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We study the interplay between Dirac and Schrödinger fermions in the polarization properties of a two-
dimensional electron gas (2DEG). Specifically, we analyze the low-energy sector of narrow-gap
semiconductors described by a two-band Kane model. In the context of quantum spin Hall insulators,
particularly, in Hg(Cd)Te quantum wells, this model is named the Bernevig-Hughes-Zhang model.
Interestingly, it describes electrons with intermediate properties between Dirac and Schrödinger fermions.
We calculate the dynamical dielectric function of such a model at zero temperature within random phase
approximation. Surprisingly, plasmon resonances are found in the intrinsic (undoped) limit, whereas they
are absent—in that limit—in graphene as well as ordinary 2DEGs. Additionally, we demonstrate that the
optical conductivity offers a quantitative way to identify the topological phase of Hg(Cd)Te quantum wells
from a bulk measurement.
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Introduction.—The advent of graphene [1] has paved the
way to the investigation of Dirac fermions in condensed
matter systems [2]. Since then, Dirac fermion physics has
also been analyzed in many other two-dimensional (2D)
systems. Prominent examples are the surface states of 3D
topological insulators (TIs) [3,4], where the helicity, i.e.,
coupling of momentum and spin degrees of freedom,
introduces new interesting phenomena [5,6]. Another rich
system is offered by the bulk bands of the 2D TI phase in
Hg(Cd)Te quantum wells [7], described by the Bernevig-
Hughes-Zhang (BHZ) model [8], where the interplay of
Dirac and Schrödinger fermion physics can be studied in
combination with topology [9].
An important aspect of condensed matter physics is the

influence of Coulomb interaction on observables. In the
Dirac fermion system graphene, this research has been
intensified in recent years [10–15], resulting even in the
development of plasmon technology [16,17]. Plasmons are
collective density oscillations commonly occurring at finite
doping in an electronic system. Plasmons in Dirac fermion
systems have been experimentally observed in graphene
[18–20] as well as 3D TIs [21]. Usually absent in the
undoped limit, intrinsic plasmons have been predicted in
graphene, when the electron and hole gas have a finite
density due to thermal excitations [22,23], or with the
inclusion of excitonic effects through ladder-type vertex
corrections in the calculation of the dielectric response
function [24]. Yet, the latter result is still under debate due
to the neglect of diagrams of the same order [25].
Interestingly, a reduction of the dimension to 1D gives
rise to intrinsic plasmons in metallic armchair nanoribbons
[26]. These situations are physically distinct from our
prediction below where we show that plasmons, in the
intrinsic limit, can appear due to an interplay of Dirac and
Schrödinger physics.

We present a calculation of the dielectric properties of
the BHZ model at zero temperature and doping, within
random phase approximation (RPA). Surprisingly, the
interpolating character of the model gives rise to plasmonic
resonances, absent in both limiting cases of Dirac and two-
dimensional electron gas (2DEG) system. We discuss their
presence and damping rate for various parameters, includ-
ing the TI and the normal insulator (NI) phase as well as
experimentally realistic values. Furthermore, we calculate
the bulk optical conductivity, which offers a way to
quantitatively resolve between NI and TI phase.
Model.—The BHZ model for fermions in Hg(Cd)Te

quantum wells—near the Γ point in the Brillouin zone—
has the following form [8]:

H ¼
�
hðkÞ 0

0 h�ð−kÞ
�
;

hðkÞ ¼ VðkÞ þ dk · σ⃗;

dk ¼ ðAkx; Aky; MðkÞ Þ; (1)

where σ⃗ are the Pauli matrices associated with the band-
pseudospin degree of freedom (subband E1 or H1 in HgTe
quantum wells), VðkÞ ¼ C −Dk2, and MðkÞ ¼ M − Bk2.
The system possesses time-reversal symmetry and H is
block diagonal in the Kramers partner or spin degree of
freedom. Therefore, we restrict ourselves to the block hðkÞ,
from which the results can be extended to the other one by
applying the time-reversal operator.
Evidently, hðkÞ smoothly interpolates, as a function of its

parameters, between a Dirac and a conventional 2DEG
system. The off-diagonal term (A parameter) is typical of a
Dirac system with M the Dirac mass. Negative masses
correspond to the TI phase described by a finite Z2
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topological invariant [27], while positive masses lead to a
normal insulator (assuming B < 0). In analogy to a 2DEG,
the diagonal parts bear kinetic energy elements which
preserve (B parameter) and break (D parameter) particle-
hole symmetry. The eigenstates of Eq. (1) are characterized
by energy dispersion and pseudospin [28]:

