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The breaking of time-reversal symmetry in a triplet superconductor Josephson junction is shown to

cause a magnetic instability of the tunneling barrier. Using a Ginzburg-Landau analysis of the free energy,

we predict that this novel functional behavior reflects the formation of an exotic Josephson state,

distinguished by the existence of fractional flux quanta at the barrier. The crucial role of the orbital

pairing state is demonstrated by studying complementary microscopic models of the junction. Signatures

of the magnetic instability are found in the critical current of the junction.
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Introduction.—The Josephson effect between supercon-
ductors separated by a tunneling barrier remains of funda-
mental interest, in particular, as a phase-sensitive test of the
pairing symmetry of unconventional superconductors [1]
and in the study of the interplay of superconductivity with
magnetism [2]. Although the qualitative features of the
Josephson effect are fixed by the quantum nature of the
superconductors, the modification of the superconducting
state at the junction interface, the so-called proximity
effect [1,2], must often be included in the description of
the supercurrent transmission. In contrast, the properties of
the barrier are usually regarded as fixed [1]. Recently,
however, it has been shown that a thin ferromagnetic
(FM) layer on a singlet superconductor (SSC) can show
novel behavior [2], such as a suppression of the uniform
magnetization [3] or the appearance of a domain structure
[4]. These effects result from the competition between the
SSC and FM phases, and indicate that the tunneling barrier
in a Josephson junction is not necessarily independent of
the superconductors. The Josephson coupling can also
produce novel spin dynamics in a magnetic tunneling
barrier [5].

In this Letter, we consider the possibility of using the
presence of the two superconductors to induce a magnetic
instability of a nonmagnetic tunneling barrier in a
Josephson junction. In particular, by both general phe-
nomenological arguments and solution of specific micro-
scopic models, we show that such a novel functionality of
the barrier can develop for time-reversal symmetry (TRS)
breaking configurations of two spin-triplet superconduc-
tors on either side. The Josephson coupling across the
tunneling barrier is essential to this effect, which manifests
itself as an exotic state distinguished, for example, by the
existence of fractional flux quanta at the barrier [6].
Moreover, such a junction displays an anomalous tempera-
ture dependence of the critical current.

Phenomenological theory.—The intrinsic spin structure
of the Cooper pairs in a triplet superconductor (TSC)

requires a quasiparticle gap with three components ~�Sz

for each z component of spin Sz ¼ �1; 0;þ1, each of

which has odd orbital parity, i.e., ~�Szð�kÞ ¼ �~�SzðkÞ.
The TSC order parameter is the so-called d vector, defined

in spin space d ¼ 1
2 ð~��1 � ~�1Þx̂� i

2 ð~��1 þ ~�1Þŷ þ ~�0ẑ.

Although many different triplet pairing states are allowed
by symmetry, only a few examples of TSCs have been
discovered so far, e.g., Sr2RuO4 [7], UGe2 [8]. In Sr2RuO4

the pairing state has been identified as unitary and equal
spin- pairing [9]; i.e., the spins of the Cooper pairs lie in the
same plane perpendicular to d, but the condensate does not
have a net spin. Restricting ourselves to such pairing states,

we write d ¼ ~dei� where ~d is a real vector. The vector
form of the TSC order parameter reveals a novel degree of
freedom in Josephson junction physics: in addition to the
phase difference between the condensates to the left and
right of the barrier, which controls the Josephson super-

current, there is also the mutual alignment of the left (~dL)

and right (~dR) vectors, which controls the magnetic aspects

of the transport [10]. In particular, when ~dL � ~dR � 0, a
Cooper pair tunneling across the barrier undergoes a re-
construction of its spin state. This causes the formation of a
nonunitary state localized at the interface, which supports
an effective spin through the TRS breaking combination
hSi ¼ idL � d�

