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MICROSCOPIC MODEL

In this section, we construct a 3D tight-binding model for Sr2RuO4. We take into account the full 3D Fermi surfaces
(FSs) of Sr2RuO4, based on the DFT band structure obtained by Veenstra et al. [S1], who showed that despite the
2D shape of the FSs, the orbital and spin polarization vary along kz. To account for the presence of orbital mixing
on the different FS sheets, we include the t2g manifold of the Ru dyz, dxz, and dxy orbitals (we will assume this order
throughout).

We parametrize the orbital space by the the Gell-Mann matrices, which are the generators of SU(3). We use the
convention

λ0 =

1 0 0
0 1 0
0 0 1

 , λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 0 1
0 0 0
1 0 0

 , λ3 =

0 0 0
0 0 1
0 1 0

 , λ4 =

0 −i 0
i 0 0
0 0 0

 ,

λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 −i
0 i 0

 , λ7 =

1 0 0
0 −1 0
0 0 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 .

(1)

We write the normal-state Hamiltonian in terms of the spinor Φk = (ck,2,↑, ck,2,↓, ck,1,↑, ck,1,↓, ck,3,↑, ck,3,↓)
T , where

we introduce the numbering of the orbitals 1 = dxz, 2 = dyz, 3 = dxy. In terms of the Gell-Mann and Pauli matrices,

we write the Hamiltonian H0 =
∑

k Φ†kĤ0(k)Φk where

Ĥ0(k) =
∑
a,b

hab(k)λa ⊗ σb. (2)

In the presence of inversion and time-reversal symmetries, only a subset of fifteen hab(k) terms are allowed. Table I
lists the symmetry-allowed terms, the associated irrep for the matrices λa ⊗ σb, the physical process to which these
correspond, and their momentum dependence.

Irrep (a, b) Type Explicit form of hab(k)

A1g

(0, 0) intra-orbital hopping 1
3

[ξ11(k) + ξ22(k) + ξ33(k)]

(8, 0) intra-orbital hopping 1

2
√
3

[ξ11(k) + ξ22(k)− 2ξ33(k)]

(4, 3) atomic SOC −ηz
(5, 2)− (6, 1) atomic-SOC η⊥

A2g (5, 1) + (6, 2) k-SOC neglected

B1g
(7, 0) intra-orbital hopping 1

2
[ξ22(k)− ξ11(k)]

(5, 2) + (6, 1) k-SOC 2tSOC
5261(cos kxa− cos kya)

B2g
(1, 0) inter-orbital hopping λ(k)

(5, 1)− (6, 2) k-SOC 4tSOC
5162 sin kxa sin kya

Eg

{(2, 0), (3, 0)} inter-orbital hopping 8t13z sin(kzc/2){sin(kxa/2) cos(kya/2), cos(kxa/2) sin(kya/2)}
{(4, 1), (4, 2)} k-SOC 8tSOC

12z sin(kzc/2){sin(kxa/2) cos(kya/2), cos(kxa/2) sin(kya/2)}
{(6, 3),−(5, 3)} k-SOC −8tSOC

56z sin(kzc/2){sin(kxa/2) cos(kya/2), cos(kxa/2) sin(kya/2)}

TABLE I. List of the fifteen symmetry-allowed terms in the normal-state Hamiltonian Ĥ0(k) in Eq. (2). For each (a, b), the
basis function hab(k) must belong to the same irrep of D4h as the matrix λa ⊗ σb. The table gives the irrep, the associated
physical process (“Type”), where “k-SOC” means momentum-dependent (nonlocal) SOC, and the momentum dependence of
hab(k). For the two-dimensional irrep Eg, the entries are organized such that the first transforms as xz and the second as yz.
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Note that Table I has entries which are in accordance with previous literature [S2, S3, S4] but there are also new
terms associated with hopping along the z-direction or momentum-dependent SOC, which are usually neglected. Here
we take ηz = η⊥ = η as the parameter for the on-site atomic SOC. The intra-orbital hoppings ξ11,22,33(k) are included
up to next-next-nearest neighbors in plane and next-nearest neighbors out of plane. The inter-orbital hopping λ(k)
between the dxz and the dyz orbitals is kept up to next-nearest neighbors in plane and nearest neighbors out of
plane. For the inter-orbital hopping {(3, 0),−(2, 0)} between the dxz and dxy (dyz and dxy) orbitals, we only keep the
nearest-neighbor component out of plane. The explicit form of the functions not given explicitly in Table I is