Ek;λ ¼ VðkÞ þ λjdkj; (2)

hk; λjσ⃗jk; λi ¼ λd̂k; (3)

with λ ¼ � for conduction and valence bands, where d̂ is
the direction of the d vector, illustrated in Fig. 1.
Polarization function.—At zero doping, there are no

extrinsic parameters like the Fermi momentum.
Nevertheless, the parameters of the BHZ model provide
natural units for the wave vector q0 ¼ A=jBj and the
energy E0 ¼ Aq0. We define the dimensionless wave
vector X ¼ q=q0 and frequency Ω ¼ ℏω=E0, as well as
the dimensionless parameters ξM ¼ M=E0 and
ξD ¼ D=jBj. Hence, the physical scales of momentum
and energy are fixed by the ratio of the A parameter
(linked to the Dirac physics) to the B parameter (linked to
the 2DEG physics). In terms of the dimensionless
variables, we expect, therefore, an intermediate behavior
for X ∼ 1, while for X, Ω → 0 (X, Ω → ∞), the Dirac
(2DEG) physics should emerge.
The linear response of a homogeneous system to an

external applied potential is described by the polarization
function ΠRðq;ωÞ. This response comprises the two main
phenomena of screening and dissipation, included in the
real and imaginary part of ΠRðq;ωÞ, respectively. The
intrinsic polarization function of the BHZ model in RPA
approximation at zero temperature, where only interband
terms contribute, can be written as

ΠRðX;ΩÞ ¼ gs
jBj

X
λ¼�

Z
d2 ~X
ð2πÞ2

λF ð ~X; ~X0Þ
Ωþ i0þ þ ϵ ~X;−λ − ϵ ~X0;λ

;

(4)

with ~X0 ¼ ~X þ X, 0þ a positive infinitesimal, gs ¼ 2 for
spin degeneracy, ϵ ~X;λ ¼ Eq0 ~X;λ

=E0 the dimensionless eige-
nenergies, and

F ðX;X0Þ ¼ jhk;þjk0;−ij2 ¼ 1

2
½1 − d̂q0X · d̂q0X0 �: (5)

From Eq. (4), we see that jBjΠRðX;ΩÞ is a function of X
and Ω, while it parametrically depends on ξM and ξD.
The same is also true for the dynamical dielectric

function, which acquires the form

εðX;ΩÞ
εr

¼ 1 − αgðX;ΩÞ; (6)

where we define the effective fine-structure constant α ¼
e2=ð4πε0εrAÞ [15]. In graphene, it is of the order α ¼
2.2=εr [16]; in HgTe, one finds α ≈ 4=εr [9,29]. Here, εr is
the background dielectric constant and we introduce the
function gðX;ΩÞ ¼ ð2πjBj=XÞΠRðX;ΩÞ. While εr
accounts for the screening of internal electronic shells,
−αgðX;ΩÞ yields the dynamical screening due to valence
electrons within RPA.
Besides the screening properties, the dielectric function

also provides insight into the excitations of the system.
Zeros of εðX;ΩÞ identify momentum and frequency at
which the system allows for self-sustaining density per-
turbations, which form collective excited modes of the
system, i.e., plasmons. The dispersion relation of the
plasmonic solutions is obtained by solving [30,31]

