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The mechanism behind the nematicity of FeSe is not known. Through elastoresitivity measurements it
has been shown to be an electronic instability. However, thus far measurements have extended only to small
strains, where the response is linear. Here, we apply large elastic strains to FeSe and perform two types of
measurement. (1) Using applied strain to control twinning, the nematic resistive anisotropy at temperatures
below the nematic transition temperature Ts is determined. (2) Resistive anisotropy is measured as
nematicity is induced through applied strain at fixed temperature above Ts. In both cases, as nematicity
strengthens, the resistive anisotropy peaks at about 7%, then decreases. Below ≈40 K, the nematic resistive
anisotropy changes sign. We discuss possible implications of this behavior for theories of nematicity. In
addition, we report the following. (1) Under experimentally accessible conditions with bulk crystals, stress,
rather than strain, is the conjugate field to the nematicity of FeSe. (2) At low temperatures the twin
boundary resistance is ∼10% of the sample resistance, and must be properly subtracted to extract intrinsic
resistivities. (3) Biaxial in-plane compression increases both in-plane resistivity and the superconducting
critical temperature Tc, consistent with a strong role of the yz orbital in the electronic correlations.
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I. INTRODUCTION

At an electronic-nematic transition, electronic inter-
actions drive a spontaneous reduction in rotational sym-
metry without introducing translational or time-reversal
symmetry breaking. Electronic nematicity affects all the
Fermi surfaces of a metal, and therefore its fluctuations can
have powerful effects [1,2]. It is potentially an integral part
of the high-temperature superconductivity of iron-based

and cuprate superconductors [3], and the mechanisms
behind it are therefore a topic of interest.
In many iron-based superconductors, nematicity occurs

in close proximity to a transition into unidirectional spin
density wave order, suggesting that it is a melted form of
the magnetic order [4,5]. In contrast, the nematic transition
of FeSe occurs, at 92 K, without a subsequent magnetic
transition. Whereas in other iron-based superconductors
magnetic and lattice fluctuations are linked by a scaling
relationship, they are not so linked in FeSe [6–8]. In spite of
these differences, there are similarities between FeSe and
other iron-based superconductors that suggest that their
nematicities are related. For example, unidirectional mag-
netic order can be induced in FeSe [9,10], and the nematic
electronic structure as observed in angle-resolved photo-
emission qualitatively matches that of BaFe2As2 [11,12].
FeSe is a valuable reference material not only because of
the absence of magnetic order, but also because of the
absence of intrinsic dopant disorder, and the availability of
high-quality, vapor-transport-grown samples [13,14].
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Measurements of the strain dependence of resistivity,
i.e., the elastoresistivity, have shown that the nematicity
of FeSe, like that of other iron-based superconductors,
is an electronic instability. The key observation is that
the resistive anisotropy ðρxx − ρyyÞ=ðρxx þ ρyyÞ varies with
strain at a rate that diverges with cooling [15–19]. The
resistive anisotropy is understood to be proportional to an
underlying electronic anisotropy that can be quantified by a
nematic order parameter ψ. On a clamped lattice, ψ would
transition to a nonzero value at a bare transition temperature
Ts;0, but the elastic compliance of the lattice raises the
transition temperature to Ts > Ts;0. For T > Ts, applied
anisotropic strain ε induces nonzero ψ through electron-
lattice coupling, with a susceptibility dψ=dε that diverges
(with divergence temperature Ts;0) as the sample is cooled.
Therefore, because resistive anisotropy is proportional to ψ ,
its dependence on strain also steepens with cooling.
An assumption of a linear relationship between ψ and

resistive anisotropy has become deeply enough embedded
that resistive anisotropy is often employed as a measure of
ψ . Here, we explore elastoresistivity at large jψ j, where the
relationship becomes strongly nonlinear. FeSe is consid-
ered to be a Hund’s metal, meaning that interorbital charge
fluctuations are suppressed by Hund’s coupling [20].
Strong evidence for the importance of orbital character
is provided by the fact that the magnitude of the super-
conducting gap correlates closely with yz orbital weight
[21–23]. Many of the strain effects that we observe here are
also consistent with a prominent role of the yz orbital in
electronic correlations, and we discuss how our data may
constitute a test of theories of the nematicity of FeSe.
Two types of measurement are presented. (1) Resistive

anisotropy is measured as a function of strain-induced
nematicity at constant temperature T ∼ Ts. (2) Strain tuning
is employed to control the twinning as samples are cooled,
allowing measurement of the intrinsic resistive anisotropy
at temperatures below Ts. Although the T-dependent
nematic resistive anisotropy has been reported previously
for a few iron-based compounds [19,24–27], these previous
measurements have relied upon assumptions that twin
boundary resistance is negligible and/or that a sustained
stress applied to detwin samples is weak enough not to
substantially alter the electronic structure, even though the
iron-based superconductors are extremely sensitive to
uniaxial stress [25,28]. With strain tuning, samples can
be held in a fully or partially detwinned state without
sustained application of external anisotropic stress.
This paper is organized as follows. We first present our

setup and methods, and then define the key parameters for
discussion of elastoresistivity. We then present results for
application of anisotropic strainwith principal axes rotated by
45° from the nematic axes, in otherwords,where it constitutes
a transverse field to the nematicity [29]. Results are then
presented for strain aligned with the nematic axes, where the
response is much stronger. Ourmain results, the spontaneous

nematic resistive anisotropy for T < Ts and its comparison
with that induced by strain at T > Ts, are shown in Fig. 8.
For orientation, the electronic structure of FeSe above

and far below Ts is illustrated schematically in Fig. 1(a).
We work with the 1-Fe unit cell, in which the Fe-Fe bond
directions, and the principal axes of the nematicity, are the
h100i directions. In the corresponding Brillouin zone, there
is a hole pocket at the Γ point, and two electron pockets,
one at the X and the other at the Y point. In the nematic
state, where the a lattice parameter becomes larger than b,
the pocket at X distorts into a peanutlike shape elongated
along kx, signatures of the Y pocket disappear from
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FIG. 1. (a) Schematic illustration of the electronic structure
above and below the nematic transition temperature Ts. Fermi
surfaces are colored by their dominant orbital content. For
T < Ts, kx is oriented along the crystalline a axis, where
a > b. (b) Piezoelectric uniaxial stress apparatus with a platform.
(c) Photograph of sample B, with contacts attached for measuring
resistivity along the sample’s length. The lattice directions are
indicated. SampleAwas prepared similarly, thoughwith its crystal
axes rotated by 45°. (d) Scanning electron (SEM) micrograph of a
cut, made with a focused ion beam, through sample B and the
epoxy layer beneath it. (e) Photograph and (f) SEMmicrograph of
sample C, which was prepared in a Montgomery configuration.
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spectroscopic probes [17,21,30–33], and the hole pocket
becomes elongated along the ky direction.

II. METHODS

To apply large strains to FeSe, we affix samples to
platforms with a layer of epoxy (Masterbond® EP29LPSP),
and then apply stress to the platform; details of this method
are presented in Ref. [34]. By preventing samples from
buckling under compressive strain, the platform allows
samples to be very thin. This is helpful for FeSe because it
is a layered compound with a very low elastic limit for
interlayer shear stress, which is minimized when samples
are thin. The epoxy that wicked up the sides of the sample
may also have served to hinder cleavage. A schematic of
the setup is shown in Fig. 1(b), and images of mounted
samples are shown in Figs. 1(c)–1(f).
Here, the platforms are titanium sheets. The central

portion is cut into a narrow neck within which stress is
concentrated, and samples are attached to this neck. The
platforms are then mounted onto a piezoelectric-driven
uniaxial stress apparatus. This apparatus incorporates a
capacitive sensor of the applied displacement, and therefore
of the longitudinal strain within the neck.
We report data from three samples. Sample Awas cut for

application of strain with h110i principal axes, and samples
B and C with h100i principal axes. Samples A and B were
prepared as shown in Fig. 1(c): bars with high length-
to-width ratio, with contacts for measurement of resistivity
along the sample length. Sample C, shown in Figs. 1(e)
and 1(f), was prepared in a Montgomery configuration for
simultaneous measurement of longitudinal and transverse
resistivities, as introduced for elastoresistivity measure-
ments in Ref. [16]. The conversion from measured resis-
tances to longitudinal and transverse resistivities in the
Montgomery geometry is discussed in Appendix A 1. In
Appendix A 2, we consider the mechanics of strain trans-
mission from the platform to the sample, and show that the
lengths and widths of the samples here are all long enough
that to good precision both the longitudinal and transverse
strains can be taken to be locked to those in the platform.
Electrical contacts, fabricated from sputtered gold with

no adhesion layer, were deposited on the samples’ upper
surfaces. The resistivity ratio ρc=ρab of FeSe appears not to
have been measured; however, that of FeSe0.4Te0.6 is≈70 at
15 K [35]. The length scale for current injected at the upper
surface to spread out over the full sample thickness is
tðρc=ρabÞ1=2, where t ∼ 10 μm is the sample thickness. This
length scale is short enough that measurements here are not
strongly affected by the c-axis resistivity. For sample C, the
contacts also run down the sides of the sample.

