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I. MAPPING TO A GENERAL TWO-ORBITAL MODEL

In this section, we show that the most general model for a normal-state system with a two-valued orbital degree
of freedom where the orbitals have the same parity and are chosen to be real can be unitarily transformed into the
j = 3/2 Hamiltonian given in the main text. We expand the single-particle Hamiltonian in terms of Kronecker
products in orbital-spin space,

HN (k) =
∑

µ,ν=0,x,y,z

cµ,ν(k) ŝµ ⊗ σ̂ν , (1)

where ŝµ (σ̂ν) are the Pauli matrices in orbital (spin) space. Hermiticity implies cµ,ν(k) = c∗µ,ν(k). Inversion maps

HN (k) onto UPHN (−k)U†
P , where UP = 14 (UP = −14) if the orbitals are both even (odd). The extra sign for the

odd case obviously drops out and can be disregarded. Hence, for the Hamiltonian to be symmetric under inversion,

we simply require cµ,ν(k) = cµ,ν(−k). Time reversal maps HN (k) onto UTH
∗
N (−k)U†

T . cµ,ν(k) is thus mapped onto
c∗µ,ν(−k) = cµ,ν(k). Under the assumption of real-valued orbitals, ŝy and the spin components σ̂x, σ̂y, σ̂z are odd
under time reversal, whereas the remaining matrices are even. This is achieved by UT = ŝ0 ⊗ iσ̂y.
In order for the Hamiltonian HN (k) to be invariant under time reversal, only those Kronecker products can appear

in Eq. (1) that are even, specifically the six products with {µ, ν} = {0, 0}, {x, 0}, {z, 0}, {y, x}, {y, y}, {y, z}. The
corresponding cµ,ν(k) are real and even functions of k. Note that the five nontrivial Kronecker products are mutually
anticommuting and thus form a representation of the five Dirac matrices.
We now show that the generalized Luttinger-Kohn model [1] adopted in the main text is equivalent to Eq. (1). It

is expressed in terms of the angular-momentum j = 3/2 matrices

Jx =
1

2


0

√
3 0 0√

3 0 2 0

0 2 0
√
3

0 0
√
3 0

 , (2)

Jy =
i

2


0 −

√
3 0 0√

3 0 −2 0

0 2 0 −
√
3

0 0
√
3 0

 , (3)

Jz =
1

2

 3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

 . (4)

The generalized Luttinger-Kohn model involves five sets of products of the j = 3/2 matrices, specifically (2J2
z − J2

x −
J2
y/6, (J

2
x − J2

y )/(2
√
3), (JxJz + JzJx)/(2

√
3), (JxJy + JyJx)/(2

√
3), and (JyJz + JzJy)/(2

√
3). These matrices also

form a set of five Dirac matrices and there is a unitary transformation between them and the five allowed nontrivial
Kronecker products discussed above. Specifically, we find

U† 2J
2
z − J2

x − J2
y

6
U = ŝz ⊗ σ̂0, (5)

U† J
2
x − J2

y

2
√
3

U = ŝx ⊗ σ̂0, (6)

U† JxJz + JzJx

2
√
3

U = ŝy ⊗ σ̂y, (7)

U† JxJy + JyJx

2
√
3

U = ŝy ⊗ σ̂z, (8)

U† JyJz + JzJy

2
√
3

U = ŝy ⊗ σ̂x, (9)
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with the unitary matrix

U =

 1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 . (10)

Note that one can pairwise swap the orbital-spin matrices ŝµ ⊗ σ̂ν by an appropriate unitary transformation so that
this mapping is entirely general. We hence see that the generalized Luttinger-Kohn model is equivalent to the most
general single-particle Hamiltonian of a time- and inversion-symmetric material with two identical-parity orbitals and
spin. The generalized Luttinger-Kohn representation is convenient, however, as it allows us to exploit the symmetry
properties of the angular-momentum matrices Ji under rotations to gain insight into the underlying physics.
We can obtain six on-site pairing states in the orbital-spin representation by multiplying the six allowed Kronecker