ξ11,22(k) = 2t11x,y cos kxa+ 2t11y,x cos kya

+ 8t11z cos(kxa/2) cos(kya/2) cos(kzc/2)

+ 4t11xy cos kxa cos kya+ 2t11xx,yy cos 2kxa+ 2t11yy,xx cos 2kya

+ 4t11xxy,xyy cos 2kxa cos kya+ 4t11xyy,xxy cos 2kya cos kxa

+ 2t11zz(cos kzc− 1)− µ, (3)

ξ33(k) = 2t33x (cos kxa+ cos kya)

+ 8t33z cos(kxa/2) cos(kya/2) cos(kzc/2)

+ 4t33xy cos kxa cos kya+ 2t33xx(cos 2kxa+ cos 2kya)

+ 4t33xxy(cos 2kxa cos kya+ cos 2kya cos kxa)

+ 2t33zz(cos kzc− 1)− µ1, (4)

λ(k) = 4t12z sin(kxa/2) sin(kya/2) cos(kzc/2)

− 4t12xy sin kxa sin kya

− 4t12xxy(sin 2kxa sin kya+ sin 2kya sin kxa). (5)

We now focus on terms corresponding to k-dependent SOC, usually not taken into account in the standard
parametrization of the normal-state Hamiltonian. The first matrix in the list, λ5 ⊗ σ1 + λ6 ⊗ σ2, which is of A2g

symmetry, will be ignored because the lowest-order polynomial basis function of this irrep is of order 4 (g-wave),
which only appears at next-next-next-nearest-neighbor hopping and is therefore assumed to be negligible. We also
take the other k-dependent SOC terms at the lowest order at which they appear. This concludes the construction of
the microscopic model, which is characterized by a Hamiltonian with 26 free parameters.

FIT TO DFT RESULTS

We employ the tight-binding model presented in the supplemental material of [S1] to determine the free parameters.
The tight-binding Hamiltonian is derived from an LDA band structure that is down-folded onto the O-2p and the
Ru-4d orbitals and therefore has a total of 17 bands. The hopping integrals are truncated at 10 meV. We henceforth
refer to the LDA-derived tight-binding Hamiltonian as the “DFT model”. For the calculation of the linearized gap
equation, the DFT model is much too large and most of the bands are irrelevant for superconductivity. The states
at the Fermi surface are determined by the t2g manifold of the Ru-4d orbitals (dyz, dxz, dxy) and we fit Eq. (2) to
several quantities extracted from the DFT model projected into this subspace.

We extract the Fermi momenta k̃F of the DFT model and denote the eigenvalues by ε and the associated eigenvectors
by V . We define the following measure

S =
∑

n=α,β,γ, k̃F

[(
εn(k̃F )

)2
+
(
d̃nxy(k̃F )− dnxy(k̃F )

)2
+
(
p̃nSOC(k̃F )− pnSOC(k̃F )

)2
+
(
ṽn‖ (k̃F )− vn‖ (k̃F )

)2]
, (6)

where the sum is over momenta k̃F on the DFT Fermi surfaces formed by the bands n = α, β, γ, εn(k) are the band
energies, dnxy(k) is the dxy-orbtial content, pnSOC(k) is the spin polarization, and vn‖ (k) the in-plane velocity. Quantities
with a tilde are from the DFT model. The dxy-orbtial content is determined by the corresponding eigenvector
components

dnxy(k) =
1

2

(
|V n,↑dxy,↑(k)|2 + |V n,↑dxy,↓(k)|2 + |V n,↓dxy,↑(k)|2 + |V n,↓dxy,↓(k)|2

)
. (7)
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t11x −362.4 t11y −134 t33x −262.4 t11xy −44.01 t11xx −1.021
t11yy −5.727 t33xy −43.73 t33xx 34.23 t12xy 16.25 t11xxy −13.93
t11xyy −7.52 t33xxy 8.069 t12xxy 3.94 η 57.39 µ 438.5
µ1 218.6 t11z −0.0228 t33z 1.811 t12z 19.95 t13z 8.304
t11zz 2.522 t33zz −3.159 tSOC

56z −1.247 tSOC
12z −3.576 tSOC

5162 −1.008
tSOC
5261 0.3779

TABLE II. Parameters of the Hamiltonian (2) determined from the fit to the DFT model. All values are in meV.

