Tutorial Theory of Superconductivity Winter Semester 2019/20
Prof. Dr. C. Timm Problem set 3

In-class problems
Problem 1

Consider a system described by the time-independent Hamiltonian H. The Matsubara Green function
is defined as
G(ror,v'o't") = —(T, 0, (r,7)¥!, (¢, 7)),

where for any operator
A(T) — eH'r/hAefH'r/h’

and T is the time-ordering directive

, A(T)B(7") for 7 > 7/,
T A(T)B(7') = { +B(t)A(r) for 7 <7/,

where the upper (lower) sign holds for bosonic (fermionic) operators. Since H is time independent the
Green function only depends on the difference 7 — 7/, which we denote by 7 from now on. One can then
show that the resulting Green function G(ro,r’'c’, 7) is defined only for 7 € [—h/3, h3] and satisfies

G(ro,xv'o’,7 — hfB) = +G(ro,v'o’, 1).

The Fourier transformation between time and frequency space is given by

hB '
G(ro,v'a’ iw,) = dr """ G(ro,r'o’, T),
0
1 ]
G(ro,r'o’ 1) = 7 Z e T G(ro,r' o’ iwy).
TWn,
(a) Show that only the discrete (Matsubara) frequencies
2
%7 n € Z, for bosons,
w. =
n 2 1
%, n € Z, for fermions

occur.

(b) Assume that the system in non-interacting and non-magnetic. Then the Hamiltonian takes the form
H= /d%ZmL(r) HW,(r),
where H is the usual first-quantized single-particle Hamiltonian. With
1 .
U, (r)= — X s,
( ) \/V ; k.

where V is the volume, H is diagonalized,

H = g eka;rwakg.
k,o

Evaluate the Fourier-transformed Green function
]_ . 3 !’ /
Gko o (iwn) = v /d?’r d3r! e Glrg vl iwy,).

Hints: Commutation relations of bosonic/fermionic annihilation and creation operators? Thermal ave-
rages of bosonic/fermionic particle number operators?



Homework (due December 19, 2019)
Problem 2

Consider a one-dimensional superfluid (think of helium in a capillary or a superconducting wire, neglec-
ting the electromagnetic field).
(a) Vortices are not stable in a one-dimensional superfluid. Briefly explain why.

(b) Adapt the discussion of superfluid thin films from the lecture to the one-dimensional case. As
seen in part (a), vortices can be disregarded. Obtain the correlation function of phase fluctuations,
{[p(z) — ¢(0)]?), and, from this, the correlation function of the order parameter, (1*(z)(0)). Discuss
the type of order. Note: If you can argue that results pertaining to the two-dimensional case carry over
to one dimension, you do not have to repeat their derivations.

Problem 3

The Poisson equation in three dimensions reads, in Gaussian units,

V26(x) = —dmp(r).
This implies (why?) that the Fourier transform of the scalar potential of a point charge @ reads

d(q) = 4 (%

(a) We generalize this result to the Yukawa potential

2 Q
#(q) = 4n ma

where k > 0 is a constant. Find the Yukawa potential in real space, ¢(r). Discuss the limit for x — 0.

(b) Perform the same analysis as in (a) and (b) for two-dimensional space. Note that the Poisson equation
now reads V2¢(r) = —27p(r), since the prefactor is ultimately the integral over all angles, which is 4
in three dimensions but 27 in two dimensions. (In SI units, this factor is not included explicitly so that
the Poisson equation reads V2¢(r) = —p(r)/€o in any number of dimensions.) You may need an integral
table.

Remark: The results are useful both for the (BKT) theory of superfluid and superconducting films and
for the microscopic theory of superconductivity.



