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We investigate a system of multiple Majorana states at the end of a topological superconducting wire
coupled to a normal lead. For a minimum of three Majorana fermions at the interface, we find nontrivial
renormalization physics. Interface tunneling processes can be classified in terms of spin-1=2 and spin-3=2
irreducible representations of the SU(2) group. We show that the renormalization of the tunneling
amplitudes belonging to different representations is completely different in that one type is suppressed,
whereas the other is enhanced, depending on the sign of the Kondo-type interaction coupling. This results
in distinct temperature dependencies of the tunneling current through the interface and different spin
polarizations of this current.
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Introduction.—Majorana fermions were first proposed as
hypothetical elementary particles that are their own anti-
particles [1]. The possibility of Majorana states at the
surfaces of triplet superconductors has been discussed for a
long time [2–7]. The realization that they are related to
topological properties of the system [8] has generated a lot
of interest in Majorana states at the surfaces of topological
superconductors (TSs) [7,9–15].
The first signatures of Majorana states at the ends of a

TS wire were found in transport measurements involving
the interface between the wire and a normal (N) lead
[16,17]. These experiments have so far been compared to a
model with a single Majorana state coupled to the normal
lead [10,11,18], which cannot contain any interaction
between the Majorana state and the lead because the
(single) Majorana operator γ squares to unity. The theory
has already advanced to more sophisticated noninteracting
systems, such as Josephson junctions between TSs, where
the tunneling takes place between Majorana states [19], and
setups with one or several quantum dots mediating the
electron transfer between the leads and the TS [20–22]. The
study of interaction processes in such systems is of interest
since interactions generically lead to strong renormalizations
in low dimensions. However, so far only on-dot interactions
have been studied for these setups [23,24]. The implemen-
tation of Majorana-lead interactions requires the presence of
several Majorana modes. Multiple Majorana states and the
renormalization of interaction couplings have been studied
in Refs. [25–28]. Each Majorana end state is either coupled
by a tunneling term to its own normal lead or is not coupled
at all [25–28]. We consider a different situation: Multiple
Majorana states hybridizing with a single lead.
Our goal is to understand the interplay between multiple

tunneling channels and the electron-Majorana interaction,
which we find to induce strong renormalization. This
research is meant to help in interpreting, regardless of

microscopic details, the results of transport measurements
by studying the temperature dependence and spin polari-
zation of the current. We show that these observables
exhibit clear signatures of the presence of Majorana
fermions and of their coupling to the leads. A TS wire
coupled to a normal lead is modeled by N Majorana
fermions localized at one end of the wire and a Fermi sea of
spinful electrons, coupled by general tunneling and inter-
action terms. The minimal nontrivial case of N ¼ 2 gives
nothing new because the two Majorana states make up a
spinless fermion and the interaction in the system is
equivalent to the one in the interacting resonant-level
model, leading to the same renormalization flow, which
has been studied extensively [29,30]. Systems with N ≥ 3
are fundamentally different: Unlike theN ¼ 2 system, their
interaction couplings get strongly renormalized, similarly
to the Kondo model [28]. Here, we will demonstrate that
interesting renormalization physics occurs already for
N ¼ 3. The predictions made in this work are unique for
this system, which supports both Kondo and tunneling
couplings, whose interplay leads to the nontrivial discrimi-
nation of the tunneling processes depending on the sign of
the interaction.
In the general case of N Majorana states, the sets of N

Majorana operators before and after some symmetry trans-
formation are related by γi0 ¼

P
N
j¼1 Rijγj, where R is a real

(since γ†i ¼ γi) orthogonal matrix belonging to the group
SOðNÞ. A candidate for this symmetry transformation is the
electron spin rotation. In this case Majorana states trans-
form into each other according to a representation of the
SU(2) group, which also has to be a subgroup of SOðNÞ.
The case of three Majorana states is particularly interesting
since the whole SO(3) group is equivalent to the spin-1
representation of SU(2). An experimental realization of a
set of three Majorana states transforming under SO(3) is
still unknown, but there is already a proposal assuming the
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existence of such sets in vortex cores in TS [31]. As we
shall see, for the N-TS interface the tunneling terms
inevitably break the SU(2) spin symmetry.
In this Letter, we derive the renormalization-group (RG)

flow equations for the electron-Majorana interaction
strengths and tunneling amplitudes within the framework
of poor man’s scaling for arbitrary N. We solve the RG
equations for the simplest nontrivial case N ¼ 3, and
demonstrate that the tunneling amplitudes can be classified
according to the irreducible representations of the SU(2)
group and that the components belonging to different
representations obey different RG equations. In practice,
this means that starting from arbitrary tunneling parame-
ters, the interaction will lead to the suppression of one set of
parameters and the enhancement of the other. Moreover,
depending on the initial value of the interaction, a different
tunneling type will dominate in the scaling limit, leading to
a different temperature dependence of the current through
the interface.
Model.—The investigated system consists of a noninter-

acting normal lead with a Fermi sea of electrons coupled
to three Majorana states localized at the same end of a TS
wire, which are described by the Hermitian fermionic
operators γi. The Hamiltonian of the lead is HL ¼P

