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Semiclassical theory of speckle correlations
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Coherent wave propagation in random media results in a characteristic speckle pattern, with spatial intensity
correlations with short-range and long-range behavior. Here, we show how the speckle correlation function can be
obtained from a ray picture for two representative geometries, namely a chaotic cavity and a random waveguide.
Our calculation allows us to study the crossover between a “ray limit” and a “wave limit,” in which the Ehrenfest
time τE is larger or smaller than the typical transmission time τD, respectively. Remarkably, long-range speckle
correlations persist in the ray limit τE � τD.
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I. INTRODUCTION

Interference between multiply scattered waves causes large
reproducible fluctuations of the intensity of radiation trans-
mitted through a random medium or reflected off an irregular
surface. These fluctuations, which are known as the “speckle
pattern,” can be seen as a fingerprint of the microscopic
realization of the random medium. Speckle patterns have been
observed for a wide variety of wave types, ranging from radio
waves to optical light.

Speckle patterns of waves transmitted through random
media have received particular interest in the past two decades
because they can be subjected to a statistical analysis and
compared to theoretical predictions that involve only a few
system-specific parameters [1–3], such as the mean free path or
the total transmission [4]. Quantitatively, speckle correlations
are described with the help of the correlation function

C(x − x ′) = 〈I (x)I (x ′)〉 − 〈I (x)〉〈I (x ′)〉
〈I (x)〉〈I (x ′)〉 , (1.1)

where I is the intensity of the transmitted wave, x − x ′ refers
to a difference of a control parameter, such as the position
of the source, the position of the detector, or the frequency,
and the brackets 〈· · ·〉 indicate an average over a range of
frequencies. In the theoretical and experimental literature, the
correlation function C is commonly written as the sum of three
contributions [2,3],

C = C1 + C2 + C3, (1.2)

which are consecutively smaller, but also decay slower upon
increasing the difference between x and x ′. Whereas the orig-
inal experiments could determine the short-range correlation
function C1 only [5–7], later experiments were able to also
identify the intermediate-range C2 contribution [8,9], and even
the long-range C3 contribution [10].

In a random medium, radiation generically changes its
propagation direction multiple times between injection and
detection. This can be either a smooth change, as in the
case of a spatial gradient of the index of refraction, or an
abrupt change, as for specular reflection off a mirror. In either
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case, in the limit that the wavelength 2π/k is much smaller
than the characteristic length scale of the “scattering event”
(such as the length scale over which the index of refraction
varies or the radius of curvature of a perfect mirror), the
radiation can be considered to follow well-defined rays. The
goal of this article is to present a theoretical investigation
of the correlation function C for the case in which such a
“ray description” applies to each individual scattering event
in the random medium. This situation is of fundamental
interest, since it elucidates the fate of the three contributions
to the speckle correlations—unambiguously a phenomenon
belonging to the realm of wave optics—in the domain of
(classical) ray optics. Although the conditions for a strict
ray description are not met in most experiments listed above,
either because the sizes of scatterers are small in comparison
to the wavelength [8,9], or because the scattering occurs from
only partially reflecting objects [10], they can be met, e.g.,
in experiments on microwave cavities, where reflection takes
place off metal disks with a size that can be larger than the
wavelength [11–14].

To explore how the (generically) chaotic classical dynamics
in a random medium affects the speckle correlations, it is
instructive to consider the evolution of a wave packet passing
through the random medium. In contrast to a classical point
particle, which always follows a well-defined trajectory, wave
packets naturally spread out, and the propagation of a wave
packet can be mapped onto a single ray only as long as its
size remains small enough. As soon as different parts of a
wave packet start to evolve in an uncorrelated manner, the
single-ray picture fails and a full wave description is required.
The characteristic time at which this crossover takes place is
known as the “Ehrenfest time,”

τE = 1

λ
ln(kl), (1.3)

where λ is the Lyapunov exponent of the ray trajectories in
the random medium (which we assume to be chaotic) [15],
and l is a characteristic length scale of the ray dynamics,
such that rays separated by a distance larger than l must be
considered uncorrelated. The Ehrenfest time is the time it takes
for two rays, initially a wavelength apart, to diverge under
the influence of the chaotic classical dynamics and reach a
distance comparable to the characteristic scale l. We will use
the term “ray limit” to refer to the case in which the Ehrenfest
time τE exceeds the typical propagation time τD for radiation
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transmitted through the random medium, whereas we reserve
the term “wave limit” for the opposite case, τE � τD.

The Ehrenfest time τE was originally introduced by Larkin
and Ovchinnikov in the context of a quasiclassical description
of superconductivity [16]. It plays an important role in
the field of quantum chaos [17] and in the phase-coherent
transport of electrons through ballistic mesoscopic conductors
[18], the latter application being of particular relevance to
the present problem because of the formal analogy of the
time-independent Schrödinger and Helmholtz equations. In
the context of electronic transport, the “ray limit” is a
“classical limit,” in which the quantum-mechanical propaga-
tion is replaced by propagation along classical trajectories.
At zero temperature, the crossover to the classical limit
takes place if τE is comparable to the dwell time τD, the
time electrons spend inside a mesoscopic conductor. In the
regime τE � τD in which transport is essentially classical,
it is found that some of the signatures of quantum trans-
port, such as weak localization and shot noise, disappear
[18–22], whereas others, such as the universal conductance
fluctuations, remain finite [23–25]. Making use of the same
theoretical framework as used in the context of electronic
transport, we will show that the short-range C1 correlations
are independent of τE, whereas the longer-range C2 and C3

correlations behave similar to shot noise and conductance
fluctuations, respectively. In particular, the C2 correlations
disappear in the ray limit, whereas the C3 correlations
remain finite.

The existing calculations of the full speckle correlation
function C(x) make use of diagrammatic perturbation theory
[1–3]. Since diagrammatic perturbation theory is built on the
limit of weak, diffractive scatterers, it naturally describes the
wave limit. For the crossover to the ray limit, we must follow a
different theoretical approach. The method we follow here
is the trajectory-based semiclassical approach, which was
originally developed in the context of electronic transport
through ballistic mesoscopic conductors [25–30].

