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We study the interplay of spin and orbital degrees of freedom in a triplet superconductor-ferromagnet

junction. Using a self-consistent spatially dependent mean-field theory, we show that increasing the angle

between the ferromagnetic moment and the triplet vector order parameter enhances or suppresses the

p-wave gap close to the interface, according to whether the gap antinodes are parallel or perpendicular

to the boundary, respectively. The associated change in condensation energy establishes an orbitally

dependent preferred orientation for the magnetization. When both gap components are present, as in a

chiral superconductor, first-order transitions between different moment orientations are observed as a

function of the exchange field strength.
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Introduction.—The singlet superconductor (SSC) and
ferromagnet (FM) phases are fundamentally incompatible,
as the exchange field of the FM destroys the superconduc-
tivity by aligning the antiparallel spins of the electrons in
singlet Cooper pairs [1]. This pair-breaking effect makes
the homogeneous coexistence of SSC and FM very rare.
On the other hand, SSC-FM interfaces can be readily
fabricated in artificial heterostructures, and the study of
these devices has attracted intense attention [2–7]. The
pair-breaking effect is central to the understanding of these
systems; e.g., it causes the spatial oscillation of the SSC
correlations in the barrier of a ferromagnetic Josephson
junction, which is responsible for the famed 0-� transition
[2,3]. The FM also suppresses the SSC gap close to the
interface [2,6,7], and can induce a magnetization in the
SSC [4]. Conversely, in order to minimize pair breaking in
the SSC, the magnetization in the FM may be suppressed
near to the interface [4], while domains may spontaneously
form in a thin FM layer [5].

The coexistence of FM and triplet superconductor (TSC)
states is more favorable, as the exchange field is only pair
breaking when it is perpendicular to the Cooper pair spins.
The physics of TSC-FM devices is therefore richer than
their singlet counterparts, as the orientation of the FM
moment relative to the TSC vector order parameter is
now a crucial variable. This is predicted to control the
nature of the proximity effect in TSC-FM bilayers [8]
and the sign of the current in TSC-FM-TSC Josephson
junctions [9]. In addition to the pair breaking, spin-flip
reflection processes at the interface with the FM scatter
the triplet Cooper pairs between the spin " and # conden-
sates, setting up a Josephson-like coupling between them.
The resulting ‘‘spin Josephson effect’’ is manifested as a
spontaneous spin current in the TSC normal to the TSC-
FM interface [10,11].

The pair breaking and spin Josephson coupling both
make significant contributions to the free energy of a
TSC-FM junction through the proximity effect, interface
electronic reconstruction, and the variation of the TSC gap.
Although these contributions depend upon the direction of
the FM’s exchange field, the two effects do not necessarily
act constructively: while pair breaking is always absent for
a moment perpendicular to the TSC’s vector order parame-
ter, the effective Josephson phase difference can vanish for
parallel and perpendicular configurations, depending on
the orbital pairing state. It is the purpose of this Letter to
explore in an unbiased way the interplay of the spin and
orbital structure of the TSC in setting the stable orientation
of the FM’s moment. This is a timely problem, as the recent
preparation [12] of superconducting thin films of Sr2RuO4

[13] opens the way to TSC heterostructures. Furthermore,
the proposed appearance of Majorana fermions at TSC-FM
interfaces in quantumwires motivates a deeper understand-
ing of the interplay between FM and TSC [14].
To this purpose we study a lattice model of a TSC-FM

heterostructure using a self-consistent Bogoliubov–de
Gennes theory [6,15]. For a single-component p-wave
TSC, we find that the variation of the gap controls the
orientation of the FM’s moment via the change in con-
densation energy. The stable configuration is either parallel
or perpendicular to the TSC vector order parameter,
depending on the alignment of the TSC gap with respect
to the interface, thus evidencing a unique form of spin-
orbital coupling. The stable configuration for the chiral
px þ ipy state evidences competition between the different

orbital components, with a first-order transition from the
perpendicular to the parallel configuration as the FM ex-
change field is increased. When the interface is imperfect,
other processes play the decisive role in setting the easy
axis in the FM.
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The model.—We examine a lattice model of the TSC-FM
junction shown in Fig. 1(a). The lattice size is ðLþ 1Þ �
ðLþ 1Þ, with periodic boundary conditions imposed along
the direction parallel to the interface. Indicating each site by
a vector i � ðix; iyÞ, with ix and iy being integers ranging

from �L=2 to L=2, we write the Hamiltonian

H ¼ � X

hi;ji;�
ti;jðcyi�cj� þ H:c:Þ ��

X

i;�

ni�

� X

hi;ji2TSC

Vðni"nj# þ ni#nj"Þ �
X

i2FM

h � si; (1)

where ci� is the annihilation operator of an electron with

spin � at the site i, ni� ¼ cyi�ci� is the spin-� number

operator, and si ¼ P
s;s0c

y
is�s;s0cis0 is the local spin density.