R þ H:c:.
The violation of TRS at the tunneling barrier by the mis-

aligned ~d vectors allows the TSCs to directly couple to a
magnetizationM of the interface. As we will see, the TSCs
may in fact change the electronic properties of the interface
so as to stabilize a spontaneous FM order. This novel
behavior can be understood on a phenomenological level
by a Ginzburg-Landau analysis of the free energy. Intro-
ducing the TSC order parameters for each side of the inter-

face as dL¼ ~dLe
i�L and dR¼ ~dRe

i�R , we write the free

energy of the junction F to lowest order in M and ~dL;R as

F ¼ jMj2
2�

� t~dL � ~dR cosð�Þ þ 2�M � ð~dL � ~dRÞ sinð�Þ:
(1)
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Here � ¼ �R ��L is the phase difference, � denotes the
intrinsic uniform spin susceptibility of the barrier, and t
and � are phenomenological parameters. The ground state
of the junction is obtained by minimizing F with respect to
M and �. We find that the nonmagnetic state of the barrier

is unstable for ��2j~dL � ~dRj2 > t~dL � ~dR: the coupling to

the intrinsic spin hSi ¼ 2~dL � ~dR sinð�Þ of the junction
instead realizes a TRS breaking state [11], characterized by

a nonvanishing magnetization M k ~dL � ~dR, and a phase
� ¼ �min � 0; �. The junction is then in an exotic frac-
tional state [6], where the magnetic barrier is capable of
carrying flux lines with noninteger multiples of the flux
quantum �0 ¼ hc=2e. The observation of this character-
istic feature is discussed below.

Microscopic models.—Although the misalignment of

the ~d vectors is essential to the magnetic instability, it is
also controlled by the specific details of the junction
through the susceptibility � and the parameters t and �.
The latter are fixed by the orbital part of the bulk TSC state.
To elucidate the crucial role this plays in the magnetic
instability, we examine two complementary microscopic
models of the junction. The first, shown in Fig. 1(a), has the
TSCs in a pz-wave orbital state (the pz-pz junction), and

the left and right ~d vectors are aligned parallel to the barrier
but at an angle 2�with respect to each other. In the second
model the orbital state is py wave (the py-py junction), and

the ~d vectors lie in the x-z plane but are again misoriented
by the angle 2� [Fig. 1(b)]. The TSCs extend indefinitely
along the z axis, and we have translational invariance in the
x-y plane. The TSC gaps are spatially constant, and the
maximum gap magnitude �ðTÞ displays weak-coupling
temperature dependence with �ðT ¼ 0Þ ¼ �0. The width
of the tunneling barrier is regarded to be much smaller than
the coherence length of the TSCs, and so it is approximated
as a � function with normal-state heightUP ¼ Z@vF. Here
Z is a dimensionless quantity and vF ¼ @kF=m is the
Fermi velocity in the bulk TSCs, which are assumed to
have spherical Fermi surfaces of radius kF. If the barrier
supports a magnetic moment M, the effective barrier
height for spin-� quasiparticles with spin parallel to M

in dimensionless units is Z� �M, where M ¼
g�B�0jMj=@2vF.
The Josephson coupling between the two TSCs is domi-

nated by tunneling through Andreev bound states (ABSs)
localized at the junction interface [1]. The ABSs result
from the hybridization of the surface wave functions of
each TSC, and hence implicitly describe the local nonuni-
tary state and its coupling to the barrier moment. We solve
the Bogoliubov–de Gennes equations [12] to obtain the
ABS energies Ek;�:

Ek;� ¼
8<
:
j�ðTÞkzj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T �ðkÞ

q
cosð�=2� ��Þ pz-pz

j�ðTÞkyj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�T �ðkÞsin2ð�=2þ ��Þ

q
py-py:

(2)

The ABSs are indexed by the component of spin � ¼ �1

parallel to ~dL � ~dR and the wave vector k for incident
trajectories from the left-hand side. Each state has two
branches at �Ek;�. T �ðkÞ ¼ k2z=ðk2z þ ½Z� �M�2k2FÞ is
the transparency of the barrier to spin-� quasiparticles
[13]. We plot the ABS spectrum as a function of � in
Fig. 2. Note that the ABSs always intersect the line E ¼ 0
in the pz-pz junction. These so-called zero-energy states
are guaranteed by the arrangement of the p-wave orbitals,
such that all specularly reflected quasiparticles experience
a sign change of the gap. As the gap does not change sign
upon reflection in the py-py junction, in contrast, zero-

energy states only occur here at T �ðkÞ ¼ 1 [1].
The electronic contribution to the free energy is a

weighted sum over the incident trajectories [1,14]