Our calculations are performed for the specific setup of
transmission of scalar waves through a random medium,
where we use the positions r of the source and R of the
detector, both taken in a plane perpendicular to the axis of
the waveguide, as well as the frequency ω of the light as
control parameters. The same geometry and the same choice
of control parameters were considered by Sebbah et al. [10],
who calculated the correlation functions C(�r,�R,�ω) for
the special case of a disordered waveguide from diagrammatic
perturbation theory and found that the three contributions to
the correlation function have a remarkably simple dependence
on the spatial control parameters �r and �R,

C1 = A1(�ω)Fd (|�r|)Fd (|�R|),
C2 = 1

g
A2(�ω)[Fd (|�r|) + Fd (|�R|)], (1.4)

C3 = 1

g2
A3(�ω),

where g is the dimensionless conductance of the waveguide,
the Aj are functions of the frequency shift �ω only, and Fd

is a short-range function of its argument that depends on the

dimensionality of the waveguide,

F2(r) = J0(kr), F3(r) = sin kr

kr
. (1.5)

The main finding of this article is that the distinctive spatial
dependence of Eqs. (1.4) remains valid in the crossover to
the ray limit, whereby only the functions A2 and A3 are
modified. In particular, A2 vanishes in the limiting case
τE � τD, whereas A3 remains finite. Our results will be derived
for scalar waves in a two-dimensional system, for the case of
a quasi-one-dimensional geometry, as in Ref. [10], as well as
for the case of a chaotic cavity. Both geometries have been
realized in microwave experiments; see, e.g., Refs. [7,11,12].

The remainder of the article is organized as follows: In
Sec. II we express the speckle correlation function C for
scalar waves in terms of a multiple sum over classical rays
propagating from source to detector, following the methods
of trajectory-based semiclassics. Calculations of the three
contributions C1, C2, and C3 to the speckle correlation
function for the special cases of a random waveguide and
a chaotic cavity are then given in Secs. III–V. We conclude in
Sec. VI.

II. SEMICLASSICAL FORMALISM

The precise geometry we consider is shown in Fig. 1. It
consists of a random medium connected to ideal waveguides
on the left and the right. Waves at frequency ω originate from a
source at position r in the left waveguide, and their intensity is
detected at a detector at position R in the right waveguide. The
positions of source and detector can be varied in the direction
ŷ perpendicular to the axis of the waveguide, and the intensity
fluctuations are measured as a function of ω and the component
y (Y ) of the source (detector) position.

Inside the random medium, scattering takes place from
perfect specularly reflecting mirrors with a radius of curvature
that is large in comparison to the wavelength 2π/k. This
condition ensures that the waves propagate along well-defined
rays, which is the motivation of the “ray limit” taken in the
calculation below. For simplicity, we will consider scalar
waves in a two-dimensional geometry. This simplification
is appropriate for quasi-two-dimensional microwave cavities,
where microwaves have a unique polarization direction [11].

The starting point of our calculation is an expression for
the intensity Iω(R,r) at the detector position R in terms of the
exact Green function G±

ω (R,r) for propagation in the combined
system consisting of the random medium and the waveguides
[3],

Iω(R,r) = G+
ω (R,r)G−

ω (R,r), (2.1)

FIG. 1. Schematic picture of a trajectory α connecting the source
at r and the detector at R.
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where the Green functions are solutions of the time-
independent Helmholtz equation

(k2 + ∇2 ± iη)G±
ω (r′,r) = δ(r′ − r), (2.2)

with ω = ck, c being the wave velocity, with η a positive
infinitesimal, and with the appropriate boundary conditions at
the sample boundaries and mirrors.

The ray limit we are interested in corresponds to the
limit of small wavelength 2π/k. To formally take this limit,
and motivated by the trajectory-based semiclassical theory
of electronic transport, we introduce a fictitious “Planck’s
constant” h̄ by writing k = p/h̄, where p has the dimension of
momentum. The product pl, with l a characteristic length scale
for the random medium, then has the dimension of action, and
the ray limit corresponds to the limit h̄ → 0 while keeping the
typical action pl fixed.

In this limit, the Green function G±
ω (R,r) can be written

as a sum over contributions from rays or “trajectories” α

connecting the positions r and R [26,31,32],

G+
ω (R,r) = G−

ω (R,r)∗ =
∑

α:r→R

√
ih̄Dα

8πp2
e

i
h̄
Sα (ω)−i π

2 μα , (2.3)

where Sα(ω) is the “classical action” of the ray α,

Sα(ω) =
∫

α:r→R
dl · p, (2.4)

the Maslov-Morse index μα gives the number of reflections
at mirrors or sample boundaries [32], and Dα is the so-called
stability amplitude of the trajectory α, the probability flux at
R along α for an isotropic source at r. Defining coordinates as
in Fig. 1, one has

Dα = 1

cos θ cos �

∣∣∣∣∂Py

∂y

∣∣∣∣ = 1

cos θ cos �

∣∣∣∣∂py

∂Y

∣∣∣∣ , (2.5)

where one has cos θ = (1 − p2
y/p

2)1/2 and cos � =
(1 − P 2

y /p2)1/2. For the system we consider, the momentum
p is a constant, so that the classical action Sα is directly
proportional to the duration τα of the ray α,

Sα(ω) = p ταc, (2.6)

with c the wave velocity.
Using the semiclassical expression for the Green function,

the intensity Iω(R,r) is written as a double sum over pairs
of classical rays α and β that connect the source at r to the
detector at R,

Iω(R,r) = h̄

8πp2

∑
α,β

√
DαDβe

i
h̄

[Sα (ω)−Sβ (ω)]−i π
2 (μα−μβ ). (2.7)

Upon performing the frequency average 〈· · ·〉, the phase factor
e(i/h̄)(Sα−Sβ ) in Eq. (2.7) has fast fluctuations, which will cancel
the contributions of all terms in the summation (2.7), except for
those for which there is a systematic correlation between the
actions of the trajectories α and β. The leading configuration
of such systematically correlated trajectories is the case α = β

(see Fig. 2), which gives

〈I (R,r)〉 = h̄

8πp2

∑
α

Dα. (2.8)

FIG. 2. Schematic picture of a diagonal trajectory contribution,
α = β, to the mean intensity 〈Iω(Y,y)〉.