The lattice is divided into three regions: the FM subsystem
for ix < 0, the TSC subsystem for ix > 0, and the interface
at ix ¼ 0. The chemical potential � is the same across the
lattice. The hopping matrix elements ti;j ¼ t everywhere,

except for hopping between the ordered subsystems
where ti;j ¼ tint > t (< t) models an imperfect interface

with enhanced (suppressed) charge transfer probability.
All energy scales are expressed in units of t. A nearest-
neighbor attractive interaction �V < 0 is present only
on the TSC side of the junction. The order parameter of
the TSC, the so-called d-vector, encodes the spin structure
of the Cooper pairs: it is defined as d ¼ ð1=2Þ�
ð�1 � ��1Þx̂� ði=2Þð�1 þ��1Þŷ þ �0ẑ, where �Sz is

the gap for triplet pairing with the z component of the
spin Sz ¼ �1, 0, 1. In our model, Eq. (1), a TSC state with
the d-vector parallel to the z axis can be stabilized at the
mean-field level by tuning the electron density and pairing
strength. We consider px, py, and px þ ipy orbital sym-

metries for the pairing amplitude. The FM subsystem is
modeled by the exchange field h, which forms the angle �
with respect to the direction of the d-vector. Since the TSC
state is invariant under spin rotations about the d-vector,
h can be restricted to the x-z plane, i.e., h ¼
hð sinð�Þ; 0; cosð�ÞÞ. The relation between the amplitude

of the magnetization M and h is shown in Fig. 1(b), with
M being collinear to h.
We obtain a single-particle HamiltonianHMF from Eq. (1)

by decoupling the interaction term and solving self-
consistently for the mean-field amplitudes �ij ¼ hci"cj#i,
with the average hAi being the thermal expectation value of
the operatorA [16].We hence calculate the condensation ene-
rgyE� of theTSCand theGibbs free energyF of the junction,

E� ¼ V

L2

X

hi;ji2TSC

j�ijj2; (2)

F ¼ � 1

L2�
lnfTr½expð��HMFÞ�g; (3)

where � ¼ ðkBTÞ�1 and kB is the Boltzmann constant. The
magnetization is determined by summing over the local spin
density in the FM region, i.e., M ¼ ð4=L2ÞPi�FMhsii. The
results presented here were obtained using L ¼ 120; a larger
lattice does not qualitatively change our conclusions.
In our analysis of the TSC-FM junction we first aim to

understand how the pairing potential changes with the
magnetization orientation. For this it is convenient to
assume that the angle � is fixed. The observed changes
in the pairing potential as a function of� then motivates us
to treat � as a variational parameter, and to seek the most
stable magnetic configuration. These individual steps have
physical relevance: the former models the case where the
magnetization in the FM is strongly pinned by anisotropy
or an external field, whereas the latter corresponds to the
limit of an isotropic FM where the TSC acts as the unique
source of spin symmetry breaking.
Pairing amplitude.—In Fig. 2 we present the pairing

amplitude profile near the interface for h ¼ 1:5, tint ¼ 1,

(a) (b)

FIG. 1 (color online). (a) Schematic diagram of the two-
dimensional TSC-FM junction. The FM region is located at x<0,
while theTSC is realized forx > 0. ThemagnetizationMof theFM
is collinear to the exchange field h and forms an angle � with the
d-vector of the TSC, which defines the z axis. We study TSC states
with px, py, and px þ ipy symmetry. (b) Evolution of the bulk FM

magnetization and themajority andminority spin concentrations as
a function of the exchange field h.