εðX;Ωp − iΓÞ ¼ 0; (7)

where Ωp is the dimensionless eigenfrequency of the
plasmon and the finite imaginary part Γ ¼ γ=E0 accounts
for the possible damping due to single-particle excitations.
Dissipation processes in the interacting system are

described by ε through the loss function

Im

�
− 1

ε

�
¼ 1

εrα

Im½gðX;ΩÞ�
j 1α − gðX;ΩÞj2 ; (8)

which accounts for the excitation of both single-particle
electron-hole pairs and collective plasmon modes.
Overlap factor.—Massless Dirac fermions (correspond-

ing to D ¼ B ¼ M ¼ 0) are characterized by their helicity
and, consequently, the overlap factor reduces to
F ðk; k0Þ ¼ ð1 − cos θÞ=2, with θ the angle between k
and k0. Hence, it is strictly one (zero) for k and k0 pointing
in the opposite (same) direction. Eigenstates of the BHZ
model are characterized by their pseudospin. The quadratic
terms turn the pseudospin out of plane in opposite

FIG. 1 (color online). Dispersion relation and pseudospin
properties of the eigenstates of the BHZ model for a NI phase
with ξM ¼ 1=2 (a) and TI phase with ξM ¼ −1=2 (b). The two
bands have been artificially seperated by an additional 2ϵX;λ for a
better illustration of the pseudospin.
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directions for conduction and valence bands at large X; see
Fig. 1. This behavior results in a decay of the overlap factor
for A → 0 or X → ∞, reproducing the limit of a conven-
tional 2DEG system where intrinsic polarization is absent.
For X ≪ jξMj, a finite Dirac mass term turns the pseudospin
out of plane as well, in the same direction as the quadratic
terms [Fig. 1(a)] for M > 0 (NI phase) or in the opposite
direction [Fig. 1(b)] for M < 0 (TI phase). This behavior
suppresses the overlap factor. In the TI phase, valence and
conduction band states with unitary overlap can always be
found for finite X. Thus, the overlap factor is enhanced in
the region X ≳ jξMj with respect to the NI phase. These
observations will help us to better understand the sub-
sequent physics.
Results.—The imaginary part of the polarization function

is calculated from Eq. (4), by employing the relation
Im½1=ðωþ i0þÞ� ¼ −πδðωÞ. The real part is then obtained
by the Kramers-Kronig relation. In Fig. 2 we plotΠRðX;ΩÞ
for ξM ¼ ξD ¼ 0. The imaginary part in Fig. 2(a) is strictly
zero below the cutoff frequency Ωmin, where electronic
excitations are forbidden by energy-momentum conserva-
tion. In the Dirac limit (X, Ω → 0), the cutoff frequency is
Ωmin ¼ X, where a divergent behavior is observed [24]
because the linear spectrum allows for the existence of a
divergent number of particle-hole excitations satisfying the
energy-momentum conditions. In the opposite limit (X,
Ω → ∞), the polarization function goes to zero, due to the
vanishing overlap factor, as expected in the 2DEG limit. At
fixed X and Ω → ∞, the imaginary part decays as Ω−2,
while in a purely Dirac system it shows a Ω−1 decay.
Whereas in graphene within RPA the real part of ΠR is
always negative, for the BHZ model, as shown in Fig. 2(b),
Re ½ΠR� changes sign and becomes positive in the region
above Ωmin indicated by the green dashed line. In this
antiscreening region, we can search for solutions to Eq. (7),
describing plasmonic resonances. Yet, Landau damping of
the plasmon mode by single-particle excitation processes
can be expected due to the finite value of Im½ΠR� in the
same region.
In Fig. 2(c), we plot line cuts of Im½ΠR� for fixed X ¼ 0.5

with and without ξD. A finite ξD strongly changes the
polarization for small X, as Im½ΠR� goes to zero at Ωmin,
instead of exhibiting the divergency known from graphene.
This is due to the breaking of particle-hole symmetry and
greatly diminishes the Landau damping of plasmons. In
Fig. 2(d), we plot line cuts of Re ½ΠR� for fixed X ¼ 2 and
different Dirac masses. One nicely sees that, due to their
effect on the overlap factor, a negative (positive) mass
enhances (diminishes) the features of the polarization
function with respect to the M ¼ 0 case. Therefore, in a
topologically nontrivial phase the antiscreening
(Re ½ΠR� > 0 part) effect gets enhanced, which increases
the chance of observing plasmons.
Plasmons.—Now, we look for solutions of Eq. (7)