products by the unitary part of the time-reversal operator, UT = ŝ0 ⊗ iσ̂y. We hence obtain one orbitally trivial spin-
singlet gap proportional to ŝ0 ⊗ σ̂y and five “anomalous” gaps proportional to ŝx ⊗ σ̂y, ŝz ⊗ σ̂y, ŝy ⊗ σ̂z, ŝy ⊗ σ̂0, and
ŝy ⊗ σ̂x, which are either orbital-triplet spin-singlet or orbital-singlet spin-triplet pairing states. It is straightforward
to map these states onto the gap matrices in the equivalent spin-3/2 formulation: the orbitally trivial spin-singlet
state maps onto the singlet gap matrix ηs, while the anomalous gaps map onto the quintet gap matrices. Hence,
we can describe any even-parity pairing state, without loss of generality, in terms of a linear combination of the six
spin-3/2 gap functions with even-parity coefficients ψi(k).

II. EXISTENCE AND PROPERTIES OF THE PFAFFIAN

In this section, we provide additional details on constructing the topological invariant protecting the Fermi surfaces.
Our starting point is the Hamiltonian in the superconducting state,

H(k) =

(
HN (k) ∆(k)
∆†(k) −HT

N (k)

)
. (11)

Recall that HN (k) is even in k. We employ the spin-3/2 basis used in the main text. We first show that a k-

independent unitary matrix Ω exists such that H̃T (k) = −H̃(k) for H̃(k) = ΩH(k)Ω†, i.e., the Hamiltonian can be
transformed into antisymmetric form.
The proof proceeds as follows: 1. The Hamiltonian H(k) satisfies parity and charge-conjugation symmetries and

thus also their product, i.e.,

UCP H
T (k)U†

CP = −H(k), (12)

where UCP ≡ UCU
∗
P = (τ̂x ⊗ 14)(τ̂0 ⊗ 14) = τ̂x ⊗ 14. The τ̂i denote Pauli matrices in particle-hole (Nambu) space.

We find that the CP symmetry squares to +1 since (CP )2 = (UCPK)2 = UCPU
∗
CP = τ̂0 ⊗ 14 = +18. In the presence

of such a symmetry, two-dimensional Fermi surfaces are characterized by a Z2 invariant [2, 3].

2. For any CP symmetry that squares to unity we have U∗
CP = U−1

CP = U†
CP and thus UCP = UT

CP , hence UCP is
symmetric. Any (complex) symmetric matrix can be diagonalized by a unitary congruence, i.e., there exist a unitary
matrix Q and a diagonal matrix Λ such that (note the transpose)

UCP = QΛQT . (13)

Inserting this equation into Eq. (12) yields

QΛQT HT (k)Q∗Λ†Q† = −H(k). (14)

Since Λ = Q†UCPQ
∗ is unitary and diagonal, it can be written as Λ = diag(λ1, λ2, . . .) with |λi| = 1. Now let

√
Λ ≡ diag

(√
λ1,
√
λ2, . . .

)
, (15)

where for each i,
√
λi is the complex root with arbitrary but fixed sign. Also let

√
Λ† ≡ diag

(√
λ1

∗
,
√
λ2

∗
, . . .

)
, (16)
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with the same choice of signs as in Eq. (15). It is trivial to show that this is a root of Λ†. Furthermore,√
Λ and

√
Λ† are obviously diagonal, and thus symmetric, and also unitary. We can thus rewrite Eq. (14) as

Q
√
Λ
√
ΛQTHT (k)Q∗

√
Λ†

√
Λ†Q† = −H(k) and find that

(
√
Λ†Q†H(k)Q

√
Λ)T = −

√
Λ†Q†H(k)Q

√
Λ. (17)

With the unitary matrix Ω ≡
√
Λ†Q†, Eq. (17) can be written as (ΩH(k)Ω†)T = −ΩH(k)Ω†. Hence, H̃(k) ≡

ΩH(k)Ω† is indeed antisymmetric.
For the Hamiltonian H(k) given in Eq. (11) above together with Eq. (1) in the main text, a possible choice is

Ω =
1√
2

(
1 1
i −i

)
⊗ 14. (18)

