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Disorder-Induced Resistive Anomaly Near Ferromagnetic Phase Transitions
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We show that the resistivity ��T� of disordered ferromagnets near, and above, the Curie temperature Tc
generically exhibits a stronger anomaly than the scaling-based Fisher-Langer prediction. Treating
transport beyond the Boltzmann description, we find that within mean-field theory, d�=dT exhibits a
jT � Tcj�1=2 singularity near Tc. Our results, being solely due to impurities, are relevant to ferromagnets
with low Tc, such as SrRuO3 or diluted magnetic semiconductors, whose mobility near Tc is limited by
disorder.
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Introduction.—It was first observed by Gerlach [1] that
the resistivity of itinerant ferromagnets exhibits an anoma-
lous temperature dependence in the vicinity of the Curie
temperature Tc. This feature was later reproduced with
much higher experimental accuracy by Craig et al. [2] as
well as others [3]. Dating back to the seminal works of de
Gennes and Friedel [4] as well as Fisher and Langer [5],
this resistive anomaly is conventionally explained in terms
of coherent scattering of carriers by large blocks of spins
whose size is determined by the magnetic correlation
length ��T�. As the temperature approaches Tc, ��T� di-
verges, making the scattering more efficient.

de Gennes and Friedel [4] studied the resistive anomaly
of ferromagnets within mean-field (MF) theory. They argue
that, due to critical slowing down, spin fluctuations can be
treated as effectively static. The ensuing result for the
coherent transport scattering rate from spin fluctuations
above Tc is succinctly summarized by [4]
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Here, the scattering rate is normalized to the rate 1=�0 for
incoherent scattering. The denominator of the integrand
arises from the conventional MF (Ornstein-Zernike) corre-
lator for spin fluctuations, with t � �T � Tc�=Tc denoting
the reduced temperature. a is a microscopic length of the
order of the lattice constant. The integration variable x
denotes the transferred momentum in units of the Fermi
wave vector kF. The numerator incorporates the usual
factor 1� cos� (with � the scattering angle) in the trans-
port scattering rate. The integral in Eq. (1) yields �0=��t� �
�0=��0� � �1=8�kFa�4�t lnt, implying a singularity of the
resistivity of the form ��T� � �0 � bt ln�1=t� with b > 0
when approaching Tc from above.

Fisher and Langer [5] noticed that this singularity
emerges from the lower limit of the integral in Eq. (1)
while the body of the integrand is dominated by large wave
vectors. Within MF theory, the large-wave-vector behavior
of the spin-spin correlator is nonsingular. The central
assertion of Ref. [5] is that there exists a singular contri-
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bution to this correlator at large wave vectors when going
beyond the MF approximation, with the singularity gov-
erned by anomalous dimensions. Fisher and Langer con-
clude that while below Tc, the predictions of Ref. [4] are
essentially correct, there is no singularity within MF ap-
proximation when approaching Tc from above.

This conclusion rests on their important physical obser-
vation that Eq. (1) becomes inapplicable for t	 �‘=a�2, or
equivalently, when the correlation length ��T� exceeds the
mean free path ‘ (due to phonon or impurity scattering).
The reason is that the carriers can be viewed as plane waves
only over distances shorter than ‘ and thus, they are no
longer susceptible to the order in the spin configuration
beyond ‘.

Later, the ideas of Refs. [4,5] were extended to include
realistic features of ferromagnets [6] and to the critical
behavior of other quantities such as the spin-flip scattering
rate [7–9]. The effect of a finite mean free path on the
resistivity was studied by a number of approaches, ranging
from replacing the � function in the golden rule by a
Lorentzian [8] to smearing the Ornstein-Zernike correlator
in order to eliminate the pole [10].

All of these approaches are based on the Boltzmann-
equation formalism. The prime message of this Letter is
that in the small-t limit, when the correlation length ��T�
exceeds the mean free path ‘, the Boltzmann approach
fails. The reason for this is that for ��T�
‘, the smooth
variations of the magnetization (on the scale ��T�) are ‘‘ex-
plored’’ by diffusing carriers. By contrast, the Boltzmann ap-
proach prescribes to treat scattering from both short-range
impurities and the smooth variations of the magnetization
on equal footing, i.e., to add their partial scattering rates.

