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Abstract

Generic Hamiltonian systems have a mixed phase space, where classically disjoint regions of regular

and chaotic motion coexist. For many applications it is useful to approximate the regular dynamics of

such a mixed system 𝐻 by an integrable approximation 𝐻reg. We present a new, iterative method to

construct such integrable approximations. The method is based on the construction of an integrable

approximation in action representation which is then improved in phase space by iterative applications

of canonical transformations. In contrast to other known approaches, our method remains applicable

to strongly non-integrable systems 𝐻. We present its application to 2D maps and 2D billiards. Based

on the obtained integrable approximations we finally discuss the theoretical description of dynamical

tunneling in mixed systems.

Zusammenfassung

Typische Hamiltonsche Systeme haben einen gemischten Phasenraum, in dem disjunkte Bereiche

klassisch regulärer und chaotischer Dynamik koexistieren. Für viele Anwendungen ist es zweckmäßig,

die reguläre Dynamik eines solchen gemischten Systems 𝐻 durch eine integrable Näherung 𝐻reg zu

beschreiben. Wir stellen eine neue, iterative Methode vor, um solche integrablen Näherungen zu

konstruieren. Diese Methode basiert auf der Konstruktion einer integrablen Näherung in Winkel-

Wirkungs-Variablen, die im Phasenraum durch iterative Anwendungen kanonischer Transformationen

verbessert wird. Im Gegensatz zu bisher bekannten Verfahren bleibt unsere Methode auch auf stark

nichtintegrable Systeme 𝐻 anwendbar. Wir demonstrieren sie anhand von 2D-Abbildungen und 2D-

Billards. Mit den gewonnenen integrablen Näherungen diskutieren wir schließlich die theoretische

Beschreibung von dynamischem Tunneln in gemischten Systemen.
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1. Introduction

When Newton introduced the concept of force to describe the planetary motion, he marked the genesis

of classical mechanics. Among many equivalent versions of classical mechanics, which have been

developed later on, the Hamiltonian formalism is of special relevance, due to its symplectic structure,

in which the phase-space coordinates of position q and momentum p appear symmetrically.

Two important limiting cases of Hamiltonian systems are given by integrable and fully chaotic

systems. In integrable systems with 𝑓 degrees of freedom, there exists a maximum number of 𝑓

independent constants of motion, which restricts the dynamics to invariant tori in phase space. The

motion on these 𝑓 -dimensional tori is always regular in the sense, that it reacts weakly to a change

in the initial conditions. One the other hand, in fully chaotic systems almost all solutions depend

sensitively on their initial conditions and explore higher-dimensional regions in phase space.

However, typical Hamiltonian systems lie between these limiting cases and have a mixed phase space,

where regions of regular and chaotic motion coexist [1]. This situation is illustrated in Fig. 1.1(a)

for a symplectic 2D map showing regular orbits (lines) which form a regular island embedded in a

chaotic sea (dots). Similar to the integrable case, the regular island is composed of invariant tori, but

additionally includes a rich self-similar structure with nonlinear resonance chains and thin chaotic

layers on all scales (not shown).

For many applications it turns out as extremely useful to replace the complicated fine details of the

dynamics inside the regular islands of a mixed Hamiltonian 𝐻 by an integrable approximation 𝐻reg.

Such applications arise in plasma physics [2], Hamiltonian transport [3], celestial mechanics [4], and

dynamical tunneling (see below). The required integrable system 𝐻reg should resemble the dynamics

of the regular tori in the island as closely as possible and smoothly interpolate through regions of

nonlinear resonance chains and chaotic layers. An example for such an integrable approximation is

−0.5

0.5

0 1q

p

(a)

−0.5

0.5

0 1q

p

(b)

Figure 1.1.: (a) Phase space of the standard map (4.4) at 𝜅 = 1.25, with regular orbits (black lines)
and chaotic orbits (black dots) and (b) of an integrable approximation 𝐻reg (thin red lines).
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2 Chapter 1. Introduction

shown in Fig. 1.1(b).

Our main motivation for constructing integrable approximations is the theoretical description of

dynamical tunneling [5, 6] between classically disconnected regions in phase space. For this, two

theoretical approaches have been developed, which both rely on an appropriate integrable approxi-

mation 𝐻reg. In the semiclassical regime, where Planck’s constant is small compared to the size of

the involved regular island, ℎ≪ 𝒜, tunneling is strongly influenced by nonlinear resonance chains in

phase space. Here, the theory of resonance-assisted tunneling can be applied [7–11]. In the contrary

quantum regime ℎ . 𝒜, the role of resonances can be neglected and an appropriate description of

tunneling is possible using the fictitious integrable system approach [12, 13]. Recently, this separation

was overcome by a combined theory [14]. Currently, the main obstacle which constrains this research

line is the question for a close integrable approximation.

Up to now, all methods for constructing such integrable approximations are either restricted to

systems with only one degree of freedom [13], to systems of a special type [15, 16], to the local

modeling of individual tori [4, 17], or to near-integrable systems (as, e. g., the methods of normal

forms [18, 19] and Lie transforms [8, 20–22]). In this thesis, we introduce the iterative canonical

transformation method, which overcomes all of these restrictions. We apply this method to symplectic

2D maps and to 2D billiards far from the near-integrable case. Moreover, we predict tunneling rates

for both system classes by applying the fictitious integrable system approach.

This thesis is organized as follows: In Chpt. 2, we introduce Hamiltonian systems, canonical trans-

formations, and the problem of integrable approximations. In Chpt. 3, we present the iterative canon-

ical transformation method in general. In Chpt. 4, we apply our method to symplectic 2D maps, and,

based on this intuition, discuss its convergence behavior, compare it to other methods, and work out

several enhancements. In Chpt. 5, we apply our method to 2D billiards. In Chpt. 6, we review the

fictitious integrable system approach and apply it to symplectic 2D maps and 2D billiards. Besides,

we discuss the role of the quantization for the fictitious integrable system approach. In Chpt. 7, we

summarize this thesis and give an outlook.



2. Fundamentals

In this chapter we lay out the basics of classical Hamiltonian physics with a strong focus on the

distinction between integrable and non-integrable systems and their characteristic geometrical struc-

ture. First, we generally introduce Hamiltonian systems and their canonical transformation theory

(Sec. 2.1). Then, we discuss integrable and non-integrable Hamiltonian systems (Secs. 2.2 and 2.3,

respectively) and finally explain the concept of integrable approximations (Sec. 2.4).

2.1. Hamiltonian dynamical systems

Hamiltonian systems are possibly the most important type of dynamical systems in classical physics.

They are used in many fields such as celestial mechanics, molecular physics, accelerator dynamics, or

mesoscopic physics. Compared to the equivalent formulations of Newton and Lagrange, Hamilton’s

description of classical mechanics is better suited for perturbation theory and the geometrical under-

standing of the dynamics. Apart from classical mechanics, Hamiltonian systems are also relevant for

semiclassical methods and form the conceptual basis of modern quantum mechanics and statistical

physics.

2.1.1. Time-continuous Hamiltonian systems

In Hamilton’s formulation of classical mechanics, the physical state of a system with 𝑓 degrees of

freedom is given by a point x = (q,p) in the 2𝑓 -dimensional phase space. This point consists of

𝑓 position coordinates q = (𝑞1, ..., 𝑞𝑓 ) and their conjugated momentum coordinates p = (𝑝1, ..., 𝑝𝑓 ).

A dynamical system is called a (time-continuous) Hamiltonian system, if its time evolution can be

written in the form,

d
d𝑡

q =
𝜕𝐻

𝜕p
(q,p), (2.1a)

d
d𝑡

p = −𝜕𝐻
𝜕q

(q,p), (2.1b)

where 𝑡 denotes time. Here 𝐻(q,p) is Hamilton’s function, or the Hamiltonian of the system. We

omit the discussion of time-dependent Hamiltonians 𝐻(q,p, 𝑡), as they are formally equivalent to

time-independent Hamiltonians with 𝑓 + 1 degrees of freedom [22, Sec. 1.2b]. For a given initial

condition x0 = (q0,p0), the solution of Eqs. (2.1) is called a trajectory. Formally, this trajectory can

3



4 2.1 Hamiltonian dynamical systems

be written as

(q,p)(𝑡) = 𝒰 𝑡(q0,p0), (2.2a)

or more compactly,

x(𝑡) = 𝒰 𝑡(x0). (2.2b)

Here the map 𝒰 𝑡 is the so-called phase flow of the system. For convenience, we refer to the solutions

of Eqs. (2.1) simply as the solutions of 𝐻.