The spin polarization is determined from the expectation value of the atomic spin-orbit coupling Hamiltonian HSOC =
λ5σ2 − λ6σ1 − λ4σ3:

pnSOC(k) = 1 +

[
1

2
Re
(
V n,↑T (k)HSOCV

n,↑(k) + V n,↓T (k)HSOCV
n,↓(k)

)]1/3
. (8)

For the in-plane Fermi velocity we use a simple two-point central finite differences stencil where εx,y are small

vn‖ (k) =

√∣∣∣∣εn(k − εx)− εn(k + εx)

2εx

∣∣∣∣2 +

∣∣∣∣εn(k − εy)− εn(k + εy)

2εy

∣∣∣∣2. (9)

We minimize the measure (6) using the derivative-free optimization algorithm BOBYQA of dlib [S5].
The fit yields very good agreement with the DFT model close to the Fermi energy, including good reproduction of

the dxy-orbital content and the spin polarization. In Fig. 1, we compare the result of our fit with the DFT model
in the kz = 0 plane. In Fig. 2, we show the full 3D Fermi surface produced by our fit, together with the dxy-orbital
content and the spin polarization. The corresponding fit parameters are listed in Tab. II.

It is important to note that because the different sheets of the Fermi surface have varying orbital and spin content, it
is not possible to isolate one dominant band for superconductivity. The pairing state will in general have contributions
from all three sheets.

LINEARIZED GAP EQUATION

In this section, we outline our solution of the linearized BCS gap equation. For convenience, we repeat the second-
order expansion of the free energy as given in Eq. (3) of the main text,

F =
1

2

∑
i

1

gi
Tr [∆̂†i ∆̂i]−

kBT

2

∑
k,ω,i,j

Tr
[
∆̂iĜ∆̂†jĜ

]
, (10)

where the gap functions are ∆̂i = ∆i λai ⊗ σbi (iσ2) and the indices ai, bi, and interaction energies gi are given in
Table 1 of the main text. We introduce an interaction scaling parameter s, and for concreteness choose the interaction
energies to be given by U = 5/s, U ′ = 1/s, and J = 2/s. Since we are interested in the weak-coupling limit we will
later assume s to be large. The Green’s functions and gap function are expressed in the energy eigenbasis by

Ĝ→ U†ĜU = diag

(
1

iωn − εa

)
, (11)

Ĝ→ U†Ĝ U = diag

(
1

iωn + εa

)
, (12)

∆̂i → U†∆̂i U, (13)

where U is a unitary matrix that diagonalizes the normal-state Hamiltonian Ĥ0, U = (iσ2)†U , and εa are band
energies. We define new gap matrices by

Λi = U† (λai ⊗ σbi)U. (14)

The frequency summation yields

Sab(k, β) = − 1

β

∑
ωn

1

iωn − εa
1

iωn + εb
=

1

2

tanh(βεa/2) + tanh(βεb/2)

εa + εb
, (15)
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FIG. 1. Comparison of the DFT model (red dashed lines) with our fit (blue solid lines) in the kz = 0 plane. (a) Fermi surface
in the first quadrant of the Brillouin zone. (b) dxy-orbital content, (c) spin polarization, and (d) in-plane velocity as functions
of the angle θ = arctan(ky/kx) in the first quadrant. The three columns pertain to the α, γ, and β band.

where β = 1/kBT . The linearized gap equations are obtained by differentiating the free energy with respect to the
gap amplitudes, ∂F/∂∆∗i = 0, written explicitly as

∑
j

(
s
δij
g̃i

Tr [Λ†iΛi] +
∑
k,a,b

[Λi]
∗
ab[Λj ]ab Sab

)
∆j = 0, (16)

where i and j run over all gap-structure indices of a given irrep, a and b run over band indices, [Λi]ab is a matrix
element of Λi, and g̃i is the value of gi when s = 1.