Fel ¼ �kBT
X
k

X
�

jkzj
kF

log

�
2 cosh

�
Ek;�

2kBT

��
: (3)

As in Eq. (1), the magnetic free energy of the barrier is
included to lowest order Fmag ¼ M2=2�, where � is given

in units of ðg�B�0=@
2vFÞ2=�0. We vary � and M to find

the global free energy minimum of Fel þ Fmag. Typical

minimizing values for the pz-pz and py-py junctions are

plotted as a function of temperature in Figs. 3(a) and 3(b),
respectively. The barrier undergoes a magnetic instability
at sufficiently large �, and below a critical temperature
TM < Tc such that the FM state appears only in the pres-
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FIG. 1 (color online). (a) The pz-pz junction, with pz-wave
orbital pairing in the two superconductors, ~d vectors in the x-y
plane, and an induced magnetic moment along the z axis. (b) The
py-py junction, with py-wave orbital pairing in the two super-

conductors, ~d vectors in the x-z plane, and an induced magnetic
moment along the y axis.
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ence of superconductivity. For Z � 0 the junction is in a
fractional state below TM with two degenerate free energy
minima ðM;�minÞ and ð�M;��minÞ (broken TRS).

In Figs. 3(c) and 3(d) we show the phase diagram as a
function of Z and T at fixed � for the pz-pz and py-py

junctions, respectively. The qualitatively different form of
these phase diagrams follows from the dependence of the
ABS spectra Eq. (3) upon the T �ðkÞ: due to the zero-
energy states in the pz-pz junction, each bound state Ek;�

monotonically shifts towards the middle of the gap with
decreasing T �ðkÞ; for the py-py junction, in contrast, the

states move towards the gap edges. From Eq. (3), the free
energy contributed by Ek;� in a pz-pz junction will there-

fore increase (decrease) as the transparency T �ðkÞ de-
creases (increases), while the opposite is true for the
py-py junction.

It is immediately clear that the pz-pz junction is non-
magnetic at Z ¼ 0, as M � 0 would reduce the transpar-
ency for both spin orientations and hence raise Fel. The
M ¼ 0 state remains stable below some critical value of Z;
increasing Z beyond this, a magnetic moment appears as
the free energy decrease from increasing the transparency
in the � ¼ þ1 sector outweighs the increase in the � ¼
�1 sector. Although the decrease in Fel favors the indefi-
nite growth of M with increasing Z, this is limited by the
increase of Fmag. For sufficiently large � and low tempera-

tures, the transition back into the nonmagnetic state is first

order; M continuously vanishes at higher temperatures or
smaller �.
In contrast, the py-py junction displays a spontaneous

magnetization at Z ¼ 0 for all T < Tc, stabilized by the
reduction in Fel from the decreased transparency in each
spin sector. This effect is absent from the Ginzburg-Landau
expansion of Fel in Eq. (1), as we have only kept terms to
first order in M; from Eq. (3), however, we see that the
magnetization only enters Fel as jMj2 when Z ¼ 0. Despite
jMj � 0, the junction is not in a fractional state and
�min ¼ 0. Turning on a finite tunneling barrier strength
(Z > 0) at fixed T, jMj decreases to compensate for the
free energy increase from the enhanced transparency in the
� ¼ þ1 sector; �min simultaneously takes on a fractional
value. As Z is further increased, the barrier moment is
monotonically suppressed, while the stable phase differ-
ence passes through an extremum before returning to its
Z ¼ 0 value.
Experimental tests.—The characteristic signature of the

magnetic instability is the appearance of fractional flux
quanta at the junction interface. In Fig. 4 we show a
proposal for their observation in a Josephson junction
with a tunneling barrier consisting of two materials, one
of which undergoes the magnetic instability proposed here,
while the other remains nonmagnetic at all temperatures.
The stable phase difference across the magnetic region is
~�, while it is 0 across the nonmagnetic region. If a mag-
netic flux line is trapped at the boundary between the
barrier segments, a line integral along the contour C in
Fig. 4 shows that the enclosed flux � is