αpϵpa
†
αpaαp, where a

†
αp, aαp are creation and annihilation

operators of electrons with spin α ¼ ↑, ↓ and momentum
p. It is assumed that the electronic band with the dispersion
relation ϵp approximately covers the energy interval ½−D;D�
and has a constant normalized density of states ρðEÞ≡
N −1P

pδðE − ϵpÞ ≈ ν for E ≪ D (hereN is a total number
of states in the lead). Henceforth, we take ℏ ¼ kB ¼ 1.
The couplings between the states localized at opposite

ends of the wire are exponentially suppressed with the
distance between them. If the SOðNÞ symmetry of the
Majorana states γi at the same end is broken, a coupling of
the form HD ¼ i

P
ijEijγiγj is allowed. However, as we

will discuss later, HD does not affect the RG equations as
long as the flow parameter satisfies Λ ≫ jEijj.
The N-TS coupling consists of a bilinear tunneling part

and an interaction part. Assuming that the coupling is local
in real space, the most general tunneling term is

HT ¼
X
iα

tiαγia
†
α þ H:c:; ð1Þ

where aα ¼ N −1=2P
paαp and tiα are tunneling amplitudes.

The leading interaction terms are of fourth order in fermionic
operators. We focus on terms that are quadratic in Majorana
operators [32]. Because of the anticommutation relation
fγi; γjg ¼ 2δij only NðN − 1Þ=2 combinations exist. Thus,
the most general local biquadratic interaction term reads

HV ¼ 1

2

X
ijαβ

Vij
αβγiγja

†
αaβ; ð2Þ

where Vij
αβ ¼ −Vji

αβ are coupling parameters. If there is any
interaction between the TS and the leads, we expect an
expansion in the order of vertices to generate HV . While the
direct Coulomb interaction vanishes for the neutral Majorana
fermions, an exchange-type interaction emerges naturally
since the zero-energy Majorana surface states of nodal TSs
with strong spin-orbit coupling typically carry a large spin
[15,33,34]. An interaction HV can also be realized in a
small superconducting island with large charging energy
hybridized with normal leads [25,27]. HV is here
obtained by integrating out charge fluctuations, which
removes the tunneling term HT . More generally, the cou-
pling of Marojana states and normal electrons to any
additional modes, such as phonons, will typically introduce
an effective interaction of this form when these modes are
integrated out.
RG and symmetry analysis.—To study the renormaliza-

tion effects, we employ the poor man’s scaling approach
[35,36]: The RG flow parameter Λ denotes the maximal
energy of the electron modes, jϵpj < Λ; the electron modes
are divided into fast modes aαk with energies in the thin
shell Λ − ΔΛ < jϵkj < Λ and slow modes aαp0 with jϵp0 j <
Λ − ΔΛ; integration over the fast modes results in correc-
tions to the slow-mode terms in the Hamiltonian. Repeating
this step, we integrate out all electron degrees of freedom,
obtaining an effective low-energy Hamiltonian. Taking the
N-TS coupling as the perturbation and H0 ¼ HL þHD as
the bare Hamiltonian, the correction to the interaction for
excitations with small energyE, from a single RG step, reads

ΔHV ≈ hHVðE −H0Þ−1HVi ¼ −
1

4N 2

X
ii0jj0;αβη

p0q0 ;k

Vij
αηV

i0j0
ηβ

×

�
γiγjγi0γj0

1 − nk
ϵk

þ γi0γj0γiγj
nk
ϵk

�
a†αp0aβq0 ; ð3Þ

where p0, q0 denote slow modes, k refers to a fast
mode, angular brackets denote the integration over the fast
modes only, ΔH ≡HðΛ − ΔΛÞ −HðΛÞ is the difference
between the values after and before the RG step, and
nk ≡ nFðϵkÞ is a Fermi distribution function. Λ is of the
order of the band width, which is assumed to be large
compared to the other energy scales of the problem, in
particular the energyE and the inter-Majorana couplingsEij.
Therefore, these terms do not affect the RG flow to leading
order and can be neglected. The terms relevant for the RG
flow decay as Λ−1. For the assumed constant and symmetric
density of states we drop the sum N −1P