First, consider εa = εb intraband terms in Eq. (16), the k-integration is written as

∑
k,εa=εb

[Λi]
∗
ab[Λj ]ab Sab =

∑
εa=εb

1

2

∫
dε Fabij(ε)

tanh(βε/2)

ε
, (17)
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FIG. 2. Full 3D Fermi surface obtained from the best fit to the DFT results of Ref. [S1], with color indicating (a) the dxy-orbital
content and (b) the spin polarization. The three columns pertain to the α, γ, and β band.

with

Fabij(ε) =
1

(2π)3

∫∫
εa(k)=ε

d2k
δεaεb
‖∇εa‖

[Λi]
∗
ab[Λj ]ab. (18)

Use the Taylor expansion of Fabij(ε) around the Fermi level, Fabij(0) + εF ′abij(0) + . . ., the derivative of Eq. (17) with
respect to β gives

∂

∂β

∑
k,εa=εb

[Λi]
∗
ab[Λj ]ab Sab =

1

β

∑
εa=εb

Fabij(0) +O

(
1

β3

)
. (19)

Note that when this is integrated with respect to β it yields the log β divergence in Eq. (17). Next, consider the εa 6= εb
interband terms, as β →∞, Sab converges to θ(εaεb)/|εa + εb| , where θ is the Heaviside step function. Because this
is a bounded function, there is no divergence in the interband contributions. In Eq. (16) a non-trivial solution for the
gap amplitudes ∆j is found by considering i and j as matrix indices and taking the corresponding 6× 6 matrix to be
singular. Including both the intraband and interband contributions, the critical βc satisfies

det

[
s
δij
g̃i

Tr [Λ†iΛi] + log βc
∑
εa=εb

Fabij(0) + Cij(βc)

]
= 0, (20)

where Cij(β) is the portion of
∑

k,a,b[Λi]
∗
ab[Λj ]ab Sab that remains after removing the log β divergent term. By

definition, Cij(β) is convergent as β → ∞, so the last term in the determinant can be ignored when s is sufficiently
large. More explicitly, in the weak-coupling limit s→∞, Tc is given in the form

log Tc(s) ≈ −ms+ δ, (21)
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where δ is a constant and m is the smallest log βc/s solution found when Cij = 0.
Different channels (irreps) have different values of m, and the channel with the smallest m is the leading instability

in the weak-coupling limit. Note that the definition of m does not depend on Cij and all the interband contributions
go into Cij . Thus we can drop the interband terms in Eq. (16). This changes δ but does not change m. The resultant
expression is

det

[
s
δij
g̃i

Tr [Λ†iΛi] +
∑

k,εa=εb

[Λi]
∗
ab[Λj ]ab Sab

]
= 0, (22)

which is the equation we solve numerically. The log β divergence originates from momenta near the Fermi surface,
so we carry out the k-integration on adaptive meshes with finer resolution near the Fermi surface. We obtain log βc
for several values of s and use linear regression to get the slope, which determines m. If the values of log βc at the
sampling points are not linear in s we sample larger s values until we encounter linear behavior. In our calculation,
an equidistant set of four sampling points is used for a linear regression and their R2 measures are always greater
than 0.999. Using this procedure, we get the slope m for each pairing channel and determine the leading instability
at each point in the phase diagram displayed in Fig. 1(a) in the main text. While this procedure may seem more
elaborate than a direct solution of Eq. (20) with Cij = 0, it allows us to verify Eq. (21) showing that our solution is
in the weak coupling limit.

SUPERCONDUCTING-FITNESS ANALYSIS

In this section, we present details of the superconducting-fitness analysis. We start with the more realistic three-
orbital model and then consider an effective two-orbital model, which dramatically simplifies the analysis but gives
consistent results.