The consequences of going beyond the Boltzmann ap-
proach are drastic. In fact, as demonstrated below, instead
of smearing the resistive anomaly, impurities cause a much
stronger singularity, even within MF theory. Quantita-
tively, we find d2�=dT2 � t�3=2 sufficiently close to Tc,
as opposed to d2�=dT2 � t�1 for ��T� 	 ‘ [4].

Our reasoning goes as follows. The adequate description
of electric transport on scales larger than the phase-
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breaking length L� is a network of resistors, made up of
cubes of size L�, as illustrated in Fig. 1. This network is
inhomogeneous due to the different spin and disorder
configurations in each cube. Contrary to the Boltzmann
prescription, it is essential to first compute the effective
resistivity of the inhomogeneous network and to perform
the disorder and thermal averages only as the last step of
the calculation. Then, correlations between distant spins
affect the resistance through the inhomogeneous current
and field distribution over the network, leading to a true
singularity for t! 0 even within MF theory.

To illustrate the importance of performing the impurity
and thermal averages at the last step of the calculation,
consider a minimal model of two macroscopic resistors in
sequence. These resistors differ in both impurity and spin
configurations. Within the Boltzmann approach, both resis-
tances are equal to 1=� upon configurational and thermal
averaging, yielding a total resistance of 2=�. However, for
the actual distribution of impurities and spins, their con-
ductivities differ, so that�1 � �� ��=2 while�2 � ��
��=2. Then, the effective resistance becomes ��1 ��2�=
�1�2 ’ 2=����2=2�3 (assuming ��	�). This in-
volves an additional term ��2=2�3 with nonzero average.

Effective conductivity of an inhomogeneous medium.—
Remarkably, the effective resistivity �eff � 1=�eff can be
computed for an arbitrary realization ��r� of the local
conductivity, provided that the relative variation in ��r�
is weak [11]. To see this, we decompose the current, the
conductivity, and the electric field into averages j0,�0, and
E0 and spatially fluctuating contributions �j�r�, ���r�,
and �E�r�. From Ohm’s law, we have

j 0 � �0E0 � h���r��E�r�i; (2)

�j�r� � ���r�E0 � �0�E�r�: (3)

Here, the brackets denote a spatial average. Combining the
continuity equation r � �j � 0 and Maxwell’s equation
r� �E � 0 with Eq. (3), one obtains �E�q� �
�q̂ q̂ �E���q�=�0, where q̂ denotes the unit vector in
the direction of the wave vector q. Inserting this into
m(r)
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FIG. 1. Schematic representation of resistor network describ-
ing disordered ferromagnets when the correlation length ��T�
exceeds the phase-coherence length L�. Each block of size L�
constitutes a resistor with coarse-grained magnetization (arrows)
and random impurities (dots).
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Eq. (2), one finds for the effective macroscopic conductiv-
ity �eff (defined by j0 � �effE0) in three dimensions

�eff � �0 �
h����r��2i

3�0
: (4)

Remarkably, this result is independent of the geometry of
the conductivity variations. To illustrate this, consider a
sample with a 50-50 random mixture of domains of con-
ductivities �1 and �2, where j�1 � �2j 	 �1; �2. In this
case, Eq. (4) yields �eff � �0 � ��1 � �2�

2=12�0, which
is completely independent of the arrangement of domains.
It is interesting to remark that in two dimensions, one can
find an exact, geometry-independent expression for such
two-phase systems which is valid for arbitrarily large in-
homogeneities j�2 � �1j=��1 � �2� [12].

Effective conductivity due to spin fluctuations.—The
conductance of a phase-coherent sample exhibits random,
sample-specific, and reproducible variations as a function
of external parameters such as the Fermi energy EF. These
conductance fluctuations arise due to interference between
different elastic scattering paths of a carrier that diffuses
through the sample [13]. Thus, the conductance g�r; EF�
varies from block to block because of their different im-
purity configurations. The fluctuations in the conductivity
entering Eq. (4) can then be expressed as

���r� � �g�r; EF;m�r��=L�: (5)

We assume that the system is so large that domains with
any magnetization combined with any disorder realization
appear. Using this ergodicity assumption we replace the
spatial average in Eq. (4) by independent disorder and
thermal (magnetization) averages.