k1=ϵk and
approximate N −1P

kð1=2 −nkÞ=ϵk≈νΔΛ=Λ, and find
the RG equation

dVij
αβ

dΛ
¼ 2ν

Λ

X
l;η

ðVil
αηV

lj
ηβ − Vjl

αηVli
ηβÞ: ð4Þ
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The corresponding correction to the tunneling term is

ΔHT≈hHVðE−H0Þ−1HTiþ½T↔V�¼−
1

2N 3=2

×
X
ijj0;ηβ
p0 ;k

Vij
αβtj0β

�
γiγjγj0

1−nk
ϵk

þγj0γiγj
nk
ϵk

�
a†αp0 þH:c: ð5Þ

Keeping only the RG-relevant contribution, we obtain

dtiα
dΛ

¼ 2ν

Λ

X
j;β

Vij
αβtjβ: ð6Þ

The obtained equations couple 2NðN − 1Þ quantities Vij
αβ

and 2N quantities tiα. To simplify the analysis but preserve
the interesting renormalization physics, we restrict ourselves
to N ¼ 3.
The case of three Majorana states.—The special feature

of the SO(3) group is that its irreducible representations are
equivalent to integer-spin representations of SU(2). This
feature allows us to classify the elements Vij

αβ and tiα in
terms of the irreducible representations of SU(2). The
products of two Majorana operators, which form vectors
belonging to the spin-1 representation Γ1, can be split into
the irreducible representations Γ1 ⊗ Γ1 ≅ Γ0 ⊕ Γ1⊕Γ2.
Since expressions belonging to the scalar (Γ0) representa-
tion,

P
iγ

2
i ¼ 3, and to the spin-2 (Γ2) representation,

γiγj þ γjγi ¼ 0, are just numbers, the only nontrivial
combination is the Majorana pseudospin operator sMi ¼
−ði=2ÞPjj0ϵijj0γjγj0 (here ϵijj0 is the three-dimensional
Levi-Civita tensor), which belongs to the Γ1 representation
of SU(2). The operators sMi play the role of pseudospin
components; they satisfy the algebra ½sMj ; sMj0 � ¼
2i
P

iϵijj0s
M
i and ½sMj ; γj0 � ¼ 2i

P
iϵijj0γi. Expressed in these

terms, the interaction term in Eq. (2) takes the form

HV ¼
X
i

MisMi n
L þ

X
ij

VijsMi s
L
j ; ð7Þ

where nL ¼ N −1P
α;pqa

†
αpaαq is the local lead-electron

number operator and sLi ¼ N −1P
αβ;pqa

†
αpσiαβaβq=2 the

corresponding spin operator, where σi are Pauli matrices.
The first term, when substituted into Eq. (4), is not
renormalized and just leads to a renormalization of the
tunneling amplitudes through Eq. (6), similar to the
interacting resonant-level model [30]. Setting the vector
Mi to (0; 0;Mz) by choosing an appropriate basis, we find
that the z component of the tunneling amplitude does not
change, tαzðΛÞ ¼ tαz, while the others are renormalized as
tα;�ðΛÞ ¼ tα;�ðD=ΛÞ�2νMz , where tα;� ¼ tαx � itαy [26].
The second term in Eq. (7) contains the product of two
vectors, so it can be decomposed as Vij ¼ δijJþP

kϵijkJ
k þ Jij, where J is a scalar (Γ0), which describes

the Kondo-type interaction between the lead electrons and
the effective Majorana spin, Ji is a vector (Γ1), and the
symmetric matrix Jij with zero trace corresponds to the
spin-2 representation Γ2.
Since the main goal of this Letter is to demonstrate the

possibility of interesting renormalization physics, we
restrict ourselves to the simplest case with unbroken
SU(2) symmetry in the interaction between normal lead
and TS, choosing Vij ¼ δijJ. Then Eq. (4) leads to the
well-known RG flow equation for the Kondo coupling
[25,26,35],

dJ
dΛ

¼ −
2νJ2

Λ
: ð8Þ

The solution depends on the sign of the initial unrenor-
malized coupling J0 (we denote initial values by a subscript
0): The coupling is enhanced for J0 > 0 and suppressed for
J0 < 0, depending on Λ as