This yields

H̃(k) =
1

2

(
HN −HT

N +∆+∆† −i (HN +HT
N ) + i (∆−∆†)

i (HN +HT
N ) + i (∆−∆†) HN −HT

N −∆−∆†

)
, (19)

where we have suppressed the argument k. The terms involving the normal-state Hamiltonian HN are obviously
antisymmetric. For this, it is crucial that HN is even in k. From Eq. (12), one easily finds ∆T = −∆, which implies

that also the superconducting terms in H̃(k) are antisymmetric. Hence, we do find H̃T (k) = −H̃(k).

Since H̃(k) is antisymmetric, its Pfaffian P (k) ≡ Pf H̃(k) exists. The Pfaffian is real for any spinful system since
(a) the dimension of the Hamiltonian is a multiple of four (2 × 2 for Nambu and spin space), thus the Pfaffian is a

polynomial of even degree of the components of H̃(k), and (b) H̃(k) is hermitian and antisymmetric and thus these
components are purely imaginary.
Note further that the ambiguity in the signs of the roots in

√
Λ means that Ω can be multiplied on the left

by a diagonal matrix D with arbitrary components ±1 on the diagonal. With Ω → DΩ we get Ω† → Ω†D and
H̃(k) → DH̃(k)D. This leads to Pf H̃(k) → detD Pf H̃(k). Hence, P (k) is only determined up to an overall sign.

But this sign is selected by fixing the root
√
Λ once for all k. Thus sign changes in P (k) are meaningful.

Since detH(k) = det H̃(k) = P 2(k), the zeros of P (k) give the nodes of the superconducting state. Thus if the
Pfaffian changes sign as a function of k, the surface separating regions with P (k) ≷ 0 is a two-dimensional Fermi
surface. However, P (k) can in addition have zeros of even multiplicity, which do not separate regions with different
sign. These accidental zeros can form two-dimensional surfaces or line or point nodes.
For the general kz(kx + iky) state of Eq. (4) in the main text, the Pfaffian is

P (k) = (ϵ+ϵ−)
2 + 4∆2

0 (ϵ+ϵ− + c2xz + c2yz) + ∆2
1 |ψ|2 (ϵ2+ + ϵ2−) + 8∆0∆1 c0 |ψ|2 +∆4

1 |ψ|4, (20)

where ϵ±(k) are the normal-state eigenenergies. We have chosen the signs in the root
√
Λ in such a way that P (k) > 0

in the limit of large k. Equation (20) is correct for arbitrary real and even coefficients ci(k). Note that when ∆0 = 0,
the equation P (k) = 0 implies the usual relationship for zero-energy states in a spin-singlet superconductor, i.e.,
(ϵ2++∆2

1 |ψ|2)(ϵ2−+∆2
1 |ψ|2) = 0, implying nodes when ϵ± = 0 and ψ = 0; since ψ(k) ∝ cxz(k)+ icyz(k) to ensure that

the full gap function ∆(k) transforms under rotations like Y2,1(k̂), we have line nodes in the kz = 0 plane and point
nodes along the line kx = ky = 0. With both ∆0 ̸= 0 and ∆1 ̸= 0, we see that along the nodal directions, for which
ψ ∝ cxz + icyz = 0, we have zero-energy excitations for ϵ+ϵ−(4∆

2
0+ ϵ+ϵ−) = 0. The two solutions for ϵ+ϵ− that follow

from the latter equation give the two points of the Bogoliubov Fermi surface along these nodal directions. Away from
the nodal directions, the other terms in Eq. (20) no longer vanish. However, they are continuous functions of the

direction k̂, implying that the Fermi surface still exists at least for a finite range away from the nodal directions. In
the main text, we consider the special case of a pure quintet gap, ∆1 = 0.
Finally, we show that the Pfaffian can be chosen non-negative if the system is also time-reversal symmetric and

the combined inversion and time-reversal symmetry squares to −1, i.e., if there exists a unitary matrix UPT so that

UPTH
T (k)U†

PT = H(k) and UPTU
∗
PT = −1. Hence, if both symmetries are present, the Z2 invariant exists but is

necessarily trivial. This has essentially been shown using the method of Clifford algebra extensions in [2]. In the
following, we give a more elementary proof.
1. Kramers’ theorem shows that under the last two conditions all eigenvalues of H(k) have even degeneracy.