2.1.2. Canonical transformations

For a given Hamiltonian 𝐻(q,p), we now consider a change of phase-space coordinates, given by an

invertible transformation

𝑇 : (q,p) ↦→ (q′,p′). (2.3)

If the dynamics in the new coordinates (q′,p′) can also be expressed in Hamiltonian form (2.1), 𝑇 is

called a canonical transformation. This is the case if and only if the components q′(q,p), p′(q,p) of

𝑇 satisfy

{𝑞′𝑖, 𝑝′𝑗} = 𝛿𝑖𝑗 , (2.4a)

{𝑞′𝑖, 𝑞′𝑗} = 0, (2.4b)

{𝑝′𝑖, 𝑝′𝑗} = 0. (2.4c)

Here we used the Poisson-bracket of two functions defined by {𝑓, 𝑔} := 𝜕𝑓
𝜕𝑞

𝜕𝑔
𝜕𝑝−

𝜕𝑓
𝜕𝑝

𝜕𝑔
𝜕𝑞 . The Hamiltonian

in the new coordinates is then given by

𝐻 ′(q′,p′) = 𝐻
[︀
q(q′,p′),p(q′,p′)

]︀
, (2.5a)

= 𝐻
[︀
𝑇−1(q′,p′)

]︀
, (2.5b)

or in a more compact notation

𝐻 ′(x′) = 𝐻
[︀
𝑇−1(x′)

]︀
. (2.5c)

Although both Hamiltonians 𝐻(x) and 𝐻 ′(x′) describe physically the same system in different coor-

dinates, we will use the term “system” as a synonym for “Hamiltonian”. Therefore, the reader should

not be confused about statements of the form “the system 𝐻(x) is transformed to the new system

𝐻 ′(x′)”.

By definition, the canonical transformation 𝑇 switches between the phase flows of the connected
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Hamiltonians,

𝒰 ′ 𝑡 = 𝑇 ∘ 𝒰 𝑡 ∘ 𝑇−1, (2.6)

as illustrated in Fig. 2.1(a). This allows to reformulate the search for solutions of 𝐻(x) as the search

for a canonical transformation to a system with known solutions. More general, a popular practice to

analyze 𝐻(x) is to transform it to a system 𝐻 ′(x′) that is more suitable for the considered analysis.

Although the motion might appear very different in the new coordinates, canonical transformations

have several invariants. First of all, the maximum Lyapunov exponent, which quantifies the sensitivity

of solutions with respect to their initial conditions, is unchanged under any canonical transformation

[23]. Secondly, canonical transformations preserve certain integral invariants [24]. The two most

relevant invariants are the volume of a phase-space region 𝐴,

𝑉 [𝐴] =

∫︁

𝐴
d𝑓qd𝑓p, (2.7)

and the action integral along a closed curve 𝒞 in phase space,

𝒥 [𝒞] = 1

2𝜋

∮︁

𝒞
pdq. (2.8)

In the simplest case 𝑓 = 1, the phase space is two-dimensional and these invariants coincide according

to Stoke’s theorem [25]. Hence 2D canonical transformations are area-preserving maps, see Fig. 2.1(b).

In the general case, 𝑉 [𝐴] is a 2𝑓 -dimensional volume of 𝐴 and 𝒥 [𝒞] is the sum over the areas inside

the (𝑞𝑖, 𝑝𝑖)-projections of 𝒞.
Constructing a canonical transformation 𝑇 for a given purpose can become difficult in practice,

as Eqs. (2.4) impose (3𝑓 − 1)𝑓/2 nonlinear side conditions on the partial derivatives of 𝑇 . This

situation is strongly simplified using the formalism of generating functions [24, 26], which brings two

advantages. First, the vectorial canonical transformation 𝑇 : R2𝑓 → R2𝑓 is represented by a scalar

generating function 𝐹 : R2𝑓 → R1. Second, the formalism ensures that for any choice of 𝐹 , the

J [C]

C

T

(b)

J [TC] = J [C]

TC
x0

x(t)

x′
0

x′(t)

U t U ′ t

T

T(a)

Figure 2.1.: (a) Illustration of the connection (2.6) between the two phase flows 𝒰 𝑡 and 𝒰 ′ 𝑡 by
means of the canonical transformation 𝑇 . (b) Transformation of a closed curve 𝒞 in 2D phase space.
The grid indicates the area-preserving property.



6 2.1 Hamiltonian dynamical systems

generated transformation 𝑇 is canonical, i. e., the side conditions (2.4) are automatically fulfilled.

Generating functions can be classified into different types [24], where the so-called second type will

turn out to be of particular relevance for our subject. This type of generating function 𝐹 (q,p′) has

a hybrid dependence on the old position coordinates q and the new momentum coordinates p′. The

canonical transformation 𝑇 is generated by the equations

q′ =
𝜕𝐹

𝜕p′ (q,p
′), (2.9a)

p =
𝜕𝐹

𝜕q
(q,p′), (2.9b)

which implicitly connect the old coordinates (q,p) to the new coordinates (q′,p′). The disadvantage

of the generating function formalism is that this implicit description of 𝑇 typically cannot be solved

explicitly for q′(q,p),p′(q,p) in a closed form. Therefore, although 𝑇 is well defined, its application

requires the additional effort of solving Eqs. (2.9) numerically.

2.1.3. Time-discrete Hamiltonian systems

Finding the trajectories x(𝑡) of a time-continuous Hamiltonian system requires the integration of

Hamilton’s equations of motion (2.1) in phase space, which is usually done numerically. In order to

reduce the computational effort, one often considers time-discrete dynamical systems instead. Here

the time evolution in phase space follows from a map ℳ according to

x𝑛+1 = ℳ(x𝑛). (2.10)

For a given initial condition x0, the solution x𝑛 at discrete “times” 𝑛 ∈ N0 is called an orbit.

Furthermore, the map ℳ is called symplectic, if its components fulfill Eqs. (2.4). Mathematically,

symplectic maps are canonical transformations. However, to emphasize their physical context, we

carefully distinguish between these terms. While a canonical transformation 𝑇 is applied once to

change the spatial description of a system, a symplectic map ℳ is applied repeatedly, to change the

system’s temporal state.

Symplectic maps are also called time-discrete Hamiltonian systems, as they are often derived as sim-

plifications of time-continuous Hamiltonian systems. In the following we demonstrate two situations,

where symplectic maps emerge from a time-continuous Hamiltonian system 𝐻(q,p). One concept to

achieve this is the so-called Poincaré section. This is a common technique for the analysis of systems

with 𝑓 ≥ 2 degrees of freedom. For this, one first defines a section through phase space by a 2(𝑓 − 1)-

dimensional manifold Σ. Secondly, the trajectories x(𝑡) of 𝐻(q,p) are reduced to their intersection

points x𝑛 with Σ. The time evolution of these points is then given by the so-called Poincaré map,

x𝑛+1 = 𝒫(x𝑛). (2.11)

If the manifold Σ is parametrized by 2(𝑓 − 1) coordinates (q1, ..., q𝑛−1, p1, ..., p𝑛−1), where q(q,p) and
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p(q,p) fulfill the conditions (2.4), the Poincaré map 𝒫 is symplectic in (q , p) [24]. This reduces the

time-continuous Hamiltonian system with 𝑓 degrees of freedom to a symplectic map with 𝑓−1 degrees

of freedom, as sketched in Figs. 2.2(a) and (b).

Another symplectic map, induced by 𝐻(q,p), is its phase flow 𝒰Δ𝑡, Eq. (2.2), for a given, fixed

timespan Δ𝑡 [24]. This map reduces the dynamics of 𝐻(q,p) to times that are integer multiples of

Δ𝑡, see Fig. 2.2(c). As this construction can be interpreted as a temporal analogue to the Poincaré

section, it is called a stroboscopic Poincaré section.

As the orbits x𝑛 of the symplectic maps 𝒫 and 𝒰Δ𝑡 are discrete samples of the continuous trajectories

x(𝑡), their analysis also reveals insights into the motion of 𝐻(q,p). For example, if the maximum

Lyapunov exponent exists, it must be the same for both x(𝑡) and x𝑛. Furthermore, any periodic orbit

with x𝑛+𝑚 = x𝑛 refers to a periodic trajectory with x(𝑡+ 𝑇 ) = x(𝑡).

x0

x(t)

(a)

x0

P

x1P

x2

Σ

(b)

x0

U1

x1

U1

x2

U1

x3

U1

x4

U1

x5

(c)

Figure 2.2.: (a) Trajectory x(𝑡) of a time-continuous Hamiltonian system. (b) Discrete orbit x𝑛

of a Poincaré map 𝒫 induced from x(𝑡) using the Poincaré section Σ. (c) Discrete orbit x𝑛 of the
phase flow 𝒰1 induced from x(𝑡).
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2.2. Integrable systems and action–angle coordinates

For understanding a physical system, constants of motion are of great importance. From a geometrical

point of view, energy-conservation restricts every solution of a Hamiltonian system 𝐻(q,p) to a

(2𝑓 − 1)-dimensional subregion of phase space, the so-called energy shell. Following this idea, every

additional constant of motion reduces this accessible region by one dimension. In the most simple

case, when there are as many independent constants of motion as there are degrees of freedom, the

system is called integrable. In the following we will discuss the phase-space structure of such integrable

systems.

