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It is commonly believed that, in the absence of disorder or an external magnetic field, there are three
possible types of superconducting excitation gaps: The gap is nodeless, it has point nodes, or it has line
nodes. Here, we show that, for an even-parity nodal superconducting state which spontaneously breaks
time-reversal symmetry, the low-energy excitation spectrum generally does not belong to any of these
categories; instead, it has extended Bogoliubov Fermi surfaces. These Fermi surfaces can be visualized as
two-dimensional surfaces generated by “inflating” point or line nodes into spheroids or tori, respectively.
These inflated nodes are topologically protected from being gapped by a Z2 invariant, which we give in
terms of a Pfaffian. We also show that superconducting states possessing these Fermi surfaces can be
energetically stable. A crucial ingredient in our theory is that more than one band is involved in the pairing;
since all candidate materials for even-parity superconductivity with broken time-reversal symmetry are
multiband systems, we expect these Z2-protected Fermi surfaces to be ubiquitous.
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Introduction.—The theory of superconductivity is con-
ventionally formulated in terms of the pairing of spin-1=2
fermions [1,2]. The complications introduced by additional
electronic degrees of freedom, e.g., orbitals, are not usually
thought to qualitatively alter the physics. This picture has
recently been challenged for a number ofmaterials. For iron-
based superconductors, the role of interorbital pairing is
attracting increased attention [3–6]. Another example is the
nematic superconductivity of CuxBi2Se3 [7], where the odd
parity of the gap is encoded in the orbital degrees of freedom.
Furthermore, theories of pairing inYPtBi andUPt3 based on
j ¼ 3=2 and j ¼ 5=2 fermions, respectively, have greatly
enriched the allowed superconducting states [8,9].
In this Letter, we show that the presence of multiple

bands qualitatively changes the nodal structure of a time-
reversal-symmetry-breaking (TRSB) superconductor.
Specifically, the expected line or point nodes of an even-
parity superconducting gap [1,2] are replaced by two-
dimensional Fermi surfaces of Bogoliubov quasiparticles,
which are topologically protected by a Z2 invariant. We
further interpret these Fermi surfaces in terms of a
pseudomagnetic field arising from interband Cooper pairs,
here referred to as “interband pairing.”
Our conclusions are relevant for awide range of candidate

TRSB superconductors, such as UPt3 [9–12], Th-doped
UBe13 [13,14], PrOs4Sb12 [15], Sr2RuO4 [16,17], URu2Si2
[18,19], SrPtAs [20], and Bi=Ni bilayers [21]. Remarkably,
signatures of these Fermi surfaces may have already been
observed in Th-doped UBe13 [14] (and possibly in UPt3
[11]), where there is evidence for a nonzero density of states
at zero temperature, which appears not to be due to
impurities. In addition to these known superconductors,
theory has predicted TRSB superconductivity in graphene

[22,23], the half-Heusler compound YPtBi [8], water-
intercalated sodium cobaltate NaxCoO2 · yH2O [24,25],
Cu-doped TiSe2 [26], and monolayer transition metal
dichalcogenides [27]. A common feature of all these
materials is that the electronic structure involves multiple
bands, and so we expect our theory to apply.
Model.—Our starting point is a general Hamiltonian with

time-reversal and inversion symmetries containing four
electronic degrees of freedom at each momentum. These
four degrees of freedom can arise from either the combi-
nation of spin 1=2 and two orbitals of equal parity or from
fermions with effective angular momentum j ¼ 3=2. We
work with a j ¼ 3=2 generalized Luttinger-Kohn
Hamiltonian [28] in order to make our arguments most
transparent. Although these two descriptions have different
symmetry properties, we show in Supplemental Material
[29] that they can be unitarily transformed into each other
and that our model represents a generic two-band theory
including all symmetry-allowed crystal-field and spin-
orbit-coupling terms. The general form of the normal-state
Hamiltonian is