It remains to perform the summation over trajectories.
Hereto, we take a fixed cross section in the waveguides
connecting to the system at the source and detector sides,
and we use the coordinate pair (y,py) with −p < py < p

to parametrize rays entering the system from the source
side at position y and with momentum py perpendicular
to the waveguide axis, and the coordinate pair (Y,Py) with
−p < Py < p to parametrize rays exiting the system at the
detector side. For a trajectory that is transmitted from the
source side to the detector side and that enters the system at
coordinates (y,py), we define yout(y,py) and py,out(y,py) as
the coordinates upon exit. One then has∑

α

Dα =
∫ p

−p

dpydPy

× δ(yout(y,py) − Y )δ(py,out(y,py) − Py)
cos θ cos �

. (2.9)

Upon taking into account small fluctuations around y or Y ,
one may replace the product of δ functions by the probability
density p(Y,Py ; y,py) that a ray entering on the source side at
(y,py) exits at the detector side at (Y,Py), which gives

〈Iω(Y,y)〉 = h̄

8πp2

∫ p

−p

dpydPy

p(Y,Py ; y,py)

cos θ cos �
, (2.10)

where we wrote Iω(Y,y) instead of Iω(R,r) in order to make
manifest that we only consider variations of the position of
source and detectors in a plane perpendicular to the waveguide
axes. We have

p(Y,Py.; y,py) = T

2Wp
, (2.11)

where T is the transmission probability, which is different for
the case of a chaotic cavity (CC) and a quasi-one-dimensional
random waveguide (WG). One has T = 1/2 for a chaotic
cavity and T = l/L for a random waveguide of length L and
transport mean free path l. The transmission probability is
related to the “dimensionless conductance” g,

g = kW

π
T . (2.12)

Restoring p = h̄k, we find that the average intensity is given
by

〈Iω(Y,y)〉 = π2g

16k2W 2
= π

16kW
×

{
1/2 (CC),

l/L (WG).
(2.13)

In a similar way, the product of two intensities that enters
into the correlation function C becomes a double sum over
pairs of classical rays α and β that connect the source at y to
the detector at Y and pairs of rays α′ and β ′ that connect the
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source at y ′ to the detector at Y ′,

Iω(Y,y) Iω′ (Y ′,y ′) =
(

h̄

8πp2

)2 ∑
α,β

∑
α′,β ′

√
DαDα′DβDβ ′ e

i
h̄
�S

×e−i π
2 (μα−μβ+μα′ −μβ′ ),

with the action difference

�S = Sα(ω) − Sβ(ω) + Sα′ (ω′) − Sβ ′ (ω′). (2.14)

Again, upon performing the average 〈· · ·〉, the phase �S/h̄

in the exponent in Eq. (2.14) has fast fluctuations, and
only trajectory configurations for which there is a systematic
correlation between the four trajectories α, β, α′, and β ′, such
that the action difference �S is small, will contribute to the
sum in Eq. (2.14). The leading configuration of such system-
atically correlated trajectories is the case α = β, α′ = β ′. This
diagonal contribution to the correlation function factorizes and
cancels precisely against the product of separately averaged
intensities 〈Iω(Y,y)〉〈Iω′ (Y ′,y ′)〉, for which each factor is
given by Eq. (2.13) above. To leading order in the system’s
dimensionless conductance g, one finds three other trajectory
configurations that contribute to C, which give rise to the three
contributions C1, C2, and C3 to the correlation function. These
three contributions will be discussed separately in the next
three sections.

III. C1 CONTRIBUTION

The first contribution C1 is the largest contribution to
the correlation function and thus describes the most visible
part of the speckle pattern—the large intensity fluctuations.
The trajectories that contribute to the C1 contribution are
shown schematically in Fig. 3 [33]: The trajectory α is
paired with β ′, and α′ is paired with β. This pairing is
possible only if the distances �y and �Y between the source
positions and the detector positions are small, which leads
to the double short-range behavior of C1 correlations. The
trajectory configuration of Fig. 3 bears a close resemblance
to the diagrams corresponding to the C1 contribution in
diagrammatic perturbation theory [1,34].

We note that the choice of the trajectories α and α′ uniquely
fixes the remaining two trajectories β and β ′. The differences
�y and �Y must be of order of the wavelength 2π/k to ensure
that the action difference �S is of order h̄. The trajectories α

and β ′ have the same angles θ and � with the waveguide axis at
the source and the detector, respectively, up to an unimportant
difference of order h̄/(pl) � 1, which we neglect. The same
holds for the trajectories α′ and β, for which the angles with
the waveguide at the source and the detector are denoted θ ′
and �′, respectively. This allows a straightforward calculation

FIG. 3. (Color online) Trajectory constellation contributing to the
C1 contribution of the speckle correlation function.

of the action difference �S, which can be written as a sum
of contributions related to the trajectory configuration at the
source, at the detector, and related to the frequency difference
�ω,

�S = �Ssource + �Sdetector + �Sω, (3.1)

with

�Ssource = �y(p′
y − py), �Sdetector = �Y (P ′

y − Py),
(3.2)

�Sω = c�p(τα − τα′ ),

with �p = h̄�ω/c. For the stability amplitudes, we may set
Dβ = Dα′ and Dβ ′ = Dα , up to corrections of relative size
h̄/(pl), so that

C1 =
(

h̄

8πp2〈I 〉
)2 ∑

α,α′
DαDα′ei�S/h̄, (3.3)

with �S given by Eq. (3.1). Replacing the summation over
trajectories by an integral over probabilities as in the derivation
of Eq. (2.13), we find

C1 =
(

h̄

8πp2〈I 〉
)2 ∫ p

−p

dpydp
′
ydPydP ′

y

∫ ∞

0
dτdτ ′

× p(Y,Py ; y,py ; τ )p(Y,P ′
y ; y,p′

y ; τ ′)

cos θ cos θ ′ cos � cos �′ ei�S/h̄, (3.4)

where now p(Y,Py ; y,py ; τ ) is the probability density that a
trajectory entering at the source side at coordinates (y,py) exits
on the detector side at coordinates (Y,Py) after a propagation
time τ inside the system. For the two geometries we consider,
we have

p(Y,Py ; y,py ; τ ) = T

2Wp
pτ (τ ), (3.5)

where pτ (τ ) is the “dwell time distribution” for transmitted
trajectories, which is

pτ (τ ) = 1

τD
e−τ/τD (3.6)

for a chaotic cavity [35] and

pτ (τ ) = 8

π2τ 2
D

τ

∞∑
n=0

(2n + 1)2e
− (2n+1)2τ

τD , (3.7)

for a quasi-one-dimensional random waveguide [36] with
diffusion coefficient D = lc/π . In both cases, τD is a char-
acteristic classical dwell time, which is τD = πA/2Wc for a
chaotic cavity of area A, and τD = L2/Dπ2 for the random
waveguide.

