different results
are put in the Appendixes.

II. THE QUANTUM XX MODEL WITH
GLOBAL-RANGE INTERACTIONS

Let us consider the quantum XX model with global-
range interactions in a one-dimensional lattice, defined by the
Hamiltonian

Ĥ = −J

L∑
j=1

(
σx

j σ x
j+1 + σ

y

j σ
y

j+1

)

−h

L∑
j=1

σ z
j − ε

1

L

⎛
⎝∑

j,odd

σ z
j −

∑
j,even

σ z
j

⎞
⎠2

. (1)

Here the σ
x,y,z

j are Pauli matrices at site i, the nearest neighbor
coupling constant, and the strength of the transverse field are
denoted by J and h, respectively. The last term of the right-
hand side (r.h.s.) represents a global-range antiferromagnetic
interaction of strength ε, favoring antiparallel z orientation of
the spins on even and odd lattice sites. It is expressed as the
square of the staggered magnetization operator

x̂ = 1

L

⎛
⎝∑

j,odd

σ z
j −

∑
j,even

σ z
j

⎞
⎠. (2)

We note that the Hamiltonian in Eq. (1) is equivalent to
the Bose-Hubbard model for hard-core bosons, which is
explained in Appendix A. Here the global-range interaction
represents a cavity mediated long-range interaction [48–50]
and therefore has immediate experimental relevance [1–3].
Consequently, our results on the XX model can be translated
to hard-core lattice bosons in one dimension (1D) with cavity
mediated long-range interactions [47].

In the next step we transform the Hamiltonian in Eq. (1) in
an equivalent form, by linearizing the global-range interaction
term. As explained in details in Appendix B this treatment
necessities the use of the saddle-point method, which turns
to be exact in the thermodynamic limit. (For analogous clas-
sical problems see Refs. [4,5].) In this way we obtain the

Hamiltonian

Ĥ ′(x) = −J

L∑
j=1

(
σx

j σ x
j+1 + σ

y

j σ
y

j+1

)− h

L∑
j=1

σ z
j

− 2xε

⎛
⎝∑

j,odd

σ z
j −

∑
j,even

σ z
j

⎞
⎠+ Lεx2, (3)

where x has to be determined self-consistently via

x = 〈x̂〉 = 1

L

〈∑
j,odd

σ z
i −

∑
j,even

σ z
i

〉
H ′(x)

. (4)

〈· · · 〉H ′ is the average in the ground state of the system defined
by H ′ [51]. This condition is equivalent to the requirement
that the ground state energy of Ĥ ′(x) is minimal with respect
of x, which follows from the Hellmann-Feynmann theorem:

dE0(x)

dx
=
〈
dH ′(x)

dx

〉
= −2Lε[〈x̂〉 − x] = 0. (5)

At this point we make two comments about possible gener-
alization of the treatment of the cavity-induced global-range
interaction term. First, the equivalence of the two Hamilto-
nians Ĥ and Ĥ ′(x) with (4) is valid for bipartite lattices in
arbitrary dimensions in the thermodynamic limit, when the
number of lattice sites N → ∞. Second, using the technique
of Appendix B a cavity-induced global-range interaction term
can be linearized in the thermodynamic limit for other models,
too, such as for the extended Bose-Hubbard model (with soft-
or hard-core bosons), as defined in Eq. (A1), and also to
fermionic models as for instance free fermions on bipartite
lattices.

III. FREE-FERMION SOLUTION

The spin operators σ
x,y,z

i are expressed in terms of fermion
creation (annihilation) operators c

†
i (ci) by using the Jordan-

Wigner transformation [52] c
†
i = a+

i exp [πı
∑i−1

j a+
j a−

j ] and

ci = exp [πı
∑i−1

j a+
j a−

j ]a−
i , where a±

j = (σx
j ± ıσ

y

j )/2. The
Hamiltonian in Eq. (3) is transformed in terms of fermion
operators in quadratic form:

H′ = −2J

L−1∑
j=1

(c†j cj+1 + c
†
j+1cj ) + 2Jw(c†Lc1 + c

†
1cL)

−
L∑

j=1

2(h + 2εxeiπj )(c†j cj − 1/2) + Lεx2, (6)

with w = exp(iπNc ) and Nc = ∑L
j=1 c

†
j cj . In the next step

we introduce the Fourier representation:

cj = 1√
L

∑
k

cke
−ıkj , (7)

where the k values are in the range −π < k < π . (For w = 1
these are k = ± (2j−1)π

L
, j = 1, 2, . . . , L/2, while for w = −1

these are k = 0,± 2jπ

L
, π , with j = 1, 2, . . . , L/2 − 1.) In

terms of the Fourier operators the Hamiltonian assumes the
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form

H′ =
∑
k>0

Hk,

Hk = −2(h + 2J cos k)c†kck − 2(h − 2J cos k)c†k−πck−π

+ 4εx(c†kck−π + c
†
k−πck ) + 2h + 2εx2, (8)

which is separated into L/2 independent 2×2 sectors.
The Hk operators are diagonalized by the canonical trans-

formation:

ηk = gk,kck + gk,k−πck−π ,

ηk−π = gk−π,kck + gk−π,k−πck−π , (9)

with

gk,k = gk−π,k−π = [
1 + (√

a2
k + 1 − ak

)2]−1/2
,

gk,k−π = −gk−π,k = −[1 + (√
a2

k + 1 + ak

)2]−1/2
, (10)

and ak = J
εx

cos k. Then

Hk = �k (η†
kηk − 1/2) + �k−π (η†

k−πηk−π − 1/2) + 2εx2,

(11)
with

�k = −2h − 4
√

J 2 cos2 k + ε2x2,

�k−π = −2h + 4
√

J 2 cos2 k + ε2x2. (12)

Note that the energy of modes is symmetric to k = π/2, thus
we can restrict ourselves to the range 0 < k < π/2, however
with Hk → 2Hk . The inverse of Eq. (9) is given by

ck = gk,kηk + gk−π,kηk−π ,

ck−π = gk,k−πηk + gk−π,k−πηk−π . (13)

IV. GROUND STATE PHASE DIAGRAM

The energy of modes of the diagonalized Hamiltonian are
�k < 0 for all k ∈ (0, π/2), but the �k−π are positive, if
cos2 k > ( h

2J
)2 − ( εx

J
)2. In the following we characterize a

state by a wave number km, so that 〈η̂†
kη̂k〉km

= 1 for all k and

〈η̂†
k−π η̂k−π 〉

km
= 0 for k ∈ (0, km) and 1 for k ∈ (km, π/2).

The energy per site is given by

e(km) = 1

L

∑
k∈(0,km )

�k + 1

L

∑
k∈(km, π

2 )
(�k + �k−π ) + εx2

= −h

(
1 − 2km

π

)

− 4

π

∫ km

0
dk
√

J 2 cos2 k + ε2x2 + εx2. (14)

Here in the second term of the r.h.s. of the last equation we
have replaced summation through integration 1

L

∑
k∈(0,km ) →

1
π

∫ km

0 dk, which is valid in the thermodynamic limit. This

term can be expressed as − 4
π

√
J 2 + ε2x2E(km, [ε2x2/J 2 +

1]−1/2), in terms of the elliptic integral of the second kind:
E(km, q ).