HN ¼ c014 þ cyz
JyJz þ JzJyffiffiffi

3
p þ cxz

JxJz þ JzJxffiffiffi
3

p

þ cxy
JxJy þ JyJxffiffiffi

3
p þ c3z2−r2

2J2z − J2x − J2y
3

þ cx2−y2
J2x − J2yffiffiffi

3
p ; ð1Þ

where 14 is the 4 × 4 unit matrix and the Ji are spin-3=2
matrices given in Supplemental Material [29]. The coef-
ficients ci ¼ ciðkÞ of the matrices in Eq. (1) are real, satisfy
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ciðkÞ ¼ cið−kÞ, and transform in the same way as the
corresponding matrix under spatial symmetries. HN has
twofold degenerate eigenvalues ϵ� ¼ c0 � ðc2yz þ c2xzþ
c2xy þ c2

3z2−r2 þ c2x2−y2Þ1=2. For definiteness, we discuss

the case of only one of the two bands crossing the chemical
potential so that there is only one normal-state Fermi
surface; if there are two, identical arguments pertain to
both. While our conclusions are general, numerical results
are given for the spherically symmetric Hamiltonian HN ¼
αk2 þ βðk · JÞ2 − μ [28], where α and β are constants
(β is the spin-orbit coupling) and μ is the chemical
potential, which leads to c0 ¼ ðαþ 5β=4Þk2 − μ, c3z2−r2 ¼
β½k2z − ðk2x þ k2yÞ=2�, cx2−y2 ¼

ffiffiffi
3

p
βðk2x − k2yÞ=2, cyz ¼ffiffiffi

3
p

βkykz, cxz ¼
ffiffiffi
3

p
βkxkz, and cxy ¼

ffiffiffi
3

p
βkxky.

The superconducting state is taken to have even parity.
Fermionic antisymmetry permits six possible gap matrices
ηi in the spin-3=2 space: ηs ¼ UT , ηyz ¼ ðJyJzþ
JzJyÞUT=

ffiffiffi
3

p
, ηxz ¼ ðJxJz þ JzJxÞUT=

ffiffiffi
3

p
, ηxy ¼ ðJxJyþ

JyJxÞUT=
ffiffiffi
3

p
, η3z2−r2 ¼ ð2J2z − J2x − J2yÞUT=3, and

ηx2−y2 ¼ ðJ2x − J2yÞUT=
ffiffiffi
3

p
, where

UT ¼

0
BBB@

0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

1
CCCA ð2Þ

is the unitary part of the time-reversal operator T ¼ UTK,
withK denoting complex conjugation. The ηs gap is a spin-
singlet state and represents pure intraband pairing. The
other gaps, however, describe spin-quintet (J ¼ 2) pairs
and involve both intra- and interband pairing [8]. Since we
consider zero-momentum Cooper pairs, this implies that
quintet pairing involves states away from the Fermi energy.
A general superconducting state is a linear combination of
these gap matrices with symmetry-compliant k-dependent
coefficients and is described by the Bogoliubov–de Gennes
Hamiltonian

HðkÞ ¼
�
HNðkÞ ΔðkÞ
Δ†ðkÞ −HT

Nð−kÞ

�
: ð3Þ

While our results apply to all TRSB even-parity super-
conducting states, for concreteness we consider the gap
function

ΔðkÞ ¼ Δ1ψðkÞηs þ Δ0ðηxz þ iηyzÞ; ð4Þ

where Δ1 and Δ0 are real constants. Although the latter
term describes purely on-site pairing, the gap matrix ηxz þ
iηyz transforms under rotations as the spherical harmonic
Y2;1ðk̂Þ; i.e., it is chiral. It generically accompanies a spin-
singlet term with a form factor ψðkÞ of the same symmetry.