We proceed with an alternative, equivalent definition of integrability: A system 𝐻(q,p) is called

integrable on a certain domain of phase space, if there exists a canonical transformation

𝑇 : (𝜗,J) ↦→ (q,p), (2.12)

such that the Hamiltonian becomes independent of the positional coordinates 𝜗, i.e.

ℋ(𝜗,J) = ℋ(J). (2.13)

These special coordinates are called angles 𝜗 = (𝜗1, ..., 𝜗𝑓 ) and actions J = (𝐽1, ..., 𝐽𝑓 ). For conve-

nience we introduce the frequency function as

𝜔(J) :=
𝜕ℋ
𝜕J

(J). (2.14)

As adding a constant to the Hamiltonian has no physical relevance, the frequency function 𝜔(J)

contains the full information of the system ℋ(J). Hamilton’s Eqs. (2.1) in action–angle coordinates

yield

d
d𝑡

𝜗 = 𝜔(J), (2.15a)

d
d𝑡

J = 0, (2.15b)

which can be integrated to

𝜗(𝑡) = 𝜗0 + 𝜔(J0) · 𝑡, (2.16a)

J(𝑡) = J0. (2.16b)

Hence, the angles 𝜗 process linearly in time with rates given by 𝜔(J), while the actions J are preserved

and play the role of the previously mentioned 𝑓 constants of motion. The solutions in the original

coordinates (q,p) can be obtained by applying the canonical transformation 𝑇 .

In addition to the demonstrated algebraic simplification, integrability also has strong implications

on the geometrical structure of the dynamics. According to the Poincaré–Hopf theorem [27], any

integrable motion confined to a finite phase-space region takes place on invariant 𝑓 -tori. These are
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𝑓 -dimensional manifolds with the topology of a product of 𝑓 independent circles. Consequently, the

constant value of the actions J = J0 fixes the invariant torus in phase space, while the angles 𝜗

parametrize the motion along this torus. Without loss of generality they can be chosen 𝜗𝑖 ∈ [0, 2𝜋).

To get an intuitive understanding of integrability, we consider the most popular and simple example,

the harmonic oscillator with one degree of freedom, described by the Hamiltonian

𝐻ho(𝑥, 𝑝𝑥) =
𝑝2𝑥
2𝑚

+
𝑚Ω2

2
(𝑥− 𝑥0)

2, (2.17)

where 𝑚 is the particle’s mass, Ω is the oscillation frequency, and 𝑥0 is the oscillation center. To

simplify the analysis, we shift the spatial origin to 𝑥0 and express time, distance and mass in units of

Ω−1, 𝑥0, and 𝑚, respectively. This leads to the rescaled Hamiltonian

𝐻(𝑞, 𝑝) = 1
2(𝑝

2 + 𝑞2), (2.18)

as a function of the dimensionless position 𝑞 = (𝑥 − 𝑥0)/𝑥0 and momentum 𝑝 = 𝑝𝑥/(𝑚𝑥0Ω). As

shown in Fig. 2.3(b), the phase space of this system contains a central fixed point at (𝑞*, 𝑝*) = (0, 0),

where the motion is stationary. This fixed point is enwrapped by a smooth family of one-dimensional,

circular tori. The system is brought to action–angle coordinates using the canonical transformation

𝑞(𝜗, 𝐽) =
√
2𝐽 cos𝜗, (2.19a)

𝑝(𝜗, 𝐽) = −
√
2𝐽 sin𝜗. (2.19b)

Figure 2.3 illustrates how the angle 𝜗 parametrizes the motion on a torus, while the action 𝐽

parametrizes the family of tori. The figure also indicates, that the action coordinate 𝐽 of a torus

equals the action integral (2.8) along this torus. This fact is true for any system with 𝑓 = 1 degree of

freedom and follows from the invariance of the action integral under 𝑇 :

𝒥 [𝒞] = 𝒥
[︀
𝑇−1𝒞

]︀
=

1

2𝜋

∮︁

𝑇−1𝒞
𝐽 d𝜗 =

𝐽

2𝜋

∫︁ 2𝜋

0
d𝜗 = 𝐽. (2.20)

Here 𝒞 denotes the positively oriented curve along the torus in the (𝑞, 𝑝)-plane. It follows that even

0.00

0.13

0 2π

T

2πJ

ϑ

J

(a)

−0.5

0.5

−0.5 0.5

2πJ
ϑ

J

q

p

(b)

Figure 2.3.: Canonical transformation 𝑇 from action–angle coordinates (a) to (𝑞, 𝑝)-space (b) for
the harmonic oscillator.
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without explicit knowledge of the action–angle coordinates, the action coordinate of a torus is always

accessible as its enclosed area divided by 2𝜋.

To obtain the frequency function, we first insert the transformation 𝑇 , Eq. (2.19) into Eq. (2.18)

and find the Hamiltonian in action representation,

ℋ(𝐽) = 𝐽. (2.21)

With Eq. (2.14) the frequency function is 𝜔(𝐽) = 1. The harmonic oscillator represents the trivial

case of a globally constant frequency for all tori, see Fig. 2.4(a). Here the red arrows indicate the

phase flow for a given timespan.

This example illustrates the importance of action–angle coordinates. They allow for a clean sepa-

0.00

0.13

0 2ω(J)

J

(a)

0.00

0.13

0 2π

T

ϑ

J

−0.5

0.5

−0.5 0.5q

p

ω̃(J)

J

(b)

T

ϑ

J

q

p

ω̃(J)

J

(c)

T̃

ϑ

J

q

p

Figure 2.4.: (a) Illustration of the harmonic oscillator with constant frequency function 𝜔(𝐽) (left)
and contour lines of the Hamiltonian in action–angle coordinates (center) and in the original phase-
space coordinates (𝑞, 𝑝) (right). Red arrows indicate the Hamiltonian flow for a given timespan
Δ𝑡 = 3. (b) Generalization of the previous system with a varying frequency function �̃�(𝐽). (c)
Generalization of the system from (b) with a different canonical transformation 𝑇 .
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ration of an integrable system into its two aspects frequency and shape, that are encoded in 𝜔(𝐽) and

𝑇 , respectively. While 𝜔(𝐽) controls the frequency distribution over the tori, 𝑇 generates their shape

in the original phase-space coordinates (𝑞, 𝑝).

From this point of view, one can construct other integrable Hamiltonians by systematically changing

either 𝜔(𝐽) or 𝑇 . One could introduce, e. g., a new frequency function �̃�(𝐽) by changing ℋ(𝐽).

Combining this new action representation ℋ̃(𝐽) with the former transformation 𝑇 produces a new

Hamiltonian �̃�(𝑞, 𝑝) with tori of the same shape but differently distributed frequencies, see Fig. 2.4(b).

Finally, changing 𝑇 to a different transformation 𝑇 tunes the torus-geometry, see Fig. 2.4(c). This

idea of constructing integrable systems due to a systematic, independent adjustment of 𝜔(𝐽) and 𝑇

will become an important motif of this work.

In the following, we discuss the case 𝑓 = 2. Here, we do not consider a concrete example system,

but focus on the principal aspects of integrability in a 4D phase space. In this case two angles

𝜗 = (𝜗1, 𝜗2) rotate with two constant frequencies 𝜔(J) = (𝜔1(J), 𝜔2(J)) according to Eq. (2.16a), as

illustrated in Fig. 2.5(a). These angles parametrize the motion on a 2-torus, which is fixed by two

actions J = (𝐽1, 𝐽2). This 2-torus is a 2D manifold embedded in the 4D phase space. To visualize it,

Fig. 2.5(b) shows a schematic projection into three dimensions.

If the two frequencies (𝜔1, 𝜔2) of a given torus have a rational quotient, i. e. there exist 𝑘1, 𝑘2 ∈ Z∖{0}
such that

𝑘1𝜔1 = 𝑘2𝜔2, (2.22)

the torus is called resonant and the motion is periodic, see Fig. 2.6(a) for an example. Otherwise, if

the frequencies (𝜔1, 𝜔2) have an irrational quotient, the torus is called nonresonant. The motion is

quasiperiodic and densely fills out the torus, see Fig. 2.6(b). As the rational numbers Q are dense in

the real numbers R, but still of measure zero, this also characterizes the distribution of resonant tori:

The probability to randomly select such a resonant torus is zero, but still there exist infinitely many

of them in an arbitrarily small phase-space region.

As introduced in Sec. 2.1.3, we now consider a 2D Poincaré section Σ in the 4D phase space. If Σ is

chosen properly, its intersection with the 2-torus will be a 1-torus, i. e. a 1D closed curve, see Fig. 2.6.