III. STRAIN PARAMETERS

The applied strain can be resolved into symmetric and
antisymmetric components, and throughout this work it

will be important to resolve their separate effects. Here,
we define quantities for discussion. For sample A, stress
is applied along the [110] lattice direction; the displace-
ment sensor in the stress cell measures the strain along
this axis, ε110. The transverse strain ε11̄0 is given by
ε11̄0 ¼ −νε110, where ν ¼ 0.32 is the Poisson ratio of the
platform. The symmetric component of the strain field is
εA1g ≡ 1

2
ðε110 þ ε11̄0Þ, which comes to 0.34ε110, while the

antisymmetric component is εB2g ≡ 1
2
ðε110 − ε11̄0Þ ¼

0.66ε110. These parameters, along with equivalent param-
eters for samples B and C, are summarized in Table I. We
also label resistivities by the measurement axis: ρ100, for
example, is the resistivity along the [100] direction. For
sample C, both ρ100 and ρ010 are measured, and so
symmetric and antisymmetric resistivities can be defined:
ρA1g ≡ 1

2
ðρ100 þ ρ010Þ and ρB1g ≡ 1

2
ðρ100 − ρ010Þ.

We note that specifying lattice distortions becomes more
complicated when the lattice twins. We adopt here the
convention that [110] for sample A and [100] for samples B
and C always refer to the direction along the length of the
platform. When the sample twins, we use a and b to refer to
the directions along which the in-plane lattice constant
lengthens and shrinks, respectively; in other words, the a
and b axes are defined locally, and the [100] and [110]
directions globally.
For all samples, the applied strain will also generate a

c-axis strain in the sample, ε001 ¼ −2c13εA1g=c33. c-axis
strain preserves the tetragonal symmetry of the T > Ts
lattice, and therefore is in the A1g representation. When we
discuss A1g strain it should be understood that it includes
this associated c-axis strain.
Because the aim of this work is to explore the nonlinear

regime, we do not apply the elastoresistivity matrix formal-
ism introduced in Ref. [36]. For comparison with previous
results, we note that the quantity ð1=ρA1gÞdρB1g=dεB1g at
εB1g ¼ 0 is equal to m11 −m12 in that formalism. Most

TABLE I. Strain parameters. We take the 1-Fe unit cell, in
which the h100i directions are Fe-Fe bond directions. Sample A
is aligned so that stress is applied along the [110] lattice direction;
the strain along this axis, ε110, is measured by the displacement
sensor integrated into the stress cell. Samples B and C are aligned
so that stress is applied along the [100] direction. ν ¼ 0.32 is the
Poisson ratio of the platform. The graphics illustrate the strain
directions. We take the sign convention that ε < 0 denotes
compression.

Sample A

εA1g ≡ 1
2
ðε110 þ ε11̄0Þ ¼ 1

2
ð1 − νÞε110 ¼ 0.34ε110

εB2g ≡ 1
2
ðε110 − ε11̄0Þ ¼ 1

2
ð1þ νÞε110 ¼ 0.66ε110

Samples B and C

εA1g ≡ 1
2
ðε100 þ ε010Þ ¼ 1

2
ð1 − νÞε110 ¼ 0.34ε100

εB1g ≡ 1
2
ðε100 − ε010Þ ¼ 1

2
ð1þ νÞε110 ¼ 0.66ε010
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previous elastoresistivity results have been reported using
the 2-Fe unit cell, in which m11 −m12 transforms to 2m66.

IV. RESULTS: h110i STRAIN
Although strong transverse strain is predicted to enhance

quantum fluctuations and suppress nematicity [29,37], the
range of transverse strain explored here shifts Ts by only a
few kelvin. Ts can be identified from an upturn in the
resistivity, and, as shown in Fig. 2, decreases at a modest
rate with compression. Within our strain range only a linear
component of the strain dependence is resolved, with slope
dTs=dε110 ¼ 750 K. This slope is due to the A1g compo-
nent of the applied strain: under the tetragonal symmetry of
FeSe at T > Ts, reversal of the sign of εB2g gives a
symmetrically equivalent strain, so coupling to εB2g can
give only strain-even components in the strain dependence
of Ts.
εA1g ¼ 0.34ε110, so dTs=dε110 ¼ 750 K corresponds to

dTs=dεA1g ¼ 2200 K. In Ref. [38], Ts is found to be
suppressed by compressive hydrostatic stress with an initial
slope of 39 K=GPa. Using the elastic moduli of Ref. [39],
this converts to dTs=dεA1g ≈ 6200 K. (See Appendix A 3
for details.) The difference between this and our result
allows, in principle, separation of the effect of c-axis strain
ε001 and that of “pure” in-plane biaxial strain εA1g;pure that
has no associated c-axis strain. Applying again the elastic
moduli from Ref. [39], under in-plane uniaxial stress
ε001 ¼ −0.3 × εA1g;pure, and under hydrostatic stress
ε001 ¼ 1.0 × εA1g;pure, so ΔTs ≈ ð3200 KÞ × εA1g;pureþ
ð1000 KÞ × ε001.

V. RESULTS: h100i STRAIN
A. Stress-temperature versus strain-temperature

phase diagram

The effect of strain applied along the principal axes of
the nematicity is much more dramatic. Before showing
results, we discuss the differences between stress- and
strain-temperature phase diagrams for a nematic transi-
tion. The distinction between stress and strain is equiv-
alent to that between magnetic field H and magnetic
induction B. When a ferromagnet is cooled through its
Curie temperature under nonzero H, the transition broad-
ens into a crossover. Experimentally, controlled H is
applied by preparing samples to have a low demagneti-
zation factor: thin bars parallel to the applied field. In the
opposite limit, of a thin plate perpendicular to the applied
field, it is B that is held fixed, and if B=μ0 is less than the
spontaneous magnetization M of the sample, then in
general magnetic domains will form such that the sam-
ple’s average magnetization matches the applied B.
Domain formation under nonzero applied B requires
reversal of local magnetization, so it is a first-order
transition rather than a crossover.

For nematic compounds, the difference between stress
and strain is illustrated in Fig. 3. In the stress-temperature
phase diagram, a first-order transition line corresponding to
reversal of the nematicity runs along the zero-stress axis
from T ¼ Ts to T → 0. In the strain-temperature phase

Fe
Se

(a)

(b)

FIG. 2. The effect of transverse strain. (a) ρ110ðTÞ, the resis-
tivity along the [110] direction, for sample A at various applied
strains ε110. The principal axes of the nematicity in FeSe are the
h100i axes, so this strain is a transverse field to the nematicity.
Inset: schematic of the strain axis. (b) Ts versus ε110 for this
sample. Ts is identified as the maximum in d2ρ110=dT2. The
shaded region is a measure of the width of the transition: it is
where d2ρ=dT2 exceeds half its maximum value. The line is a fit.
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FIG. 3. Schematic phase diagrams. (a) Schematic stress-tem-
perature phase diagram for the nematicity of FeSe, for stress
applied with B1g principal axes; the first-order transition is where
the direction of the nematicity flips. (b) The corresponding strain-
temperature phase diagram. In the indicated region, the lattice is
unstable and breaks up into twins where, locally, εB1g ¼ �εsðTÞ.
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diagram, on the other hand, there are two lines of first-order
transitions. The structural distortion in FeSe is to high
precision a B1g distortion, meaning that b contracts by
nearly the same amount as a lengthens [40–42]. Therefore,
the nematicity-induced structural distortion can be described
as a spontaneous local strain εB1g;local¼�εsðTÞ, where the
quantity εs is termed the structural strain. The average strain
in the sample must match that of the platform, but when
jεB1gj < εsðTÞ twin formation is favored, and the applied
strain sets the equilibrium twin volume ratio. Like formation
ofmagnetic domains under nonzeroB, formation of twinned
domains under nonzero applied εB1g is a first-order process,
so the twinned region is bounded by first-order transitions.
In the stress-temperature phase diagram there will be

resolvable crossover lines at T > Ts: when the applied
stress is small, there will be a small temperature range over
which the nematicity-driven strain increases at a rapid but
nondivergent rate. In this sense, stress acts as a classic
conjugate field. We present some evidence below on
whether equivalent crossover lines are discernable in the
strain-temperature phase diagram.