Being chiral, this pairing state, which we call the
kzðkx þ ikyÞ state, breaks time-reversal symmetry. It has
the same symmetry as proposed for URu2Si2 [18], YPtBi
[8], and UPt3 [11]. For pure singlet pairing (i.e., Δ0 ¼ 0),
the gap has line nodes in the kz ¼ 0 plane and point nodes
on the kz axis (kx ¼ ky ¼ 0). Mixing in a quintet compo-
nent has a dramatic effect on the excitation spectrum: The
expected point and line nodes are replaced by Fermi
surfaces. In Fig. 1, we plot these Fermi surfaces for the
kzðkx þ ikyÞ state. We find them to be a generic feature of
all the TRSB even-parity states classified in Ref. [2]. As we
will see below, these Fermi surfaces bear some resemblance
to those found in the presence of an exchange field [32],
although they have a completely different origin.
Existence of Fermi surfaces and Z2 invariant.—We now

show that Bogoliubov Fermi surfaces are a generic feature
of the Hamiltonian in Eq. (3) and construct their topological
invariant. The first step is to show that HðkÞ can be
unitarily transformed into an antisymmetric matrix; i.e.,
there exists a unitary Ω such that ~HTðkÞ ¼ − ~HðkÞ for
~HðkÞ≡ΩHðkÞΩ†. The main ideas of the proof are
explained in the following; details and a representative
Ω are given in Supplemental Material [29]. The
HamiltonianHðkÞ possesses charge-conjugation symmetry
C and parity symmetry P. C acts as UCHTð−kÞU†

C ¼
−HðkÞ with UC ¼ τ̂x ⊗ 14, where τ̂i are the Pauli matrices
in particle-hole space, while P acts as UPHð−kÞU†

P ¼
HðkÞ with UP ¼ τ̂0 ⊗ 14. Hence, CP symmetry reads

FIG. 1. Bogoliubov Fermi surfaces of the superconducting
kzðkx þ ikyÞ state, shown here for the case where only one band
has a Fermi surface. The normal-state Fermi surface, shown as the
semitransparent sphere, is gapped out by the superconductivity.
The point and line nodes of the single-band theory (red dots and
line, respectively), however, are “inflated” into spheroidal and
toroidal Z2-protected Fermi surfaces (orange surfaces).
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UCPHTðkÞU†
CP ¼ −HðkÞ; ð5Þ

with UCP ¼ UCU�
P ¼ τ̂x ⊗ 14. This implies that ðCPÞ2 ¼

UCPU�
CP ¼ þ1 and thus UCP ¼ UT

CP. Any symmetric
matrix can be diagonalized by a unitary congruence; i.e.,
there exist a unitary Q and a diagonal Λ such that UCP ¼
QΛQT with the transposed matrix QT . Insertion into
Eq. (5) gives QΛQTHTðkÞQ�Λ†Q† ¼ −HðkÞ. Since Λ
is diagonal, we can define a square root

ffiffiffiffi
Λ

p
. The sign of the

root for each diagonal component of Λ can be chosen
arbitrarily and is then held fixed. This allows us to split the
unitary matrices in the CP symmetry relation, which gives
½ ffiffiffiffi

Λ
p †Q†HðkÞQ ffiffiffiffi

Λ
p �T ¼ −

ffiffiffiffi
Λ

p †Q†HðkÞQ ffiffiffiffi
Λ

p
. This can be

written as ½ΩHðkÞΩ†�T ¼ −ΩHðkÞΩ† with Ω≡ ffiffiffiffi
Λ

p †Q†.
Hence, ~HðkÞ ¼ ΩHðkÞΩ† is antisymmetric, as we wanted
to show. We can then define the Pfaffian PðkÞ≡ Pf ~HðkÞ.
Since detHðkÞ ¼ det ~HðkÞ ¼ P2ðkÞ, the zeros of PðkÞ
give the zero-energy states of HðkÞ.
It has recently been shown that Fermi surfaces of

Hamiltonians with CP symmetry squaring to þ1 can
possess a nontrivial Z2 charge, making them topologically
stable against CP-preserving perturbations [33,34]. We
now express the invariant in terms of the Pfaffian PðkÞ.
The Pfaffian is real, since it is a polynomial of even degree
of the components of the matrix ~HðkÞ, which is Hermitian
and antisymmetric and thus purely imaginary. Regions in
momentum space in which PðkÞ has opposite signs are thus
necessarily separated by a two-dimensional (Fermi) surface
on which PðkÞ ¼ 0. The existence of such Fermi surfaces
is thus guaranteed if PðkÞ changes sign, and hence we can
identify ð−1Þl ¼ sgn½Pðk−ÞPðkþÞ� as the Z2 invariant,
where kþ (k−) refers to momenta inside (outside) of the
Fermi surface.
Under what conditions do protected Fermi surfaces exist?