Substituting Eq. (3.5) for the probabilities p(Y,Py ; y,py ; τ )
and p(Y,P ′

y ; y,p′
y ; τ ′), the integral factorizes and one finds

C1(�y,�Y,�ω) = J0(k�y)2J0(k�Y )2f (�ω), (3.8)

with J0 the Bessel function of the first kind, and

f (�ω) = 1

1 + (τD�ω)2
(3.9)

for the case of a chaotic cavity and

f (�ω) = π2τD�ω

|sinh(π
√

iτD�ω)|2 (3.10)
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for the random waveguide. One verifies that C1 → 1 in the
simultaneous limit �y, �Y , and �ω → 0, consistent with
the Poisson statistics of the intensity at a single position and
frequency.

IV. C2 CONTRIBUTION

The trajectory constellations which give the leading contri-
bution to the correlation function when either the sources or the
detectors (but not both) are far apart are shown schematically
in Fig. 4. As in the case of the C1 contribution of the previous
section, these trajectories bear a close resemblance to the
corresponding diagrams in the diagrammatic calculation. As
shown in the figure, there are two such constellations, one in
which the detectors are apart but the sources are not (upper
panel in Fig. 4), and one in which the sources are apart but the
detectors are not (lower panel). Below we focus on the former
contribution, which we denote C2,1.

The trajectory constellation of the upper panel of Fig. 4
shows a small-angle encounter of the four trajectories involved,
such that the trajectories α and β ′ as well as α′ and β are paired
on the source side of the encounter, whereas α is paired with
β and α′ with β ′ on the detector side of the encounter. Similar
trajectory configurations occur in the semiclassical calculation
of the shot noise power in electronic transport. Of particular
relevance to the present calculation is Ref. [37], where the
shot noise power was calculated semiclassically for the two
geometries we are interested in (see also Refs. [22,38,39] for
related calculations involving a chaotic cavity only). Below we
will adapt the calculation of Ref. [37] to the C2 contribution
to the speckle correlation function.

As in the case of the C1 contribution, we note that the two
trajectories α and α′ uniquely fix the remaining two trajectories
β and β ′. For the trajectory configuration of the upper panel
of Fig. 4, there are three contributions to the action difference,

�S = �Ssource + �Sω + �Senc, (4.1)

FIG. 4. (Color online) Trajectory constellation contributing to
C2. The top panel shows the trajectory configurations for which
correlations remain short-ranged as a function of the source position
difference �y; the bottom panel refers to short-ranged correlation as
a function of the detector position difference �Y . In both panels, the
trajectories undergo a small-angle encounter, indicated by the gray
area. Phase-space points at the beginning and end of the encounter
are denoted �B and �C , respectively.

where the contribution �Ssource related to the distance �y

between the sources is given in Eq. (3.2) of the previous sec-
tion, the contribution �Sω related to the frequency difference
�ω is

�Sω = c(τ − τ ′)�p, (4.2)

where τ and τ ′ are the propagation times along α and α′ from
the source to the beginning of the encounter, respectively (see
Fig. 4), and the contribution �Senc is related to the small-angle
encounter between the trajectories α and α′. Finally, since the
trajectories are pairwise equal throughout, one has√

DαDα′DβDβ ′ = DαDα′ , (4.3)

so that

C2,1 =
(

h̄

8πp2〈I 〉
)2 ∑

α,α′
DαDα′ei�S/h̄, (4.4)

with �S given by Eq. (4.1).
To parametrize the trajectories α and α′, we not only

need the coordinates specifying the entrance and exit from
the system, but also the phase-space coordinates �B and
�C specifying the beginning and end of the encounter (see
Fig. 4). Locally, around a reference trajectory, the phase-space
coordinates � consist of the transverse momentum p⊥, the
transverse distance r⊥, and the propagation time t along
the trajectory. The beginning and end of the encounter are
defined as those points along the trajectories, where the
phase-space distance between α and α′ is large enough that
the propagation of the two trajectories can be considered
uncorrelated. Typically, the encounter ends when |�p⊥| ∼ p

or |�r⊥| ∼ l, whichever occurs first.
The encounter-related contribution �Senc has been calcu-

lated in Refs. [40,41]. As shown in Ref. [40], only encounters
of a duration τE contribute to the trajectory sum, τE being
the Ehrenfest time defined in Eq. (1.3). The inclusion of the
action difference �Senc and the corresponding summation over
trajectories proceeds completely analogous to the calculation
of the shot noise power. Referring to Ref. [37] for details of
this part of the calculation, the summation over trajectories α

and α′ can then be written in terms of a double integration over
the phase-space points �B and �C for the beginning and end
of the encounter,

C2,1 = 2πh̄

(
h̄

8πp2〈I 〉
)2 ∫ p

−p

dpydp
′
ydPydP ′

y

∫ ∞

0
dτdτ ′

×
∫

d�Bd�C

ps(�̄B ; y,py ; τ )ps(�̄B ; y,p′
y ; τ ′)

cos θ cos θ ′

× pd(�C ; Y,Py)pd(�C ; Y ′,P ′
y)

cos � cos �′

× ∂

∂τE
p(�C,�B ; τE)ei(�Ssource+�Sω)/h̄. (4.5)