B. Sample B: T ∼ Ts

Measurements of resistivity confirm this qualitative form
of strain-temperature phase diagram. To facilitate compari-
son with measurements of εs, we now plot data against
the antisymmetric strain εB1g. ρ100ðεB1gÞ of sample B for
T ∼ Ts is shown in Fig. 4(a), and the derivative dρ100=dεB1g
in Fig. 4(b). The neutral strain point εB1g ¼ 0 is determined
as the strain where the twin boundary density for T < Ts is
highest; these data are shown below. Above Ts, the
strain dependence of ρ100 is seen to have substantial non-
linearity even over a relatively small strain range
jεB1gj < 0.1 × 10−2. Its slope is largest near, though not
precisely at, εB1g ¼ 0.
As T is reduced below Ts, the onset of twinning changes

the form of ρ100ðεB1gÞ: a range of strain appears over which
dρ100=dεB1g becomes nearly constant. This change is easiest
to see in Fig. 4(b), wherewe havemarked the twinned region
for the 86.8K curve. The origin of this behavior is illustrated
schematically in Fig. 4(c). When the sample twins, within
each twin domain the resistivities along the local a and b
axes are ρa and ρb, and the equilibrium twinvolume ratio is a
linear function of applied strain. Therefore, the observed
bulk resistivity is an interpolation between ρb at εB1g ¼ −εs
and ρa at εB1g ¼ þεs, that to high precision is linear under
two conditions that are both satisfied here. (1) jðρa − ρbÞ=
ðρa þ ρbÞj is much less than 1, so that redistribution of
current into lower-resistivity domains does not substantially
alter the observed bulk resistivity. (2) The domain wall
resistance is negligible, which we show later to be the case
for T near Ts.
Even though the transitions into the twinned region must,

when εB1g ≠ 0, be first order, no hysteresis is resolved,

indicating that the energy barrier for twin formation is low.
Separately, close inspection of Fig. 4(b) reveals that
twinning does not initially onset right at εB1g ¼ 0, but

Observed ( )

Underlying ( )

Fe
Se

T

(a)

(b)

(c)

FIG. 4. Elastoresistivity near Ts. (a) ρ100ðεB1gÞ, where ρ100 is
the resistivity along the [100] direction and εB1g≡ðε100−ε010Þ=2,
of sample B at various temperatures near Ts. (b) dρ100=dεB1g for
the curves from (a). For T < Ts, dρ100=dεB1g becomes nearly
constant over the range where the sample twins. This range is
indicated for the 86.8 K curve. (c) Schematic of ρ100ðεB1gÞ for
T<Ts; the underlying curve is not accessible for −εs<εB1g<þεs
due to the onset of twinning, and the observed resistivity instead
interpolates over this range. (d) Temperature ramps at three values
of εB1g. (e) Ts versus strain for low strains. The shaded regions
indicate the transition width, defined by d2ρ100=dT2 crossing half
its maximum value.
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slightly on the tensile side. This asymmetry is due to the
A1g component of the applied strain: as shown with sample
A in Fig. 2, tensile A1g strain increases Ts.
ρ versus temperature at a few nonzero εB1g are shown in

Fig. 4(d), and Fig. 4(e) shows Ts derived from such
temperature sweeps as a function of strain. For both
samples B and C, Ts follows a downward quadratic form,
consistent with the schematic strain-temperature phase
diagram illustrated in Fig. 3(b).

C. Sample B: T < Ts

Figure 5(a) shows ρ100 of sample B over a much
wider temperature and strain range. Here, the contribution
of twin boundaries to the total sample resistance becomes
apparent. Two datasets are shown: strain ramps in which T
was incremented at εB1g < −εsðTÞ and temperature
ramps in which strain was incremented at T > Ts. The
maximum compression reached was εB1g ¼ −0.28 × 10−2,
which exceeds the spontaneous T → 0 structural distor-
tion of FeSe and fully detwins the sample at all temper-
atures. It corresponds to a longitudinal strain of ε100 ¼
−0.42 × 10−2, and was large enough to exceed the elastic
limit of the platform. Plastic deformation of the platform
introduced an anomalous offset between εB1g and εA1g at
large strains. Data in Appendix A 4, where the plastic
deformation is described in more detail, show that the
resistivity of FeSe depends much more sensitively on εB1g
than εA1g, and so we continue to plot data against εB1g.
Crucially, the sample residual resistivity did not change,
showing that its own deformation remained elastic even as
the platform deformed plastically.
For T above ≈60 K, the structural strain εsðTÞ can be

identified by a sharp change in slope dρ100=dεB1g, as seen
also in Figs. 4(a) and 4(b). To obtain εs at all temperatures,
we scale εsðTÞ from the x-ray diffraction data of Ref. [40]
in temperature to match Ts of this sample, and in strain to
match the locations of the cusps. This procedure gives
εsðT → 0Þ ¼ 0.22 × 10−2. For comparison, εsðT → 0Þ ¼
0.27 × 10−2 and 0.23 × 10−2 were obtained, respectively,
in Refs. [40,43] by x-ray diffraction, 0.24 × 10−2 and
0.25 × 10−2 in Refs. [44,45] by neutron scattering, and
0.22 × 10−2 in Ref. [13] by dilatometry measurements.
Figure 5(b) shows ρ100ðTÞ at fixed strain εB1g ¼ −0.25×

10−2, where the sample is detwinned at all temperatures.
ρ100 evolves smoothly from Tc to above Ts, with no feature
apparent that could be identified as a nematic crossover. In
other words, it does not appear to be useful to consider
strain as a conjugate field to nematicity in FeSe, because
even under a strain that is only barely large enough to
detwin the sample, any nematic crossover appears to be so
broad as to be indistinguishable from the background.
We now discuss twin boundaries. For jεB1gj < εsðTÞ,

ρ100 from the temperature ramps systematically exceeds
that from the strain ramps. Figure 5(c) shows a close-up of

–0.4 –0.3 –0.2 –0.1 0.0 0.1

B1g (10 2)

20

40

60

80

100

120

140

10
0

(
cm

)

101.8 K
99.8 K
97.8 K
95.7 K

91.7 K

87.8 K

83.8 K

79.8 K

76.3 K

72.3 K

68.4 K

64.4 K

60.4 K

56.5 K

52.5 K

48.5 K

44.6 K
40.9 K

36.9 K
33.0 K
29.0 K
25.0 K
21.0 K
17.1 K
14.6 K

s (T )

Temperature ramps
Strain ramps

Sample B
Ts = 91.9K

20 40 60 80 100
T (K)

0

50

100

150

10
0

(
cm

) B1g = 0.25%:

fits

Underlying
resistivity

20

19

17

18

45

44

43

10-2

0

Estimated
twin boundary
resistivity

–0.3 –0.2 –0.1 0.0 0.1

(a)

(c)

(b)