The self-consistency criterion is obtained from Eq. (14)
through Eq. (5):

x = 2εx

π

∫ km

0
dk

1√
J 2 cos2 k + ε2x2

= 2εx

π
√

J 2 + ε2x2
F (km, [ε2x2/J 2 + 1]−1/2), (15)

where F (φ, q ) is the elliptic integral of the first kind. In
the ground state e0 = minkm

e(km). We note that using the
representation of the staggered magnetization:

x̂ = 1

L

∑
k>0

(ĉ†kĉk−π + ĉ
†
k−π ĉk ), (16)

the same self-consistency criterion can be obtained through
Eq. (4).

The stability of the self-consistent solution depends on the
sign of the second derivative:

d2e

dx2
= −4ε2

π

∫ km

0
dk

1√
J 2 cos2 k + ε2x2

+ 4ε4x2

π

∫ km

0
dk

1

(J 2 cos2 k + ε2x2)3/2
+ 2ε. (17)

The trivial solution x̃ = 0 represents a (local) minimum, if

J

ε
>

2

π

∫ km

0
dk

1

cos k
= 2

π
ln

[
tan

(
π

4
+ km

2

)]
, (18)

which is satisfied for 0 < km < k̃m, with

k̃m(ε) = 2 arctan

[
exp

(
πJ

2ε

)]
− π

2
. (19)

One can show similarly that for k̃m < km � π/2 the nontrivial
self-consistent solution x̃ > 0 is also a (local) minimum. This
follows from the fact that for x̃ > 0 the first and third terms
of the r.h.s. of Eq. (17) cancel and the remaining second
term is positive. We conclude that at a fixed value of km

there is always one stable self-consistent solution, which
is the trivial one, x̃ = 0, in the first regime, 0 < km < k̃m,
and it is the nontrivial one, x̃ > 0, in the second regime,
k̃m < km � π/2.

For fixed values of the parameters, J , h, and ε, the ground
state has the lowest energy, thus it is selected by the con-
dition ẽ0 = minkm

e. The ground state is characterized by its
filling value, km and the staggered magnetization x̃, which
is calculated self-consistently. In the following we calculate
the minimal values of e(km) in the two regimes separately,
and then comparing those we select ẽ0. To get informa-
tion about the behavior of e(km) we calculate its first two
derivatives:

de

dkm

= 4

π

[
h

2
−
√

J 2 cos2 km + ε2x̃2

]
, (20)

d2e

dk2
m

= 2

π

J 2 sin(2km) − ε2 dx̃2

dkm√
J 2 cos2 km + ε2x̃2

. (21)
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The value of the first derivative at the reference points: km =
0, k̃m, and π/2 are given by

de0

dkm

∣∣∣∣
0

= 4

π

[
h

2
− J

]
,

de0

dkm

∣∣∣∣
k̃m

= 4

π

[
h

2
− J

cosh(πJ/2ε)

]
, (22)

de0

dkm

∣∣∣∣
π/2

= 4

π

[
h

2
− εx̃

]
.

In the first regime with x̃ = 0, e(km) is a concave function,
since d2e

dk2
m

> 0. The minimal value of e(km) is at km = 0, if
de
dkm

|0 > 0, thus h/J > 2. If de
dkm

|0 < 0, but at the same time
de
dkm

|k̃m
> 0, then the minimal value is located in the interior of

the first regime. Finally, if de
dkm

|k̃m
< 0 the minimum of e(km)

in the first regime is at k̃m.
In the second regime with x̃ > 0, e(km) is a convex func-

tion, since d2e
dk2

m
< 0. This can be shown by differentiating the

two sides of Eq. (15) which leads to the relations

ε2 dx̃2

dkm

= 2(J 2 cos2 km + ε2x2)−1/2∫ km

0 dk 1
(J 2 cos2 k+ε2x2 )3/2

>
2∫ km

0 dk 1
(J 2 cos2 k+ε2x2 )

>
2J 2∫ km

0 dk cos−2 k

= J 2 sin(2km)/ sin2 km > J 2 sin(2km). (23)

Putting this into Eq. (21) we obtain the announced relation. In
the second regime the minimum of e(km) can only be at the
boundaries, either at k̃m or at π/2. The km dependence of the
energy is shown in Fig. 1 at different values of ε/J . Varying
the parameter h/J we explore the different phases and phase
transitions.

The absolute minimum of e(km) cannot be at km = k̃m,
since it is an inflexion point, thus the possible ground states
are of three types.

(1) Ferromagnetic (F) ground state with km = 0 and x̃ = 0.
Here there is a finite energy gap, �E > 0, and the spin-spin
correlation function is zero.

(2) Antiferromagnetic (AF) ground state with km = π/2
and 1 > x̃ > 0. Here the energy gap is a finite, �E > 0, and
the spin-spin correlation function decays exponentially. This
can be shown exactly for the end-to-end correlation function
using the expression in Eq. (25).

(3) XY ground state with 0 < km < k̃m and x̃ = 0. This
is a critical ground state, by changing the parameters the
filling parameter km is continuously changing. The energy gap
is vanishing, �E = 0, and the spin-spin correlation function
decays algebraically. The end-to-end correlations in Eq. (25)
decay as G1,L ∼ 1/L.

We note that in our model no ground state with simultane-
ous XY and AFM order—corresponding to supersolid order in
the equivalent hard-core BH model—is realized, which would
have k̃m < km < π/2 and x̃ > 0.

-2

-1

e

(a)

h=0.5
h=1.09
h=1.5
h=2.0
h=2.5

-2.4

-2

-1.6

(b)

e

h=1.5
h=2.0
h=2.5

-2.4

-2

-1.6

0 π/4 π/2    
km

(c)

ee

h=1.5
h=2.2
h=2.5

FIG. 1. The km dependence of the energy at different points of
the phase diagram. The vertical red line shows the position of k̃m.
For k < k̃m (k > k̃m) the staggered magnetization is x = 0 (x > 0).
Upper panel ε/J = 1: h/J = 0.5 AF ground state; h/J = 1.09
coexistence between the XY and AF ground states; h/J = 1.5 XY
ground state; h/J = 2. continuous transition from the XY to the
F ground state; h/J = 2.5 F ground state. Middle panel ε/J =
1.7145738: h/J = 1.5 AF ground state; h/J = 2. tricritical point,
coexistence between the F, XY, and AF ground states; h/J = 2.5
F ground state. Lower panel ε/J = 2: h/J = 1.5 AF ground state;
h/J = 2.2 coexistence between the F and AF ground states; h/J =
2.5 F ground state.

The phase transition between the AF state and the F or the
XY state is of first order, there is a jump in the value of km

at the transition point. On the other hand, transition between
the XY and the F states is continuous. The phase diagram is
shown in Fig. 2. The metastability limit of the XY phase is
given by de0

dkm
|
k̃m

= 0, which corresponds according to Eq. (22)
2J/h = cosh(πJ/2ε).

The AF phase for small ε/J is extremely narrow in h/J

as can be seen in the upper panel of Fig. 2. Its extension
can be estimated from the analytical form of the metastability
limit as h/J ∼ exp(−πJ/2ε). An estimate for the staggered
magnetization follows by requiring de0/dkm = 0, which from
the last equation of (22) gives εx/J ∼ exp(−πJ/2ε). This
means that the jump of the staggered magnetization at the
AF → XY transition is extremely small for small ε/J and
it goes to zero in a special, exponential form.
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FIG. 2. Phase diagram of the quantum XX model with cavity-
induced global-range interactions. In the upper panel J = 1, in
the lower panel ε = 1. The color codes indicate the value of the
staggered magnetization x and that of the longitudinal magnetiz-
ation mz.