Complete 3D three-orbital model

In previous works [S6, S7], a proof of the direct relation between the superconducting-fitness measures F̂C(k)
and F̂A(k) (defined below) and the superconducting critical temperature was provided for the one- and two-orbital
scenario. The first measure,

F̂C(k) = H̃0(k)∆̃(k)− ∆̃(k)H̃∗0 (−k), (23)

quantifies how incompatible a given gap structure is for a specific normal state, namely, how much inter-band pairing
there is. Here, H̃0(k) = Ĥ0(k) − h00(k)λ0 ⊗ σ0 and we have defined a normalized gap matrix ∆̃(k) = ∆̂(k)/|∆̂(k)|
such that average over the normal-state Fermi surface is 〈∆̃(k)∆̃†(k)〉FS = 1. The second measure,

F̂A(k) = H̃0(k)∆̃(k) + ∆̃(k)H̃∗0 (−k), (24)

quantifies how much intra-band pairing there is, or what fraction of the gap survives upon projection onto the
Fermi surface. For the two-orbital scenario, these measures satisfy 〈Tr F̂ †A(k)F̂A(k) + Tr F̂ †C(k)F̂C(k)〉FS = 1, up to
normalization of the normal-state Hamiltonian, which highlights their complementarity. The proof of this relation
relies on the fact that the matrices associated with the orbital DOF are Pauli matrices for the two-orbital scenario
and therefore form a totally anticommuting set, which greatly simplifies the calculations. On the other hand, for
n > 2 orbitals, the basis matrices are the generators of SU(n), which do not form a totally anticommuting set and
therefore do not allow a direct generalization of this relation for models with more than two orbitals. However, the
physical meaning of F̂C(k) and F̂A(k) is preserved within some approximations, as discussed below.

For the three-orbital situation, the corresponding superconducting-fitness functions can be identified as

F̂ 3orb
A,C (k) = [Ĥ0(k)]2∆̃(k)± ∆̃(k)[Ĥ∗0 (−k)]2. (25)

Given that [A2, B]± = A[A,B] ∓ [A,B]A, the core of the analysis still depends on the original form of the
superconducting-fitness functions. Therefore, we use the form linear in Ĥ0(k) to get some insight. Below, we will see
that a simplified two-orbital model, for which the linear version of the fitness functions is valid rigorously, corroborates
our analysis. We summarize the results for the complete three-orbital problem in Tables III and IV. The first row
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A1g A2g B1g B2g Eg

Irrep [a, b] Interac. h80 h43 h52−61 h51+62 h70 h52+61 h10 h51−62 h20 h30 h41 h42 h53 h63

A1g

[0, 0] U + 2J ′ 32
3

32
3

64
3

128
3

32
3

128
3

32
3

64
3

32
3

32
3

32
3

32
3

32
3

32
3

[8, 0] U − J ′ 16 16
3

8
3

16
3

16
3

16
3

16
3

8
3

4
3

4
3

16
3

16
3

4
3

4
3

[4, 3] U ′ − J 16
3

16 8 16 0 16 0 8 4 4 0 0 4 4

[5, 2]− [6, 1] U ′ − J 5
3

3 24 8 3 8 3 8 2 2 4 4 2 2

A2g [5, 1] + [6, 2] U ′ − J 5
3

3 0 32 3 32 3 8 2 2 4 4 2 2

B1g
[7, 0] U − J ′ 16

3
0 8 16 16 16 0 8 4 4 0 0 4 4

[5, 2] + [6, 1] U ′ − J 5
3

3 8 32 3 32 3 0 2 2 4 4 2 2

B2g
[1, 0] U ′ + J 16

3
0 8 16 0 16 16 8 4 4 0 0 4 4

[5, 1]− [6, 2] U ′ − J 5
3

3 8 8 3 8 3 24 2 2 4 4 2 2

Eg
+[3, 0]

U ′ + J
4
3

4 4 8 4 8 4 4 4 16 4 4 4 0

−[2, 0] 4
3

4 4 8 4 8 4 4 16 4 4 4 0 4

Eg
+[4, 2]