Furthermore, condition (12) above implies that the eigenvalues come in pairs {Ei(k),−Ei(k)}. Since the dimension
of H(k) is a multiple of four, the spectrum thus consists of quadruplets {Ei(k), Ei(k),−Ei(k),−Ei(k)}.
2. P (k) is a polynomial of the components of H̃(k), which are linear combinations of the components of H(k).

Hence, P (k) is a polynomial of the components of H(k). The coefficients are independent of k.
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3. We have P 2(k) = det H̃(k) = detH(k) =
∏

iE
4
i (k) so that P (k) = π(k)

∏
iE

2
i (k) with π(k) = ±1.

4. Consider the eigenenergies Ei(k) as functions of a real parameter h, which can be any real or imaginary part of
a component of the hermitian, finite-dimensional matrix H(k). Theorem 7.6 of Alekseevsky et al. [4] shows under the
weak additional condition that no two eigenvalues meet of infinite order for any real h unless they are equal for all h
that the Ei(k) can be chosen as smooth functions of h. Then

∏
iE

2
i (k) is a smooth function of h.

5. We have already shown that P (k) is a polynomial in h, that
∏

iE
2
i (k) = π(k)P (k) is a smooth function of h,

and that π(k) = ±1. Then π(k) is constant.
6. Noting the ambiguity in choosing Ω and thus the overall sign of the Pfaffian, we can choose π(k) = +1 at some

k and consequently at all k. Thus we indeed obtain P (k) =
∏

iE
2
i (k) ≥ 0.

III. STABILITY OF STATES WITH BROKEN TIME-REVERSAL SYMMETRY

In this section, we provide additional details on the free-energy expansion. We show that states with broken
time-reversal symmetry featuring Bogoliubov Fermi surfaces can be energetically stable. The relative stability of
spin-singlet broken-time-reversal states over time-reversal-invariant states with the same transition temperature has
been attributed to the gapping of nodes that appear in the time-reversal-symmetric state by breaking this symmetry
[5]. A common example is the chiral d -wave state with line nodes, for which the usual spin-singlet gap function takes

the form ψ(k) = ψ0 kz(νxkx + νyky). In the broken-time-reversal state, we have (νx, νy) = (1, i)/
√
2, which leads to

line nodes for kz = 0 and point nodes at kx = ky = 0. In the nodal time-reversal-invariant state, we instead have
(νx, νy) = (1, 0), which also leads to line nodes for kz = 0 and additional line nodes for kx = 0. In this case, the
broken-time-reversal state is believed to be stable because it gaps the kx = 0 line node so that only two point nodes
remain, gaining condensation energy. However, we have found that these point nodes become inflated Z2-protected
Fermi surfaces, and it is reasonable to ask if the broken-time-reversal state is still stable.
We consider the spherically symmetric normal-state Hamiltonian HN (k) = αk2 + β (k · J)2 − µ and an on-site

gap function that is a linear combination of ηxz and ηyz. For this gap function, it is known that there are two
essentially different possible ground states [5]: a time-reversal-invariant state ∆r = (∆̄/2) ηxz with kzkx symmetry

and a broken-time-reversal state ∆a = (∆̄/2
√
2) (ηxz + iηyz) with kz(kx+ iky) symmetry. The time-reversal-invariant

state (∆̄/2) ηyz is degenerate with ∆r. For these two states, the off-diagonal block in the Hamiltonian H(k) reads

∆r =
∆̄

2

 0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 (21)

and

∆a =
∆̄√
2

 0 0 −1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , (22)

respectively. These two matrices have been normalized such that Tr∆†∆ = ∆̄2 (∆̄ is assumed real).
Near Tc, the mean-field free energy can be expressed as a power series in ∆. The expression is standard [6, 8],