A. Spin-spin correlation function

We have calculated the spin-spin correlation function, de-
fined as

G(j1, j2) = 〈
σx

j1
σx

j2

〉
, (24)

which in the free-fermionic description is given by a determi-
nant of order min(j2 − j1, L − j2 + j1). The simplest form
is given for end-to-end correlations, i.e., with j1 = 1 and
j2 = L, and for free chains. In this case with L = even sites
the calculation is performed in Appendix C, which leads to
the expression

|G(1, L)| = 4

L + 1

km
π

L∑
n=1

⎡
⎣1 +

(
εx

J cos nπ
L+1

)2
⎤
⎦−1/2

× sin2

(
nπ

L + 1

)
(−1)n. (25)

Evidently in the ferromagnetic phase with km = 0 we have
G(1, L) = 0, which follows also from symmetry. In the XY
phase with x̃ = 0 and 0 < km < π/2 the sum in Eq. (25) with
terms of alternating signs will result in an uncompensated
term of O(L−1), thus the end-to-end correlations decay al-
gebraically as

G(1, L) ∼ 1

L
, XY phase. (26)

Thus in the XY phase there is quasi-long-range spin order.
Finally in the AF phase with x̃ > 0 and km = π/2 the

expression in Eq. (25) is similar to the form of sine square

deformation [53] and this leads to an exponential correction
in L, thus the end-to-end correlations decay exponentially:

G(1, L) ∼ 1

L
exp

(
−L

ξ

)
, AF phase. (27)

We have demonstrated this by evaluating Eq. (25) numer-
ically. The correlation length is a monotonously increasing
function of x̃ ≡ εx

J
. In the limit x̃ � 1 it goes like

ξ ≈ 1

x̃
, x̃ � 1. (28)

Here we can use the estimate of x̃ at the end of the previ-
ous section, which leads to ξ ∼ exp(πJ/2ε), which grows
exponentially, in somewhat similar way as at the Kosterlitz-
Thouless transition.

The correlation length can be calculated analytically in the
opposite limit x̃  1, when in the r.h.s. of Eq. (25) we perform
a Taylor expansion:

|G(1, L)| = 4

L + 1

L/2∑
n=1

[ ∞∑
k=0

(2k − 1)!!

(2k)!!

(
cos nπ

L+1

x̃

)2k

(−1)k
]

× cos nπ
L+1

x̃
sin2

(
nπ

L + 1

)
(−1)n. (29)

Here using the fact that

L/2∑
n=1

(
cos

nπ

L + 1

)2k−1

sin2

(
nπ

L + 1

)
(−1)n

=
{

0, if k < L/2,

�= 0, if k � L/2,
(30)

we obtain

|G(1, L)| ∼ 4

L + 1
x̃−(L−1), x̃  1, (31)

which defines a correlation length

ξ ≈ 1

ln x̃
, x̃  1. (32)

B. Phase diagram of the nonlinearized Hamiltonian

We have checked the role of finite-size effects by solving
the problem in the original form, given by the Hamiltonian
in Eq. (1). This has been done through diagonalization of
the Hamiltonian numerically working in the spin basis. In
particular we have calculated the z component of the mag-
netization defined by mz = 〈∑i σ

z
i 〉/L, which is shown in

Fig. 3 for finite chains with L = 10, 12, 14, and 16. Since∑
i σ

z
i is a conserved quantity, it could have only integer

values in the ground state of the system, therefore in Fig. 3
there are L/2 possible discrete values of 0 � mz � 1. Also
in finite systems the F, XY, and AF phases are identified with
mz = 1, 0.5 < mz < 1, and mz = 0.5, respectively. The finite-
size phase diagrams and the values of the mz are qualitatively
similar for finite values of L, as well as in the thermodynamic
limit, see the lower panel of Fig. 2. Somewhat larger finite-size
corrections are present for larger values of J/ε close to the
phase boundary between the XY and the AF phases.
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FIG. 3. Phase diagrams calculated in the Ising basis with the
Hamiltonian in Eq. (1). From top to bottom L = 10, 12, 14, and 16.

V. NONEQUILIBRIUM DYNAMICS AFTER A QUENCH

A. Preliminaries

Let us consider our model defined in Eq. (1) in which
the parameters are suddenly changed at time t = 0: from
J0, h0, ε0 to J, h, ε. The actual state of the system at t = 0 is
|�0〉, the ground state of the initial Hamiltonian H(J0, h0, ε0)
but its time evolution is governed by the after-quench Hamil-
tonian H(J, h, ε) so that the state of the system at time t > 0
is given by

|�(t )〉 = exp[−iH(J, h, ε)t]|�0〉. (33)

In our calculation we have used an equivalent Hamiltonian
in Eq. (3) in which the global-range interaction term is
linearized in the thermodynamic limit [54]. This linearized
Hamiltonian depends formally on the value of the staggered
magnetization, which has to be calculated self-consistently
at t = 0. For infinitesimal times �t the time evolution op-
erator exp[−i�tH(J, h, ε)] can formally be treated in the
thermodynamic limit L → ∞ in the same way as the par-
tition function, as detailed at the end of Appendix B. Then
the saddle point equation in Eq. (B12) holds at each time
step, thus the effective linearized Hamiltonian governing the
dynamics assumes the same form as H′ in Eq. (3), however

the parameter x is replaced by a time-dependent function x(t ),
which satisfies the self-consistency criterion:

x(t ) = 〈�(t )|x̂|�(t )〉, (34)

with

|�(t )〉 = exp

[
−i

∫ t

0
dt ′H′[T , μ, ε, x(t ′)]

]
|�0〉. (35)

One can easily show that the total energy is conserved under
the process. Indeed using the Hellmann-Feynmann theorem
one obtains

dE0(t )

dt
=
〈
�(t )

∣∣∣∣dH′(t )

dt

∣∣∣∣�(t )

〉

= −2Lε[〈�(t )|x̂|�(t )〉 − x(t )]
dx(t )

dt
= 0, (36)

where in the last step the self-consistency equation in Eq. (34)
is used.

Calculation of time-dependent quantities in the fermionic
basis is shown in Appendix D, here we shortly recapitulate the
main steps of the derivation. During the quench at t = 0 a new
set of free-fermion operators are created, γk and γk−π , which
are related to the original ones by a rotation, see Eq. (D1). The
time-dependent fermion operators ck (t ) and ck−π (t ) are ex-
pressed with γk and γk−π through time-dependent Bogoliubov
parameters in Eq. (D2). These generally complex parameters
satisfy a set of differential equations in Eq. (D5), which
contain x(t ) in Eq. (D6) and has to be integrated with the
known initial conditions at t = 0.

B. Numerical results

The state of a finite chain of L sites after time t from
the quench is described by a set of complex Bogoliubov
parameters uk,k (t ), uk,k−π (t ), uk−π,k (t ), uk−π,k−π (t ), k = 1,

2, . . . , L/4 [see Eq. (D2)] and the staggered magnetization
x(t ) in Eq. (D6). Having their initial values at t = 0 in
Eqs. (D3) and (15) their values at later times are obtained
through numerically integrating the set of linear differential
equations in Eq. (D5). The numerical integration has been per-
formed by the fourth-order Runge-Kutta method, in which the
step size of the integration was chosen small enough (usually
�t ∼ 10−5–10−6) to obtain stable results. We have checked
by comparing results of nonequilibrium relaxation with sizes
L and 2L that finite-size effects are negligible until time
t < t∗ ∼ L. In the vicinity of nonequilibrium critical points
where the timescale is divergent [see Eqs. (40) and (42)]
we went up to L = 8192.