(q,p)

ϑ1

ϑ2

0

2π

0 2πϑ1

ϑ2

(a) (b)

Figure 2.5.: Orbit of an integrable system (red line) in the (𝜗1, 𝜗2)-plane (a) and transformed to
the phase-space coordinates (q,p) (b) with the corresponding torus (gray, schematic 3D projection)
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0

2π

0 2πϑ1

ϑ2

(a)

(q,p)

Σ
Σ

0

2π

0 2πϑ1

ϑ2

(b)

(q,p)

Σ
Σ

Figure 2.6.: Integrable dynamics on a resonant torus with frequencies 𝜔1/𝜔2 = 3/4 (a) and on a
nonresonant torus with frequencies 𝜔1/𝜔2 = 0.71817662680474015... (b). Each case is shown in the
(𝜗1, 𝜗2)-plane (left), in the phase space coordinates (q,p) (center, schematic 3D projection), and in
the Poincaré section Σ (right). Black arrows in (a) indicate the application of the Poincaré Map 𝒫.

The time-continuous dynamics on the 2-torus is then reduced to the time-discrete dynamics on this

1-torus. Figure 2.6 illustrates the appearance of resonant and nonresonant dynamics in the Poincaré

section. In the resonant case (2.22), the periodic motion of 𝐻(q,p) implies also a periodic orbit of

𝒫. In the nonresonant case, the quasiperiodic motion of 𝐻(q,p) also implies a quasiperiodic orbit of

𝒫, which densely fills the 1-torus.

Previously, we found the equality (2.20) between a torus’ action coordinate and its action integral

for 𝑓 = 1. In the present situation 𝑓 = 2, the action integral becomes ambiguous due to the free

choice of the 1D integration curve 𝒞 on the 2-torus. In the following we explain the choice for 𝒞 which

allows to generalize the equality (2.20). First, let 𝒞 be a closed curve on the torus with 𝑁1 and 𝑁2

rotations along the positive directions of 𝜗1 and 𝜗2, respectively (Fig. 2.6(a) gives an example with

𝑁1 = 3, 𝑁2 = 4). The action integral along 𝒞 then evaluates to

𝒥 [𝒞] = 𝒥
[︀
𝑇−1𝒞

]︀
=

1

2𝜋

∮︁

𝑇−1𝒞
J d𝜗 =

1

2𝜋

∮︁

𝑇−1𝒞
(𝐽1 d𝜗1 + 𝐽2 d𝜗2) (2.23)

=
1

2𝜋

(︃∮︁

𝑇−1𝒞|1
𝐽1 d𝜗1 +

∮︁

𝑇−1𝒞|2
𝐽2 d𝜗2

)︃
= 𝒥

[︀
𝑇−1𝒞

⃒⃒
1

]︀
+ 𝒥

[︀
𝑇−1𝒞

⃒⃒
2

]︀
. (2.24)

Here 𝑇−1𝒞
⃒⃒
𝑖
is the preimage of 𝒞 under 𝑇 , projected to the (𝜗𝑖, 𝐽𝑖)-plane. As this projection represents
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𝑁𝑖 rotations along 𝜗𝑖, while 𝐽𝑖 is constant on the torus, we find

𝒥
[︀
𝑇−1𝒞

⃒⃒
𝑖

]︀
=

1

2𝜋

∮︁

𝑇−1𝒞|𝑖
𝐽𝑖d𝜗𝑖 =

𝐽𝑖
2𝜋

∫︁ 2𝜋𝑁𝑖

0
d𝜗𝑖 = 𝑁𝑖𝐽𝑖, (2.25)

and finally obtain the result

𝒥 [𝒞] = 𝑁1𝐽1 +𝑁2𝐽2. (2.26)

The action integral just “counts” the rotations of 𝒞 along the angular directions, but ignores its concrete

shape. Therefore, the actions 𝐽𝑖 can be “measured” as integrals 𝒥 [𝒞𝑖] along two fundamental loops

(𝒞1, 𝒞2) on the torus, such that 𝒞𝑖 has one rotation along 𝜗𝑖 and zero rotations along the other angle,

see Fig. 2.7. It is important to note, that the decomposition (2.26) of the action integral depends on

the choice of the action–angle coordinates (𝜗,J). Using a different set of angles 𝜗′ would also lead

to new actions J′ of the same torus and different rotation numbers 𝑁 ′
𝑖 while keeping 𝑁 ′

1𝐽
′
1 + 𝑁 ′

2𝐽
′
2

constant. Depending on the situation, this has two consequences. If the action–angle coordinates are

known, the fundamental loops 𝒞𝑖 have to be chosen accordingly, such that

𝒥 [𝒞𝑖] = 𝐽𝑖. (2.27)

On the other hand, if the action–angle coordinates are unknown, they have to be defined according

to Eq. (2.27) by choosing any pair of topologically independent, closed curves 𝒞𝑖 on the torus.

(q,p)

C1 C2
0

2π

0 2πϑ1

ϑ2

T−1C1

T−1C2

(a) (b)

Figure 2.7.: Two fundamental loops 𝒞1, 𝒞2 in the (𝜗1, 𝜗2)-plane (a) and in the phase-space coordi-
nates (q,p) (b) (schematic 3D projection).
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2.3. Non-integrable systems

As mentioned in Sec. 2.2, integrable systems are rather special as they have the maximum number of

constants of motion. In contrast to this, typical Hamiltonian systems are non-integrable [1]. As we

show in the following, this leads to the coexistence of regular and chaotic motion in phase space.

Commonly, non-integrable systems are considered as perturbed integrable systems, i. e.

𝐻 = 𝐻0 + 𝜖𝑉, (2.28)

where𝐻0 is integrable. This allows to study the geometrical modifications in phase space with increas-

ing perturbation strength 𝜖, starting from the known integrable case 𝜖 = 0. For small perturbations,

|𝜖| ≪ 1, the system is called near-integrable and allows for a perturbative treatment in 𝜖. Here, two

general theorems apply independently of 𝐻0 and 𝑉 . First, the Kolmogorov–Arnold–Moser (KAM)

theorem [28–31] states, that almost all tori of𝐻0 are only deformed by the perturbation, but keep their

topology. Here, no statement is made about the tori, which are in some sense “close” to resonant tori.

This region is described by the Poincaré–Birkhoff theorem [32, 33], which states, that the resonant

tori of 𝐻0 are the first tori to break up under the perturbation. Following a universal mechanism,

their collapse leaves a set of isolated, regular sub-regions. In its original version, the theorem only

holds for symplectic 2D maps, where the set of regular sub-regions is geometrically well-understood.

It is called a nonlinear resonance chain and discussed below. Typically these nonlinear resonance

chains are surrounded by thin layers of chaotic motion. Although higher-dimensional generalizations

of the Poincaré–Birkhoff theorem exist [34], getting a geometrical intuition is less trivial.

As the perturbation is increased towards |𝜖| ∼ 1, the system is called mixed. Here the chaotic

regions which originated from the nonlinear resonance chains, have grown to reach about the same

size as the regular regions.

At this point it should be mentioned, that the distinction of non-integrable systems into near-

integrable (|𝜖| ≪ 1) and mixed systems (|𝜖| ∼ 1) might not be sharp, but matters. Residing beyond the

breakdown of perturbation theory, mixed systems are technically more challenging, but also comprise

new physical phenomena, e. g., regarding their diffusion behavior [35], their tunneling mechanisms

[36–38], and their characteristic level statistics [39, 40].

In the following we illustrate the nonlinear phase-space structures using a paradigmatic example

given by the standard map, Eq. (4.4). This time-discrete system represents a Poincaré map of a

non-integrable system, where the perturbation strength is given by 𝜖 = 𝜅. Here we shall focus on

the geometry of this system and shift its physical discussion to Sec. 4.1. The near-integrable case is

illustrated in Fig. 2.8(a) for 𝜖 = 0.5. In agreement to the KAM theorem, the phase space appears

integrable, mainly consisting of regular tori (black lines in Fig. 2.8(a)), to which the orbits are confined.

These tori surround a fixed point of the map at (𝑞*, 𝑝*) = (0.5, 0). However, a closer look reveals

nonlinear resonances, as predicted by the Poincaré–Birkhoff theorem. As an example, the green lines

in Fig. 2.8(a) show a nonlinear resonance chain which consists of 18 regular sub-regions. The central

points of these sub-regions form a periodic orbit of the map (green dots). The nonlinear resonance
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chain is surrounded by a new type of orbits (black dots) which turn out to be chaotic. In contrast to

the regular orbits, these chaotic orbits occupy a 2D region in the (𝑞, 𝑝)-plane.

