Chaos and Quantum Chaos

Summer term 2021

2. Exercise

(to be presented and discussed on Monday April 26)

Repetition

- 1. What is the definition of a fixed point of a dynamical system (time-continuous and time-discrete)?
- 2. What kind of dynamics is possible near a fixed point of a Hamiltonian system?
- 3. When are N frequencies incommensurate?
- 4. What is the definition of ergodicity?

2.1 Eigenvalues of dynamical matrix

Show that the dynamical matrix A near a fixed point of a hamiltonian system has eigenvalues occurring in pairs $\lambda, -\lambda$.

Hint: Use A = SM, $M^T = M$, $S^T = -S$, and that S is unitary $(S^{\dagger}S = SS^{\dagger} = 1)$.

2.2 Integrable dynamics on N-torus

Give a proof for the following statements:

1. The integrable dynamics $\vec{\varphi}(t) = \vec{\varphi}_0 + \vec{\omega}t$ on a N-torus with incommensurate frequencies $\vec{\omega}$ is ergodic.

Hint: Write an arbitrary function $f(\vec{\varphi})$ *as a Fourier series.*

2. From 1. follows that a trajectory is dense on the torus.

Hint: Choose a convenient $f(\vec{\varphi})$ *.*

From 1. follows that a trajectory spents on average a time t in a region D that is proportional to the volume V_D of region D.
 Hint: Choose a convenient f(\$\vec{\varphi}\$).

2.3 Cat map

- a) Find the periodic points of the cat map.
 Hint: Consider points on a lattice. Try first to find an upper bound for the period. Are there other periodic points?
- b) Determine whether the periodic points are elliptic or hyperbolic.
- c) Determine the period of the periodic points. (difficult!)
- d) Which lattice size ≈ 1000 gives periodic points with a small period p = 16? (difficult!)