We note that the term with the transverse field Htr =
h
∑

j σ z
j commutes with the Hamiltonian [H ′,Htr] = 0,

therefore the wave function of a given state of H ′ does not
depend on h (but its energy naturally does). Consequently
a quench from h0 to h �= h0 with fixed ε0/J0 = ε/J does
not modify the stationary properties of the system. In the
following we concentrate on those quenches in which both
h and J are kept fixed and only the parameter of the global-
range interaction term changes from ε0 to ε.
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FIG. 4. Inset: Time dependence of the staggered magnetization
after a quench protocol with ε0/J0 = 1 to ε/J = (ε/J )c(1 + δ) with
(ε/J )c = 1/2 and δ = 0.25, 0.125, 0.0625, 0.03125, and 0, from up
to down. Main panel: Stationary value of the staggered magnetization
after a quench from the AF phase with ε0/J0 = 1 to ε/J < ε0/J0.
There is a the dynamical phase transition at (ε/J )c = 1/2, at which
point xst � 1.06δ.

C. Quench from the AF phase

In this subsection the initial state we consider belongs
to the ordered AF phase, thus km = π/2 and the staggered
magnetization at t = 0 is given by x(0) > 0. First we consider
the case when ε0 < ∞, thus the initial state is not fully
antiferromagnetic, 1 > x(0) > 0. As an example we choose
ε0/J0 = 1, fix h0/J0 = h/J = 1, and vary ε/J for the final
state. The time dependence of the staggered magnetization
for different values of the reduced control parameter δ =
(ε/J )/(ε/J )c − 1 with (ε/J )c = 1/2 are shown in the inset
of Fig. 4.

If the strength of the global-range interaction term is re-
duced, ε/J < ε0/J0, the staggered magnetization shows a fast
decay, and after this initial period, characterized by the time
and value of the absolute minima, tmin and xmin, respectively,
x(t ) has an oscillatory behavior and after sufficiently long
time it attains a stationary value xst. As a general trend xst

is monotonously decreasing with ε/J , and for too strong
quenches, ε/J � (ε/J )c, thus δ � 0, xst vanishes, thus the
system exhibits a nonequilibrium dynamical phase transition.
The variation of xst with ε/J is shown in Fig. 4: it vanishes
linearly at the phase transition point:

xst ∼ δ. (37)

We have observed similar behavior of x(t ) for different initial
AF states, the nonequilibrium dynamical phase transition is
found numerically to satisfy the relation

(ε/J )c = ε0/J0

1 + ε0/J0
. (38)

We have calculated the nonequilibrium spin-spin correlation
function Gt (j + r, j ) = 〈σx

j+rσ
x
j 〉t after the quench at time

t . In the AF phase using periodic chains the equilibrium
spin-spin correlation function G0(j + r, j ) has an exponential
r dependence, similarly to the end-to-end correlation function
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FIG. 5. Nonequilibrium spin-spin correlation functions after a
quench protocol with ε0/J0 = 1 to ε/J = 0.125, 0.25, 0.375, and
0.5, at time t = 20, compared with the equilibrium value at t = 0.
The decays are exponential and the correlation length increases with
ε/J . Inset: The same for quenches to the dynamically generated AF
phase with ε/J = 0.625, 0.75, and 0.875. Notice that Gt (j + r, j )
changes sign and for odd or even distance between the spins there is
an alternation, which is a sign of the dynamical AF order.

in Sec. IV A. This is illustrated in Fig. 5. If the quench
is performed to the regime with no dynamically generated
AF order, i.e., with ε/J � (ε/J )c, then for sufficiently long
time Gt (j + r, j ) approaches a stationary behavior with an
exponential decay, see Fig. 5. The correlation length increases
with ε/J .

The behavior of Gt (j + r, j ) changes, if the quench is
performed to the region of dynamically generated AF order,
i.e., for ε/J > (ε/J )c. In this case, as illustrated in the inset
of Fig. 5 Gt (j + r, j ) changes sign and has an oscillatory r

dependence.
In the following we keep ε0/J0 = 1 and concentrate on

the behavior of x(t ) in the vicinity of the nonequilibrium
dynamical phase transition. The numerical results for x(t ) vs
t in log-log scale are collected in Fig. 6.

At the critical point the staggered magnetization for large
time decays algebraically in an oscillatory fashion:

x(t ) ∼ t−σ sin(ω0t ), δ = 0. (39)

Our numerical results indicate σ ≈ 3/2 and ω0 ≈ 8J , see
Fig. 6.

In the AF ordered regime with δ > 0 the x(t ) curves start
to deviate from the critical one and have a minimum at a
characteristic time tmin(δ), having a value xmin. Close to the
transition point these scale as

tmin(δ) ∼ δ−1, xmin ∼ t−σ
min ∼ δσ , (40)

see Fig. 7.
After passing the minimum the dynamical staggered mag-

netization grows to a stationary value and starts to oscillate in
the form

x(t ) ≈ xst(δ) + �(δ)t−1/2 sin[ω(δ)t], t  tmin, (41)
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ter a quench protocol: ε0/J0 = 1 and ε/J = (ε/J )c(1 + δ), with
(ε/J )c = 1/2 and δ = 0, 0.001, 0.002, 0.004, 0.008, 0.016, and
0.0032 from down to up in log-log scale. The straight line with
slope −3/2 indicates the asymptotic behavior at the critical point, see
Eq. (39). Inset: Scaling plot of the staggered magnetization curves in
the main panel using the relations in Eqs. (40) and (42).

in which the amplitude of the oscillations goes to zero as t−1/2,
which is illustrated in the inset of Fig. 7.

The timescale in the stationary region τ (δ) = 1/ω(δ) is in
the same order of magnitude as tmin, thus there is just one
timescale in the problem, which is divergent at the dynamical
phase transition point:

τ (δ) = 1/ω(δ) ∼ δ−1, ε0 < ∞. (42)
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FIG. 7. Position tmin (upper set of points) and value xmin (lower
set of points) of the minimum of the dynamical staggered magnetiza-
tion as a function of δ in log-log scale. The straight lines with slopes
−1 and 1.5 indicate the respective expected asymptotic behaviors
in Eq. (40). Inset: Amplitude of the oscillations in the stationary
region, measured as the difference between two consecutive extremal
(maxima and minima) values, as a function of time in log-log scale
for δ = 0.032 (upper set of points) and δ = 0.016 (lower set of
points). The straight lines with slope 1/2 represent the conjectured
behavior in Eq. (41).

Since the prefactor �(δ) has only a weak δ dependence close
to the critical point the curves in Fig. 6 could be scaled
together, which is shown in the inset.

We note that the staggered magnetization after passing the
absolute minima has a strong revival, since the ratio of its val-
ues at the final (stationary) period and the initial (minimum)
period is given by xst/xmin ∼ δ−1/2, which is divergent as the
transition point is approached.