The mixed case is illustrated in Fig. 2.8(b) for 𝜖 = 1.25. This situation is often described by the

picture of so-called regular islands which are embedded into a chaotic sea. However, this picture should

not be taken too literally, as the composition of regular and chaotic regions is more complicated. As the

resonant tori of the integrable system 𝐻0 are dense in phase space, also the nonlinear resonance chains,

which have emerged from these tori, can densely fill out the regular regions. Thus the regular island

can be imagined similar to an integrable region, but densely interspersed with nonlinear resonance

chains and chaotic layers on arbitrarily small scales. There is still a large set of remnant tori, but

due to their dense interspersion, they do not form a smooth family. This is shown by a sequence of

magnifications in Fig. 2.9(a).

For time-discrete systems with 𝑓 = 1 degree of freedom, the nonlinear resonance chains can be

classified by a tuple (𝑟:𝑠) where 𝑟 is the total number of sub-regions and 𝑠 is the number of sub-

regions which are surpassed in clockwise direction when the map is applied. Consequently, the central

periodic orbit of such an 𝑟:𝑠-resonance then has a resonance frequency

Ω𝑟:𝑠 = 2𝜋 𝑠
𝑟 . (2.29)

These nonlinear resonance chains also have an impact on the frequency function 𝜔(𝐽). As the system

is non-integrable, the frequency function cannot be defined by Eq. (2.14). However, one can still define

−0.5

0.5

0 1q

p

(a)

−0.5

0.5

0 1q

p

(b)

Figure 2.8.: Phase space of the standard map (4.4) with non-integrability parameter 𝜖 = 𝜅 for the
near-integrable case 𝜖 = 0.5 (a) and for the mixed case 𝜖 = 1.25 (b). Shown are regular orbits (black
lines) with nonlinear resonance chains (green lines) and chaotic orbits (black dots).
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the action and main frequency of individual, remaining tori and compute them numerically. This data

is shown in Fig. 2.9(b) for the main regular island of the system (for its practical computation we refer

to Sec. 4.2). Each point (𝐽, 𝜔) in the plot corresponds to a torus of action 𝐽 with a mean frequency 𝜔.

The action parametrizes the tori, starting near the center of the island at 𝐽 = 0 and approaching larger

tori for increasing 𝐽 . The upper plot shows a gap of the frequency function around 𝐽 = 0.02 caused

by the dominant 6:1-resonance. Asymptotically, at this gap 𝜔(𝐽) approaches the resonance frequency

Ω6:1 = 2𝜋 1
6 with an infinite slope. As the action of a torus is proportional to its area, the gap’s width

is 𝐴𝑟:𝑠/(2𝜋) where 𝐴𝑟:𝑠 is the area occupied by the resonance. Inside this gap tori which encircle the

central fixed point do not exist and thus action and frequency are not defined. However, there are

more such gaps, which become visible on finer scales, as shown by the magnifications. Consequently,

0.8

2π 1
6

1.2

0.00 0.02 0.04J

ω(J)

(b)

0.825

2π 3
22

2π 2
14

0.925

0.035 0.040 0.045

0.87

2π 5
36

0.874

0.0410 0.0412 0.0414

−0.5

0.5

0 1q

p

(a)

Figure 2.9.: (a) Phase space of the standard map (4.4) for 𝜅 = 1.25 with regular (lines) and chaotic
orbits (dots). The magnifications demonstrate the existence of nonlinear resonance chains (green)
on small scales. The shown resonance chains are of the type 6:1 (top), 14:2 and 3:22 (center),
and 5:36 (bottom). (b) The frequency function 𝜔(𝐽) (black dots) for the tori, shown in (a) with
the corresponding magnifications and the resonance frequencies Ω𝑟:𝑠 = 2𝜋 𝑠

𝑟 of the 𝑟:𝑠-resonances
(dashed green lines).
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in any phase-space region there are gaps where the action 𝐽 is undefined, as in any frequency interval

(𝜔𝑎, 𝜔𝑏) there are resonant frequencies with Ω𝑟:𝑠/(2𝜋) = 𝑠
𝑟 ∈ Q. Likewise, the frequency function

appears smooth on a rough scale, but is interrupted by infinitely many gaps which occur on small

scales and are distributed densely.

2.4. Integrable approximations

We close this chapter by stating the basic problem of this thesis, which is the construction of an

integrable approximation for a given, mixed target system. Such an integrable approximation should

mimic the dynamics of the target system in a given regular region as good as possible. More explicitly,

for any torus of the target system with action J (i) there should exist a corresponding torus of the

integrable approximation with the same action J and (ii) the dynamics on this integrable torus should

approximate the dynamics on the target torus as closely as possible. Furthermore, the integrable

approximation should interpolate through the nonlinear resonance chains of the target system and

extrapolate its tori beyond the regular region. An example of such an integrable approximation is

shown in Fig. 1.1(b), where the target system is given by the standard map, Fig. 1.1(a). Typically,

only one particular region of the target system is modeled by the integrable approximation, which we

refer to as the target region.

If the target system is given by a time-continuous Hamiltonian system 𝐻, its integrable approxi-

mation will be denoted by 𝐻reg. If the target system is given by a symplectic map ℳ, the integrable

approximation only needs to mimic its dynamics at discrete times. However, for a consistent descrip-

tion we also consider a time-continuous integrable approximation 𝐻reg here, keeping in mind that its

solutions are only relevant at integer times 𝑡 ∈ N0. Thus the corresponding time-discrete integrable

approximation would be the unit-time phase flow 𝒰1
reg of 𝐻reg.





3. Iterative canonical transformation method

In this chapter we introduce the iterative canonical transformation method for the construction of

integrable approximations, which is one major result of this thesis and covered in Ref. [41]. First, we

outline the basic idea of the method and its decomposition into two steps (Sec. 3.1), which we present

afterwards (Secs. 3.2 and 3.3). Finally, we give an algorithmic overview (Sec. 3.4). While this chapter

focuses on a formal presentation of the method, its illustration is shifted to its application in Ch. 4.2.

3.1. Basic idea

In the following we consider a given target system 𝐻(q,p) with 𝑓 degrees of freedom. Although the

following description remains valid, when choosing a symplectic map ℳ as target system, we will

always denote the target system as 𝐻(q,p), to simplify our terminology. We assume 𝐻(q,p) to have

a mixed phase space, where we consider a particular regular target region in phase space. This target

region consists of 𝑓 -tori, which are interspersed with other phase-space structures, such as chaotic

layers and nonlinear resonance chains. Our goal is to construct an integrable approximation 𝐻reg(q,p)

which resembles the motion along the tori in this target region. Following Sec. 2.2, the integrable

approximation 𝐻reg(q,p) is represented by a tuple (𝜔(J), 𝑇 ) of its frequency function 𝜔(J) and the

canonical transformation 𝑇 , that translates the action–angle coordinates (𝜗,J) to the original phase-

space coordinates (q,p). These two components (𝜔(J), 𝑇 ) completely define 𝐻reg(q,p) and reflect

its properties frequency and shape.

From this perspective, the integrable approximation 𝐻reg(q,p) is constructed in two steps. We first

construct the integrable approximation in action representation ℋreg(J), which fixes the frequency

function 𝜔(J) (frequency approximation). Secondly, we construct the transformation 𝑇 to the original

phase-space coordinates (q,p), which generates the shape of the tori and fixes the final Hamiltonian

𝐻reg(q,p) (shape approximation). These two steps are explained in the following two sections.

3.2. Frequency approximation

This section describes the first step of the iterative canonical transformation method, which is the

construction of an integrable approximation in action representation ℋreg(J). We obtain ℋreg(J) from

the actions of the tori in the target region of 𝐻(q,p). For this we choose a large, discrete sample

of initial conditions (q𝜏
0 ,p

𝜏
0) on different tori 𝜏 . Using Eq. (2.1) we evolve each initial condition to a
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20 3.2 Frequency approximation

long, discrete sample of times 𝑡ℓ to obtain the sample points

x𝜏
ℓ = 𝒰 𝑡ℓ(q𝜏

0 ,p
𝜏
0). (3.1)

Here the index 𝜏 labels the tori, while the index ℓ describes the motion along these tori.

From each trajectory x𝜏
ℓ we numerically compute the actions J𝜏 and the frequencies 𝜔𝜏 of the torus

𝜏 . The actions J𝜏 = (𝐽𝜏
1 , ..., 𝐽

𝜏
𝑓 ) are determined by choosing a set of 𝑓 fundamental loops 𝒞𝑖 on the

torus 𝜏 (see Sec. 2.2) and evaluating the action integral (2.8) along these loops, which gives

𝐽𝜏
𝑖 = 𝒥 [𝒞𝑖] . (3.2)

The frequencies 𝜔𝜏 = (𝜔𝜏
1 , ..., 𝜔

𝜏
𝑓 ) are defined by the Fourier expansion of the trajectories

x𝜏
ℓ =

∑︁

k∈Z𝑓

c𝜏k𝑒
𝑖k𝜔𝜏 𝑡ℓ . (3.3)

Practically the computation of the actions J𝜏 and the frequencies 𝜔𝜏 based on Eqs. (3.2) and (3.3)

is realized very differently depending on the number 𝑓 of degrees of freedom. Explicit examples for

𝑓 = 1, 2 are given in Secs. 4.2 and 5.4, respectively.