U ′ − J
16
3

0 8 16 0 16 0 8 4 4 0 16 4 4

−[4, 1] 16
3

0 8 16 0 16 0 8 4 4 16 0 4 4

Eg
+[5, 3]

U ′ − J
4
3

4 4 8 4 8 4 4 0 4 4 4 16 4

+[6, 3] 4
3

4 4 8 4 8 4 4 4 0 4 4 4 16

TABLE III. Superconducting-fitness measure F̂A for the 3D three-orbital model for Sr2RuO4. The first column gives the irreps
of the order parameters associated with matrix form [a, b] (second column) and the third column displays the local interaction in
the respective channel, where the potentially attractive channels are highlighted in boldface. Columns 4–17 give the results for
the fitness function such that Tr F̂ †AF̂A =

∑
cd(table entry) |hcd|2, for each term hcd in the normal-state Hamiltonian, indicated

in the second row with the associated irrep given in the first row. We highlight in boldface the hcd terms which are present in
the standard 2D models for Sr2RuO4, while the terms in normal typeface are either momentum-dependent SOC or interlayer
couplings.

gives the irrep of each term in the normal-state Hamiltonian displayed in the second row as hab. The first column
gives the irrep of each order parameter displayed in the second column following the notation [a, b] corresponding to
∆̂ = λa ⊗ σb (iσ2). The third column gives the interaction stemming from the Hubbard-Kanamori Hamiltonian for

each channel. Finally, the numerical entries in the tables correspond to Tr F̂ †A,C F̂A,C =
∑
cd(table entry) |hcd|2.

Note that the order parameters with a potentially attractive interaction U ′ − J are [4, 3] and [5, 2] − [6, 1] in A1g,
[5, 1] + [6, 2] in A2g, [5, 2] + [6, 1] in B1g, [5, 1] − [6, 2] in B2g, and finally {[4, 2],−[4, 1]} and {[5, 3], [6, 3]} in Eg. All
these order parameters are associated with spin-triplet states. If we focus first on the largest terms in the normal-state
Hamiltonian, namely h80 and h70 (intra-orbital hopping), h10 (inter-orbital hopping), and h43 and h52−61 (atomic
SOC), we conclude from Tables III and IV that, among the one-dimensional irreps, the most stable state should be
in the A1g channel since these states are associated with larger entries for F̂A and smaller entries for F̂C .

Considering now the two-dimensional order parameters, for {[4, 2],−[4, 1]}, we find that the terms stabilizing it,
i.e., the ones with the largest contribution to F̂A, are h51+62, h52+61, and {h42,−h41}, all associated with momentum-
dependent SOC. However, these terms contribute with the same value to the detrimental fitness measure F̂C , sug-
gesting that they overall do not favor this pairing state. On the other hand, the two-dimensional order parameter
{[5, 3], [6, 3]} is stabilized by h51+62, h52+61, and {h53, h63}. Again, the terms h51+62 and h52+61 contribute with a
large value to F̂C . On the other hand, the terms {h53, h63} contribute only moderately. This analysis suggests that
the {[5, 3], [6, 3]} channel should be the one driving the superconducting instability in the Eg channel and can be
stabilized by large terms {h53, h63}.

From this analysis, we can understand the tendencies observed in the numerical results as follows: the order
parameters in A1g, in particular [5, 2] − [6, 1], are strongly stabilized by atomic SOC, in particular by the term
h52−61 in the normal-state Hamiltonian, such that reducing the magnitude of this coupling is expected to weaken the
superconducting instability in this channel. Moreover, the terms {h53, h63} primarily suppress the order parameter
in this channel since their contribution to F̂C is larger than the one to F̂A. In contrast, the Eg order parameters, in

particular for {[5, 3], [6, 3]}, are primarily stabilized by {h53, h63} since for these terms the contribution to F̂A is larger
than the one to F̂C , while atomic SOC is clearly detrimental. This analysis suggests that by reducing the atomic
SOC and enhancing the terms {h53, h63} associated with nonlocal SOC even in momentum, the ground state should
change from A1g to Eg.
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A1g A2g B1g B2g Eg

Irrep [a, b] Interac. h80 h43 h52−61 h51+62 h70 h52+61 h10 h51−62 h20 h30 h41 h42 h53 h63

