
0-� Transition in Magnetic Triplet Superconductor Josephson Junctions

P.M.R. Brydon1,2,* and Dirk Manske1

1Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany
2Institut für Theoretische Physik, Technische Universität Dresden, 01062 Dresden, Germany

(Received 26 January 2009; published 29 September 2009)

We examine a Josephson junction involving two arbitrary equal-spin-pairing unitary triplet super-

conductors and a ferromagnetic tunneling barrier. Using perturbation theory, we show how the interaction

of the barrier moment with the spin of the tunneling triplet Cooper pairs can reverse the sign of the

Josephson charge current. This also results in a Josephson spin current, which contains a phase-

independent contribution due to reflection processes at the barrier. We verify our analytic predictions

using a nonperturbative Bogoliubov–de Gennes method.
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Introduction.—The interplay of superconductivity and
magnetism is an enduring enigma of condensed matter
physics. Many fascinating insights into this problem have
been made in the study of singlet superconductor (SC)
Josephson junctions with ferromagnetic (FM) tunneling
barriers [1]. For example, as the barrier width is increased,
the usual Josephson current IJ vs phase relationship IJ ¼
jI0j sinð�Þ becomes IJ ¼ jI�j sinð�þ �Þ. This so-called
0-� transition is evidence of oscillations of the singlet SC
correlations in the tunneling region [1,2]. A remarkable
feature of such junctions is the presence of triplet SC
(TSC) correlations induced by a proximity effect [1,3,4],
with the realized triplet pairing states dictated by the de-
tails of the FM barrier and the bulk SCs. Because of the
likely intimate connection between triplet superconductiv-
ity and magnetism [5], it is interesting to consider the case
where the TSC pairing state can be chosen independently
of the FM barrier. Despite the growing interest [4,6–9] in
TSC Josephson junctions prompted by the discovery of
Sr2RuO4 [10], the study of such TSC-FM-TSC (TFT)
junctions is still in its infancy. Recently, a novel 0-�
transition in a specific TFT junction was predicted [7,8],
where the dependence of IJ upon the orientation of the FM
moment indicates that it couples to the spin of the tunnel-
ing Cooper pairs.

In this Letter, we use perturbation theory [11] to obtain
the Josephson charge current through a TFT junction for
arbitrary choice of unitary equal-spin-pairing TSCs. We
predict that the 0-� transition found in Refs. [7,8] is always
present for sufficiently large magnetization, and is due to
the spin flipping of tunneling triplet Cooper pairs. This also
produces a Josephson spin current [6,9], which has a novel
phase-independent contribution due to reflection pro-
cesses. A nonperturbative Bogoliubov–de Gennes theory
is used to demonstrate the universal character of our pre-
dictions, and that resonant tunneling through an Andreev
bound state (ABS) does not qualitatively change the under-
standing of the 0-� transition [12,13].

Perturbation theory.—The Hamiltonian of the TFT
Josephson junction is written H ¼ HL þHR þ

H tun þHref . HL and HR, respectively, describe the
bulk TSCs on the left and right side of the barrier:

H�¼1

2

X
k

c y
�;k

��;k1̂ id�;k ���̂y

ðid�;k ���̂yÞy ���;k1̂

 !
c �;k; (1)

where c �;k ¼ ðc�;k;"; c�;k;#; cy�;k;"; cy�;k;#ÞT and cy�;k;� (c�;k;�)

are fermion creation (annihilation) operators, ��;k is the

bare dispersion in the �-hand TSC, and d�;k ¼ ��;kx̂ are

the triplet order parameters of the two TSCs. Both TSCs
are in an equal spin-pairing state with respect to the z axis
and are unitary (i.e., the triplet condensate has no net

spin) [14]. The gap in each spin sector is ��;k;� ¼
��j��;kjeið��þ��;kÞ where �� is the global phase of the