We now express ℋreg(J) by a series expansion

ℋreg(J) =

𝒦1∑︁

𝑘1=0

...

𝒦𝑓∑︁

𝑘𝑓=0

ℎ𝑘1...𝑘𝑓ℱ𝑘1...𝑘𝑓 (J). (3.4)

Practically this could be, e. g., a power series expansion ℱ𝑘1...𝑘𝑓 (J) = 𝐽𝑘1
1 ...𝐽

𝑘𝑓
𝑓 . Based on the data

(J𝜏 ,𝜔𝜏 ), we determine the coefficients ℎ𝑘1...𝑘𝑓 of this expansion by minimizing

𝜒2(ℎ) =
∑︁

𝜏

|𝜔𝜏 − 𝜔(J𝜏 )|2 (3.5a)

=
∑︁

𝜏

𝑓∑︁

𝑖=1

⃒⃒
⃒⃒𝜔𝜏

𝑖 − 𝜕ℋreg

𝜕𝐽𝑖
(J𝜏 )

⃒⃒
⃒⃒
2

. (3.5b)

In order to smoothly interpolate through zones of nonlinear resonance chains, tori close to them have

to be excluded. If the target system is a time-continuous Hamiltonian system, another strategy is

possible to determine the coefficients ℎ𝑘1...𝑘𝑓 by computing the energy of each torus as

𝐸𝜏 = 𝐻(q𝜏
0 ,p

𝜏
0), (3.6)

and minimizing

𝜒2(ℎ) =
∑︁

𝜏

|𝐸𝜏 −ℋreg(J
𝜏 )|2 . (3.7)
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This ensures, that corresponding pairs of tori from ℋreg(J) and 𝐻(q,p) have the same energy. This

also determines the frequency function 𝜔(J) = 𝜕ℋreg(J)/𝜕J which characterizes the slope of energy

perpendicular to the torus surfaces. Thereby, this minimization is equivalent to Eq. (3.5) but more

convenient, as less terms are summed.

3.3. Shape approximation

This section describes the second step of the iterative canonical transformation method, which is the

construction of the canonical transformation 𝑇 , leading to the integrable approximation 𝐻reg(q,p) in

the original phase-space coordinates (q,p) of the target system 𝐻(q,p). Here 𝑇 is not determined in

one step, but is decomposed into a sequence of canonical transformations (𝑇0, 𝑇1, 𝑇2, ...). In Sec. 3.3.1

we use an initial canonical transformation 𝑇0 leading to an initial integrable approximation 𝐻0
reg(q,p).

In Sec. 3.3.2 we introduce a family of canonical transformations. In Sec. 3.3.3 we use a cost function to

iteratively select the optimal transformations (𝑇1, 𝑇2, ...) as members of the family, which successively

improves the integrable approximation.

3.3.1. Initial integrable approximation

Starting from ℋreg(J), we choose a simple, first-guess canonical transformation

𝑇0 : (𝜗,J) ↦→ (q,p), (3.8)

which maps the tori of ℋreg(J) to the neighborhood of the corresponding tori of 𝐻(q,p) with the

same action J such that they have the same topology and roughly the same shape. This canonical

transformation leads to the initial integrable approximation

𝐻0
reg(q,p) = ℋreg(J(q,p)). (3.9)

The transformation 𝑇0 can be determined, e. g., from the linearized dynamics of 𝐻(q,p) at the center

of the island. Explicit examples are given in Secs. 4.2 and 5.4.

3.3.2. Family of canonical transformations

We define a family of canonical transformations {𝑇 a} whose members 𝑇 a are parametrized by a vector

a = (𝑎1, ..., 𝑎𝒩 ) ∈ R𝒩 . This is realized using a second-type generating function of the form

𝐹 a(q,p′) =

𝑓∑︁

𝑖=1

𝑞𝑖𝑝
′
𝑖 +

𝒩∑︁

𝜈=1

𝑎𝜈𝐺𝜈(q,p
′). (3.10)

The concrete family of transformations follows from the 𝒩 independent basis functions 𝐺𝜈 , whose

particular choice depends on the considered target system and should account for its symmetries and

periodicities. For examples see Secs. 4.2 and 5.4.
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The canonical transformation 𝑇 a is then implicitly defined by the set of Eqs. (2.9), which take the

form

q′ = q+
𝒩∑︁

𝜈=1

𝑎𝜈
𝜕𝐺𝜈

𝜕p′ (q,p
′), (3.11a)

p = p′ +
𝒩∑︁

𝜈=1

𝑎𝜈
𝜕𝐺𝜈

𝜕q
(q,p′). (3.11b)

For a = 0 one obtains the identity transformation. As the dynamics of 𝐻0
reg and 𝐻 roughly agree, we

consider only near-identity transformations to improve 𝐻0
reg assuming

|a| ≪ 1. (3.12)

As we discuss in Sec. 4.3.1, this restriction ensures the global existence of a unique solution for the

implicit Eqs. (3.11). Moreover, it allows to solve Eqs. (3.11) for (q′,p′) in orders of a, e. g., in first

order one obtains

q′
a(q,p) = q+

𝒩∑︁

𝜈=1

𝑎𝜈
𝜕𝐺𝜈

𝜕p
(q,p) +𝒪

(︀
|a|2
)︀
, (3.13a)

p′
a(q,p) = p−

𝒩∑︁

𝜈=1

𝑎𝜈
𝜕𝐺𝜈

𝜕q
(q,p) +𝒪

(︀
|a|2
)︀
. (3.13b)

3.3.3. Iterative improvement

We now use the family of canonical transformations {𝑇 a} to improve the agreement between the initial

integrable approximation 𝐻0
reg, Eq. (3.9), and the target region of 𝐻. In principle it is tempting, to

find a canonical transformation 𝑇 a leading to a new Hamiltonian which shows maximal agreement

with the regular phase-space region of 𝐻. However, finding this optimal transformation, e. g., by

using an infinite number of coefficients in Eqs. (3.10) is practically impossible. Therefore, we fix the

number 𝒩 of coefficients, but use multiple transformations. This idea seems promising, as the family

of canonical transformations does not form a group, i. e., 𝑇 a ∘ 𝑇 a′ ̸= 𝑇 a+a′
. Using such compositions

effectively gives access to a larger class of transformations without increasing 𝒩 .

Subsequently we use a member from the family {𝑇 a} to iteratively improve the agreement between

the integrable approximation and the regular phase-space region of 𝐻. This gives a sequence of

canonical transformations

𝑇𝑛 : (q,p) ↦→ (q′,p′), 𝑛 = 1, ..., 𝑁, (3.14)

such that the 𝑛th integrable approximation

𝐻𝑛
reg(q,p) = 𝐻0

reg(𝑇
−1
1 ∘ ... ∘ 𝑇−1

𝑛 (q,p)), (3.15)
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agrees more and more with the regular phase-space region of 𝐻 when 𝑛 is increased. Starting with

𝐻0
reg, this generates a sequence of integrable approximations

𝐻0
reg ↦→ 𝐻1

reg ↦→ ... ↦→ 𝐻𝑁
reg. (3.16)

In the following we explain one iteration step, which is the selection of an optimal canonical trans-

formation 𝑇𝑛+1 ∈ {𝑇 a} to improve 𝐻𝑛
reg. For this, 𝑇𝑛+1 has to minimize the distance of points with

corresponding action–angle coordinates in 𝐻𝑛
reg and 𝐻. To achieve this we define the corresponding

sample points and set up a cost function to minimize their distance.

Sample points

Using Eq. (3.1), we obtain the sample points x𝜏
ℓ of 𝐻, which correspond to actions J𝜏 and angles

𝜗𝜏
ℓ = 𝜗𝜏

0 + 𝜔𝜏 𝑡ℓ. (3.17)

Here, the initial angle 𝜗𝜏
0 can be chosen freely. For the integrable approximation 𝐻𝑛

reg, we define the

corresponding sample points as

x𝜏,𝑛
ℓ = 𝑇𝑛 ∘ ... ∘ 𝑇1 ∘ 𝑇0(𝜗𝜏

ℓ ,J
𝜏 ), (3.18)

using the same actions J𝜏 and angles 𝜗𝜏
ℓ as for the points x𝜏

ℓ . It is convenient to choose the initial

angles 𝜗𝜏
0 from Eq. (3.17), such that the initial sample points x𝜏,0

0 are closest to x𝜏
0 .