A1g

[0, 0] U + 2J ′ 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[8, 0] U − J ′ 0 0 24 48 0 48 0 24 12 12 0 0 12 12

[4, 3] U ′ − J 0 0 8 16 16 16 16 8 4 4 16 16 4 4

[5, 2]− [6, 1] U ′ − J 11 3 0 32 3 32 3 8 8 8 4 4 8 8

A2g [5, 1] + [6, 2] U ′ − J 11 3 24 8 3 8 3 8 8 8 4 4 8 8

B1g
[7, 0] U − J ′ 0 16 8 16 0 16 16 8 4 4 16 16 4 4

[5, 2] + [6, 1] U ′ − J 11 3 8 8 3 8 3 24 8 8 4 4 8 8

B2g
[1, 0] U ′ + J 0 16 8 16 16 16 0 8 4 4 16 16 4 4

[5, 1]− [6, 2] U ′ − J 11 3 8 32 3 32 3 0 8 8 4 4 8 8

Eg
+[3, 0]

U ′ + J
12 4 20 40 4 40 4 20 4 0 4 4 4 16

−[2, 0] 12 4 20 40 4 40 4 20 0 4 4 4 16 4

Eg
+[4, 2]

U ′ − J
0 16 8 16 16 16 16 8 4 4 16 0 4 4

−[4, 1] 0 16 8 16 16 16 16 8 4 4 0 16 4 4

Eg
+[5, 3]

U ′ − J
12 4 20 40 4 40 4 20 16 4 4 4 0 4

+[6, 3] 12 4 20 40 4 40 4 20 4 16 4 4 4 0

TABLE IV. Superconducting-fitness measure F̂C for the 3D three-orbital model for Sr2RuO4. The same notation as in Table
III has been used.

Effective two-orbital model in the kxkz-plane

Sufficiently far from the Brillouin-zone diagonals ky = ±kx, the bands close to the Fermi energy are dominated
by only two of the Ru d-orbitals. For concreteness, here we consider the kxkz-plane, but our conclusions remain
qualitatively valid for general k, except close to ky = ±kx.

In the kxkz-plane, the dominant orbitals at the Fermi energy are dxz and dxy. Projecting into this subspace, we
obtain an effective two-orbital Hamiltonian which is parametrized by

Ĥ2 orb(k) = h̃ab(k) τa ⊗ σb, (26)

where the h̃ab(k) are real functions of momentum, τa and σb are Pauli matrices for a, b = 1, 2, 3 and the 2× 2 identity
matrix for a, b = 0, encoding the orbital and the spin DOF, respectively. There are, in principle, 16 parameters h̃ab(k)
but in the presence of time-reversal and inversion symmetries these are constrained to only six, including the term
proportional to the identity. The symmetry-allowed terms are listed in Table V; we classify them in terms of the
irreps of D2h, which is the little group for D4h in the kxkz-plane. Analogously, we can parametrize the s-wave gap
matrices in the orbital basis as

∆̂ = d0 τa ⊗ σb (iσ2). (27)

The irreps associated with each [a, b] combination are the same as for the normal-state Hamiltonian, given in the first
two columns of Table V.

The superconducting-fitness analysis, which is summarized in Table VI, is very much simplified in the two-orbital
scenario since the symmetry-allowed matrices form a totally anticommuting set. From the table, one can see that the
results concerning F̂A(k) and F̂C(k) are complementary. Note that the trivial order parameter, [0, 0], is stabilized
by all the terms in the Hamiltonian while the remaining order parameters of the form [a, b] need the associated term
h̃ab in the Hamiltonian to develop a weak-coupling instability. There is an attractive interaction in the orbital-singlet
spin-triplet channels [2, b]. The order parameter [2, 1] in Ag is stabilized by the atomic SOC term h̃21. The other

two potentially attractive channels [2, 2] in B1g and [2, 3] in B2g are stabilized by h̃22 and h̃23, respectively. Note,

however, that h̃22 is zero in the kxkz-plane (also also in the equivalent kykz-plane), which should significantly reduce
the stability of this state. We are then left with [2, 1] in Ag and [2, 3] in B2g as good candidates: For strong atomic