T-ramp data
-ramp data

FIG. 5. (a) ρ100 of sample B over a wide temperature and strain
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for εB1g ¼−0.25×10−2, where the sample is fully detwinned at all
T. (c) Close-up of the data in (a) at 14.6 and 36.9 K. The squares
mark points whose position along the εB1g axis was corrected.
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data at 36.9 and 14.6 K: the T-ramp data have a peaked
form that the strain-ramp data do not. The magnitude of
this peak is very similar at the two temperatures, even
though the intrinsic resistivity at 36.9 K is more than
double that at 14.6 K, which shows that its origin is
extrinsic. It is due to twin boundaries. The elastic mis-
match between the sample, which distorts orthorhombi-
cally, and the platform, which does not, will be strongest
at εB1g ¼ 0, leading to a peak in the equilibrium twin
boundary density. This peak is resolvable for temperatures
up to ∼70 K, at a temperature-independent strain, which
we therefore identify as the neutral strain point εB1g ¼ 0.
Evidence for twinning is also directly visible in the strain-
ramp data in Fig. 5(c); there is hysteresis for jεB1gj < εs
that closes when jεB1gj > εs. In Appendix A 5 we show
that ramping the strain back and forth can partially anneal
twin boundaries out of the sample.
A method to estimate the twin boundary contribution to

the measured resistivity is illustrated in Fig. 5(c). For a B1g
lattice distortion, the twin boundary density is expected to
be symmetric about εB1g ¼ 0. Furthermore, because twin
boundaries are oriented along h110i directions [19], no
average change in twin boundary orientation is expected
for strain with h100i principal axes. We therefore fit lines
to the temperature-ramp data on either side of the cusp and
average their slopes to obtain an underlying slope, mean-
ing the slope dρ100=dεB1g that would be observed if the
twin boundary resistance were zero. The line labeled
“underlying resistivity” in Fig. 5(c) is a line of this slope
placed to intersect the data at εB1g ¼ −εs, where the
sample is detwinned. In this way, we find that at
14.6 K the twin boundary contribution to the sample
resistance is as high as 15%, for this sample geometry.
Twin boundary density may be lower for thicker and/or
freestanding samples.

D. Sample C

In sample C both the longitudinal and transverse
resistivities, ρ100 and ρ010, were measured. Results from
strain ramps are shown in Fig. 6, and from T ramps
in Appendix A 6. The neutral strain point εB1g ¼ 0 was
again taken as the strain where twin boundary density in the
T-ramp data was highest. Around εB1g ¼ 0 and at temper-
atures near Ts, ρ100 and ρ010 vary strongly and oppositely
with εB1g, confirming previous reports that the low-strain
elastoresistivity of FeSe is dominantly in the B1g channel
[18,19]. Below Ts, the twinning transition at εB1g ¼ −εsðTÞ
is broader than for sample B. Although this could indicate
lower sample quality, we also note that strain inhomoge-
neity will generally be worse in a square sample geometry
than in the linear geometry of sample B. To estimate εsðTÞ
for sample C, we scale εsðTÞ reported in Ref. [40] in
temperature to match the observed Ts of sample C, but we
do not scale it in strain.

The antisymmetric resistivity ρB1g for temperatures near
Ts is plotted in Fig. 6(b). Here it can be seen that although
jρB1gj initially grows rapidly with strain-induced nematic-
ity, it eventually reaches a maximum; just above Ts, this
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FIG. 6. Data from sample C, the Montgomery configuration
sample. (a) ρ100 (left) and ρ010 (right), from strain ramps at
various fixed temperatures. The hysteresis is shown for two
temperatures. The vertical ticks mark −εsðTÞ, taken from
Ref. [40] and scaled in temperature to match the Ts observed
here. (b) ρB1g ≡ ðρ100 − ρ010Þ=2, derived from the data in (a), at
temperatures above Ts. Note that by symmetry ρB1gðT > TsÞ ¼ 0

at εB1g ¼ 0, but measurement error gives a small deviation from
this. (c) ρA1g ≡ ðρ100 þ ρ010Þ=2.
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occurs at εB1g ≈ −0.19 × 10−2. The symmetric resistivity
ρA1g is plotted in Fig. 6(c). For T ≳ Ts, ρA1g is a minimum
near εB1g ¼ 0, and as T is reduced toward Ts this minimum
becomes sharper.
There are indications that other iron-based superconduc-

tors will have similar behavior. In BaðFe0.975Co0.025Þ2As2
(for which the nematicity also aligns with the h100i
directions), ρ100 and ρ010 both have upward curvature
against εB1g, that grows sharper as T is reduced to T ≈ Ts

[46], suggesting that in this material too ρA1g is a minimum
for εB1g ≈ 0. For BaFe2As2, ρ100 near Ts has been observed
to have an S-shaped dependence on ε100, with the
steepest slope appearing near ε100 ¼ 0 [47], matching
the qualitative form (though with opposite sign) of
ρ100ðεB1gÞ observed here. Similar behavior is seen in
Sr1−xBaxFe1.97Ni0.03As2 [48].

VI. EFFECT OF BIAXIAL STRAIN

Data from sample C allow effects of the A1g and B1g
strain components to be separated. The A1g elastoresistivity
dρA1g=dεA1g can be obtained by noting that within the
twinned region B1g strain does not couple locally to the
sample, because the local B1g strain is fixed at �εsðTÞ, but
A1g strain does couple locally. We take ρA1g within the
twinned region as ρA1g ¼ ðρa þ ρbÞ=2, and now determine
dρA1g=dεA1g at εB1g ¼ 0.
Under the approximation of linear interpolation between

ρa and ρb and neglecting twin boundary resistance, ρ100 and
ρ010 in the twinned region are given by

ρ100 ¼ fρa þ ð1 − fÞρb; ð1Þ

ρ010 ¼ fρb þ ð1 − fÞρa; ð2Þ

where f ¼ ðεs þ εB1gÞ=2εs is the volume fraction of the
sample with the nematic a axis oriented along the long axis
of the platform. Differentiating with respect to εB1g gives:

dρ100
dεB1g

¼ ρa − ρb
2εs

þ f
dρa
dεB1g

þ ð1 − fÞ dρb
dεB1g

; ð3Þ

dρ010
dεB1g

¼ ρb − ρa
2εs

þ f
dρb
dεB1g

þ ð1 − fÞ dρa
dεB1g

: ð4Þ

Under the experimental conditions here, d=dεB1g¼
ðdεA1g=dεB1gÞd=dεA1g¼½ð1−νÞ=ð1þνÞ�d=dεA1g. Summing
Eqs. (3) and (4) yields the A1g elastoresistivity:

dρA1g
dεA1g

¼ 1þ ν

2ð1 − νÞ
�
dρ100
dεB1g

þ dρ010
dεB1g

�
: ð5Þ

To obtain underlying slopes dρ100=dεB1g and dρ010=dεB1g,
that is, that exclude the effect of twin boundaries, we

average the observed slopes on either side of εB1g ¼ 0, as
shown in Fig. 5(c).
The A1g elastoresistivity is shown in Fig. 7(a). It is

normalized by ρA1g at εB1g ¼ 0 with an estimate of the twin
boundary resistance subtracted (see Appendix A 6 for
details). For temperatures below ≈60 K, dρA1g=dεA1g < 0,
meaning that biaxial compression increases the average
in-plane resistivity of FeSe. A similar temperature depend-
ence is seen in the elastoresistivity of sample A; see
Appendix A 7.
We show in Fig. 7(b), with data from sample B, that

biaxial compression also increases Tc. (Again, when the
sample is twinned only the A1g component of the strain
couples locally.) Both the increase in Tc and ρA1g are
opposite to the generic expectation that compression should
increase bandwidths. A similar correlation between resis-
tivity and Tc is also seen in strained Sr2RuO4 [49].
At large jεB1gj, the plastic deformation of the platform

causes a gradual relaxation of the applied A1g strain, and so
for εB1g ≲ −0.15 × 10−2, the Tc curve bends downward
subtly. For εB1g < −εs, the sample detwins, and the B1g

component of the applied strain couples locally to the
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FIG. 7. Effect of biaxial strain. (a) A1g elastoresistivity
ð1=ρA1gÞdρA1g=dεA1g versus T of sample C, determined as
explained in the text. (b) Tc versus strain, determined as the
temperature where the resistivity crosses specific values, as
shown in the inset. Note that within the twinned region, εB1g
does not couple locally to the sample, and instead the effect
on Tc is through the applied A1g component of the strain. When
the platform deformation is elastic, this is εA1g ¼ 0.52εB1g. The
observed slope therefore corresponds to dTc=dεA1g ¼ −450 K.
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sample. Tc turns downward more sharply. Depending on
the resistivity level selected as the criterion for Tc, it may
even decrease. This behavior suggests that increasing the
lattice orthorhombicity is detrimental to superconductivity.