�-hand TSC and ��;k is an internal phase specifying the

pairing state, obeying ��;�k ¼ ��;k þ �. As our results

depend only on the spin state of the Cooper pairs, any
variation of the orbital part of the gaps near the barrier
will not qualitatively alter our conclusions.
The two TSCs on each side of the barrier are linked by

the tunneling Hamiltonian

H tun ¼
X

�¼L;R

X
k;k0

X
�;�0

T�;�0
�;k;k0c

y
��;k;�c�;k0;�0 ; (2)

where the subscript �� ¼ RðLÞ when � ¼ LðRÞ. For a
magnetically active barrier, we must also include reflection
prcoesses [15]:

H ref ¼
X

�¼L;R

X
k;k0

X
�;�0

R�;�0
�;k;k0c

y
�;k;�c�;k0;�0 (3)

Although reflection processes do not contribute to the
charge current, spin-flip reflection may contribute to a
Josephson spin current, as the spin flip of a reflected
Cooper pair changes the total spin in the TSC by �2@.
In general, the matrix elements for spin-preserving tun-

neling T�;�
�;k;k0 , spin-flip tunneling T�;��

�;k;k0 , and spin-flip re-

flection R�;��
�;k;k0 are different. It is possible to derive

expressions for the matrix elements from a more funda-
mental Hamiltonian [15], but here we will motivate a
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phenomenological form. By Fermi’s golden rule we have

T �;�0 � jT�;�0
�;k;k0 j2 and R�;�� � jR�;��

�;k;k0 j2 in the tunneling

limit, where T �;�0 � 1 and R�;�� � 1 are the trans-
missivity and spin-flip reflectivity of the barrier, respec-
tively. We also require that a tunneling or reflected
quasiparticle acquires the same phase as in the exact
solution. Following Ref. [7], we consider the example of
a purely FM barrier of �-function width (appropriate for an
atomically thin barrier) at z ¼ 0. We assume that the FM
barrier momentM lies in the x-y plane at an angle � to the
x axis. We hence use the ansatz

T�;�
�;k;k0 ¼ ðTsp=M

2Þ�kk;k0
k
�ðkzk0zÞ; (4)

T�;��
�;k;k0 ¼ ��ie�i��ðTsf=MÞ�kk;k0

k
�ðkzk0zÞ; (5)

R�;��
�;k;k0 ¼ �ie�i��ðRsf=MÞ�kk;k0

k
�ð�kzk

0
zÞ; (6)

where M ¼ g	BjMj=@
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vL
F;zv

R
F;z

q
with v�

F;z the Fermi ve-

locity along the (001) direction in the �-hand TSC, Tsp, Tsf ,

and Rsf are real constants and the �ð�kzk
0
zÞ guarantees that

the transmitted or reflected quasiparticle moves away from
the barrier [16]. The k dependence of Tsp, Tsf , and Rsf is

irrelevant for our argument and is neglected. As rotating
the spin coordinates about the x axis leaves the TSCs un-
changed, our results for the charge current hold for any M
making an angle � with the d�;k. The spin current results

also hold, but with corresponding rotation of the polariza-
tion. A diagram of the junction is shown in Fig. 1(a).

We define particle currents in the two spin sectors of

each TSC by I�;
 ¼ ��h@tN�;
ðtÞi, where N�;
ðtÞ ¼P
kc

y
�;k;
ðtÞc�;k;
ðtÞ and � ¼ LðRÞ as a subscript implies

� ¼ �1ðþ1Þ elsewhere. We calculate I�;
 by expanding

the S matrix to lowest order in H tun þHref , hence treat-
ing the tunneling and reflection processes as a perturba-
tion of H 0 ¼ H L þH R [11], which is justified for

small T�;�0
�;k;k0 and R�;�0

�;k;k0 . The Kubo formula then gives

I�;
 ¼ �i�
R
t
�1 dt0h½@tN�;
ðtÞ; H tunðt0Þ þ H refðt0Þ�i.