Two spin subbands.—In our case, the external parameter
is a vector, namely, the magnetization m�r�. To proceed,
we first consider the simplest case in which the dominant
effect of the impurity spins on the carriers is an effective
Zeeman field arising from the exchange interaction, which
is proportional to the magnetization m�r�. Then the coarse-
grained magnetization m�r�, which is averaged over each
cube of size L�, can be incorporated via equal but opposite
energy shifts ��m�r� for spin-up and spin-down carriers,
and �� becomes a sum of contributions from the two spin
projections,

���r� � ��g"�r; EF� � �g#�r; EF��=L�

� ��g�r; E�
F �r�� � �g�r; E

�
F �r���=L�: (6)

Here, g�r; EF� is the spinless conductance of the cube at
position r and we have introduced the shifted Fermi en-
ergies E�

F � EF � �m, see Fig. 2. We used that carriers
with both spin projections are scattered from the same
impurities. Substituting Eq. (6) into Eq. (4), we obtain

�eff��0�
2�30
3L2�

fh��g�r;E�
F �r���

2i�h��g�r;E�
F �r���

2i

�2h�g�r;EF��m�r���g�r;EF��m�r��ig:

(7)
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FIG. 2. Sample-specific variation of g�EF� for a block of the
resistor network (UCF) in the absence of spin. The conductances
for each spin direction are obtained by including equal but
opposite exchange-induced Zeeman shifts of the Fermi energy.
As indicated, this leads to a difference in the conductances for
the two spin directions.

PRL 94, 036602 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
28 JANUARY 2005
The first two terms on the right-hand side represent the
conductance variance, which is independent of the Fermi
energy and thus of m�r� [13]. Therefore, the only t depen-
dence comes from the conductance correlator.

It is well known [13] that this conductance correlator is a
function F�x� of the dimensionless ratio x � �m=Ec,
where Ec � D=L2� is the inverse diffusion time through a
block of size L� (D denotes the diffusion constant). In
three dimensions, the asymptotic behaviors of F�x� are
given by [13] F�x� � F�0��1� C1x2� for x	 1 and
F�x� � F�0�C2x

�1=2 for x
 1, where C1 and C2 are con-
stants of order unity. The remaining step is to substitute
F�x� into Eq. (7) and to perform the thermodynamic aver-
age over m, using the MF distribution for t > 0,

P �m�r�� / exp
�
�
c
2T

Z
d3r�a2rim � rim� tm2�

�
: (8)

Here, ca2 is a spin stiffness. Using this distribution, one
finds for the magnetization fluctuations

hm2�r�i �
Z
q<1=L�

d3q

�2!�3
3Tc=c

t� q2a2
: (9)

The restriction in the range of the q integration accounts
for the fact that we are computing fluctuations of the
coarse-grained magnetization. The appearance of t in the
denominator of Eq. (9) manifests the fact that the net
strength of fluctuations grows when approaching Tc.
This is in contrast to the conventional origin of the t
dependence, namely, the spin correlations. Perform-
ing the integration in Eq. (9), we obtain hm2�r�i�
�3Tc=2!

2ca2�f1=L���1=��T��arctan���T�=L��g in terms
of the MF correlation length ��T� � a=

��
t

p
.

As the next step, we replace m�r� in Eq. (7) by
hm2�r�i1=2. Using the distribution (8), this procedure can
be shown to be exact in the limits of small and large x.
Expanding the result in the small parameter L�=��T� �
L�

��
t

p
=a, we readily obtain

�eff � �0 �
2�30
3L2�

�
F�x0� � F

0�x0�x0
!L�

��
t

p

4a

�
; (10)
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where x0 � ��=Ec��3Tc=2!2ca2L��1=2. The t-dependent
part of �eff is given by the second term on the right-hand
side [14].

So far, our model completely disregards spin-orbit (SO)
coupling which is present in the vast majority of ferromag-
nets. Below, we incorporate SO coupling into the calcu-
lation of the effective resistivity.