In the normal state, the PfaffianPðkÞ ¼ ϵ2þϵ2− is always non-
negative and has second-order zeros on the Fermi surface.
Hence, the normal-state Fermi surface is not protected by the
Z2 charge. Furthermore, for time-reversal-symmetric super-
conductivity,PðkÞ can also be chosen non-negative for allk
so that there is no nontrivialZ2 invariant [33,34]. Our proof
in SupplementalMaterial [29] simplifies the earlier proof by
Kobayashi et al. [33]. For TRSB pairing, the second-order
zeros of PðkÞ are generically (i.e., in the absence of
additional symmetries or fine-tuning) lifted, leading to
PðkÞ > 0 in a neighborhood of the former zero, or split
into first-order zeros, in which case there is a region with
PðkÞ < 0. Such a region is bounded by a two-dimensional
Fermi surface; as this shrinks to a point or line node in the
limit of infinitesimal pairing, we call it an inflated node.
The existence of protected Bogoliubov Fermi surfaces is

now illustrated for the kzðkx þ ikyÞ state of Eq. (4). We
restrict ourselves to pure quintet pairing, but our results
hold for any gap with a nonzero quintet component; see
Supplemental Material [29]. The Pfaffian is

PðkÞ ¼ ϵ2þϵ2− þ 4Δ2
0ðϵþϵ− þ c2xz þ c2yzÞ; ð6Þ

which is negative for all k such that s− < ϵþϵ− < sþ,
where s� ¼ −2Δ2

0 � 2Δ0ðΔ2
0 − c2xz − c2yzÞ1=2. sþ and s−

exist and are distinct if the radicand is positive. In the
plane kz ¼ 0 and along the line kx ¼ ky ¼ 0, this holds for
any Δ0 > 0, since symmetry dictates that c2xz þ c2yz van-
ishes there. We then find s− ¼ −4Δ2

0 < 0 and sþ ¼ 0; i.e.,
sþ vanishes on the normal-state Fermi surface. Since ϵþϵ−
changes sign across the normal-state Fermi surface, there is
always a region with s− < ϵþϵ− < sþ in this plane and
along this line and, due to the continuity of the ciðkÞ, also
in their neighborhood. The resulting region with PðkÞ < 0
is bounded by a Fermi surface, as illustrated in Fig. 1.
Stability of Fermi surfaces.—Even-parity TRSB super-

conductors are usually argued to be energetically favored
over time-reversal-symmetric states, because they maxi-
mize the gap in momentum space [2]. The existence of
extended Bogoliubov Fermi surfaces invalidates this argu-
ment. To show that TRSB states can nevertheless be stable,
we consider a model with an on-site pairing interaction of
strength V in both the quintet ηxz and ηyz channels. In this
case, the TRSB state Δ0ðηxz þ iηyzÞ [i.e., the kzðkx þ ikyÞ
state introduced above] and the time-reversal-symmetric
state

ffiffiffi
2

p
Δ0ηxz have the same critical temperature Tc. To

decide which is energetically stable at temperatures T near
Tc, we perform a standard expansion of the free energy F in
the gap Δ [35,36]:

