
Tutorial Theory of Superconductivity Winter Semester 2019/20
Prof. Dr. C. Timm Problem set 3

In-class problems

Problem 1

Consider a system described by the time-independent Hamiltonian H. The Matsubara Green function
is defined as

G(rστ, r′σ′τ ′) = −〈TτΨσ(r, τ)Ψ†σ′(r
′, τ ′)〉,

where for any operator
A(τ) = eHτ/~Ae−Hτ/~,

and Tτ is the time-ordering directive

TτA(τ)B(τ ′) =

{
A(τ)B(τ ′) for τ > τ ′,
±B(τ ′)A(τ) for τ < τ ′,

where the upper (lower) sign holds for bosonic (fermionic) operators. Since H is time independent the
Green function only depends on the difference τ − τ ′, which we denote by τ from now on. One can then
show that the resulting Green function G(rσ, r′σ′, τ) is defined only for τ ∈ [−~β, ~β] and satisfies

G(rσ, r′σ′, τ − ~β) = ±G(rσ, r′σ′, τ).

The Fourier transformation between time and frequency space is given by

G(rσ, r′σ′, iωn) =

∫ ~β

0

dτ eiωnτ G(rσ, r′σ′, τ),

G(rσ, r′σ′, τ) =
1

~β
∑
iωn

e−iωnτ G(rσ, r′σ′, iωn).

(a) Show that only the discrete (Matsubara) frequencies

ωn =


2nπ

~β
, n ∈ Z, for bosons,

(2n+ 1)π

~β
, n ∈ Z, for fermions

occur.

(b) Assume that the system in non-interacting and non-magnetic. Then the Hamiltonian takes the form

H =

∫
d3r

∑
σ

Ψ†σ(r) H̃ Ψσ(r),

where H̃ is the usual first-quantized single-particle Hamiltonian. With

Ψσ(r) =
1√
V

∑
k

eik·rakσ,

where V is the volume, H is diagonalized,

H =
∑
k,σ

εk a
†
kσakσ.

Evaluate the Fourier-transformed Green function

Gkσ,k′σ′(iωn) =
1

V

∫
d3r d3r′ e−ik·r+ik

′·r′ G(rσ, r′σ′, iωn).

Hints: Commutation relations of bosonic/fermionic annihilation and creation operators? Thermal ave-
rages of bosonic/fermionic particle number operators?
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Homework (due December 19, 2019)

Problem 2

Consider a one-dimensional superfluid (think of helium in a capillary or a superconducting wire, neglec-
ting the electromagnetic field).

(a) Vortices are not stable in a one-dimensional superfluid. Briefly explain why.

(b) Adapt the discussion of superfluid thin films from the lecture to the one-dimensional case. As
seen in part (a), vortices can be disregarded. Obtain the correlation function of phase fluctuations,
〈[φ(x) − φ(0)]2〉, and, from this, the correlation function of the order parameter, 〈ψ∗(x)ψ(0)〉. Discuss
the type of order. Note: If you can argue that results pertaining to the two-dimensional case carry over
to one dimension, you do not have to repeat their derivations.

Problem 3

The Poisson equation in three dimensions reads, in Gaussian units,

∇2φ(r) = −4πρ(r).

This implies (why?) that the Fourier transform of the scalar potential of a point charge Q reads

φ̂(q) = 4π
Q

q2
.

(a) We generalize this result to the Yukawa potential

φ̂(q) = 4π
Q

κ2 + q2
,

where κ > 0 is a constant. Find the Yukawa potential in real space, φ(r). Discuss the limit for κ→ 0.

(b) Perform the same analysis as in (a) and (b) for two-dimensional space. Note that the Poisson equation
now reads ∇2φ(r) = −2πρ(r), since the prefactor is ultimately the integral over all angles, which is 4π
in three dimensions but 2π in two dimensions. (In SI units, this factor is not included explicitly so that
the Poisson equation reads ∇2φ(r) = −ρ(r)/ε0 in any number of dimensions.) You may need an integral
table.

Remark: The results are useful both for the (BKT) theory of superfluid and superconducting films and
for the microscopic theory of superconductivity.
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