Spin-orbit coupling.—In the presence of SO coupling,
the variance h��g�r; EF;m�r���2iimp increases by a factor of
2 when applying a sufficiently strong Zeeman field [15]. In
terms of the relevant dimensionless measure of the
exchange-induced Zeeman field y � �m�SO (here �SO is
the SO time), we can then write h��g�r; EF;m�r���2iimp �

H�y� with H�1�=H�0� � 2 [15]. Combining Eqs. (5) and
(4), substituting H�y�, and proceeding as in the derivation
of Eq. (10), we obtain [14]

�eff � �0 �
2�30
3L2�

�
H�y0� �H0�y0�y0

!L�
��
t

p

4a

�
; (11)

where y0 � ��SO�3Tc=2!2ca2L��
1=2. Equation (11) as-

sumes that the SO length ‘SO � �D�SO�
1=2 is smaller

than L�.
Discussion.—By going beyond the Boltzmann descrip-

tion in calculating the critical behavior of the resistivity, we
have expressed �eff through mesoscopic characteristics.
Recall that our results, Eqs. (10) and (11), were obtained
within MF theory so that the singularity in the t depen-
dence of �0 on the left-hand side of these equations, arising
within the Boltzmann formalism, is suppressed by impu-
rities, since ��T� 
 ‘. Equations (10) and (11) show that
in addition to this suppression, impurity scattering leads to
a

��
t

p
singularity which is much stronger than the de

Gennes-Friedel result t ln�1=t� and the large-wave-vector
Fisher-Langer contribution. This singularity, which in es-
sence is governed by Kirchhoff’s laws, constitutes our
central result. To resolve the anomaly on top of a monoto-
nous phonon contribution to �, it is customary to consider
d2�=dT2. Then, our disorder-induced MF anomaly be-
comes d2�=dT2 � t�3=2. In a log-log plot, the slope is
�1 in the Boltzmann regime ��T� 	 ‘ and �3=2 for the
disorder-induced anomaly, as shown in Fig. 3.

According to Eqs. (10) and (11), the sign of the anomaly
is governed by the sign of either F0�x0� or H0�y0�, depend-
ing on the strength of SO coupling. Since F0�x0�< 0 while
H0�y0�> 0, the disorder-induced anomaly corresponds to a
decrease of d2�=dT2 when approaching Tc from above in
the absence of SO coupling and to an increase in the
realistic case of strong SO coupling. The difference in
signs comes about because the Zeeman field suppresses
the correlator in Eq. (7), while it increases the universal
conductance fluctuation (UCF) for strong SO interactions.

The magnitude of the disorder-induced anomaly is con-
trolled by F�0� and H�0�, which are the variances of the
conductance, h��g�2iimp cf. Eqs. (10) and (11). This quan-
tity assumes different values in different regimes which are
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FIG. 3. Resistive anomaly within MF theory for L� � ‘ (sche-
matic) with (full line) and without (dashed line) SO coupling.
The anomaly is described by the de Gennes-Friedel mechanism
for ��T� 	 ‘, while the disorder-induced mechanism of this
Letter dominates closer to Tc where ��T� 
 L�. When L� 
 ‘,
there is an additional intermediate regime. Inset: anomaly with
SO coupling in a log-log plot.
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defined by the relations between the relevant lengths,
namely L�, the thermal length LT � �D=T�1=2, and the
spin-flip length ‘s. In the simplest case, when L� is the
smallest length, L� 	 LT; ‘s, we have h��g�2iimp �

�e2=h�2 [13]. If L� is larger than LT or ‘s, then
h��g�2iimp is suppressed below the universal limit,
h��g�2iimp � �e2=h�2�minfLT; ‘sg=L�� [13].

The disorder-induced anomaly proposed in this Letter is
most relevant to ferromagnets with high resistance and low
Tc since in such systems (i) the mean free path is domi-
nated by impurity scattering [16] and (ii) the phase-
coherence length exceeds the mean free path at Tc.
Natural candidates for disordered low-Tc ferromagnets
are SrRuO3 [17], which belongs to the class of poor metals
[18] as well as diluted magnetic semiconductors (DMS)
[19,20] which lately attracted considerable attention in
view of possible spintronics applications [21]. Indeed,
both types of materials show resistive anomalies which
differ significantly from the predictions of Fisher-Langer
theory. Metallic samples of DMS exhibit pronounced max-
ima near Tc even in � versus T [22–28], which are un-
related to the T � 0 metal-insulator transition [24,29].

In closing, it is interesting to point out that our principal
result, namely, the enhancement of the resistive anomaly
by disorder, can be viewed in perspective of the enhanced
coupling of the spin fluctuations to the carriers, expected
due to the diffusive carrier dynamics.
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