We have checked that the values of the scaling exponents
are universal for ε0 < ∞. If, however, the starting state is fully
antiferromagnetic, i.e., ε0 = ∞ and thus x(0) = 1, then the
appropriate scaling combinations in the stationary regime are
the following:

xst(δ) ∼ δ1/2, ω(δ) ∼ δ1/2, ε0 = ∞, (43)

which can be illustrated by an appropriate scaling plot of the
x(t ) curves (not shown here). This difference is due to the fact
that for ε0 = ∞ the Bogoliubov parameters are symmetric:
gk,k (t ) = gk−π,k (t ) and gk,k−π (t ) = gk−π,k−π (t ), which is not
the case for ε0 < ∞.

D. Quench from the XY phase

In this subsection the initial state belongs to the XY phase
thus we have 0 < km < k̃m and x(0) = 0. If x(0) is exactly
0, then according to Eqs. (D5) the Bogoliubov parameters
decouple from each other and x(t ) stays zero for t > 0. In
the following we test the stability of this solution by adding a
small perturbation �x to the staggered magnetization. Having
fixed h0/J0 = h = J = 1 and ε0/J0 = 0.5 we have quenched
the system to various values of ε/J . For smaller values of
ε/J < (ε/J )c(h) � 1.1946 the resulting staggered magneti-
zation oscillates around the mean value of x(t ) = 0 and its
amplitude stays in the order of �x. If, however, we quench
the system to ε/J > (ε/J )c(h), then x(t ) grows within a
time tmax to a maximum value of xmax = O(1) and then
oscillates between xmax and xmin with a period tper ∼ tmax. This
is illustrated in the left inset of Fig. 8. We note that a similar
type of macroscopic revival of an order parameter has been
observed also in Ref. [55].

This process represents a dynamical phase transition sepa-
rating a region in which the solution x(t ) = 0 is stable from a
region, in which the time-average value of the dynamically
generated staggered magnetization is finite. The dynamical
phase transition coincides with the metastability line in the AF
phase, thus dynamically generated staggered magnetization
takes place only in such regions, in which no metastable
XY-type solution exist.

Denoting the reduced control parameter by δ =
(ε/J )/(ε/J )c − 1 the maximum value of the dynamically
generated staggered magnetization vanishes as a power of
δ, but at the same time the timescale tmax is divergent. Our
numerical results in Fig. 9 are consistent with the asymptotic
relations

xmax ∼ δ1/2, tmax ∼ δ−1/2, δ � 1. (44)

Close to the dynamical phase transition point the dynamical
staggered magnetization follows the scaling form:

x(t, δ) = δ1/2x̃(tδ1/2), δ � 1, (45)
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FIG. 8. Left inset: Time dependence of the staggered magneti-
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parameter δ = 0.009, 0.004, 0.001, 0.0005, and 0.00025, from up to
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which is illustrated in the right inset of Fig. 8. Consequently,
the time-average value of the staggered magnetization for
small δ behaves as

x(δ) = 1

tmax

∫ tmax

0
x(t, δ)dt

= δ1/2 1

t ′max

∫ t ′max

0
x̃(t ′)dt ′ ∼ δ1/2, (46)

with t ′ = tδ1/2.
For quenches deeper into the AF phase xmax(δ) goes over a

maximum and then decays for large δ as xmax ∼ δ1/2, but we
still have tmax ∼ δ−1/2.

We have also checked the effect of the strength of the per-
turbation �x on the relaxation process. As shown in Fig. 10
with decreasing �x the x(t ) curves are simply shifted in time,
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FIG. 9. δ dependence of the (first) maximum xmax (right scale)
and the timescale tmax (left scale) in Fig. 8 in log-log scale. The
straight lines with slopes 0.5 and −0.5, respectively, represent the
expected asymptotic relations in Eq. (45).
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FIG. 10. Quench from the XY phase with h0 = h = 1, J0 = J =
1, ε0 = 0.5, and δ = 0.001 for different values of the perturbation
�x = 10−6, 10−7, . . . , 10−11, from left to right.

thus xmax stays the same but the timescales are shifted by an
amount of

tshift ∼ log �x. (47)

Consequently, any nonzero perturbation causes a measurable
increase of the dynamical staggered magnetization if the
quench is performed to ε/J > (ε/J )c(h).

For periodic chains we have measured the nonequilibrium
spin-spin correlation function Gt (j + r, j ) after a quench
protocol from ε0/J0 = 0.5 to different values of ε/J . The
equilibrium spin-spin correlations in the XY phase are found
to show an algebraic decay, similarly to the end-to end corre-
lations in Sec. IV A, and the value of the decay exponent is
consistent with the exact asymptotic relation G0(j + r, j ) ∼
r−1/2, see Fig. 11. If the quench is performed below the
dynamical phase transition point ε/J � (ε/J )c where x(t ) =
0 the nonequilibrium spin-spin correlation function is iden-
tical with G0(j + r, j ). If, however, after the quench there
is a dynamically generated AF order, i.e., ε/J > (ε/J )c and
x(t ) > 0, then the shape of Gt (j + r, j ) is different from
G0(j + r, j ). The algebraic decay is preserved, but for x(t ) >

0 the prefactor is different for even and odd distances between
the spins. This is shown in Fig. 11. We have also calculated
the ratio Gt (j + r, j )/G0(j + r, j ) at different times after the
quench, which is shown in the inset of Fig. 11. This ratio is
different for even and odd distances between the spins but
practically independent of the value of r of the given parity.
The larger the order-parameter x(t ), the larger the difference
between the ratios.

We can thus conclude that after a quench from the XY
phase to the AF phase above the metastability line such a state
is created, in which AF order and XY quasi-long-range order
coexist. The analogous state in the Bose-Hubbard model is the
supersolid phase.

VI. DISCUSSION

In this paper we have considered the quantum XX model
in the presence of a transverse field and with competing
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ratios of different parity is larger for larger values of x(t ).

short- and long-range interactions. This type of system has
been realized experimentally by ultracold atoms in optical
lattices and a global-range interaction term is mediated by the
presence of a high-finesse optical cavity [1–3]. Here we have
considered the experimental setup when the lattice constant
of the optical lattice is half the wavelength of the cavity
mode and the global-range interaction term is expressed as the
square of the staggered magnetization. In the thermodynamic
limit the global-range interaction term can be linearized, so
that the expectational value of the staggered magnetization
is obtained through a self-consistent treatment, like in mean-
field models.

The one-dimensional problem is transformed to a
fermionic model which has been solved exactly by standard
techniques. The ground state phase diagram of the model
consists of three phases. The XY phase, in which the spin-
spin correlations decay algebraically, persists for moderately
strong transverse fields and global-range interactions. For
strong transverse fields the system is ferromagnetic, while
for strong global-range interactions the system is antiferro-
magnetic with a nonvanishing staggered magnetization. In
equilibrium there is no such ground state, in which XY and
antiferromagnetic order are present at the same time, which
corresponds to the supersolid phase in the equivalent hard-
core BH model.