�

�0

¼ nþ
I
C
ds � r� ¼ nþ

~�

2�
; n 2 Z: (4)

As ~� takes a fractional value below TM, there can exist a
flux line with � � �0. Experimentally, such a flux line
could be observed by local magnetic probes like scanning
SQUID microscopy, or inferred from the asymmetric
Fraunhofer pattern of critical current versus applied field.
Our proposal resembles the devices used to observe half-
integer flux quanta in Ref. [15], where SSCs were used
instead of TSCs, and differing widths of a FM barrier fix
~� ¼ �. Although other schemes exist for the creation of
fractional flux quanta [6,16], their detection in our pro-
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FIG. 3 (color online). Induced magnetic moment M and stable
phase difference �min as a function of reduced temperature for
(a) the pz-pz and (b) the py-py junction. In both panels we set

� ¼ 0:2�, Z ¼ 0:7, and � ¼ 20. Magnetic phase diagram for
the (c) pz-pz and (d) py-py junctions as a function of Z and T. A

magnetic moment is stable in the region labeled FM, while the
region of nonmagnetic behavior is denoted as PM; metastable
states are shown in brackets. Second-order transitions are in-
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are as in (a) and (b).
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posed junction would be unambiguous confirmation of the
magnetic instability.

The supercurrent transmission through the junction is
radically altered by the appearance of a barrier moment.
The Josephson current versus phase relationship IJ ¼
ð2e=@Þ@F=@� / sinð���minÞ is shifted from its usual
form for a nonmagnetic barrier, as is clearly seen in
Fig. 5(a) for the py-py junction (the pz-pz junction results

are qualitatively identical). Note that the different magni-
tudes of maxfIJg and minfIJg are due to higher-order
harmonics in � which are not included in the free energy
expansion Eq. (1). The critical current ICJ ¼ maxfjIJjg is
also strongly enhanced below the magnetic instability
[Fig. 5(b)], as the increased current through the spin sector
with the raised transparency overcompensates for the de-
creased current through the spin sector with the lowered
transparency. The behavior of ICJ below TM is reminiscent
of the ‘‘low-temperature anomaly’’ of d-wave Josephson
junctions [1].

For simplicity, we have neglected the suppression of the
TSC state near the interface due to the proximity effect.
Although including this effect is not expected to alter the
free energy expansion Eq. (1) or the main features of the
ABS spectrum, it will increase Fel and hence shrink the
parameter space where the moment is stable. This will be
most pronounced in the pz-pz junction due to the sign
change of the gap upon reflection [1]. Furthermore, the
likely strong anisotropy effects in the thin FM layer do not
favor the orientation of the induced moment normal to the
interface. The situation in the py-py junction is more

promising, however, as here the proximity effect is much
less important and the induced moment lies in the easy
plane parallel to the interface.

A likely candidate material for the TSCs in the py-py

junction is Sr2RuO4, where the proposed pairing state is
d / ðkx þ ikyÞẑ [9]. At interfaces k ẑ, the proximity effect

suppresses the p-wave component normal to the interface,
and so we expect the ABS contribution to Fel to be more
similar to that in the py-py junction than the pz-pz junction

[17]; this should remain valid for small misalignment
angles �. A possible material for the interface is a two-

unit-cell-thick layer of SrRuO3, which is both metallic (and
hence has a low Z value appropriate to the py-py junction)

and is close to a FM instability [18].
Conclusions.—We have shown that a TRS breaking

configuration of two TSCs in a Josephson junction can
cause the tunneling barrier to develop a spontaneous mag-
netization. This realizes an exotic Josephson state with
stable phase difference 0<�min <�. The orbital part of
the TSC pairing state was demonstrated to control the
magnetic instability. The existence of fractional flux quanta
at the barrier, and a large increase in the critical current
beneath the magnetic transition temperature, are key ex-
perimental signatures of this state.
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