J ¼ 1

2ν lnðΛ=TKÞ
; ð9Þ

where TK ¼ De−1=2νJ0 is the Kondo temperature. The poor
man’s scaling approach, however, breaks down when Λ
reaches the largest of the low-energy scales of the problem,
Λc, which plays the role of an infrared cutoff. For the
antiferromagnetic case (J > 0) this means that J actually
saturates and does not diverge at Λ ¼ TK, as Eq. (9) would
predict [30,35,37]. In the context of a possible implemen-
tation utilizing spin-polarized Majorana surface states, it is
plausible that either sign of J can be realized since model
calculations find Majorana states in pairs with opposite spin
expectation value [15,34].
The tunneling term in Eq. (1) contains a product of a

vector and a spinor. Thus the tunneling amplitudes can be
classified by the irreducible representations of SU(2),
Γ1 ⊗ Γ1=2 ≅ Γ1=2 ⊕ Γ3=2, and split into spin-1/2 and

spin-3/2 terms according to tiα ¼
P

S;mt
S;mτS;miα , where

m ¼ �1=2 for S ¼ 1=2 andm ¼ �1=2;�3=2 for S ¼ 3=2.
The Clebsch-Gordan coefficients for S ¼ 1=2 read

τ1=2;þ1=2
iα ¼ 1ffiffiffi

3
p

�
0 0 1

1 i 0

�
αi

;

τ1=2;−1=2iα ¼ 1ffiffiffi
3

p
�
1 −i 0

0 0 −1
�

αi

; ð10Þ

which are basically Pauli matrices with swapped indices,
τ1=2;þ1=2
iα ¼ σiα;↑, τ1=2;−1=2iα ¼ σiα;↓. The Clebsch-Gordan
coefficients for S ¼ 3=2 are
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τ3=2;þ3=2
iα ¼

� 1
2

i
2

0

0 0 0

�
αi

;

τ3=2;þ1=2
iα ¼ 1ffiffiffi

3
p

�
0 0 −1
1
2

i
2

0

�
αi

;

τ3=2;−1=2iα ¼ 1ffiffiffi
3

p
�
− 1

2
i
2

0

0 0 −1

�
αi

;

τ3=2;−3=2iα ¼
�

0 0 0

− 1
2

i
2

0

�
αi

: ð11Þ

The absence of the scalar representation for the tunneling
amplitudes between spin-1=2 electrons and triplets of
Majorana states signifies that the SU(2) is always broken,
as mentioned in the Introduction.
According to Eq. (6), the tunneling coefficients obey the

RG equations

dt1=2;m

dΛ
¼ −

4νJt1=2;m

Λ
;

dt3=2;m

dΛ
¼ 2νJt3=2;m

Λ
: ð12Þ

Together with Eq. (9), the solutions read

t1=2;m ¼ t1=2;m0

J2

J20
; t3=2;m ¼ t3=2;m0

J0
J
: ð13Þ

For antiferromagnetic coupling, spin-3=2 tunneling is
suppressed, whereas spin-1=2 tunneling rapidly increases
as Λ approaches TK , together with the Kondo coupling J.
Ferromagnetic coupling leads to the opposite behavior:
Spin-3=2 tunneling increases, while spin-1=2 tunneling
decreases. The physical values of the renormalized param-
eters are obtained at the end of the RG flow. Although
Eqs. (9) and (13) generally break down at the infrared
cutoff Λc, if the temperature T is much larger than all other
low-energy scales (but still much smaller than ultraviolet
cutoff D), the renormalized coupling parameters can be
obtained by substituting the flow parameter by the temper-
ature, Λ ¼ T.
Results and discussion.—The results in Eq. (13) dem-

onstrate that antiferromagnetic coupling at the interface
enhances the transport with smaller total spin, while
ferromagnetic coupling enhances the tunneling transport
with larger total spin. In the general case when the initial
Hamiltonian contains all possible tunneling amplitudes, the
presence of a Kondo interaction leads to a strong renorm-
alization, which manifests itself by an instability of the
tunneling amplitudes. Independently of the coupling sign,
the total tunneling probability is enhanced. However, if
the initial interaction is antiferromagnetic the system is
dominated by spin-1=2 tunneling, while for ferromagnetic
interaction it is dominated by spin-3=2 tunneling. The type
of coupling thus manifests itself in transport processes.
One of its signatures is the temperature dependence of the
current through the N-TS interface. For voltages U much