SOC h̃21, the Ag channel should be the most stable, whereas for h̃23 > h̃21, the B2g channel becomes the most robust.
We now connect this discussion with the results of the three-orbital analysis above. The order parameter [2, 1] in

the two-orbital model corresponds to both [5, 2] − [6, 1] in A1g and [5, 2] + [6, 1] in B1g of the three-orbital model,
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Irrep (a, b) Type Basis Value in kxkz-plane Three-orbital model

Ag

(0, 0) intra-orbital hopping

1, x2, y2, z2 finite

(0, 0) in A1g

(3, 0) intra-orbital hopping (8, 0) in A1g

(2, 1) atomic SOC (6, 1) in A1g/B1g

B1g (2, 2) k-SOC xy 0 (6, 2) in A2g/B2g

B2g (2, 3) k-SOC xz finite (6, 3) in Eg

B3g (1, 0) inter-orbital hopping yz 0 (3, 0) in Eg

TABLE V. List of the six symmetry-allowed terms in the effective two-orbital normal-state Hamiltonian Ĥ2 orb(k) given by Eq.

(26). For each (a, b), the basis function h̃ab(k) should transform according to a specific irrep of D2h and can be associated with
different physical processes (“Type”). The table also gives associated basis functions and provides information on whether they
are finite or zero in the kxkz-plane and on the associated term in the original three-orbital model.

F̂A F̂C

Ag B1g B2g B3g Ag B1g B2g B3g

Irrep [a, b] Interac. h̃30 h̃21 h̃22 h̃23 h̃10 h̃30 h̃21 h̃22 h̃23 h̃10

Ag

[0, 0] U + 2J ′ 1 1 1 1 1 0 0 0 0 0

[3,0] U − J ′ 1 0 0 0 0 0 1 1 1 1

[2,1] U ′ − J 0 1 0 0 0 1 0 1 1 1

B1g [2,2] U ′ − J 0 0 1 0 0 1 1 0 1 1

B2g [2,3] U ′ − J 0 0 0 1 0 1 1 1 0 1

B3g [1,0] U ′ + J 0 0 0 0 1 1 1 1 1 0

TABLE VI. Superconducting-fitness analysis for the effective two-orbital model in the kxkz-plane. The first column gives
the irrep of D2h of the order parameter parametrized by the matrices [a, b] (second column), the third column displays the
local interaction in the respective channel, where the potentially attractive channels are highlighted in boldface. Columns 4–8
give the results for the fitness function F̂A such that Tr F̂ †A(k)F̂A(k) =

∑
cd(table entry) |h̃cd(k)|2, for each term [c, d] in the

normal-state Hamiltonian. Analogously, columns 9–13 give the results for the fitness function F̂C . We highlight in boldface the
h̃cd terms which are usually present in 2D models, while the terms in normal typeface describe momentum-dependent SOC or
interlayer hopping.

whereas [2, 3] in the two-orbital model corresponds to {[5, 3], [6, 3]} in Eg. As discussed in the main text, the leading
pairing instabilities are in the Eg and A1g channels, whereas the B1g channel is the subleading instability over much
of the region where the A1g channel is dominant. The fact that the B1g channel is a subleading instability is not
surprising, since it must go through a zero as one moves along the Fermi surface from the kxkz- to the kykz-plane,
whereas the A1g channel maintains a full gap. Since the attractive interactions in both channels are the same, the
A1g state will be favored over B1g.

The fact that atomic SOC favors the A1g channel, while increasing the {h53, h63} terms can stabilize an Eg state,
is consistent with the numerical analysis presented in the main text. A naive interpretation of the two-orbital model
implies that the Eg state is stabilized over the A1g when h̃23 > h̃21. However, we numerically find in the full
three-orbital model that the condition is closer to {h53, h63} & h52−61/4. This discrepancy reflects the fact that the
two-orbital model is not valid over the entire Brillouin zone. Nevertheless, the two-orbital model accurately identifies
the terms which stabilize the Eg state over the A1g.
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