F ¼ 1

2V
TrΔ†Δ

þ kBT
2

X
k;ωn

X∞
l¼1

1

l
Tr½Δ ~Gðk;ωnÞΔ†Gðk;ωnÞ�l; ð7Þ

where Gðk;ωnÞ and ~Gðk;ωnÞ are the normal-state electron
and hole Matsubara Green’s functions, respectively. For
vanishing spin-orbit coupling β, introduced below Eq. (1),
the normal bands are fourfold degenerate. As was pre-
viously shown in the context of j ¼ 3=2 pairing in cold
atoms [35], the TRSB state is unstable towards the time-
reversal-symmetric state in this limit, as it leaves two of
these bands ungapped. Nonzero spin-orbit coupling parti-
ally lifts this degeneracy and allows the TRSB state to open
a gap on all Fermi surfaces, reducing its energy. An analysis
of the fourth-order term in Eq. (7) predicts that the TRSB
ηxz þ iηyz state is energetically favored for jβjk2F=kBTc≳
9.324. Details are given in Supplemental Material [29].
Hence, the presence of the Bogoliubov Fermi surfaces does
not necessarily compromise the stability of TRSB states.
Pairing-induced pseudomagnetic field.—To gain addi-

tional insight into the Bogoliubov Fermi surfaces, it is
useful to rewrite the Hamiltonian in a basis for which the
normal-state Hamiltonian is diagonal. We denote the
eigenvectors of HN to the twofold degenerate eigenvalues
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ϵ� by j�; i ¼ 1; 2i, which we choose to form a pseudospin
basis, i.e., j�; 2i ¼ PTj�; 1i. In this basis, the super-
conducting state is described by the Hamiltonian

H̄ ¼

0
BBBBB@

HN;þ Δþþ 0 Δþ−

Δ†
þþ −HN;þ −Δ�þ− 0

0 −ΔTþ− HN;− Δ−−

Δ†
þ− 0 Δ†

−− −HN;−

1
CCCCCA
: ð8Þ

Here, HN;� ¼ ϵ�σ̂0 and Δ�� are antisymmetric matrices
with Δ�� ¼ ψ�ðkÞiσ̂y, where σ̂μ are the Pauli matrices in
pseudospin space. Δþ− is the interband pairing potential,
the explicit form of which depends on the choice of bases in
the two-dimensional eigenspaces of ϵ� and is hence not
illuminating. The intraband gap functions ψ�ðkÞ are
obtained by transforming Eq. (4) into the pseudospin basis
and are given by

ψ�ðkÞ ¼ Δ1ψðkÞ � 2Δ0

cxzðkÞ þ icyzðkÞ
ϵþðkÞ − ϵ−ðkÞ

: ð9Þ

In the absence of Δþ−, H̄ would describe two decoupled
pseudospin-1=2 singlet superconductors with, at most, line
or point nodes. Hence, the interband pairing is responsible
for the appearance of the extended Fermi surfaces. This can
be shown by treating the off-diagonal interband blocks of
Eq. (8) as a perturbation to the intraband Hamiltonians:
Focusing on the þ states (analogous results can be found
for the − states if they have a normal-state Fermi surface),
the second-order corrections due to the interband pairing
appear only in the normal-state components, which become

H0
N;þ ¼ ½ϵþ þ γðkÞ�σ̂0 þ hðkÞ · σ̂; ð10Þ

where

γðkÞ ¼ 2jΔ0j2
ðϵþ − ϵ−Þ3

½ðϵþ − ϵ−Þ2 − 2c2yz − 2c2xz�; ð11Þ

jhðkÞj ¼ 4jΔ0j2
ðϵþ − ϵ−Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
3z2−r2 þ c2x2−y2 þ c2xy

q
: ð12Þ

The direction of hðkÞ is basis dependent and is thus not
physically meaningful. The correction γðkÞ is always
present and results in a small modification of the nor-
mal-state dispersion ϵþ, whereas the second term hðkÞ · σ̂
appears only for TRSB gaps. This reveals that in the TRSB
state the interband pairing manifests itself as a pseudo-
magnetic field in the normal-state Hamiltonian.
The origin of the extended Fermi surfaces becomes clear