We have also considered the nonequilibrium, quench dy-
namic of the system, which is also accessible experimentally.
We have shown that the linearization of the global-range in-
teraction term can be performed in this case too, such that the
staggered magnetization has to be calculated self-consistently
at each time step. In the quench process the initial and the final
states are characterized according to the equilibrium phase
diagrams. In a quench from an AF state to an XY state the
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FIG. 12. Phase diagram of the one-dimensional Bose-Hubbard
model with cavity mediated global-range interaction in the hard-core
limit obtained by using the equivalence with the XX model analyzed
in this work. ρ is particle density and x is the occupancy imbalance.
MI = Mott insulator, SF = superfluid, and DW = density wave.

dynamical staggered magnetization is shown to approach a
stationary value, which is finite above a dynamical phase tran-
sition point. In the vicinity of the transition point the order-
parameter vanishes continuously and at the same time the
characteristic timescale is divergent. The critical exponents at
the nonequilibrium transition are universal, i.e., independent
of the initial state, except when the initial state is fully
antiferromagnetic. In the quench in the opposite direction, i.e.,
from an initial XY state to an AF final state we have studied
the stability of the time-dependent staggered magnetization
by adding a small perturbation to the trivial solution x(t ) = 0.
In this process also a dynamical phase transition is observed,
the transition point of which coincides with the metastability
line of the XY state. This point separates the regime in which
the solution x(t ) = 0 is stable from that in which the time
average of the staggered magnetization is finite. In the latter
regime dynamically generated AF order exists on top of
the XY quasi-long-range order, which is analogous to the
supersolid state of the BH model.

The method of solution presented in this paper is applicable
for a set of one-dimensional spin, hard-core boson, or fermion
models with competing short- and long-range interactions. We
expect that also these systems exhibit a rich equilibrium phase
diagram and interesting nonequilibrium quench dynamics.

Our model is equivalent to a one-dimensional extended BH
model of hard-core bosons with equilibrium phases: Mott in-
sulating (MI), superfluid (SF), and density wave (DW), which
correspond to the F, XY, and AF phases, respectively. Utiliz-
ing this equivalence we analyzed in [47] the one-dimensional
Bose-Hubbard model with cavity mediated global-range inter-
action in the hard-core limit. The corresponding μ-T phase
diagram is shown in Fig. 12, which is simply the phase
diagram displayed in Fig. 2 translated to the Bose-Hubbard
nomenclature and extended to negative chemical potentials
(longitudinal fields in the magnetic context).

It should be noted that the superfluid (SF) phase is ac-
tually, in 1D, one with quasi-long-range order signaled by
the algebraic decay of the SF correlation function G̃(r ) =
〈b†i+rbi〉. This is related to the spin-spin correlation function
in the XX model, see Eq. (24), via the relations displayed
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in Eq. (A3) and the xy isotropy of the Hamiltonian (1). The
structure of the phase diagram shares some features with the
μ-T phase diagrams of soft-core Bose-Hubbard models with
cavity mediated global-range interactions [7,11]: the ρ = 0
and ρ = 1 MI regions are reminiscent of the corresponding
Mott lobes embedded in the SF region in the soft-core system,
sandwiching between them a DW lobe with ρ = 1/2. An
important difference to the soft-core system is the absence of
a super-solid region (with simultaneous SF and DW order)
at the tip of the DW lobe, which instead extends in a thin
protrusion to arbitrarily large hopping strengths at μ = 0.

For quenches from the SF phase into the DW phase
across the metastability line we find that the SF correlation
functions still decay algebraically indicating the simultaneous
presence of quasi-long-range SF order and (time-averaged)
DW order, see Sec. V D. Consequently, the system attains
dynamically generated supersolid (SS) properties after strong
enough quenches from the DW into the SF phase, which is
not the ground state, but a high energy state. Furthermore, it
is interesting to note that for times with x(t ) > 0 there is an
even-odd modulation of the SF correlation functions which
increases with x(t ) and which disappears when the imbalance
goes back to 0 (see Fig. 11). The density modulations reflect
even-odd modulations of the SF correlation functions.

Thus we predict that (time-averaged) SS properties emerge
during the time evolution of a SF initial state in a Bose-
Hubbard system under the influence of sufficiently strong
cavity mediated long-range interactions. Superfluidity is not
lost and the periodically modulated site occupation imbalance
builds up beyond a critical interaction strength. The dynam-
ical emergence of diagonal long-range DW order on top of
off-diagonal (quasi)-long-range SF order is a feature of the
nonequilibrium dynamics of a closed quantum system that
has to our knowledge never been reported before. Since its
origin is the presence of the global-range interactions we
expect it to be robust and to be observable also in two-
and three-dimensional Bose-Hubbard systems with cavity-
induced interactions, for hard-core as well as soft-core bosons.
It would be interesting to check these predictions with, for
instance, tVMC mehods [44].

It should also be emphasized that in 1D the ground state
phase diagram does not display an SS region (Fig. 1). Here
we have shown that high energy states (not eigenstates of the
Hamiltonian) can dynamically generate SS order with peri-
odically modulated DW and SF correlations in the stationary
state. Since superfluidity is destroyed at finite temperature
in 1D the stationary high-energy state with SS properties
that we find cannot be described by a finite temperature
equilibrium ensemble. Consequently, the system we analyzed
does not thermalize for some quenches, which is particularly
remarkable considering the fact that for finite size (finite L)
the system is nonintegrable (it is integrable only for L → ∞).

Our predictions of remanent, metastable DW order af-
ter DW → SF quenches and the dynamical generation of
periodically modulated DW order superposed to metastable
SF order after SF → DW quenches can be tested experi-
mentally in a cavity setup like the one used in [3], even
though this setup is two dimensional and involves soft-
core bosons. Preliminary experimental indications for such
metastability phenomena occurring after quenches of the

cavity-induced interaction strength have indeed been reported
recently [46].

For an even quantitative experimental reproduction of our
exact results one would have to modify the setup used in
[3] to establish an ensemble of 1D optical lattices in the
deep lattice limit as in [56] and to record the time evolution
as, e.g., in [57]. Other experimental constraints are: (1) the
presence of a harmonic trap generating a wedding-cake-like
organization of SF, MI, and DW regions, which is straight-
forward to include into our model calculations by a spatially
varying chemical potential; (2) a finite experimental system
size, which will not play a role for times smaller than a
scale set by the inverse maximum group velocity [58]; (3)
different experimental quench protocols, which can also be
straightforwardly into our analysis; and (4) the cavity photon
loss of that might influence the dynamics on long timescales
by causing decoherence—which, however, can be discarded
on short timescales depending on the loss rate [49,50,55].
Independent of theses details our exact results will serve as
a firm reference for the interpretation and understanding of
quench experiments with lattice bosons with cavity mediated
long-range interactions.
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APPENDIX A: EXTENDED BOSE-HUBBARD MODEL

In the experimental setup Rb atoms are placed on a optical
lattice which is prepared inside an ultrahigh-finesse optical
cavity and the lattice constant of the optical lattice is half
the wavelength of the cavity mode [3]. Theoretically this
many-body system of bosons is described by an extended
Bose-Hubbard (BH) model [49,50] the Hamiltonian of which
is given for a bipartite lattice:

ĤBH = −T
∑
〈r,r′〉

(b̂†rb̂r′ + H.c.) + U

2

∑
r

n̂r(n̂r − 1)

−μ
∑

r

n̂r − ε̃
1

N

(∑
r∈e

n̂r −
∑
r∈o

n̂r

)2

, (A1)

where b̂
†
r (b̂r) are the Bose creation (annihilation) operators,

n̂r = b̂
†
rb̂r are the number operators, N is the lattice size, T

is the tunneling constant, U is the on-site repulsion, μ is the
chemical potential, and ε̃ is the strength of the infinite-range
interactions induced by the cavity. The cavity-induced long-
range interactions are represented as the square of the density
wave order parameter x̂

x̂ = 1

N

(∑
r∈e

n̂r −
∑
r∈o

n̂r

)
, (A2)
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where e and o stand for even and odd lattice sizes, respec-
tively.