corresponding to plasmon quasiparticles of definite energy

and momentum (where Γ=Ω < 1). For this purpose, Eq. (7)
is expanded up to order ðΓ=ΩÞ2 [14,31], resulting in two
equations for the real and imaginary parts, from which we
obtain the plasmon dispersion and its damping factor,
respectively. We find that the damping ratio Γ=Ω para-
metrically depends on ξM and ξD only, but not on the
interaction strength α. This behavior implies that Landau
damping is due to the noninteracting single-particle exci-
tations. In Fig. 3(a), we plot the damping ratio Γ=Ω for a TI
phase with ξM ¼ −4=9. For frequencies Ω ≫ Ωmin, the
system is sufficiently undamped and the expansion in Γ=Ω
is justified. In Fig. 3(b), we show the contour plot of
ðRe ½gðX;Ω − iΓÞ�Þ−1 for ξM ¼ −4=9. The isolines
ðRe ½gðX;Ω − iΓÞ�Þ−1 ¼ α yield the plasmon dispersion
curve for different interaction strength α. The plasmon
dispersion relation has a square-root dependence on X,
known from doped graphene [13] and ordinary 2DEG, for
α → ∞, but shows instead an almost linear dependence (for
small X) in the limit of α → 0. Plasmons are also revealed
as peaks in the loss function Im½−ð1=εÞ�. In Fig. 3(c) we
compare the plasmon dispersion calculated from Eq. (7)
with the loss function for an interaction strength of α ¼ 0.4
and ξD ¼ −0.5. Evidently, plasmons are easily resolved
and in perfect agreement with our analytical calculation.
This is the key results of this Letter: the interplay between
Dirac and Schrödinger fermions leads to a plasmonic
excitation, which is absent in the limiting cases of a pure
Dirac or Schrödinger system.
In Fig. 3(d), we plot the plasmon frequency and damping

as a function of α at fixed X ¼ 0.5 for a NI and a TI phase
(ξD ¼ 0) as well as for ξD ¼ −0.5. As the plasmon
frequency increases with α, for α → ∞ the damping ratio

FIG. 2 (color online). Real (a) and imaginary (b) part of
ΠRðX;ΩÞ of the BHZ model for ξM ¼ ξD ¼ 0. In (c) line cuts
are drawn of Im½ΠR� for X ¼ 0.5, with ξD ¼ −0.5, 0. The line
cuts in (d) show Re½ΠR� for X ¼ 2 with ξM ¼ −4=9, 0, and 4/9,
with green triangles, blue dots, and black stars, respectively.
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Γ=Ωp decreases to values below Γ=Ωp ≲ 0.2. Notably, at
large α, the TI phase yields a larger plasmon frequency and
is considerably less damped than the NI phase. This
behavior directly stems from the enhancement of the
antiscreening region of the polarization function due to
the overlap factor enhancement in the TI phase. In the
opposite limit, α → 0, the excessive damping leads to a
breakdown of our expansion. For finite ξD, on the other
hand, the plasmon damping has a minimum around α ≈ 1,
which prevails to even smaller interaction strengths. This
behavior is a direct consequence of the smaller Im ½ΠR�
leading to reduced Landau damping for small plasmon
frequencies.
Experimental realization.—Considering experimental

parameters for Hg(Cd)Te structures [9,29], one finds
roughly ξD ≤ −0.5, q0 ≈ 0.4 nm−1, E0 ≈ 140 meV, and
masses M with absolute values up to several meV. The
interaction strength is about α ≈ 0.27, resulting from α ≈
4=εr with an average εr ¼ 15 from the CdTe substrate
(εr ¼ 10) and HgTe (εr ¼ 20). As recently reported for
the surface states of a 3D TI [21], plasmons with a ratio of
Γ=Ωp ¼ 0.5 are still observable in experiments. From Fig. 3
(d) we find Γ=Ωp ≈ 0.3 for α ≈ 0.27 and ξD ¼ −0.5. The
wavevector and frequency of the plasmon are extracted from
Fig. 3(c) to be q ∈ ½0.1; 0.6�q0 ¼ ½0.04; 0.24� nm−1 and
ω ∈ ½0.1; 0.8�ðE0=ℏÞ ¼ ½21; 170� THz, respectively, where
the lower bound stems from the merging of plasmon and
single-particle background for X, Ω → 0. This momentum
and frequency range is of the right order for experimental
techniques like Raman spectroscopy [32]. A finite