F =
1

2V
Tr∆†∆+

kBT

2

∑
k,ωn

∞∑
l=1

1

l
Tr
[
∆G̃(k, ωn)∆

†G(k, ωn)
]l
, (23)

where the constant V is the BCS pairing interaction (which is the same for ∆a and ∆r), ωn are the Matsubara

frequencies, T is the temperature, and the normal-state Green’s functions G and G̃ satisfy [iωn−HN (k)]G(k, ωn) = 1

and [iωn +HT
N (k)] G̃(k, ωn) = 1. To find G and G̃, we note that HT

N (kx, ky, kz) = HN (kx,−ky, kz) so that G̃ is given
once we know G. Some algebra then gives

G(k, ωn) = G+(k, ωn) +

[(
k̂ · J

)2 − 5

4

]
G−(k, ωn), (24)

G̃(k, ωn) = G̃+(k, ωn) +

[(
k̂ · JT

)2 − 5

4

]
G̃−(k, ωn), (25)
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with

G±(k, ωn) =
1

2

(
1

iωn − ϵ1
± 1

iωn − ϵ2

)
, (26)

G̃±(k, ωn) =
1

2

(
1

iωn + ϵ1
± 1

iωn + ϵ2

)
, (27)

ϵ1 = (α+9β/4) k2−µ, and ϵ2 = (α+β/4) k2−µ. Denoting the free energies for ∆r and ∆a by Fr and Fa, respectively,
we find, to fourth order in ∆,

Fa−Fr
∼=

∆̄4kBT

16

∑
k,ωn

{
G̃2

+G
2
++(1−2l1l−1)

(
G̃2

−G
2
+ + G̃2

+G
2
−

)
+4(l1l−1−1) G̃−G−G̃+G++(1−l21l2−1) G̃

2
−G

2
−

}
, (28)

where l±1 =
√
3 cos θ sin θ e±iϕ and θ and ϕ are the spherical angles denoting the direction of k. Note that the term of

order ∆2 drops out of the free-energy difference under the integral over ϕ. The analysis of the above expression reveals
that either ∆r or ∆a can be stable, depending on the parameters. In particular, first consider the case of vanishing
spin-orbit coupling, β = 0. In this limit, we find G̃− = G− = 0 so that only the first term in the sum in Eq. (28)
survives, and we have Fa > Fr so that ∆r has lower free energy. This limit has also been considered in the context of
j = 3/2 pairing in cold atoms [6, 7] and the results agree with what we find. Consequently, the broken-time-reversal
state is not stable for β = 0.
Now consider the single-band limit, which can be reached, for example, by taking a large |β|, such that α + 9β/4

and α + β/4 have opposite sign, and a large chemical potential. If only ϵ1 crosses the Fermi surface, for sufficiently
small kBT/µ≪ 1 we can safely take the limit |ϵ2|/kBT → ∞ to find the asymptotic expression

Fa − Fr
∼=

∆̄4

1024kBT

∑
k

l21l
2
−1

(
1− kBT sinh(ϵ1/kBT )/ϵ1
ϵ21(1 + cosh(ϵ1/kBT ))

)
< 0 . (29)

This is the result expected from single-band weak-coupling theory, and demonstrates that the broken time-reversal
state is stable in this limit.
The above analysis implies that for fixed α and µ there will be a transition from ∆a to ∆r as a function of spin-

orbit coupling β. It is straightforward to show that the momentum and Matsubara sum in Eq. (28) only depends
on the dimensionless ratios β/α and µ/kBT , apart from prefactors that do not affect its sign. Numerical evaluation
indicates that transitions exist for any value of µ/kBT . We consider explicitly the case of |β| ≪ α, in which the two
spherical Fermi surfaces have nearly identical kF . We then find by expanding in β/α that this transition takes place
at x ≡ |β|µ/αkBT = |β|k2F /kBT ≈ 9.324. For x . 9.324, we find that the time-reversal-invariant state ∆r is the
ground state, while for x & 9.324, ∆r is unstable towards ∆a. This indicates that the broken-time-reversal state is
stabilized by modest spin-orbit coupling.
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