In this expression, the phase-space volume element d� =
dp⊥dr⊥dt and �̄ denotes the time reversal of the phase-space
point �. Further, ps(�̄B ; y,py ; τ ) is the probability density
that a ray starting at phase-space point �̄B exits the system
at the source side at coordinate (y,py) and after a propagation
time τ . Similarly, pd(�C ; Y,Py) is the probability density
that a ray starting at phase-space point �C exits the system
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at the detector side at coordinates (Y,Py) (irrespective of
propagation length). Finally, p(�C,�B,τ ) is the phase-space
probability density that a ray starting at phase-space point �B

is found at phase-space point �C after a propagation time τ .
To perform the integrations over the momenta at the source
and the detector, we make use of the relations

ps(�̄B ; y,py ; τ ) = 1

2pW
ps(�̄B ; τ ) (4.6)

and

pd(�C ; Y,Py) = 1

2pW
pd(�C), (4.7)

where ps(�B ; τ ) is the probability density that a ray starting at
�B exits the system at the source side after propagation time
τ , and pd(�C) is the probability density that a ray starting at
�C exits the system at the drain side. For a chaotic cavity, one
has [35]

ps(�; τ ) = 1

2τD
e−τ/τD , pd(�) = 1

2
, (4.8)

whereas for a one-dimensional random waveguide one has [36]

ps(�; τ ) =
∞∑

n=1

2n

πτD
sin

nπx�

L
e−n2τ/τD , pd(�) = x�

L
,

(4.9)

with x� the x coordinate corresponding to the phase-space
point �. The Fourier transforms of ps for the two geometries
of interest are

p̃s(�,�ω) =
∫ ∞

0
dτ ps(�; τ )e−iτ�ω

=
⎧⎨
⎩

1
2(1+iτD�ω) (CC),

sinh[π(1−x�/L)
√

iτD�ω]
sinh[π

√
iτD�ω]

(WG).
(4.10)

Substituting Eq. (2.13) for 〈I 〉, we then find

C2,1 = πh̄J0(k�y)2

2p2W 2T 2

∫
d�Bd�C |p̃s(�B ; �ω)|2pd(�C)2

× ∂

∂τE
p(�C,�B ; τE). (4.11)

To perform the integrations over the phase-space points �B

and �C , we note that

p(�C,�B ; τ ) = 1

V�

e−τ/τD (4.12)

for a chaotic cavity [35], with V� = 2πAp/c = 4pWτD

the volume of the classical phase space. For a quasi-one-
dimensional random waveguide, one has [36]

p(�C,�B ; τ ) = 2

V�

∞∑
n=1

sin
nπxC

L
sin

nπxB

L
e−n2τ/τD , (4.13)

with phase-space volume V� = 2πLWp/c. In both cases,
one finds that the contribution C2,1 to the speckle correlation
function has the form

C2,1 = 1

g
J0(k�y)2A2(�ω), (4.14)

FIG. 5. The function A2(0) vs τE/τD for the case of a quasi-one-
dimensional random waveguide.

where

A2(�ω) = − e−τE/τD

4[1 + (τD�ω)2]
(4.15)

for the case of a chaotic cavity, and

A2(�ω) = 2
∞∑

n=1

(−1)ne−n2τE/τD

× a2(n,0)a2(n,
√

2π2τD�ω) (4.16)

for the case of the quasi-one-dimensional random waveguide,
with

a2(n,z) = n2π2

n2π2 + z2

×
[

1 − 2z2[cos z − (−1)n]

(n2π2 − z2)(cosh z − cos z)

]
. (4.17)

Similarly, one finds

C2,2 = 1

g
J0(k�Y )2A2(�ω)e−τE/τD . (4.18)

The results of diagrammatic perturbation theory are repro-
duced in the limit τE → 0, which gives

A2(�ω) = − 1

4[1 + (τD�ω)2]
(4.19)

for a chaotic cavity and

A2(�ω) = 2a2(
√

2π2τD�ω), (4.20)

with

a2(z) = sinh z − sin z

z(cosh z − cos z)
(4.21)

for the quasi-one-dimensional random waveguide. The com-
plete Ehrenfest-time dependence of the function A2(�ω) for
a random waveguide and �ω = 0 is shown in Fig. 5.

V. C3 CONTRIBUTION

The C3 contribution, which describes the correlation of
intensities to leading order in 1/g if the sources and the
detectors are a distance much longer than the wavelength apart,
has contributions from three different families of trajectory
constellations, which are depicted in Fig. 6. These families
have in common that the trajectories have two small-angle
encounters, such that α is paired with β and α′ is paired with
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FIG. 6. (Color online) Three different trajectory constellations contribution to C3. All three constellations contain two small-angle
encounters. The bright gray areas indicate single encounters, the dark gray areas indicate overlapping encounters. The constellations (b1), (b2),
(c1), and (c2) involve a periodic reference trajectory γ , shown as a thin line. The figure shows only the “minimal” version of the constellations
(b1), (b2), (c1), and (c2), in which the trajectory α winds once around γ , and α′ does not wind around γ at all. Other contributions, in which
α and α′ wind n and n − 1 times around γ , respectively, with n > 1, are not shown in the figure, as well as constellations in which α and α′

wind n − 1 and n times around γ , respectively, with n � 1.

β ′ before the first encounter and after the second encounter,
whereas α is paired with β ′ and α′ with β between the
encounters. In constellations (a1) and (a2), the two encounters
are traversed sequentially. In the constellations (b1) and (b2),
the two encounters lie on the same periodic trajectory γ and
may or may not overlap. (The figure shows the nonoverlapping
case only.) In constellations (c1) and (c2), the two encounters
overlap, too. However, unlike in configurations (b1) and (b2),
only part of each encounter lies on a periodic trajectory. The
constellations labeled (1) and (2) differ in the direction in
which the two encounters are traversed: For the constellations
(a1), (b1), and (c1), all the trajectories pass through all
encounters in the same direction, whereas for (a2), (b2), and
(c2), the trajectories α and β pass through the encounters in
the opposite direction as the trajectories α′ and β ′.

Similar trajectory constellations were considered in the
calculation of the conduction fluctuations [25,37]. The action
difference �S consists of two contributions only,

�S = �Sω + �Senc. (5.1)

Since the action difference �S for the trajectories of
Fig. 6 contains no contributions from the source or the
detector, the calculation of the C3 correlation function
proceeds largely parallel to the calculation of the conduc-
tance fluctuations in Ref. [37]. We write the C3 correla-
tion function as a sum of six terms, C3 = C3,a1 + C3,a2 +
C3,b1 + C3,b2 + C3,c1 + C3,c2, and discuss each of those terms
separately.