In the large-U limit, when multiple occupancy of lattice
sites is excluded b̂

†
r and b̂r are replaced by hard-core Bose

operators, which can be represented by the Pauli matrices
σ

x,y,z
r in the following way:

b̂†r −→ 1
2

(
σx

r + iσ y
r

)
,

b̂r −→ 1
2

(
σx

r − iσ y
r

)
, (A3)

n̂r −→ 1
2

(
1 + σ z

r

)
.

In this representation the BH Hamiltonian in Eq. (A1) is
replaced by the Hamiltonian of the quantum XX model:

ĤXX = −J
∑
〈r,r′〉

(
σx

r σx
r′ + σy

r σ
y

r′
)

−h
∑

r

σ z
r − ε

1

N

(∑
r∈e

σ z
r −

∑
r∈o

σ z
r

)2

(A4)

having the correspondences T → 2J , μ → 2h, and ε̃ → 4ε.

APPENDIX B: LINEARIZATION OF THE GLOBAL-RANGE
INTERACTION TERM

Consider the Hamiltonian of the XX chain in Eq. (1) and
for convenience define the kinetic energy part as

T̂ = −J

L∑
i=1

(
σx

i σ x
i+1 + σ

y

i σ
y

i+1

)
(B1)

and the potential energy part as

V̂ = −h

L∑
i=1

σ z
i − εL

(
1

L

∑
i,odd

σ z
i − 1

L

∑
i,even

σ z
i

)2

. (B2)

Using the Suzuki-Trotter decomposition the canonical parti-
tion function can be written as

Z = Tr e−βH = lim
M→∞

Tr(e−�τ T̂ e−�τ V̂ )M, (B3)

where �τ = β/M and ground state properties are obtained in
the limit β → ∞.

We use σ z
i eigenstates, denoted as |S1, . . . , SL〉 with Si =

±1 and insert between any two factors a representation of
unity

∑
Sk |Sk〉〈Sk| to obtain the Feynman path-integral ex-

pression for the partition function

Z = lim
M→∞

∑
S1,...,SM

M∏
k=1

〈Sk|e−�τ T̂ |Sk+1〉

× exp

(
−�τ

M∑
k=1

V (Sk )

)
, (B4)

where Sk = (Sk
1 , . . . , Sk

L) for k = 1, . . . ,M and we have used
that V̂ is diagonal in the σ z basis.

The quadratic part in V (Sk ) can now be decoupled using
the identity (Hubbard-Stratonovic transformation)

eλA2 =
∫

dx

N e−λx2+2λxA , (B5)

where N is a normalization factor. One obtains

exp

(
−�τ

M∑
k=1

V (Sk )

)

=
∫ M∏

k=1

dxk

N exp

(
�τ

M∑
k=1

{
h

L∑
i=1

Sk
i

+ εL

[
−x2

k + 2xk

(
1

L

∑
i,odd

Sk
i − 1

L

∑
i,even

Sk
i

)]})
. (B6)

The partition function then reads

Z = lim
M→∞

∑
S1,...,SM

M∏
k=1

Tk,k+1

∫ M∏
k=1

dxk

N

× exp

(
−L

{
�τ

M∑
k=1

[
εx2

k − 2εxkD(Sk ) − hm(Sk )
]})

,

(B7)

with

Tk,k+1 = 〈Sk|e−�τ T̂ |Sk+1〉,

D(Sk ) = 1

L

∑
i,odd

Sk
i − 1

L

∑
i,even

Sk
i , (B8)

m(Sk ) = 1

L

L∑
i=1

Sk
i .

By performing the sum over spins first we can rewrite the
partition function as

Z = lim
M→∞

∫ M∏
k=1

dxk

N

× exp

(
−L

{
�τ

M∑
k=1

[
εx2

k + fL(x, ε, h, J )
]})

, (B9)

with fL(x, ε, h, J ) the free energy of a 1+1-dimensional
world line model (derived from an XX Hamiltonian) with
Gaussian fluctuating fields coupled to the staggered magne-
tization D(Sk ) in each of the M (imaginary) time slices:

fL(x, ε, h, J )

= − 1

L
ln

⎛
⎝ ∑

S1,...,SM

M∏
k=1

Tk,k+1e
�τ[2εxkD(Sk )+hm(Sk )]

⎞
⎠.

(B10)

The free energy of the original model (1) in the thermody-
namic limit is f (ε, h, J ) = limL→∞ −β−1 ln Z. Applying the
saddle-point method to (B9) in the limit L → ∞ yields

f (ε, h, J ) = minx

{
�τ

M∑
k=1

[
εx2

k + fL(x, ε, h, J )
]}

︸ ︷︷ ︸
=:g(x )

.

(B11)
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The saddle point equation ∂g/∂xk = 0 then reads

xk = 〈D(Sk )〉, (B12)

where 〈· · · 〉 denotes the x-dependent thermal average.
Since the Hamiltonian is time independent the observables

have to be (imaginary) time-translational invariant, too. Thus
xk is independent of the Trotter slice index k, i.e., xk = x ∀k =
1, . . . , M with x = 〈D(S1)〉.

Consequently in the thermodynamic limit L → ∞ the
partition function is given by

Z = Tr exp[−βH ′(x)], (B13)

with

H ′(x) = Lεx2 − 2εLxx̂ − hm̂ + T̂ , (B14)

where x̂ and m̂ are the staggered and longitudinal magnetiza-
tion, respectively, and x has to be determined self-consistently
via

x = 〈x̂〉 = Tr x̂ exp[−βH ′(x)]/Z. (B15)

At zero temperature β → ∞ the expectation value 〈· · · 〉
becomes the expectation value in the ground state of H ′(x).

Analogously one shows that for infinitesimal times �t

the matrix elements of the time evolution operator U (�t ) =
exp(−i�t H ) is given by

〈S|U (�t )|S ′〉 = 〈S| exp[−i�t H ′(x)]|S ′〉, (B16)

with H ′(x) as in (B14). Note that for infinitesimal time steps
the corresponding integral in (B9) is over only one auxiliary
variable x and fL(x, ε, h, J ) in (B10) is now

fL(x, ε, h, J )

= − 1

L
ln(〈S| exp(−i�t T )|S ′〉e−i�t[2εxD(S )+hm(S )] ). (B17)

Therefore the saddle point equation for x now simply de-
mands that x = 〈S|x̂|S ′〉δS,S ′ , implying that it is given by the
staggered magnetization of the state S. For the time evolution
of a particular state |ψ〉 this implies that in each infinitesimal
time step the operator H ′(x) has to be applied to |ψ (t )〉 with
an x equal to the staggered magnetization of the state at time
t . Thus x becomes, as expected, time dependent and has to be
calculated as described in Appendix D.