Working within the interaction picture, we write
@tN�;
ðtÞ ¼ ifB�
;


� ðtÞ � B
;�

� ðtÞg þ i

P
�fA�;
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and B&;&0
� ðtÞ ¼ P

k;k0R&;&0
�;k;k0c

y
�;k;&ðtÞc�;k0;&0 ðtÞ. In the zero-

bias case the current through the spin-
 sector of the
�-hand TSC is due only to the Josephson effect and may
be conveniently expressed as IJ�;
 ¼ 2�Imf�r

�;
ð0Þ þ
�r

�;
ð0Þg. The retarded correlation functions �r
�;
ð!Þ

and �r
�;
ð!Þ give the tunneling and reflection con-

tributions, respectively. After using Wick’s theorem
to expand the two-particle correlators in the cor-

responding Matsubara functions ��;
ði!nÞ ¼R�
0 d�e

i!n�
P

�;s;s0 hT�A
�;

� ð�ÞAs;s0

� ð0Þi and ��;
ði!nÞ ¼R�
0 d�e

i!n�hT�B
�
;

� ð�ÞB�
;


� ð0Þi, we make the analytic

continuation i!n ! !þ i0þ to obtain the retarded func-
tions. Substituting Eqs. (4)–(6) into the expressions for the
retarded correlation functions at ! ¼ 0, we obtain the
particle current

IJ�;
 ¼ �X
k;k0

T2
sp

M4

j���;k��;k0 j
E��;kE�;k0

F��;�;k;k0�kk;k0
k
�ðkzk0zÞ sinð�þ �½��;k0 � ���;k�Þ

þ X
k;k0

T2
sf

M2

j���;k��;k0 j
E��;kE�;k0

F��;�;k;k0�kk;k0
k
�ðkzk0zÞ sinð�þ 2�
�þ �½��;k0 � ���;k�Þ

þ �
X
k;k0

R2
sf

M2

j��;k��;k0 j
E�;kE�;k0

F�;�;k;k0�kk;k0
k
�ð�kzk

0
zÞ sinð2
�� ½��;k � ��;k0 �Þ; (7)

where E�;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð��;k �	Þ2 þ j��;kj2

q
is the excitation

spectrum in the �-hand TSC, � ¼ �R ��L and
F�;�0;k;k0 ¼ P

�½nFð�E�;kÞ � nFðE�0;k0 Þ�=½E�;k � E�0;k0 �
with nFðEÞ the Fermi distribution function.

Equation (7) is our first important result, as it contains all
contributions to the current. The first term describes spin-
preserving tunneling, where the Cooper pairs preserve their
spin during the tunneling event, giving the usual Josephson

FIG. 1 (color online). (a) Schematic diagram of the TFT
junction. (b)–(d) The critical line �c between the 0 and � states
for various values of M in the (b) py, (c) pz, and (d) pz þ ipy

junctions. The � state is realized for 0 � j�j, j�� �j<�c,
while the 0 state occurs for �c < j�j<�� �c. The M 	 1
behavior of �c at high T reflects the dominance of spin-flip
processes; at low T, details of the bulk TSCs are important.
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result. The second term describes spin-flip tunneling,
where the spin of the Cooper pair is reversed by the
coupling to the FM moment. Relative to spin-preserving
tunneling, these Cooper pairs acquire a phase shift of
2
�� due to the spin flip itself, and a further� shift arising
from the intrinsic phase difference between the spin- " and
spin- # condensates in the TSC. Last, we have the current
due to Cooper pairs undergoing a spin flip when they are
reflected at the tunneling barrier. As such, this term is
independent of the TSC on the other side of the barrier,
depending only upon the phase due to the spin flip itself
and the gap experienced by the reflected Cooper pairs.