Following Ref. [37], one finds that the contributions C3,a1

and C3,a1 read

C3,a1 =
(

h̄2π2

16p2W 2〈I 〉
)2 ∫

d�C�D�E�F

∫ ∞

0
dτ1dτ2pd(�F )2

[
∂

∂τE
p(�F ,�E ; τE)

]

× p(�E,�D; τ1)p(�E,�D; τ2)ei(τ1−τ2)�ω

[
∂

∂τE
p(�D,�C ; τE)

]
ps(�̄C)2, (5.2)

C3,a2 =
(

h̄2π2

16p2W 2〈I 〉
)2 ∫

d�C�D�E�F

∫ ∞

0
dτ1dτ2pd(�F )ps(�̄F )

[
∂

∂τE
p(�F ,�E ; τE)

]

× p(�E,�D; τ1)p(�E,�D; τ2)ei(τ1−τ2)�ω

[
∂

∂τE
p(�D,�C ; τE)

]
pd(�C)ps(�̄C). (5.3)

The definition of the phase-space points �C , �D , �E , and �F , as well as the propagation times τ1 and τ2, is shown in Fig. 6, (a1)
and (a2). Further, ps(�) is the probability that a trajector originating in the phase-space point � exits the medium at the source
side. Similarly, for C3,b1 and C3,b2 we find

C3,b1 =
(

h̄2π2

16p2W 2〈I 〉
)2 ∫

d�C�D�E�F

∫ ∞

0
dτγ

∫ τγ

0
dτpd(�F )pd(�E)ps(�̄D)ps(�̄C)

× (eiτγ �ω + e−iτγ �ω)

[
∂

∂tDF

∂

∂tCE

pγ (�C,�D,�E,�F ; τγ ,τ,tCE,tDF )

]
tCE=tDF =τE

, (5.4)
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C3,b2 =
(

h̄2π2

16p2W 2〈I 〉
)2 ∫

d�C�D�E�F

∫ ∞

0
dτγ

∫ τγ

0
dτps(�̄F )pd(�E)pd(�D)ps(�̄C)

× (eiτγ �ω + e−iτγ �ω)

[
∂

∂tDF

∂

∂tCE

pγ (�C,�D,�E,�F ; τγ ,τ,tCE,tDF )

]
tCE=tDF =τE

, (5.5)

where the definition of the phase-space points and time intervals is given in panels (b1) and (b2) of Fig. 6. The function
pγ (�C,�D,�E,�F ; τγ ,τ,tCE,tDF ) is the probability density for the phase-space points �C , �D , �E , and �F to lie on the same
periodic trajectory γ of period τγ with the specified time intervals for propagation between them. To describe the case in which the
trajectories α and/or α′ wind multiple times around γ , the propagation times tCE and tDF are allowed to be larger than τγ . Defining

τCE = tCEmodτγ , τDF = tDF modτγ , (5.6)

we can then write pγ (�C,�D,�E,�F ; τγ ,τ,tCE,tDF ) as [37]

pγ (�C,�D,�E,�F ; τγ ,τ,tCE,tDF )

= p(�E,�C ; τCE)p(�D,�E ; τ − τCE)p(�F ,�D; τDF )p(�C,�F ; τγ − τ − τDF )

+ p(�D,�C ; τ)p(�E,�D; τCE − τ)p(�F ,�E ; τDF + τ − τCE)p(�C,�F ; τγ − τ − τDF )

+ p(�F ,�C ; τ + τDF − τγ )p(�E,�F ; τCE − τDF − τ + τγ )p(�D,�E ; τ − τCE)p(�C,�D; τγ − τ)

+ p(�D,�C ; τ)p(�F ,�D; τDF )p(�E,�F ; τCE − τDF − τ)p(�C,�E ; τγ − τCE)

+ p(�E,�C ; τCE)p(�F ,�E ; τDF + τ − τCE − τγ )p(�D,�F ; τγ − τDF )p(�C,�D; τγ − τ)

+ p(�F ,�C ; τ + τDF − τγ )p(�D,�F ; τγ − τDF )p(�E,�D,τCE − τ)p(�C,�E ; τγ − τCE), (5.7)

where we use the convention that the probability density p(�,�′; τ ) = 0 for τ < 0. Finally, the constellations (c1) and (c2) are
corrections to (b1) and (b2), which take into account the influence of correlated propagation between α and α′ before and after
the encounter with periodic trajectory γ . For these constellations, one finds

C3,c1 =
(

π2

16 k2W 2〈I 〉
)2 ∫

d�C�A�B�D

∫
dτγ

∫ τE

0
dtABpd(�D)2[∂τEp(�A,�C,τE − tAB)]

× pγ (�A,�B ; τγ ,tAB)[∂τEp(�D,�B,τE − tAB)](eiτγ �ω + e−iτγ �ω)ps(�̄C)2, (5.8)

C3,c2 =
(

π2

16 k2W 2〈I 〉
)2 ∫

d�C�A�B�D

∫
dτγ

∫ τE

0
dtABpd(�D)ps(�̄D)[∂τEp(�A,�C,τE − tAB)]

× pγ (�A,�B ; τγ ,tAB)[∂τEp(�D,�B,τE − tAB)](eiτγ �ω + e−iτγ �ω)ps(�̄C)pd(�C), (5.9)

where pγ (�A,�B ; τγ ,tAB) is the probability density that the
phase-space points �A and �B lie on one periodic trajectory
γ with period τγ and the propagation time tAB between them
as indicated in Fig. 6, (c1) and (c2). One has

pγ (�A,�B ; τγ ,tAB) = p(�A,�B ; τAB)p(�B,�A; τγ − τAB),
(5.10)

with

τAB = tABmodτγ . (5.11)

We now proceed with the calculation of C3 for the cases of a
chaotic cavity and a quasi-one-dimensional random waveguide
separately.

A. Chaotic cavity

For the chaotic cavity, we insert the known expressions for
the classical propagators and probabilities, ps(�) = pd(�) =
1/2 and p(�,�′; τ ) = �−1e−τ/τD , see Eqs. (4.8) and (4.12),
and find

C3,a1 = C3,a2 = e−2τE/τD

16g2[1 + (τD�ω)2]
, (5.12)

C3,b1 = C3,b2 = 0, (5.13)

C3,c1 = C3,c2 = 1 − e−2τE/τD

16g2[1 + (τD�ω)2]
, (5.14)

so that one arrives at the remarkably simple result

C3 = 1

g2
A3(�ω), (5.15)

with

A3(�ω) = 1

8[1 + (τD�ω)2]
, (5.16)

independent of the ratio τE/τD. This observation is consistent
with the observation that the conductance autocorrelation
function is independent of τE/τD [30].