Cost function

To minimize the distance between x𝜏
ℓ and x𝜏,𝑛

ℓ in the (𝑛+ 1)st iteration step, we apply the canonical

transformation 𝑇 a and minimize the cost function

L (a) =
1

𝑁p

∑︁

𝜏

∑︁

ℓ

⃒⃒
x𝜏
ℓ − 𝑇 a

(︀
x𝜏,𝑛
ℓ

)︀⃒⃒2
. (3.19)

Here 𝑁p is the total number of sample points. This cost function L (a) measures how well a particular

transformation 𝑇 a would improve the integrable approximation 𝐻𝑛
reg. The best transformation 𝑇 a0 is

given by the parameter a0 which minimizes L (a).

Principally, finding this minimum would be difficult, as L is defined on a high-dimensional param-

eter space a ∈ R𝒩 . However, as the tori of 𝐻𝑛
reg and 𝐻 roughly agree, we can expect the minimum to

be close to the origin of parameter space. In this case, we can replace 𝑇 a in Eq. (3.19) by its linear

approximation (3.13) leading to

L (a) ≈ L (0)− 2

𝑁p

𝒩∑︁

𝜈=1

𝐵𝜈𝑎𝜈 +
1

𝑁p

𝒩∑︁

𝜇,𝜈=1

𝑎𝜇𝐶𝜇𝜈𝑎𝜈 , (3.20)
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where the coefficients are given by

𝐵𝜈 =
∑︁

𝜏,ℓ

(︀
q𝜏
ℓ − q𝜏,𝑛

ℓ

)︀ 𝜕𝐺𝜈

𝜕p

(︀
q𝜏,𝑛
ℓ ,p𝜏,𝑛

ℓ

)︀
−
∑︁

𝜏,ℓ

(︀
p𝜏
ℓ − p𝜏,𝑛

ℓ

)︀ 𝜕𝐺𝜈

𝜕q

(︀
q𝜏,𝑛
ℓ ,p𝜏,𝑛

ℓ

)︀
, (3.21a)

𝐶𝜇𝜈 =
∑︁

𝜏,ℓ

𝜕𝐺𝜇

𝜕p

(︀
q𝜏,𝑛
ℓ ,p𝜏,𝑛

ℓ

)︀ 𝜕𝐺𝜈

𝜕p

(︀
q𝜏,𝑛
ℓ ,p𝜏,𝑛

ℓ

)︀
+
∑︁

𝜏,ℓ

𝜕𝐺𝜇

𝜕q

(︀
q𝜏,𝑛
ℓ ,p𝜏,𝑛

ℓ

)︀ 𝜕𝐺𝜈

𝜕q

(︀
q𝜏,𝑛
ℓ ,p𝜏,𝑛

ℓ

)︀
, (3.21b)

as derived in App. A.

The optimal parameter is the solution of the extremal condition 𝜕L /𝜕a = 0, which under the

approximation (3.20) obtains the linear form

𝒩∑︁

𝜈=1

𝐶𝜇𝜈𝑎𝜈 = 𝐵𝜇. (3.22)

Solving this linear system of equations gives an estimate a* for the true minimum of L (a). For this

parameter a* one solves the canonical transformation (3.11) numerically using Newton’s method. If

for this parameter a* Eq. (3.11) is not invertible on the relevant domain of phase-space, we rescale it

according to

a* ↦→ 𝜂a*, (3.23)

using a damping factor 𝜂 ∈ (0, 1). This is possible as L (a*) ≤ L (𝜂a*) ≤ L (0), but requires to

increase the number 𝑁 of iteration steps by a factor of 1/𝜂. A detailed discussion of this damping

mechanism is given in Sec. 4.3.

Finally, we obtain the transformation 𝑇𝑛+1 = 𝑇 a*
leading to an improved integrable approximation

𝐻𝑛+1
reg of 𝐻, Eq. (3.15). Typically, after a finite number 𝑁 of iterations, the cost function saturates

and one can stop the iterative process. This leads to the final integrable approximation 𝐻𝑁
reg of 𝐻.

Note that 𝐻𝑁
reg is not given in a closed form, as the transformations 𝑇−1

𝑛 in Eq. (3.15) have to be

evaluated numerically from Eqs. (3.11). However, in App. B we discuss, how such a closed form can

be derived in principle.

3.4. Overview

In order to summarize this section, we give an algorithmic overview of the iterative canonical trans-

formation method.

1. For a chosen set of tori 𝜏 of 𝐻, compute the actions J𝜏 and frequencies 𝜔𝜏 .

2. Determine ℋreg(J) by minimizing Eq. (3.5) or (3.7).

3. Define 𝐻0
reg(q,p), Eq. (3.9), by choosing a simple transformation 𝑇0, Eq. (3.8), that roughly

mimics the shape of the target tori 𝜏 .
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4. For a chosen set of tori 𝜏 of 𝐻, determine a sample of points x𝜏
ℓ at times 𝑡ℓ.

5. For 𝑛 = 0, 1, . . . , 𝑁 − 1 :

a) Compute the points x𝜏,𝑛
ℓ , Eq. (3.18). For 𝑛 > 0 the transformation 𝑇𝑛 is evaluated numer-

ically using Eqs. (3.11).

b) Compute the coefficients 𝐵𝜈 and 𝐶𝜇𝜈 of the cost function L (a), Eqs. (3.21).

c) Determine a* by solving Eq. (3.22) and possibly applying a damping, Eq. (3.23).

d) Set 𝑇𝑛+1 := 𝑇 a*
.

6. Determine 𝐻𝑁
reg with Eq. (3.15).





4. Integrable approximation of symplectic 2D

maps

In this chapter, we apply the iterative canonical transformation method to symplectic 2D maps.

Provided with a 2D intuition, we also explain general aspects of the method. First, we introduce a

generic example system (Sec. 4.1) to which we apply the method (Sec. 4.2). Then, we discuss the

damping mechanism (Sec. 4.3) and the method’s high order asymptotics (Sec. 4.4). Furthermore,

we give a comparison to alternative methods for constructing integrable approximations (Sec. 4.5).

Finally, we adapt the iterative canonical transformation method to include a separatrix (Sec. 4.6) or

a nonlinear resonance chain into the integrable approximation (Sec. 4.7).

4.1. Example system

A very simple class of non-integrable models is given by periodically time-dependent systems with

𝑓 = 1 degree of freedom. These are systems with a Hamiltonian 𝐻(𝑞, 𝑝, 𝑡+Θ) = 𝐻(𝑞, 𝑝, 𝑡), where we

choose the period Θ = 1 without loss of generality. Especially convenient are so-called kicked systems,

which are given by

𝐻(𝑞, 𝑝, 𝑡) = 𝑇 (𝑝) + 𝑉 (𝑞)
∑︁

𝑛∈Z
𝛿(𝑡− 𝑛), (4.1)

where 𝛿(·) denotes Dirac’s delta-function, 𝑇 (𝑝) is the kinetic energy, and 𝑉 (𝑞) is a kicking potential

that is switched on instantly at integer times. A popular example of a kicked system is the kicked

rotor, which describes a pendulum that is impulsively exposed to gravity. Choosing appropriate units

for the angular displacement 𝑞 and its conjugated momentum 𝑝, this system is described by

𝑇 (𝑝) =
𝑝2

2
, (4.2a)

𝑉 (𝑞) =
𝜅

2𝜋
cos(2𝜋𝑞). (4.2b)

Here, the non-integrable force is controlled by the parameter of the kicking strength 𝜅. The time

evolution over a unit timestep from a state at time 𝑡 to time 𝑡+ 1 is given by a symplectic map

(𝑞𝑡+1, 𝑝𝑡+1) = 𝒰 𝑡,𝑡+1(𝑞𝑡, 𝑝𝑡). (4.3)
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Due to the system’s time-periodicity, this map only depends on the relative position of 𝑡 to the driving

period Θ = 1, i. e. 𝒰 𝑡,𝑡+1 = 𝒰 𝑡0 with 𝑡0 = (𝑡 mod 1).

Hence, the sequence of states in the (𝑞, 𝑝)-plane at times 𝑡𝑛 = 𝑡0 + 𝑛 for 𝑡0 ∈ [0, 1) and 𝑛 ∈ N0 is

generated by the same symplectic map. In the limit of positive 𝑡0 → 0+, this map connects the states

at times immediately after the kicks. It is called the standard map and given by

𝑞𝑛+1 = 𝑞𝑛 + 𝑝𝑛, (4.4a)

𝑝𝑛+1 = 𝑝𝑛 +
𝜅

2𝜋
sin (2𝜋(𝑞𝑛 + 𝑝𝑛)) . (4.4b)

In the following we consider this map on the (𝑞, 𝑝)-plane [0, 1) × [−0.5, 0.5) with periodic boundary

conditions. This map is a paradigmatic model for non-integrable systems. Its phase-space structures

have been discussed in Sec. 2.3.