(a) (b)

(c) (d)

FIG. 2 (color online). Zero temperature pairing amplitude
scaled to its bulk value as a function of the distance ix from
the interface for h ¼ 1:5, tint ¼ 1, and several different angles �
of the d-M misalignment. The spin-triplet orbital symmetry is of
(a) px, (b) py, and chiral type with (c) a real px and (d) an

imaginary py component, respectively.
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and several different values of 0 � � � �=2. This is
determined by minimizing the Gibbs energy functional
with respect to the pairing amplitudes at the fixed angle
[16]. Distinct trends are evident both in the FM and TSC
sides of the junction as the exchange field is rotated from a
parallel (� ¼ 0) to a perpendicular (� ¼ �=2) orientation
with respect to the d-vector. Independent of the orbital
symmetry, the proximity effect in the FM smoothly evolves
from a monotonic decay at � ¼ �=2 to a damped oscillat-
ing behavior at � ¼ 0 [8]. The oscillating behavior is
similar to that observed in an SSC-FM junction [2], and
is also due to pair breaking, specifically the spin-spin
coupling between the z component of the exchange field
and the in-plane spin of the triplet Cooper pairs.

In contrast, the pairing amplitude in the TSC side of the
interface strongly depends upon both the angle � and the
orbital symmetry of the TSC. For a TSC with px orbital
symmetry, the pairing amplitude near the interface is reduced
as the exchange field is tilted from parallel to perpendicular
with respect to the d-vector [see Fig. 2(a)]; the opposite
behavior is observed for a py TSC, although the effect is

less pronounced [see Fig. 2(b)]. The chiral px þ ipy TSC

evidences both trends: decreasing� from�=2 to 0 enhances
the real (px) part of the gap [Fig. 2(c)], but suppresses the
imaginary (py) part [Fig. 2(d)]. Competition between the two

gap components enhances their variationwith� compared to
the time-reversal symmetric states.

The pair breaking due the spin-spin coupling cannot
explain the different � dependence of the py and px gap

profiles. This instead originates from the spin-flip reflec-
tion of triplet Cooper pairs at the interface with the FM,
which is crucial for the spin Josephson effect [10,11]. In
such a scattering process, an incident Cooper pair with spin
� mutually perpendicular to d and M acquires the spin-
and orbital-dependent phase shift�� 2��þ ��: the first
two terms are due to the spin flip, while the last is due to the
phase change of the TSC gap upon specular reflection.
Here �� ¼ � (0) for the px (py) state, while �� depends

on the angle of incidence for the px þ ipy gap. It is well

known that the gap is suppressed at interfaces where
reflected Cooper pairs undergo a nontrivial phase shift
[17]; in the TSC-FM junction we hence maximize the
gap at the interface by choosing � so that the spin-flip
reflected Cooper pairs have a 2�n phase shift. Because of
the different orbital phase shifts ��, this occurs at � ¼ 0
(�=2) for the px (py) pairing amplitude, in agreement with

Fig. 2. This interplay of spin and orbital degrees of freedom
manifests an unconventional type of spin-orbital coupling
at the TSC-FM interface.

Stable moment orientation.—The spin-spin and spin-
orbital coupling effects give �-dependent contributions
to the Gibbs free energy F of the junction, e.g., by
modifying the local density of states in the FM and the
condensation energy E� in the TSC, respectively. The
energetically favored moment orientation is found directly

from F, while the relevance of the spin-orbital coupling
can be deduced from E�. In Fig. 3 we present the behavior
of the Gibbs energy F and the condensation energy E� as a
function of �, where these quantities are evaluated for the
pairing amplitudes that minimize F at the given angle [16].
In Fig. 3(a) we plot E� as a function of � for several

typical cases and a perfect interface (tint ¼ 1). As expected,
the condensation energy for the px and py TSCs is indeed

maximized for the exchange field orientation which max-
imizes the gap amplitude. The px þ ipy case is more

complicated, since here the px and py gap components

show opposite dependence upon �. We find that the maxi-
mum in E� shifts from � ¼ �=2 to � ¼ 0 with increasing
exchange field strength. That is, for a weak FM the py

component dominates the physics, while at strong polar-
izations the px gap is most important.
The minimum of the Gibbs free energy F fixes the stable

moment orientation. In Figs. 3(b)–3(d), we plot F as a
function of � for the three orbital symmetries at tint ¼ 1.
For the px orbital symmetry, the profile exhibits a single
minimum at � ¼ 0 and a maximum at � ¼ �=2, and vice
versa for the py TSC. The stable magnetic orientation is