Charge current.—From Eq. (7) we obtain the Josephson
charge current IJ ¼ �eðIJ�;" þ IJ�;#Þ:

IJ ¼ 2e

�
T2
sp

M4
� cosð2�Þ T

2
sf

M2

�X
k;k0

j�R;k�L;k0 j
ER;kEL;k0


 FR;L;k;k0�kk;k0
k
�ðkzk0zÞ sinð�þ �R;k � �L;k0 Þ (8)

The first term in brackets corresponds to the spin-
preserving contribution, while the second term is due to
the spin-flip tunneling. The � dependence of the latter is
due to the extra phase shifts for spin-flip tunneling: ignor-
ing orbital effects, a spin-
 Cooper pair incident from the
left-hand side (lhs) undergoing a spin flip during tunneling
experiences an effective phase difference �
 ¼ �þ ��
2
� between the two TSCs. The spin-flip current vs phase
relationships in each spin channel are hence shifted by
�4�with respect to one another. The interference between
the two spin channels results in the modulation of the total
spin-flip current by cosð2�Þ; this is analogous to the effect
of the spin-dependent phase shifts for tunneling between
TSCs with misaligned d vectors [6–9].

Spin-flip tunneling dominates IJ for large M: in this
case, relevant for a half-metallic barrier, we find IJ /
cosð2�Þ, and so the current changes sign at � ¼ �=4 as
the moment is rotated about the z axis; i.e., there is a 0-�
transition controlled by the orientation of the moment. As
this originates solely from the spin structure of the triplet
Cooper pairs it is a universal feature of unitary equal-spin-
pairing TFT junctions, our second important result. To test
this prediction, we consider TFT junctions where both
TSCs are made of the same material, for the three choices
of py, pz, and pz þ ipy orbital pairing symmetry (the latter

of most relevance to Sr2RuO4 [10]). In a model with
spatially constant TSC gaps, we can include tunneling
and reflection processes to all orders [12,15,17] by solv-
ing the Bogoliubov–de Gennes equations to obtain the
ABS energies E�;kð�;�;M; TÞ at temperature T. The

free energy of the junction is then given by F ¼
��

P
k

P
p¼�ðjkzj=kFÞ logð2 coshð�Ep;k=2ÞÞ; we assume

a 2D circular Fermi surface in the y-z plane. The ground
state of the junction is found by numerically minimizing F
with respect to�. For each junction, the minimum of F lies
at � ¼ 0 or �; we find a 0-� transition when the global
minimum shifts from one of these values to the other. In

Figs. 1(b)–1(d) we plot the critical angle �c at which this
occurs in each junction for fixedM; according to Eq. (8), in
the tunneling limit �c ¼ �=4.
For T sufficiently close to the transition temperature Tc,

�c always approaches the tunneling limit results as M is
increased. For the py junction [Fig. 1(b)], �c shows only

weak T dependence at fixed M, consistent with Eq. (8). In
the pz and pz þ ipy junctions [Figs. 1(c) and 1(d), respec-

tively], however, �c varies significantly with T. The key
difference between the py junction and the pz and pz þ ipy

junctions is the absence of a zero energy ABS in the
former. In the latter, there is a zero energy ABS at � ¼
� for any choice of tunneling barrier, which raises the free
energy of the � state, thereby suppressing the 0-� transi-
tion. The strongest deviations from Eq. (8) therefore occur
for the pz junction, as here a zero energy ABS forms for all
k; for the pz þ ipy junction, in contrast, a zero energy

ABS forms only when k k ẑ. Our perturbation theory
results are recovered at higher T in these junctions due to
the suppression of multiple-Cooper pair tunneling pro-
cesses, which are a key feature of tunneling through a
zero energy ABS [12,18].
Spin current.—The spin of a triplet Cooper pair also

allows a zero-bias Josephson spin current to flow across
the junction [6,8,9]. The spin current is polarized along the
z axis [9], and so from Eq. (7) we obtain the spin current in

the �-hand TSC IS;z�;J ¼ @

2 ðIJ�;" � IJ�;#Þ:

IS;z�;J ¼ @� sinð2�ÞX
k;k0

T2
sf

M2

j�R;k�L;k0 j
ER;kEL;k0

�kk;k0
k
�ðkzk0zÞ


 cosð�þ �R;k � �L;k0 ÞFR;L;k;k0

þ @� sinð2�ÞX
k;k0

R2
sf

M2

j��;k��;k0 j
E�;kE�;k0

�kk;k0
k
�ð�kzk

0
zÞ


 cosð��;k � ��;k0 ÞF�;�;k;k0: (9)

