
Tutorial Theory of Superconductivity Winter Semester 2019/20
Prof. Dr. C. Timm Problem set 1

In-class problems

Problem 1

The Maxwell equations in vacuum read, in Gaussian units,

∇ ·E = 4πρ,

∇ ·B = 0,

∇×E = −1

c

∂B

∂t
,

∇×B =
4π

c
j +

1

c

∂E

∂t
.

To describe electromagnetism in superconductors, we add the two London equations

∂j

∂t
=

c2

4πλ2L
E,

∇× j = − c

4πλ2L
B,

where λL is the London penetration depth and we have assumed that the whole current is a supercurrent.

The goal of this problem is to convince yourself that electromagnetic waves can penetrate into a su-
perconductor but with an altered dispersion relation ω(k). Assume that the charge density vanishes
everywhere, ρ ≡ 0.

(a) Write the above six coupled equations in Fourier space, which essentially amounts to substituting
∇ → ik, ∂/∂t→ −iω (why?). Convince yourself that the solutions are transverse waves.

(b) Express B in terms of E and use this to eliminate the B field.

(c) Express the supercurrent density j in terms of the electric field E in two ways. Obtain the dispersion
relation ω(k) from comparing the two expressions. Sketch and discuss the result. How does it fit together
with the Meißner-Ochsenfeld effect?

Hint : a× (b× c) = (a · c)b− (a · b)c.

Remark : The plasma frequency in a superconductor is defined as ωp = c/λL, which should appear in your
results. We have here simplified things by using the vacuum Maxwell equations. In real superconductors,
the dielectric function at the wave’s frequency, ε(ω), would also enter.

Problem 2

The Boltzmann equation reads (
∂

∂t
+

~k
m
· ∂
∂r

+
F

~
· ∂
∂k

)
ρ = −S[ρ].

Consider the relaxation-time approximation S = (ρ− ρ0)/τ , where ρ0(k) is the equilibrium Fermi-Dirac
distribution function.

(a) Show that, in the absence of an applied force, ρ = ρ0 is indeed a stationary solution.

(b) Show that the deviations η(r,k, t) = ρ(r,k, t)− ρ0(k) decay for t→∞ in the absence of a force. To
that end, consider the differential equation for η. It can be solved by Fourier transformation in r and t
or, equivalently, by making the ansatz

η(r,k, t) = η0(k) ei(q·r−ωt),

where q is different from k. One could say that q is the Fourier complement of the variable r. (Hint :
obtain the dispersion ω(k).) What happens in a superconductor?
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Homework (due November 5, 2019)

Problem 3

Read the chapter on Bose-Einstein condensation (Ch. 3) in the lecture notes. Extend the derivations to
the case of the two-dimensional ideal Bose gas, as outlined in the following.

(a) Derive expressions for the logarithm of the partition function, lnZ, and for the particle number N
in terms of integrals over energy. Instead of the volume, the area A of the system should appear. Why
would it be incorrect to split off the contribution from the ground state in this case?

(b) Obtain the fugacity y = eβµ as a function of N . This can be done in analytical form (hint : g1(y) is
an elementary function). Use the result to write lnZ as a function of the particle number. Show that
there is no phase transition.

(c) Derive an expression for the two-dimensional pressure p = −∂Φ/∂A. Show that its limiting behavior
at low temperatures reads

p ∼=
π3

3h2
m (kBT )2.

Compare the result to the three-dimensional Bose-Einstein condensate and to the classical ideal gas.

Remarks: The function g2(y) is also denoted by Li2(y) and called the “dilogarithm.” Its derivative is

d

dy
Li2(y) = − ln(1− y)

y

and its leading behavior for y approaching unity reads

Li2(y) ∼=
π2

6
− (1− y)

[
1− ln(1− y)

]
.
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