VII. NEMATIC RESISTIVE ANISOTROPY

We now report the central result of this paper, the
nematic resistive anisotropy—both the spontaneous
anisotropy below Ts and that induced by strain at
T ∼ Ts. We obtain ρa − ρb at T < Ts by analyzing temper-
ature-ramp data at small strains. At εB1g ¼ 0, f in Eqs. (1)
and (2) is 0.5, yielding

ρa − ρb ¼ εs

�
dρ100
dεB1g

−
dρ010
dεB1g

�
: ð6Þ

The underlying slopes dρ100=dεB1g and dρ010=dεB1g are
obtained, as before, by averaging the observed slopes from
εB1g > 0 and < 0.
In Fig. 8(a) we show the nematic resistive anisotropy

at T < Ts, normalized by ρA1g (with, again, an estimate
for the twin boundary resistivity subtracted; see
Appendix A 6). Separate derivations from strain-ramp data
from sample C, and from data from sample B, are shown
in Appendix A 8; the agreement is excellent, which con-
firms that the twin boundary resistance has been properly
canceled. The nematic resistive anisotropy peaks at ≈7%, at
T ≈ 80 K, but then decreases as T is reduced further,
eventually changing sign at ≈40 K. The low-temperature
resistive anisotropy, where the nematicity is fully devel-
oped, is about −1.5%. This is surprisingly small: in
angle-resolved photoemission spectroscopy data, the
length-to-width ratios of the Fermi surfaces at X and Γ
is 2–3 [22]. Any anisotropy in conduction from these Fermi
surfaces individually appears to cancel almost perfectly. In
contrast, resistive anisotropy in materials with magnetic
order is much larger, for example, on the order of 100% in
underdoped BaðFe;CoÞ2As2 [24].
In Ref. [19], ρa and ρb were obtained by comparing

the resistivities of stress-detwinned and unstressed samples,
taking the former to be ρa and the latter ðρa þ ρbÞ=2.
ðρa − ρbÞ=ðρa þ ρbÞ was found to be ≈3%, with weak
temperature dependence, in qualitative disagreement
with the results here. However, this analysis method
treats the twin boundary resistance as negligible, which
we have shown not to be a good approximation at lower
temperatures.
This is, however, a valid approach near Ts, where twin

boundary resistance is low compared with the total sample
resistance. We show in the inset of Fig. 8(a) ρa and ρb of
sampleC, derived by taking theT-ramp resistivity at εB1g ¼ 0

as ðρa þ ρbÞ=2 and then applying the anisotropy plotted in
the main panel to obtain ρa and ρb. Upon cooling into the
nematic phase, ρb is seen to decrease and ρa to increase.

In Fig. 8(b) we compare the B1g elastoresistivity derived
from the long strain ramps shown in Fig. 6(a) to that from a
classic elastoresistivity measurement, also performed on
sample C, in which the strain was oscillated by a small
amplitude (here, a peak-to-peak amplitude of 3.4 × 10−5 at
0.0167 Hz) and the resulting oscillation amplitude
of the resistivity was measured. For the long strain ramps,
the nematic resistive anisotropy at T < Ts was determined
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FIG. 8. Nematic resistive anisotropy. (a) The spontaneous
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ρ010 was not measured, so the [100] elastoresistivity ð1=ρ100Þ ×
dρ100=dε100 is plotted instead. Fits are to a Curie-Weiss form; see
the text. (c) Resistivity anisotropy of sample C against strain at
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Also shown is an estimate of the strain-induced nematicity ψ,
taken as the xz-yz energy splitting at the X point, obtained from
evaluation of Ginzburg-Landau parameters.
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by methods similar to those described above (see
Appendix A 8 for details), and the B1g elastoresistivity is
taken as ð1=εsÞ × ðρa − ρbÞ=ðρa þ ρbÞ. For T > Ts the B1g

elastoresistivity is taken as ð1=ρA1gÞ × dρB1g=dεB1g; these
two definitions are equivalent at T ¼ Ts. The small-
amplitude elastoresistivity was taken as ð1=ρA1gÞ ×
dρB1g=dεB1g at all temperatures. Perhaps surprisingly, the
small-amplitude elastoresistivity tracks the long-strain-
ramp data to well below Ts, which shows that even with
a very small strain oscillation amplitude, twin boundaries
shift with the applied strain.
The B1g elastoresistivity of sample C peaks at 62.

Previously reported values, from measurements in which
samples were affixed directly to piezoelectric actuators, are
61 [19], 38 [18], and 300 [17]. We fit the small-amplitude
data at T > Ts to a Curie-Weiss form,

1

ρA1g

dρB1g
dεB1g

¼ a
T − Ts;0

;

which yields Ts;0 ¼ 60.7 K. A similar fit to data from
sample B [where, because ρ010 was not measured, we
analyze the quantity ð1=ρ100Þdρ100=dε100] yields Ts;0 ¼
54.8 K. (We note that we do not include a high-temperature
offset term in these fits, because doing so returns
negative values, implying that in the T → ∞ limit com-
pression would cause resistivity to increase, which is not
expected.)
In Fig. 8(c) we show the normalized resistive anisotropy

of sample C as a function of strain at T ≈ Ts. This peaks at
≈6%, at εB1g¼−0.18×10−2, then shrinks as εB1g becomes
more negative. In order to estimate the magnitude of the
strain-induced nematicity at this strain, we evaluate param-
eters in a Ginzburg-Landau free energy:

F ¼ α × ðT − Ts;0Þ
2

ψ2 þ b
4
ψ4 þ c

2
ε2B1g − λεB1gψ : ð7Þ

We take ψ to be the splitting between the xz and yz orbitals
at the X point, which grows in an order-parameter-
like fashion with cooling below Ts and reaches 0.05 eV
as T → 0 [50–52]. Numerical values for each parameter are
determined from experimental data, as explained in
Appendix A 9. The strain dependence of ψ can then be
obtained by solving dF=dψ ¼ 0 under conditions of fixed
strain. Doing so and evaluating at 90 K gives the result
shown in Fig. 8(c). The maximum in the resistive
anisotropy is found to occur when ψ ≈ 0.025 eV, in other
words, when ψ is approximately half of its T → 0 value.
This conclusion is robust against reasonable variation of the
Ginzburg-Landau parameters. When an unstressed sample
is cooled, ψ reaches half its T → 0 value at≈80 K [50], and
so we can conclude that resistive anisotropy is a maximum
for ψ=ψðT → 0Þ ≈ 0.5 whether ψ is induced through
applied strain or by allowing the sample to cool.

VIII. DISCUSSION

We first summarize our findings.
(1) The resistive anisotropy ðρa−ρbÞ=ðρaþρbÞ evolves

nonmonotonically as nematicity ψ grows, peaking
at ≈7% and then decreasing [Fig. 8(a)]. Both
when ψ grows spontaneously with cooling and
when it is induced through strain at T ≈ Ts, resistive
anisotropy is maximum when jψ j is about half its
spontaneous T → 0 value.

(2) The nematic resistive anisotropy changes sign at
T ∼ 40 K, and at low temperature, where the
nematicity is fully developed, it is only ≈ −1.5%
[Fig. 8(a)].

(3) At T ≈ Ts, ρA1g ≡ 1
2
ðρa þ ρbÞ is a minimum when

the sample is tetragonal [Fig. 6(c)].
(4) Below ≈60 K biaxial compression increases both

ρa þ ρb [Fig. 7(a)] and Tc [Fig. 7(b)], in opposition
to the general expectation that compression in-
creases bandwidths and weakens correlations.