B. Random waveguide

The phase-space probability densities pd(�) and
p(�,�′; τ ) are given in Eqs. (4.9) and (4.13), whereas ps(�) =
1 − x�/L. Instead of the correlation function C3(�ω), we
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calculate the “form factor,”

K3(t) = 1

2π

∫
d�ωC3(�ω)eit�ω. (5.17)

The calculation of the three contributions K3,a2, K3,b2, and
K3,c2 is identical to that of Ref. [37]. (In Ref. [37], these three

contributions are called K (a), K (b), and K (c), respectively.) The
calculation of K3,a1, K3,b1, and K3,c1 differs with respect to
details. The final results for the sums K3,a = K3,a1 + K3,a2,
K3,b = K3,b1 + K3,b2, and K3,c = K3,c1 + K3,c2 read

K3,a(t) = 1

g2τD

∑
μ,ν,ρ,σ

dνμσ dρμσ gνρ

e−σ 2|t |/τD

μ2 + σ 2
e−(ν2+ρ2)τE/τD , (5.18)

K3,b(t) = − 2

g2τD

∑
μ,ν,ρ,σ

cμσ cρνcμνcρσ

[
(μ2 − ν2)(σ 2 − ρ2)e−(ρ2+μ2)(|t |−|2t̃−|t ||)/2τDfν2,σ 2

( |2t̃ − |t ||
τD

)

+ 2(σ 2 − μ2)(ν2 − μ2)e−ν2|2t̃−|t ||/τDfσ 2+ν2,ρ2+μ2

( |t | − |2t̃ − |t ||
2τD

)]
+ 2

g2τD

∑
ρ

e−ρ2|t |/τD

(
1

6π2
− 1

ρ2π4

)
, (5.19)

K3,c(t) = 1

g2τD

∑
μ,ν,ρ,σ

dνμσ dρμσ gνρ

[
e−μ2(|t |−t̃)/τDfν2+ρ2+μ2,σ 2

(
t̃

τD

)
+ fν2+ρ2+μ2,σ 2

( |t |
τD

)

×e−(ν2+ρ2)t̃/τD − e−(ν2+ρ2)τE/τD

1 − e−(ν2+ρ2)|t |/τD

]
, (5.20)

where we abbreviated

t̃ = τEmod|t |, (5.21)

cμν =
{

8μν

π2(μ2−ν2)2 if μ + ν odd,

0 otherwise,
(5.22)

dμνρ =
{

16
π4

∑
±

±1
μ2−(ν±ρ)2 if μ + ν + ρ odd,

0 otherwise,
(5.23)

gμν =
{

2 − π2μ2

2 + π4μ2ν2

16 if μ and ν odd

−(−1)ν π4μ2ν2

16 otherwise,
(5.24)

fα,β (x) =
{

xe−βx if α = β

e−βx−e−αx

α−β
otherwise.

(5.25)

The correlation functions can be obtained by Fourier transformation, C3,i = ∫
dtK3,ie

−it�ω. The full expressions are too lengthy
to report here, which is why we restrict ourselves to the contributions at �ω = 0,

C3,a|�ω=0 = 2

g2

∑
μ,σ

1

σ 2(μ2 + σ 2)

∑
ν,ρ

dνμσ dρμσ gνρe
−(ν2+ρ2)τE/τD , (5.26)

C3,b|�ω=0 = − 4

g2

∑
μ,ν,ρ,σ

cμσ cμνcρνcρσ

{
(μ2 − ν2)(σ 2 − ρ2)

[
1

ν2σ 2
e−(μ2+ρ2)τE/τD + h

(2)
μ2+ρ2,σ 2,μ2+ρ2,ν2

(
τE

τD

)]

+2(ν2 − μ2)(σ 2 − μ2)

[
1

σ 2
fμ2+ρ2,ν2+σ 2

(
τE

τD

)
+ h

(1)
μ2+ρ2,σ 2,ν2+σ 2,σ 2

(
τE

τD

)]}
+ 1

15g2
, (5.27)

C3,c|�ω=0 = 1

g2

∑
μ,σ

∑
ν,ρ

gνρdνμσ dρμσ

⎡
⎣∑

j

2

j (j + 1)

fμ2/j,ν2+ρ2

(
τE
τD

) − fσ 2/(j+1),ν2+ρ2

(
τE
τD

)
σ 2/(j + 1) − μ2/j

+ 1

μ2
fσ 2,ν2+ρ2

(
τE

τD

)⎤
⎦ , (5.28)

with

h
(1,2)
α1α2β1β2

(
τE

τD

)
=

∑
n

∑
±

1

n(2n ∓ 1)
×

⎧⎨
⎩

− ∂
∂α1,2

f α1
2n∓1 ,

α2
n

(
τE
τD

)
if β1,2 = α1,2,

f α1
2n∓1 ,

α2
n

(
τE
τD

)
−f β1

2n∓1 ,
β2
n

(
τE
τD

)
β1,2−α1,2

otherwise.
(5.29)
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FIG. 7. The rescaled correlation function A3 = C3g
2 at equal

frequencies, �ω = 0, for the random waveguide, as a function of
the Ehrenfest time τE, together with its three contributions A3,a , A3,b,
and A3,c.

Dividing out the common prefactor 1/g2, one finds
the Ehrenfest-time dependence of the correlation function
A3(�ω = 0) of Eq. (1.4). The Ehrenfest-time dependence of
the three contributions to A3 ≡ A3(�ω = 0) is shown in Fig. 7.
Remarkably, A3 depends on the Ehrenfest time, but does not
disappear in the limit τE/τD → ∞. The same behavior was
found for the conductance fluctuations in a random waveguide
[37].

The results of the diagrammatic perturbation theory are
reproduced in the limit τE → 0. At �ω = 0, we find

A3 = A3,a + A3,b + A3,c = 2
15 , (5.30)

in agreement with Ref. [10].

VI. CONCLUSION

The semiclassical calculations of this article have shown
that there is a consistent ray-optics-based picture for the
three contributions C1, C2, and C3 to the speckle correlation
function. The ray-optics-based calculation links the distinctive
spatial dependence of each of the three contributions—doubly
short range, mixed short range/long range, and doubly long
range—to a distinctive dependence on the Ehrenfest time
τE, the threshold time at the crossover between the ray- and
wavelike propagation of a minimal wave packet: The short-
range contribution C1 is independent of τE, the mixed-range
contribution C2 vanishes in the limit of large τE, whereas
the long-range contribution C3 remains finite in the limit of
large τE.