larger than the temperature but smaller than the super-
conducting gap, the current I is proportional to the tunneling
probability, I ∝ jtj2 [18]. According to Eqs. (9) and (13), the
current thus depends on temperature as I ∝ ln−4ðT=TKÞ for
the antiferromagnetic case and as I ∝ ln2ðTK=TÞ for the
ferromagnetic case. This provides us with a criterion for the
detection of multiple Majorana states and for determining
the type of interaction between normal lead and TS.
The dominant renormalized spin-S tunneling also leads

to a distinctive spin dependence of the current through the
interface. For spin-1=2 tunneling (the antiferromagnetic
case), two of the three Majorana fermions can be combined
into one conventional (Dirac) fermion d ¼ 1

2
ðγx þ iγyÞ so

that the tunneling Hamiltonian becomes

HT¼
X
iαm

t1=2;mτ1=2;miα γia
†
αþH:c:

¼ t01ð−γza†↓þ2d†a†↑Þþt02ðγza†↑þ2da†↓ÞþH:c:; ð14Þ

where t01 ≡ t1=2;−1=2=
ffiffiffi
3

p
, t02 ≡ t1=2;1=2=

ffiffiffi
3

p
. The tunneling

amplitudes t1=2;�1=2 form a spinor, so their component
values depend on the choice of basis in spin space. By an
appropriate choice one can always set one of the elements
tn0 to zero. Upon setting t10 ¼ 0, the system decomposes
into two noninteracting parts. The first one consists of spin-
up electrons bound to the γz Majorana state, while the
second is a resonant-level model made up of spin-down
electrons and the additional fermion d. We now discuss the
contributions of the two parts to the tunneling current under
a bias voltage. The first part allows a nonzero stationary
current, as we can see as follows: The Majorana operator
can be expressed in terms of Dirac operators as
γz ¼ d0 þ ðd0Þ†. Thus the combined particle number
a†↑a↑ þ ðd0Þ†d0 is not conserved. If we assume, to be
specific, a positive bias voltage to be applied to the TS,
spin-up electrons will tunnel into the TS alternatingly
creating and annihilating the d0 fermion. Physically, this
represents Andreev tunneling [18]; the charge conservation
is restored by the creation of Cooper pairs in the super-
conducting condensate. On the other hand, the second part
of the model does conserve the combined particle number
a†↓a↓ þ d†d and the d fermion is not connected to any other
lead. Thus the stationary current for the spin-down elec-
trons vanishes. In conclusion, the spin-1=2 coupling results
in a fully spin-polarized current in the basis defined by the
tunneling-amplitude spinor.
For spin-3=2 tunneling (the ferromagnetic case), the

tunneling Hamiltonian can analogously be written as

HT ¼ −t001d†a
†
↓ − t002ðd†a†↑ þ γza

†
↓Þ

þ t003ð−γza†↑ þ da†↓Þ þ t004da
†
↑ þ H:c:; ð15Þ

where t001≡t3=2;−3=2, t002≡t3=2;−1=2=
ffiffiffi
3

p
, t003≡t3=2;1=2=

ffiffiffi
3

p
, t004≡

t3=2;3=2. The tunneling amplitudes t3=2;m form a spin-3=2
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spinor. By an appropriate choice of spin basis we can again
set one of the t3=2;m (and thus the corresponding t00n) to zero.
However, no matter which tunneling amplitude is set to
zero, both spin channels remain coupled through the d
fermion and thus, directly or indirectly, to the Majorana
fermion γz. Under a bias, the current is nonzero for all
electron-spin states. Therefore, in general the current for
spin-3=2 tunneling can only be partially spin polarized.
Summary.—The presence of the Kondo interaction

between the electrons in the normal lead and Majorana
fermions at the ends of a TS wire results in a strong
renormalization of the tunneling processes through the
interface. The tunneling amplitudes can be classified
according to the irreducible representations of the SU(2)
group. The amplitudes belonging to different representa-
tions obey different scaling laws. Depending on the sign of
the interaction, one component is enhanced, while the other
is suppressed, so that only one type of tunneling survives.
Ferromagnetic interaction favors a spin-3=2 tunneling with
parallel electron spin and Majorana pseudospin, whereas
antiferromagnetic coupling enhances spin-1=2 tunneling
with opposite spin and pseudospin. The temperature
dependence and spin polarization of the current through
the N-TS interface reflects the presence of multiple
Majorana states and the type of interaction, and therefore
can be used as a tool for the search of a topological system
with multiple edge states and for the determination of their
interaction type.
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