This dataset places previous low-strain measurements
[17–19] in context of the response over a wider strain range,
over which elastoresistivity is a nontrivial function of
nematicity ψ. It allows definitive determination of the
spontaneous nematic resistive anisotropy. These results
are described above, so we focus the remaining discussion
on possible microscopic origins.
We first consider whether the observed elastoresistivity

is a property of the mean-field nematic state. The nematic
transition point at εB1g ¼ 0 and T ¼ Ts is a critical point of
the twinning transition [see Fig. 3(b)], and the fact that
elastoresistivity is particularly large in its vicinity, but
shrinks quickly upon moving away from it in either temper-
ature or strain, raises the possibility that strong elastoresis-
tivity is a consequence of critical nematic fluctuations rather
than a property of the mean-field nematic state. However,
two observations argue against this possibility. One is that
for T ≈ Ts, ρA1g is a minimum near εB1g ¼ 0 [Fig. 6(c)],
whereas if critical fluctuations contributed strongly to
resistivity, one would expect it to be maximum. The other
is that the elastoresistivity is much stronger for strain aligned
with than transverse to the principal axes of the nematicity
(that is, jdρB1g=dεB1gj ≫ jdρB2g=dεB2gj), as expected for
mean-field nematic susceptibility. We therefore interpret
the resistivities observed here as those of the mean-field
nematic state.
The effects of biaxial strain at low temperature, like the

observation that the superconducting gap magnitude cor-
relates with yz orbital weight [21,22], point to an important
role for the yz orbital in electronic correlations. The yz
orbital is the only one with weight both on the Γ and X
pockets, and so is thought to be the dominant contributor
to ðπ; 0Þ spin fluctuations [53]. Inelastic neutron scatter-
ing measurements have shown that the onset of
nematicity correlates with stronger ðπ; 0Þ spin fluctuations;
Refs. [45,54] show that there is transfer of weight, at
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energies ∼kBTs relevant for transport at T ∼ Ts, from ðπ; πÞ
to ðπ; 0Þ and/or ð0; πÞ, while in Ref. [55] it is shown that the
transfer is to ðπ; 0Þ rather than ð0; πÞ. At low temperatures
the maximum yz weight on the Γ pocket is only 20% [22].
Biaxial compression, by weakening nematicity and increas-
ing bandwidths, will increase this value, potentially
strengthening the channel for ðπ; 0Þ spin fluctuations and
causing the increase in both resitivity and Tc.
We focus the rest of our discussion on the nonmono-

tonic dependence of the resistive anisotropy on both
temperature and strain. We first point out that the sign
change in ρa − ρb occurs within the inelastic component
of the resistivity. A possible explanation for a sign change
in resistive anisotropy is that the inelastic and elastic
components of the resistivity contribute oppositely, and
balance at some temperature. At 40 K, however, the
resistivity is about 4 times the residual resistivity (based
on reasonable extrapolation of the resistivity to T → 0), so
for this explanation to apply, the elastic resistive
anisotropy would need to be about 4 times the inelastic
resistive anisotropy, or ∼28%. The resistive anisotropy
would then grow to ∼28% at very low temperatures, in
disagreement with the observation that it reaches only
1%–2%.
The observed temperature dependence of the resistive

anisotropy does not track thermodynamic measures of
nematicity. The orthorhombicity of the unstressed lattice
[13,40,43–45], the anisotropy of the magnetic suscep-
tibility [56], and the energy splitting between the xz and yz
bands [51,52] all increase in a monotonic, order-param-
eter-like fashion below Ts. Several factors could cause
temperature-dependent changes in resistivity. For exam-
ple, in Ref. [57] it is found that shifting the relative
importance of impurity versus spin fluctuation scattering
can change the sign of the resistive anisotropy in iron-
based superconductors. It is therefore important that this
nonmonotonicity is also observed when nematicity is
induced at fixed temperature, showing that it is not a
temperature effect alone but intrinsic to the development
of nematicity.
The importance of this observation rests on the relation-

ship between resistive anisotropy and spin fluctuations.
Spin fluctuations are found in theoretical work to dominate
the resistivity at higher temperatures [53,57–61], and in
optical conductivity measurements the dc resistive
anisotropy is indeed found to track the scattering rate
rather than the Drude weight [62]. In Ref. [53], ðπ; 0Þ
fluctuations relying on the yz orbital weight were found to
give ρa > ρb, as observed, because on the hole pocket
stronger scattering of quasiparticles with yz weight sup-
presses conduction in the x direction. At lower temper-
atures, when spin fluctuations are weak, the precise
locations of nesting-driven hot spots on the Fermi surface
may be decisive in determining the sign of resistive
anisotropy [27,63], making it sensitive to details, but as

temperature is raised the precise nesting conditions become
less important [57].
A further intuitive reason to expect ðπ; 0Þ spin

fluctuations to play a strong role in transport is that they
connect the Γ and X Fermi surface pockets, providing a
channel for umklapp scattering and momentum relaxation
along the kx direction. In a clean lattice, momentum is
ultimately transferred to the lattice through umklapp
scattering. In systems with closed Fermi surfaces,
small-angle electron-phonon scattering can transfer
momentum between the electrons and phonons, but does
not relax the momentum of the combined system,
and so does not contribute to dc resistivity. This is seen
in weakly correlated metals (where the electron-phonon
term is readily observable) as a modification of the usual
T5 dependence for electron-phonon resistivity to expo-
nential, with the activation energy corresponding to a
phonon that connects Fermi surfaces [64,65]. The
fact that ρa increases when nematicity onsets [see the
inset of Fig. 8(a)], while ρb decreases, is qualitatively
consistent with the ðπ; 0Þ spin fluctuations providing a
mechanism for faster relaxation of transport currents
along kx.
We propose a specific mechanism for the nonmonotonic

dependence of resistive anisotropy, consistent with data so
far. ðπ; 0Þ spin fluctuations, and the associated resistive
anisotropy, strengthen as nematicity initially onsets and the
Fermi velocity on the yz sections of Fermi surface is
reduced. These fluctuations then weaken as the nematicity
grows further and suppresses the yz orbital weight on the
hole pocket, cutting off this fluctuation channel. This is a
proposal and a point for further investigation; the relative
contributions of spin fluctuation strength and nematicity-
driven changes in Fermi surface shape to resistive
anisotropy need to be determined. However, direct meas-
urement of spin fluctuations under tunable lattice strain,
through inelastic neutron scattering, would be a very
challenging experiment. It is nevertheless an important
route to attempt because it could provide a direct test of a
major class of theories of the nematicity of FeSe, in which it
is proposed to be driven by the increase in phase space that
it allows for spin fluctuations [66–68]. The potential
challenge to these theories, if the nonmonotonic resistive
anisotropy observed here indeed correlates with nonmono-
tonic spin fluctuation strength, is to explain why the
nematicity grows well past the point where it maximizes
spin fluctuation strength.
Regardless of how that path of inquiry develops, we

anticipate that the strain-tuning capabilities demonstrated
here will allow resolution of the separate orbital contribu-
tions to the electronic properties of FeSe and theories of the
nematicity of FeSe to be tested.

The data that support the findings of this study are
openly available from the Max Planck Digital Library [69].

RELATIONSHIP BETWEEN TRANSPORT ANISOTROPY AND … PHYS. REV. X 11, 021038 (2021)

021038-11



ACKNOWLEDGMENTS

We thank Hiroshi Kontani, Andreas Kreisel, Kazuhiko
Kuroki, Seiichiro Onari, Sahana Rößler, Jörg Schmalian,
Roser Valentí, Matthew Watson, and Steffen Wirth
for useful discussions. S. H. and T. S. thank S. Kasahara,
Y. Matsuda, K. Matsuura, and Y. Mizukami for early-
stage collaboration on sample growth. We thank the Max
Planck Society for financial support. C. W. H., A. P. M.,
and C. T. acknowledge support by the DFG (DE) through
the Collaborative Research Centre SFB 1143 (Projects C09
and A04). C. T. acknowledges support by the DFG (DE)
through the Cluster of Excellence on Complexity
and Topology in Quantum Matter ct.qmat (EXC 2147).
Work in Japan was supported by Grants-in-Aid for
Scientific Research (KAKENHI) (No. JP19H00649 and
No. JP18H05227), and Grant-in-Aid for Scientific
Research on innovative areas “Quantum Liquid Crystals”
(No. JP19H05824 and No. JP20H05162) from Japan
Society for the Promotion of Science (JSPS).

Note added in proof.—Recent work reports uniaxial stress
measurements on free-standing samples of FeSe. The
elastoresistivity for stress applied along an Fe-Fe bond
direction, inducing B1g strain in our notation, is found to
change sign at 70 K [70].