temperature in experiments can lead to doping by thermal
excitations. At the temperature of liquid helium, one finds
kBTHe ≈ 0.35 meV, with kB the Boltzmann constant. Thus,
the plasmons resulting from thermal excitations occur on an
energy and momentum scale at least 2 orders of magnitude
smaller than the plasmons discussed in this Letter, making
it possible to fully separate them or to suppress them with a
small gap kBT < jMj. We conclude that the plasmonic
resonances discussed above are measurable, e.g., with
Raman spectroscopy on Hg(Cd)Te quantum wells.
Optical conductivity.—From the knowledge of the

polarization function, we can calculate the bulk optical
conductivity of the system, defined by [33]

σ0ðΩÞ ¼ lim
X→0

Ω
X2

jBjΠRðX;ΩÞ: (9)

Notably, σ0 is a universal function depending only on Ω
and ξM. An analytical calculation yields

Im½σ0ðΩÞ�¼−
�
1

W
þ1þ4ξM

Ω2

�
1þ2ξM

W
−1

2

��
ΘðΩ−2jξMjÞ;

where W ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ξM þΩ2

p
.

In Fig. 4, we plot Im ½σ0ðΩÞ� for the different masses
ξM ¼ −4=9, 0, and 4=9. Compared to the massless case,
both positive and negative Dirac mass lead to a peak just
above Ωmin ¼ j2ξMj. The signal from the TI phase is much
stronger, diverging for jξMj → 1=2, which is the threshold
of turning the band structure into a Mexican hat shape.
Such difference between the trivial and topological phases
is emphasized in the inset of Fig. 4, where we plot the ratio
R ¼ Im ½σ0ðΩÞ�M>0=Im ½σ0ðΩÞ�M<0. This behavior can be
explained by considering the combined effects of the
overlap factor and the phase space for the excitation
process. In the TI phase of the BHZ model, the conduction
and valence bands flatten for X < jξMj, with respect to the
NI phase. This fact enormously increases the number of
finite momentum states available for an excitation just

FIG. 3 (color online). (a) Illustration of the damping ratio Γ=Ω
and (b) the function 1=Re ½gðX;Ω − iΓÞ�, for ξM ¼ −4=9.
(c) Plasmon dispersion together with the loss function
Im ½−1=ε� for ξD ¼ −0.5 and α ¼ 0.4. (d) Plasmon frequency
and damping at X ¼ 0.5 [dashed line in (b) and (c)] for ξM ∈
f−4=9; 4=9g and ξD ¼ −0.5 in green triangles, black stars, and
blue dots, respectively.
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FIG. 4 (color online). Illustration of Im ½σ0ðΩÞ� for ξM ¼ −4=9,
0, and 4/9, with dot-dashed, long dashed, and solid lines,
respectively. The inset shows the ratio R ¼ Im ½σ0ðΩÞ�M>0=
Im ½σ0ðΩÞ�M<0 for jξMj ¼ 1=6, 1/3, and 1/2 in dot-dashed, long
dashed, and solid lines, respectively.
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above Ωmin ¼ j2ξMj. The optical conductivity also shows a
qualitatively different behavior as a function of jξMj.
Indeed, Im ½σ0ðΩÞ� increases (decreases) with increasing
jξMj for a negative (positive) mass.
To conclude, we have analyzed the influence of

Coulomb interaction—within RPA—on a mixed Dirac or
Schrödinger fermion system described by the BHZ model.
This model well describes a 2D TI realized in Hg(Cd)Te
quantum wells. In the intrinsic limit, we could find
observable plasmon solutions, which is a remarkable
consequence of the peculiar electronic spectrum of the
model. These plasmons occur for parameters suitable for
experiments (like Raman spectroscopy) on Hg(Cd)Te
quantum wells. Furthermore, we have predicted that a
measurement of the optical conductivity at finite frequency
(to be precise, above Ω ¼ j2ξMj) yields a direct way to
distinguish between the two topological phases of Hg(Cd)
Te quantum wells.
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