therefore parallel (perpendicular) to the d-vector if the
antinodes of the p-wave TSC gap are perpendicular
(parallel) to the interface. Our conclusions are robust to
changing tint as shown in the Supplemental Material [16].
The Gibbs free energy for the px þ ipy junction has

minima at both � ¼ 0 and � ¼ �=2, which is not antici-
pated from the condensation energy. As shown in Fig. 3(d)
and Fig. 4(a), at tint ¼ 1 the global minimum shifts from
� ¼ �=2 (perpendicular) to� ¼ 0 (parallel) with increas-
ing exchange field strength. This occurs at the critical field
strength hcr;1 � 1:74, which is a little higher than if we

(a) (b)

(c) (d)

FIG. 3 (color online). (a) Dependence of the condensation
energy E� on the angle �. (b)–(d) Dependence of the Gibbs
energy F on � for various fixed h and for px, py, and px þ ipy

orbital symmetries of the TSC. E�;min and Fmin are the minimum

amplitudes of the related energies. All panels are for tint ¼ 1 and
temperature kBT ¼ 0:05.
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considered only the condensation energy [see Fig. 4(b)].
Further increasing h into the extreme half-metal regime, we
find that the � ¼ �=2 state reappears above hcr;2 (not

shown). The two critical fields merge together as the tem-
perature is increased, so that only the � ¼ �=2 state is
stable sufficiently close to Tc. While the tint > 1 results
are qualitatively similar, reducing tint entirely suppresses
the� ¼ 0 state. Herewe also observe a decoupling between
the condensation energy gain and the Gibbs free energy;
e.g., for tint & 0:8 the gain in condensation energy in the
low-field regime favors a� ¼ 0 state, while the Gibbs free
energy shows that the � ¼ �=2 state is stable. Since the
contribution to the free energy in the TSC region can be
ascribed to E�, any inconsistency between the location of
the minimum inF and E� must be due to the changes in the
energy spectrum at the interface and in the FM, which are
only included in the former.We expect that themodification

of the energy spectrumwill depend rather strongly upon the
interface hopping tint, and indeed in Fig. 4 we observe that
the condensation energy tends to overstate the stability of
the � ¼ 0 state. We conclude that for a sufficiently imper-
fect interface the magnetization orientation is controlled by
other processes, such as the change of the spectrum at the
interface [11] or the proximity effect.
Experimental considerations.—The apparently small

energy difference between the � ¼ 0 and �=2 states
shown in Fig. 4 results from averaging what is essentially
an interface effect over the entire lattice; the energy gain
per interface unit cell is L times larger, and gives an
anisotropy energy on the order of 	0:01kBTc for the
microscopic parameters chosen here. In the case of a thin
FM layer, the magnetic anisotropy induced by the coupling
to the TSC could be observed by ferromagnetic resonance
measurements: for an exchange field h ¼ 0:5 in the FM,
and choosing Sr2RuO4 (Tc ¼ 1:5 K) for the bulk TSC, we
estimate a precession frequency of 	5 cosð�Þ GHz. Since
there is no spin-orbital coupling at SSC-FM interfaces, the
observation of this precession would strongly indicate a
TSC state in the superconductor. For a thicker layer, the
TSC can modify the magnetization profile near the inter-
face, effectively creating a spin-active boundary layer [18].
This may qualitatively alter the proximity effect and the
electronic transport properties of the junction [7].
Summary.—In this Letter we have studied the interplay

between orbital and spin degrees of freedom in a TSC-FM
heterostructure. The orbital pairing state in the bulk TSC
plays a critical role in fixing the stable orientation of the
magnetization in the FM, which is summarized by the
sketch in Fig. 4. For the time-reversal symmetric gaps,
the easy axis in the FM originates from the maximization
of the TSC’s condensation energy. On the other hand, the
orbital frustration of the condensation energy in a chiral
TSC leads to a magnetic configuration with a first-order
transition between the perpendicular and parallel configu-
rations as a function of the exchange field. Spin-dependent
electronic reconstruction at an imperfect interface can
compensate the condensation energy gain. We argue that
the induced anisotropy axis in the FM could be observed in
ferromagnetic resonance measurements, and can act as a
test of the orbital and spin pairing state of the TSC.
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