APPENDIX: ADDITIONAL DATA

1. Montgomery conversion

To measure the resistivity ρxx parallel to the direction of
applied stress, we used a four-point configuration with bar-
shaped samples. To measure ρyy, in principle bar-shaped
samples could be mounted perpendicular to the stress axis.
However, the narrowness of the platform neck makes this
inconvenient; to avoid excessively loading the stress cell,
we cannot substantially widen this neck. Therefore, a
Montgomery configuration was used to determine ρxx and
ρyy simultaneously. Thesemethods are reviewed in Ref. [71].
We follow the analysis method presented in Refs. [72–

75]. The sample is a rectangle with length L0
1, width L

0
2, and

thickness L0
3, and resistivities along these lengths ρ1, ρ2,

and ρ3. Two resistances are measured: R1 is the voltage
measured across two corners separated by length L0

1

divided by current applied across the other two corners,
and R2 is the equivalent resistance measured along length
L0
2. The sample can be transformed into an equivalent

sample with isotropic resistivity ρ and dimensions L1, L2,
and L3, where the definition of equivalence is that the same
resistances would be measured as on the original sample.
The resistivity of this isotropic equivalent is given by

ρ ¼ H1teffR1 ¼ H2teffR2; ðA1Þ
where teff is an effective sample thickness. In the limit
L3 ≪ ðL1L2Þ1=2, which applies here, teff ≈ L3. H1 is a
function only of the geometry of the sample:

1

H1

¼ 8

π

X∞
n¼0

�
ð2nþ 1Þ sinh ½πð2nþ 1ÞL2

L1

�
�

−1
: ðA2Þ

H2 is obtained by switching L1 and L2 in this expression.
This series converges rapidly. Using the constraint from
Eq. (A1) that H1R1 ¼ H2R2, we compute the first few
terms in order to solve for L2=L1.
The transformation from anisotropic to isotropic equiv-

alent solid is given by:

Li ¼ L0
i

�
ρi
ρ

�1
2

; ðA3Þ

ρ3 ¼ ρ1ρ2ρ3: ðA4Þ

Using these expressions, from Eq. (A1) one can quickly
obtain:

ðρ1ρ2Þ1=2 ¼ H1L0
3R1: ðA5Þ

They also give a relationship between ρ1 and ρ2:

ρ2
ρ1

¼
�
L0
1

L0
2

�
2
�
L2

L1

�
2

; ðA6Þ

which yields

ρ1 ¼ H1L0
3R1

L0
2

L0
1

L1

L2

: ðA7Þ

The sample dimensions vary slightly as strain is applied.
We take L0

1 ¼ ð1þ εxxÞ × L0
1;0, where L

0
1;0 is the unstrained

sample length, and L0
2 ¼ ð1 − νεxxÞ × L0

2;0. εxx is the strain
along the length of the platform. As a matter of formal
correctness, we also include an effect of applied strain on
the c-axis lattice constant: we take L0

3 ¼ −0.7L0
3;0εA1g.

However, the effect is negligible and in practice it would
serve just as well here to take L0

3 to be constant.

2. Strain transmission

When the epoxy and sample layers are both thin and the
epoxy elastic moduli are low, strain transfer to the sample
can be characterized to good accuracy by a strain trans-
mission length λ, given by λ ¼ ðctd=GÞ1=2, where c is the
relevant elastic modulus of the sample, t the sample thick-
ness, d the epoxy thickness, andG the epoxy shear modulus
[76]. Under the conditions that the c-axis strain in the sample
is unconstrained while the transverse strain is fixed, c ¼
c11 − c213=c33 [34]. Even though the Young’s modulus of
FeSe becomes nearly zero for T ≈ Ts [7], c remains
substantial, at≈40 GPa based on the elastic moduli reported
in Refs. [39,77,78]. Physically, this means that the lattice
remains stiff against biaxial compression, even as it becomes
soft against orthorhombic distortion. To determine d, a
focused ion beam was used to slice through some of the
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samples at a few points; an example of a cross section
through sample B is shown in Fig. 1(d). d was found to be
5–10 μm. To estimate G we take the Young’s modulus of
Stycast 1266, reported in Ref. [79], and assume a Poisson
ratio of 0.3, which gives G ¼ 1.6 GPa at low temperature.
Samples A and B are both long, ensuring good coupling

of longitudinal strain to the platform, and so the key
question is of their width in comparison with λ. For
samples much narrower than λ, the transverse strain is
the longitudinal strain multiplied by the sample’s Poisson
ratio, while for samples much wider than λ, it is the
longitudinal strain multiplied by the platform’s Poisson
ratio. For FeSe this is an important distinction because its
Poisson ratio for T ∼ Ts is close to 1, while that of titanium
is 0.32. We find that both samples A and B are wide enough
to ensure good locking of transverse strain to the platform.
In particular, sample A is 31 μm thick, yielding λ ≈ 60 μm,
while its width is 280 μm. Sample B is 10 μm thick,
yielding λ ≈ 40 μm, and 230 μm wide. Complete sample
dimensions are shown in Table II.

3. Elastic moduli

Reference [39] gives elastic moduli of FeSe at T≈Ts:
c11≈c12≈50GPa, c33≈40GPa, and c13 ≈ 20 GPa. Under
conditions of hydrostatic pressure, σ=εxx ¼ ðc11c33 þ
c12c33 − 2c213Þ=ðc33 − c13Þ, where σ is the applied
stress, and εzz=εxx ¼ðc11þc12−2c13Þ=ðc33−c13Þ. Under
conditions of in-plane biaxial stress, where σxx ¼ σyy
and σzz ¼ 0, σxx=εxx¼c11þc12−2c213=c33 and εzz=εxx ¼
−2c13=c33.

4. Plastic deformation of the platform

Sample B was driven to high compressions, and the
platform deformed plastically when the displacement D
applied to it exceeded ≈7 μm, causing the strain in the neck
to exceed the elastic limit of the platform material,
≈2 × 10−3. Data from sample B were taken in the following
order. (1) Strain ramps were performed at T ≈ Ts up to
modest strains. (2) Temperature ramps were performed at
constant strain, incrementing the strain at 103.7 K, and
moving gradually to high compressions. (3) Further strain
ramps were performed at high compression. Data from
these three sets are plotted against D in Figs. 9(a) and 9(b).
There is low hysteresis within each strain-ramp dataset, and

the two strain-ramp datasets match closely except for an
offset along the D axis. The temperature-ramp data bridge
this offset smoothly. We conclude that the platform
deformation was essentially elastic within each strain-ramp
dataset, and that the offset between them is due to plastic
deformation caused by the large change in applied strain
over the course of the temperature ramps.
Figure 9(c) shows a schematic illustration of the expected

form of the plastic deformation. Initially, when the platform
deformation is elastic, εA1g and εB1g are linear in D: εB1g ¼
0.66D=leff and εA1g ¼ 0.34D=leff (where leff is the effective
length of the platform). Beyond its elastic limit, the platform

TABLE II. Sample parameters: length, width, thickness, sep-
aration lcontact of the voltage contacts, and the residual resistivity
ratio (RRR) ρð300 KÞ=ρð12 KÞ. Note that at 12 K there is still
strong inelastic scattering.

Sample l (μm) w (μm) t (μm) lcontact (μm) RRR

A 2370 280 31 970 26
B 1150 230 10 630 22
C 434 425 ≈10

Set Set
Set
Set

Set
Set

Before

(c)

(a) (b)

(d)

After
P E

FIG. 9. Plastic deformation of the platform. (a) ρ100 of sample B
versus displacement D applied to the platform. The datasets were
taken in the following order. (1) Strain ramps at fixed temperature.
(2) Temperature ramps at fixed strain. (3) Strain ramps at higher
compression.Theoffset betweendatasets (1) and (3) is due toplastic
deformation of the platform that occurred over the course of the
temperature ramps. (b) When data from set 3 are offset along theD
axis, the matchwith dataset 1 is excellent. (c) Schematic illustration
of the process of plastic deformation. (d) Low-temperature resis-
tivitymeasured before and after the platformplastic deformation.To
compare datasetswhereTcwas the same, the before data are taken at
D ¼ −1.6 μm and the after data at D ¼ 0.8 μm.
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material resists further volume compression by flowing
plastically outward: εB1g starts to vary more steeply withD,
and εA1g less steeply. When the direction of the applied
displacement is reversed, the platform deformation is again
elastic over some range, but for a given D εB1g is larger and
εA1g smaller than before.
That the sample deformation remained elastic even as the

platform deformed plastically is shown in Fig. 9(d), in
which low-temperature data from before and after the
plastic deformation, taken at strains where Tc is the same,
are plotted together. The residual resistivity is unchanged.
The sign of the offset between the pre- and post-plastic-

deformation data shows that ρ100 is controlled dominantly
by εB1g, rather than εA1g. The fact that a horizontal
displacement works so well to match the pre- and post-
plastic-deformation data shows that the effect of εA1g on
ρ100 is small; if it were strong, then it would have to be
finely balanced, over a wide temperature range, with that
of εB1g for the net effect to be so neatly a horizontal shift of
the ρðDÞ curves. Furthermore, the data of Fig. 2 show
directly that the dependence of ρ on εA1g is weak.
In Figs. 5(a) and 5(c), to account for this plastic platform

deformation data from the high-strain strain ramps are
offset by ΔεB1g ¼ −0.072 × 10−2. Because this deforma-
tion occurred gradually over the course of the temperature
ramps, for εB1g < −0.11 × 10−2 each individual temper-
ature ramp is offset along the εB1g axis to match the
resistivity at 103.7 K with that from the strain ramps.