Perhaps the latter observation is the most striking one: the
long-range correlations described by C3 are an unambiguous

interference phenomenon, which continues to exist in the ray
limit (i.e., in the limit where a generic minimal wave packet
follows a single ray). The origin of this remarkable effect is
the same as the persistence of mesoscopic fluctuations of the
electronic conductance in the classical limit [25]. In both cases,
the effect arises from ray trajectories which are trapped near
periodic rays internal to the random medium, thus extending
their dwell time long enough that their dynamics becomes
effectively wavelike.

In the limit of zero Ehrenfest time, our ray-based results
agree with those obtained within diagrammatic perturbation
theory, an intrinsically wave-based approach. Ehrenfest-time-
related phenomena were originally predicted by Larkin and
Ovchinnikov in the context of mesoscopic superconductivity
[16]. In the past two decades, manifestations in mesoscopic
electronic transport have been investigated vigorously in the
theory community [18–25,37,42–44]. At the same time, there
has been remarkably little experimental activity [45,46]. The
main problems are the difficulty in obtaining the required high-
mobility samples and the impossibility to significantly vary the
relevant time scales τE and τD without affecting the underlying
classical dynamics [46]. To circumvent this problem, Ref. [45]
considers the competition of τE and the temperature-dependent
dephasing time, thereby having to deal with a large theoretical
and experimental uncertainty of the latter [47].

Against this background, the purpose of the present calcu-
lation is to proceed toward the possibility that Ehrenfest-time-
related phenomena can be observed using optical or microwave
techniques. Especially in the context of microwave experi-
ments, the almost complete control over sample geometry
facilitates a quantitative comparison with theory (see, e.g.,
Refs. [48–52] for a number of recent reports). The possibility
to measure and analyze the speckle correlation function and its
three contributions C1, C2, and C3 has been proven [10–14].
We hope that the availability of theoretical predictions for
the Ehrenfest-time dependence of these three components will
stimulate further experiments in this direction.
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F. Schäfer, and H. A. Weidenmüller, Phys. Rev. Lett. 98, 074103
(2007).

[51] S. Hemmady, X. Zheng, E. Ott, T. M. Antonsen, and S. M.
Anlage, Phys. Rev. Lett. 94, 014102 (2005).

[52] M. Bellec, U. Kuhl, G. Montambaux, and F. Mortessagne, Phys.
Rev. Lett. 110, 033902 (2013).

062905-11

http://dx.doi.org/10.1103/PhysRevLett.64.2215
http://dx.doi.org/10.1103/PhysRevLett.67.785
http://dx.doi.org/10.1103/PhysRevLett.69.1296
http://dx.doi.org/10.1103/PhysRevLett.68.2867
http://dx.doi.org/10.1103/PhysRevLett.68.2867
http://dx.doi.org/10.1016/0370-1573(81)90127-7
http://dx.doi.org/10.1103/PhysRevB.54.14423
http://dx.doi.org/10.1103/PhysRevLett.85.3153
http://dx.doi.org/10.1103/PhysRevLett.85.3153
http://dx.doi.org/10.1103/PhysRevB.68.233308
http://dx.doi.org/10.1103/PhysRevLett.95.056806
http://dx.doi.org/10.1103/PhysRevLett.96.206804
http://dx.doi.org/10.1103/PhysRevLett.96.206804
http://dx.doi.org/10.1103/PhysRevB.69.165318
http://dx.doi.org/10.1103/PhysRevB.69.165318
http://dx.doi.org/10.1103/PhysRevLett.92.116801
http://dx.doi.org/10.1103/PhysRevLett.92.116801
http://dx.doi.org/10.1103/PhysRevB.74.075322
http://dx.doi.org/10.1103/PhysRevB.74.075322
http://dx.doi.org/10.1103/PhysRevLett.70.3876
http://dx.doi.org/10.1103/PhysRevLett.70.3876
http://dx.doi.org/10.1103/PhysRevB.47.4440
http://dx.doi.org/10.1103/PhysRevB.47.4440
http://dx.doi.org/10.1103/PhysRevLett.89.206801
http://dx.doi.org/10.1103/PhysRevLett.96.066804
http://dx.doi.org/10.1103/PhysRevLett.96.066804
http://dx.doi.org/10.1103/PhysRevB.75.201303
http://dx.doi.org/10.1063/1.165928
http://dx.doi.org/10.1063/1.165928
http://dx.doi.org/10.1103/PhysRevB.40.737
http://dx.doi.org/10.1103/PhysRevB.40.737
http://dx.doi.org/10.1103/PhysRevB.87.195406
http://dx.doi.org/10.1103/PhysRevB.87.195406
http://dx.doi.org/10.1103/PhysRevB.76.165313
http://dx.doi.org/10.1088/1367-2630/9/1/012
http://dx.doi.org/10.1088/1367-2630/9/1/012
http://dx.doi.org/10.1103/PhysRevB.74.085313
http://dx.doi.org/10.1238/Physica.Topical.090a00128
http://dx.doi.org/10.1088/0305-4470/36/26/304
http://dx.doi.org/10.1103/PhysRevB.80.115310
http://dx.doi.org/10.1103/PhysRevB.83.195315
http://dx.doi.org/10.1103/PhysRevB.83.195315
http://dx.doi.org/10.1103/PhysRevB.85.024302
http://dx.doi.org/10.1103/PhysRevB.85.024302
http://dx.doi.org/10.1103/PhysRevLett.84.542
http://dx.doi.org/10.1103/PhysRevLett.84.542
http://dx.doi.org/10.1038/415765a
http://dx.doi.org/10.1038/415765a
http://dx.doi.org/10.1103/PhysRevLett.99.036804
http://dx.doi.org/10.1103/PhysRevLett.99.036804
http://dx.doi.org/10.1103/PhysRevLett.84.867
http://dx.doi.org/10.1103/PhysRevLett.94.036804
http://dx.doi.org/10.1103/PhysRevLett.94.036804
http://dx.doi.org/10.1103/PhysRevLett.98.074103
http://dx.doi.org/10.1103/PhysRevLett.98.074103
http://dx.doi.org/10.1103/PhysRevLett.94.014102
http://dx.doi.org/10.1103/PhysRevLett.110.033902
http://dx.doi.org/10.1103/PhysRevLett.110.033902