from the excitation spectrum of the low-energy pairing
Hamiltonian,

Ek;�;ν ¼ νjhðkÞj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ϵþðkÞ þ γðkÞ�2 þ jψþðkÞj2

q
; ð13Þ

where ν ¼ �1. The pseudomagnetic field jhðkÞj evidently
splits the dispersion. The square root in Eq. (13) goes to
zero at the intersection of the nodes of the intraband gap
ψþðkÞ with the surface ϵþ þ γðkÞ ¼ 0, and the pseudo-
magnetic field gives rise to the Bogoliubov Fermi surfaces
by shifting the nodes to finite energies �jhðkÞj. The
generation of hðkÞ by the superconducting state itself
exhibits the intrinsic nature of the Bogoliubov Fermi
surfaces. This distinguishes our results from the
“breached-pairing” state of population-imbalanced cold
atoms or exchange-split superconductors, where the
required breaking of time-reversal symmetry is extrinsic
to the pairing [32,37].
The low-energy effectivemodel also allows us to estimate

the dimensions of the Fermi surfaces. Perpendicular to the
normal-state Fermi surface, the Bogoliubov Fermi surfaces
have a width δk⊥=kF ∼ Δ2

0=½μðϵþ − ϵ−Þ�, where kF is the
normal-state Fermi momentum. Their width in the direction
parallel to the normal-state Fermi surface is δk∥=kF ∼ Δ0=
ðϵþ − ϵ−Þ. Since we typically expect Δ0 ≪ μ, we find that
δk⊥ ≪ δk∥, which implies oblate spheroidal Fermi surfaces
near the original point nodes and flattened toroidal Fermi
surfaces near the original line nodes, as seen in Fig. 1.
Pseudomagnetic fields appear in any TRSB phase of our

model with interband (spin-quintet) pairs. Our analysis
generalizes to other systems with multiband pairing: We
expect nonvanishing contributions to the pseudomagnetic
field from all the interband potentials, implying that
Bogoliubov Fermi surfaces are a generic feature of such
systems. Equation (12) shows that these Fermi surfaces will
be largest in strong-coupling materials in which the differ-
ent bands lie close to each other. These conditions are likely
satisfied in heavy-fermion superconductors such as UPt3,
Th-doped UBe13, PrOs4Sb12, and URu2Si2, which makes
them ideal systems in which to search for Bogoliubov
Fermi surfaces. Indeed, as mentioned in the introduction,
Th-doped UBe13 shows a large (and so far unexplained)
residual density of states [14] which is consistent with our
theory.
Conclusions.—We have established that broken-time-

reversal even-parity superconductors generically support
two-dimensional Fermi surfaces. The states at these Fermi
surfaces are charge-neutral Bogoliubov quasiparticles. The
Fermi surfaces are protected by a topological Z2 invariant,
which can be written in terms of a Pfaffian, and thus cannot
be removed by any perturbation that is CP invariant. They
are also energetically stable for plausible parameters; i.e.,
the corresponding state has a lower free energy than an
associated time-reversal-symmetric state. The Z2-protected
Fermi surfaces appear in multiband systems, where inter-
band pairing produces an effective pseudomagnetic field,
which inflates the expected point or line nodes. Since all
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candidate materials for TRSB even-parity superconductiv-
ity have multiple relevant bands, we expect that these
Z2-protected Fermi surfaces are ubiquitous. The existence
of Bogoliubov Fermi surfaces in the superconducting state
should lead to characteristic experimental consequences: A
nonzero density of states at the Fermi energy, visible, for
example, in tunneling and photoemission experiments,
would coexist with ideal conductivity and flux expulsion.
The low-temperature thermodynamic response would show
a linear temperature dependence of the specific heat, and
heat conduction should also be unconventional [32]. Such
anomalies may have already been observed in heavy-
fermion superconductors [11,14]. Our work raises many
interesting new questions; e.g., is a superconductor with
Bogoliubov Fermi surfaces a Fermi liquid when residual
interactions are taken into account? The search for and
study of such systems thus constitutes a very promising
task for future research.
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