5. Annealing twin boundaries

In Fig. 10 we show results of a twin boundary annealing
experiment. Sample B was cooled from above Ts to
14.69 K at a fixed strain. The strain was then ramped
back and forth. Over the first few cycles of strain ramping,
the sample resistance falls, but then settles at a lower value.
When the strain-ramp amplitude is then increased, the
decrease in resistance resumes, and then the resistance
settles at a yet lower value. This behavior shows that twin
boundaries can be partially annealed out of the sample

through strain ramps, and confirms that the peaked form of
the resistance in T-ramp data, shown in Fig. 5, is due to
twin boundaries.

6. T-ramp data from sample C, and
twin boundary resistivity

Temperature-ramp data from sample C are shown in
Fig. 11. At low temperatures, the cusp in ρðεB1gÞ due to the
maximum in domain wall density is visible in both ρ100
and ρ010. Its location differs slightly in the two measure-
ments, possibly because in the Montgomery configuration
measurements of ρ100 and ρ010 do not probe precisely the

Start

FIG. 10. Annealing twin boundaries out of the sample by
ramping the applied strain.
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FIG. 11. (a),(b) Temperature-ramp data from sample C. Panel
(a) shows ρ100 and (b) ρ010. (c) Change in slope dρ=dεB1g across
εB1g ¼ 0. This quantity is proportional to the twin boundary
contribution to sample resistivity at εB1g ¼ 0.
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same area of the sample. We take εB1g ¼ 0 as the average of
the cusp locations in ρ100 and ρ010.
In Fig. 11(c), we show the change in slope dρ=dεB1g

across the cusp at εB1g ¼ 0 versus temperature. This
quantity is proportional to the twin boundary contribution
to sample resistivity at εB1g¼0. The twin boundary
resistivity is seen to be nearly T independent up to ∼30 K,
and then to decrease. Note that this is the twin boundary
resistivity when the sample is cooled from above Ts at
εB1g ¼ 0; when it is brought to εB1g ¼ 0 by ramping strain
at constant temperature, the twin boundary density is lower.
In Figs. 7(a) and 8(a), elastoresistivities normalized by

ρa þ ρb are shown. For this normalization we subtracted off
an estimated twin boundary resistivity, ρTBðTÞ; for exam-
ple, in Fig. 8(a) the quantity that is plotted is ρa − ρb,
determined by the underlying slopes method described
in the text, divided by ρ100ðεB1g ¼ 0Þ þ ρ010ðεB1g ¼ 0Þ−
2ρTBðTÞ. Based on the illustration in Fig. 5(c), we estimate
ρTBðT → 0Þ ¼ 3 μΩ cm. We take ρTB ¼ ρTBðT → 0Þ×
½1 − ðT=TsÞ2�. This form overestimates somewhat the true
twin boundary resistance as T approaches Ts; however, the
effect is tiny.

7. Elastoresistivity of sample A

Figure 12 shows the elastoresistivity of sample A over a
wide temperature range. The behavior qualitatively
matches the A1g elastoresistivity determined from sample
C and plotted in Fig. 7(a): at higher temperatures, com-
pression causes a decrease in resistivity, and at lower
temperatures an increase. The sign of the response changes
at T ≈ 45 K, against 60 K for the A1g elastoresistivity of
sample C. The measured resistivity of sample Awill also be
affected by the B2g elastoresistivity; however, because this
is transverse to the nematic axes, it is not expected to be
large, and the qualitative agreement with the A1g elastor-
esistivity suggests that it is indeed much smaller than the

A1g elastoresistivity. Note also that Tc increases with
compression, as observed in sample B [Fig. 7(b)].

8. Additional derivations of the nematic
resistive anisotropy

Above, we presented a determination of the nematic
resistive anisotropy for T < Ts based on sample C temper-
ature-ramp data, in which the twin distribution can be
assumed to be in near equilibrium with the applied
strain. Here, we analyze strain-ramp data. As described
above, the determination of nematic resistive anisotropy
depends on extraction of underlying slopes dρ100=dεB1g
and dρ010=dεB1g at εB1g ¼ 0, that is, excluding the effect of
twin boundaries. In the strain ramps, the density and
location of twin boundaries lags the applied strain, and
we therefore obtain these slopes by averaging the observed
slopes from the increasing-strain and decreasing-strain
ramps, as illustrated in the inset of Fig. 13. Applying
Eq. (6) yields the nematic resistive anisotropy plotted in
Fig. 13. The close agreement with T-ramp data shows
that the twin boundary resistance has been properly
excluded. Note that, because the twin boundary density
is lower in strain-ramp than temperature-ramp data, we do
not subtract off a twin boundary contribution to ρa þ ρb for
normalization.
Also shown in Fig. 13 is the resistivity anisotropy

determined from sample B. For sample B, only ρ100 was
measured. Evaluating Eq. (1) at f ¼ 0.5 yields

ρa − ρb ¼ 2εs

�
dρ100
dεB1g

−
1 − ν

1þ ν

dρA1g
dεA1g

�
: ðA14Þ

50

0
0 20

FIG. 12. ρ110 versus T of sample A over a wide temperature
range.
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FIG. 13. Nematic resistivity anisotropy ðρa − ρbÞ=ðρa þ ρbÞ of
sample C, derived from the strain-ramp data shown in Fig. 6(a).
This determination is based on extraction of equilibrium slopes
dρ=dεB1g at εB1g ¼ 0, obtained by averaging the observed
increasing-ε and decreasing-ε slopes at εB1g ¼ 0, as shown in
the inset.
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dρA1g=dεA1g must be taken from data from sample C [see
Fig. 7(a)]; the data plotted in Fig. 13 include this correction.
For the normalization our estimate for twin boundary
resistivity is subtracted (see Appendix A 6).

9. Ginzburg-Landau parameters

In the Ginzburg-Landau free energy [Eq. (7)], the strain
is the B1g strain, for which the elastic constant c is
c11 − c12. This elastic constant must be evaluated without
the influence of nematic susceptibility. Reference [39]
finds c11 ≈ 80 GPa at T ≈ 250 K, and electronic structure
calculations give c11 ¼ 95 GPa [80]. We take the
estimate c ¼ c11 − c12 ¼ 60 GPa. The structural strain is
obtained by noting that dF=dε ¼ 0 at ε ¼ εs, which gives
εs ¼ ðλ=cÞψ . Although the Ginzburg-Landau formalism
only applies, strictly, very near to Ts, we evaluate param-
eters at considerably lower temperature in order to obtain
approximate evaluations of the coefficients. εs → 0.27 ×
10−2 as T → 0 [40], yielding a value for the coupling
constant: λ ≈ 3.2 GPa=eV. As shown in Fig. 8(b), a fit to
elastoresistivity data yields a bare nematic transition
temperature Ts;0 ¼ 60.7 K; we take Ts;0 ¼ 60 K. Ts is
defined by the relationship

λ2

c
− α × ðTs − Ts;0Þ ¼ 0: ðA15Þ

Taking Ts ¼ 90 K yields α ¼ 0.0057 GPa=eV2K. Finally,
we evaluate b from the observation that ψ reaches half its
T → 0, or 0.025 eV, value at T ≈ 0.9Ts [50], which
gives b ¼ 82 GPa=eV4.
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