The first term is from spin-flip tunneling, while the second
�-independent term is due to spin-flip reflection [19]. The
spin-dependent phase shifts of the spin-flipping Cooper
pairs are responsible for driving the spin current, again in
analogy to the spin current between TSCs with misaligned

d vectors [6,8,9]. This implies IS;z�;J ¼ 0 for� ¼ n�=2, n 2
Z, as the relative phase between the spin-flip currents in

each spin channel is then 2n�. As shown in Fig. 2(a), IS;z�;J

reverses sign across the barrier: the spin current due to the
tunneling Cooper pairs reverses on the spin flip, and the
spin flip reflected Cooper pairs in each TSC carry opposite
spin current as they move in opposite directions.
Equation (9) may be simplified for the three junctions

introduced above. By energy conservation we have k0 ¼ k

in the tunneling term and k0 ¼ ~k ¼ ðkx; ky;�kzÞ in the

reflection term. Furthermore, we set Tsf ¼ Rsf as here
T �;�� ¼ R�;��; the amplitude of the cosine term in
each contribution to Eq. (9) is then identical. We hence

find IS;z�;J / 
þ cosð�Þ where 
 is an orbital-dependent
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constant due to the phase shift ���;k ¼ ��;k � ��;~k expe-

rienced by specularly reflected Cooper pairs. For the py

junction there is no extra phase shift upon reflection, giving

 ¼ 1. For the pz junction, in contrast, all reflected Cooper
pairs experience a � phase shift and therefore 
 ¼ �1. In
the pz þ ipy junction, ���;k ¼ �� 2 arctanðky=kzÞ de-

pends upon k; integrating across the Fermi surface we
find�1<
< 0. We again verify these predictions within
the Bogoliubov–de Gennes theory for spatially constant
TSC gaps. Solving for the scattering wave functions
[8,12,20], we obtain the Andreev reflection amplitudes

aehðheÞ
�;�;�0 for a spin-� electronlike (holelike) quasiparticle

incident from the �-hand-side Andreev-reflected as a
spin-�0 holelike (electronlike) quasiparticle. Following

Ref. [20], we write the spin current in terms of the aehðheÞ
�;�;�0

IS;z�;J ¼ ��

8

Z
jkj¼kF

dk
jkzj
kF

1

�@

X
n

j��;kjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

n þ j��;kj2
q


X
�

�faeh�;�;�ðk; i!nÞ � ahe�;�;�ðk; i!nÞg: (10)

We verify the relation IS;zL;J ¼ �IS;zR;J (not shown), and also

find excellent agreement with the tunneling Hamiltonian
predictions for 
 in all three junctions; see Figs. 2(b)–2(d).
The role played by reflection processes in the spin transport
is our third important result.

We have not accounted for the transfer of spin to the
barrier moment when the spin current is nonzero. This can
be physically justified if the barrier is in contact with a spin
reservoir, allowing the diffusion of the transferred spin. In
the absence of such a reservoir, we speculate that the
barrier moment will precess about the x axis, as the spin
current only has a spin polarization k d�;k 
M. This very

interesting matter requires a nonequilibrium treatment,

which is beyond the scope of the present work. As IS;z�;J ¼
0 for � ¼ 0 and � ¼ �=2, the different sign of IJ at these
angles is, however, a robust equilibrium feature.
Conclusions.—We have analyzed the Josephson currents

through a TFT junction for any choice of unitary equal-
spin-pairing TSCs. We predict that the sign of the charge
current is controlled by the relative importance of spin flip
to spin-preserving tunneling. Spin-flip processes also pro-
duce a Josephson spin current, with a phase-independent
term due to reflection. Our results reveal the importance of
the Cooper pair spin as a novel degree of freedom in TSC
Josephson junctions.
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