APPENDIX C: END-TO-END CORRELATIONS
IN FREE CHAINS

Here we calculate end-to-end correlations in free chains,
the Hamiltonian of which is given by Eq. (3), however in the
first term of the r.h.s. the sum runs up to L − 1. Consequently
in the fermionic expression in Eq. (6) the second term in the
r.h.s. is missing. In the following we fix L = even. To diago-
nalize this Hamiltonian we use the canonical transformation

cj =
∑

k

∑
±

φ
(±)
k (j )η(±)

k , (C1)

so that φ
(±)
k (j ) are real and these are represented by two

standing waves at odd and even sites:

φ
(±)
k (2l − 1) = a

(±)
1 (k) sin[k(L + 2 − 2l)],

φ
(±)
k (2l) = a

(±)
2 (k) sin[k(L + 1 − 2l)]. (C2)

The wave numbers are given by k = n
L+1π , for n =

1, 2, . . . , L/2, and for each k there are two free-fermionic
modes with energy:

�
(±)
k = −2h ± 4

√
J 2 cos2 k + ε2x2. (C3)

The corresponding prefactors are

a
(−)
1 (k) = a

(+)
2 (k) = [

1 + (√
a−2

k + 1 + a−1
k

)2]−1/2
,

a
(−)
2 (k) = a

(+)
1 (k) = [

1 + (√
a−2

k + 1 − a−1
k

)2]−1/2
, (C4)

with ak = J
εx

cos k as in Eq. (10). Note that with respect to

the solution of periodic chains �
(−)
k (�(+)

k ) corresponds to
�k and (�k−π ) in Eq. (12) and the diagonalized Hamiltonian
in Eq. (11) is valid with the correspondences η

(−)
k → ηk and

η
(+)
k → ηk−π . It is easy to check that both the ground state

energy and the staggered magnetization assumes equivalent
expressions in the thermodynamic limit, as obtained for peri-
odic chains in Sec. IV.

End-to-end correlations are defined as

G(1, L) = 〈σx
1 σx

L〉 = 〈�0|(c†1 + c1)(c†L − cL)w|�0〉, (C5)

where

|�0〉 =
⎡
⎣ ∑

0<k<π/2

η
†(−)
k +

∑
km<k<π/2

η
†(+)
k

⎤
⎦|0〉 (C6)

is the ground state of the Hamiltonian and w is defined below
Eq. (6). Substituting Eq. (C2) into (C5) we get for the absolute
value of the end-to-end correlation function:

|G1,L| =
∑

k

[φ(−)
k (1)φ(−)

k (L)〈�0|1 − 2η
†(−)
k η

(−)
k |�0〉

+φ
(+)
k (1)φ(+)

k (L)〈�0|1 − 2η
†(+)
k η

(+)
k |�0〉], (C7)

which is evaluated as given in Eq. (25).

APPENDIX D: NONEQUILIBRIUM DYNAMICS
IN THE FREE-FERMION REPRESENTATION

In the nonequilibrium process we perform a quench at time
t = 0, when the set of parameters in the Hamiltonian in Eq. (3)
are suddenly changed from J0, h0, ε0 to J, h, ε. During the
quench a new set of free-fermion operators are created, γk

and γk−π , which are related to the original set of free-fermion
operators, ηk and ηk−π in Eq. (9) in the following way:

γk = cos δkηk − sin δkηk−π ,

γk−π = sin δkηk + cos δkηk−π . (D1)

Here δk = �k − �
(0)
k is the difference between the Bogoli-

ubov angles tan 2�k = − εx(0)
J cos k

and tan 2�
(0)
k = − ε0x(0)

J0 cos k
, fur-

thermore x(0) is the solution of the self-consistency equation
in Eq. (4) with the Hamiltonian H′(J0, h0, ε0).

The time dependence of the fermion operators for t � 0
are given by

ck (t ) = uk,k (t )γk + uk−π,k (t )γk−π ,

ck−π (t ) = uk,k−π (t )γk + uk−π,k−π (t )γk−π , (D2)
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where the Bogoliubov parameters are generally complex for
t > 0. We note that at t = 0 these are real and can be written
by the Bogoliubov angles:

uk,k (0) = uk−π,k−π (0) = cos �k,

uk,k−π (0) = −uk−π,k (0) = − sin �k, (D3)

furthermore expressing ck (0) and ck−π (0) through γk, γk−π

and then through ηk, ηk−π leads to the relation in Eq. (D1).

Time derivative of the fermion operators ck (t ) and ck−π (t )
can be calculated in the Heisenberg picture: dck (t )/dt =
i[Hk, ck] and dck−π (t )/dt = i[Hk, ck−π ], which are linear in
the ck-s, since Hk is quadratic in the fermion operators:

d

dt
ck = −i[−2(h + 2J cos k)ck + 4εxck−π ],

d

dt
ck−π = −i[4εxck + −2(h − 2J cos k)ck−π ]. (D4)

Similar relations hold for the creation operators c
†
k (t ) and

c
†
k−π (t ).

Inserting now Eq. (D2) into Eq. (D4) we obtain a set of differential equations for the Bogoliubov parameters:

duk,k

dt
= −i[−2(h + 2J cos k)uk,k + 4εx(t )uk,k−π ],

duk−π,k

dt
= − i[−2(h + 2J cos k)uk−π,k + 4εx(t )uk−π,k−π ],

duk,k−π

dt
= −i[−2(h − 2J cos k)uk,k−π + 4εx(t )uk,k],

duk−π,k−π

dt
= −i[−2(h − 2J cos k)uk−π,k−π + 4εx(t )uk−π,k], (D5)

with the initial condition at t = 0 given in Eq. (D3). In Eq. (D5) the actual value of the staggered magnetization at time t is given
by x(t ) = 〈x̂(t )〉 [see also Eq. (34)], where x̂(t ) is defined in terms of fermion operators in Eq. (16). This is expressed with the
time-dependent Bogoliubov parameters and the occupation numbers in the initial free-fermionic basis as

x(t ) = 〈x̂(t )〉 = 2

L

∑
k>0

[(u∗
k,kuk,k−π + uk,ku

∗
k,k−π )(cos2 δk〈η†

kηk〉 + sin2 δk〈η†
k−πηk−π 〉)

+ (u∗
k−π,kuk−π,k−π + uk−π,ku

∗
k−π,k−π )(sin2 δk〈η†

kηk〉 + cos2 δk〈η†
k−πηk−π 〉)

+ (u∗
k,kuk−π,k−π + uk−π,ku

∗
k,k−π )

sin 2δk

2
(〈η†

kηk〉 − 〈η†
k−πηk−π 〉)

+ (u∗
k−π,kuk,k−π + uk,ku

∗
k−π,k−π )

sin 2δk

2
(〈η†

kηk〉 − 〈η†
k−πηk−π 〉)]. (D6)

It is easy to check that x(t ) is continuous at t = 0, as it should be. In the actual calculation one should determine the time
dependence of the Bogoliubov parameters and the staggered magnetization, which necessities the integration of a set of (L + 1)
coupled first-order differential equations with complex variables. At some point it is of interest to calculate the time derivative
of the staggered magnetization, which is expressed as

dx(t )

dt
= i

8J

L

∑
k>0

cos k[(u∗
k,kuk,k−π − uk,ku

∗
k,k−π )(cos2 δk〈η†

kηk〉 + sin2 δk〈η†
k−πηk−π 〉)

+ (u∗
k−π,kuk−π,k−π − uk−π,ku

∗
k−π,k−π )(sin2 δk〈η†

kηk〉 + cos2 δk〈η†
k−πηk−π 〉)

+ (u∗
k,kuk−π,k−π − uk−π,ku

∗
k,k−π )

sin 2δk

2
(〈η†

kηk〉 − 〈η†
k−πηk−π 〉)

+ (u∗
k−π,kuk,k−π − uk,ku

∗
k−π,k−π )

sin 2δk

2
(〈η†

kηk〉 − 〈η†
k−πηk−π 〉)]. (D7)
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