4.2. Application of the iterative canonical transformation method

We now apply the iterative canonical transformation method from Sec. 3 to symplectic 2D maps.

Although we use only one example system, the following implementation is independent of this choice.

Moreover, having a 2D phase space, this section allows for a simple illustration of the general ideas

behind the method.

In the following we consider the standard map 𝒰1 given by Eqs. (4.4) on the phase-space (𝑞, 𝑝) ∈
[0, 1)× [−0.5, 0.5) with periodic boundary conditions. For 𝜅 ∈ (0, 4) this map has a stable fixed point

at (𝑞*, 𝑝*) = (0.5, 0). We consider the standard map for 𝜅 = 1.25, see Fig. 2.8(b). The fixed point

(𝑞*, 𝑝*) is surrounded by an island of regular tori, which is embedded into a chaotic sea. We choose

this regular island as our target region, for which we construct an integrable approximation 𝐻reg(𝑞, 𝑝).

4.2.1. Frequency approximation

In this section we perform the frequency approximation as explained in Sec. 3.2. We first compute

the sample points x𝜏
ℓ , Eq. (3.1). For this we choose a set of initial conditions on a line from the

center of the regular island to its border (i. e. the outermost torus shown in Fig. 4.1(a)). Specifically,

we use the points (𝑞𝜏0 , 𝑝
𝜏
0) = (𝑞* + 𝜏

60Δ𝑞, 𝑝
*) with 𝜏 = 1, 2, ..., 60 and Δ𝑞 = 0.293 (see the green line

in Fig. 4.1(a)). For each initial condition, we compute 104 iterates by applying the map 𝒰1. The

resulting sample points x𝜏
ℓ are shown in Fig. 4.1(a) (black dots).

From these sample points x𝜏
ℓ on the tori 𝜏 , we compute the action 𝐽𝜏 and the frequency 𝜔𝜏 . In the

given case of a 2D phase space, the computation of the action 𝐽𝜏 from Eq. (3.2) is straightforward.

Here, the choice of the fundamental loop 𝒞 on the torus becomes unambiguous and 𝐽𝜏 equals the area

inside the torus 𝜏 divided by a factor of (2𝜋). We compute this action numerically from the sample

points x𝜏
ℓ on the torus 𝜏 . The frequency 𝜔𝜏 is computed from the points x𝜏

ℓ using the frequency map

analysis [42, 43]. The resulting data (𝐽𝜏 , 𝜔𝜏 ) is shown in Fig. 4.1(b) (black dots).
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Figure 4.1.: (a) Phase space of the standard map (gray) with regular tori (lines), chaotic orbits
(dots), and the sample points x𝜏

ℓ (black dots) used for the frequency approximation. (b) Numerically
determined actions 𝐽𝜏 and frequencies 𝜔𝜏 (black dots) fitted by Eq. (4.6) with 𝒦 = 6 (red line) and
extrapolated beyond the boundary of the regular island.

For Eq. (3.4) we use the polynomial ansatz

ℋreg(𝐽) =

𝒦∑︁

𝑘=0

ℎ𝑘𝐽
𝑘, (4.5)

where we set ℎ0 = 0. This implies the frequency function

𝜔(𝐽) =
𝒦∑︁

𝑘=1

𝑘ℎ𝑘𝐽
𝑘−1, (4.6)

which we fit to the data (𝐽𝜏 , 𝜔𝜏 ) by minimizing Eq. (3.5). Up to order 𝒦 = 6 (red curve in Fig. 4.1(b))

we find a significant improvement of the fit.

4.2.2. Shape approximation

In this section we perform the shape approximation as explained in Sec. 3.3.

Initial integrable approximation

To obtain 𝐻0
reg(𝑞, 𝑝), we transform the dynamics of ℋreg(𝐽) to new coordinates (𝑞, 𝑝), according to

the linearized dynamics of the symplectic map 𝒰1 around the fixed point (𝑞*, 𝑝*). This is realized by

the transformation

𝑇0 :

(︃
𝜗

𝐽

)︃
↦→
(︃
𝑞(𝜗, 𝐽)

𝑝(𝜗, 𝐽)

)︃
=

(︃
𝑞*

𝑝*

)︃
+ℛ

(︃ √
2𝐽 cos𝜗

−
√
2𝐽 sin𝜗

)︃
, (4.7)
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where

ℛ =

(︃
cos𝛽 − sin𝛽

sin𝛽 cos𝛽

)︃(︃
1/
√
𝜎 0

0
√
𝜎

)︃
. (4.8)

This transformation generates elliptic tori centered around (𝑞*, 𝑝*) with a tilting angle 𝛽 and an axial

ratio 𝜎 as shown by the red lines in Fig. 4.2(a). It includes the transformation (2.19) given by 𝛽 = 0

and 𝜎 = 1 such that ℛ = 1. In general, 𝛽 and 𝜎 are properties of the linearized dynamics of 𝒰1 and

can be determined as [22, Sec. 3.3b]

tan 2𝛽 =
𝑀11 −𝑀22

𝑀12 +𝑀21
, (4.9)

𝜎2 =
|𝑀12 −𝑀21| − 𝑐

|𝑀12 −𝑀21|+ 𝑐
, (4.10)

with

𝑐 =
√︀

(𝑀12 +𝑀21)2 + (𝑀22 −𝑀11)2. (4.11)

Here 𝑀 is the monodromy matrix of the standard map 𝒰1 at the stable fixed point (𝑞*, 𝑝*),

𝑀 =

(︃
𝜕𝑞𝑛+1

𝜕𝑞𝑛

𝜕𝑞𝑛+1

𝜕𝑝𝑛
𝜕𝑝𝑛+1

𝜕𝑞𝑛

𝜕𝑝𝑛+1

𝜕𝑝𝑛

)︃⃒⃒
⃒⃒
⃒
(𝑞*,𝑝*)

=

(︃
1 1

−𝜅 1− 𝜅

)︃
. (4.12)

The inverted transformation 𝑇−1
0 generates the Hamiltonian 𝐻0

reg(𝑞, 𝑝) according to Eq. (3.15).

Note that 𝐻0
reg(𝑞, 𝑝) does not obey the periodic boundary conditions of the map 𝒰1, which is not

relevant for approximating the regular island. We stress that in contrast to the linearized dynamics

of 𝑀 , 𝐻0
reg(𝑞, 𝑝) contains the global frequency information of the regular island of 𝒰1. As shown in

Fig. 4.2(a), the tori of 𝐻0
reg(𝑞, 𝑝) agree with those of 𝒰1 only in the vicinity of the fixed point. In the

remaining part of the regular island, 𝐻0
reg needs to be improved.

Family of canonical transformations

First we define a family of canonical transformations 𝑇 a by choosing a functional basis 𝐺𝜈 for the

generating function (3.10). Since the tori of 𝐻0
reg and 𝒰1 are symmetric with respect to the fixed point,

the transformations 𝑇 a should preserve this symmetry and commute with the symmetry operation

(𝑞 − 𝑞*, 𝑝− 𝑝*) ↦→ (−(𝑞 − 𝑞*),−(𝑝− 𝑝*)), (4.13)

i. e. we restrict to generators which satisfy

𝐺𝜈(−(𝑞 − 𝑞*),−(𝑝′ − 𝑝*)) = 𝐺𝜈(𝑞 − 𝑞*, 𝑝′ − 𝑝*). (4.14)
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Figure 4.2.: The phase space of the standard map (4.4), at 𝜅 = 1.25 (thick gray lines and dots)
compared to the tori (thin colored lines) of (a) the initial integrable approximation 𝐻0

reg, (b) its
transformation after the first iteration step 𝑇1, and (c) after the final iteration step 𝑇𝑁 , 𝑁 = 60. (d)
Magnification of the border torus of 𝐻0

reg and 𝐻𝑁
reg (thin blue lines) and the standard map (thick

gray line) together with the individual points x𝜏,𝑛
ℓ (blue dots) approaching the reference points x𝜏

ℓ

(big black dots) of the standard map. Straight lines (black) indicate the initial and final distances
that contribute to the cost function, Eq. (3.19).

Furthermore, we choose a Fourier basis for the 𝐺𝜈 which brings Eq. (3.10) into the form

𝐹 a(𝑞, 𝑝′) = 𝑞𝑝′ +

𝒩𝑞∑︁

𝜈1=0

𝒩𝑝∑︁

𝜈2=0

𝑎+𝜈1𝜈2𝑓
+
𝜈1

(︂
𝑞 − 𝑞*

ℒ𝑞

)︂
𝑓+𝜈2

(︂
𝑝′ − 𝑝*

ℒ𝑝

)︂
(4.15)

+

𝒩𝑞∑︁

𝜈1=1

𝒩𝑝∑︁

𝜈2=1

𝑎−𝜈1𝜈2𝑓
−
𝜈1

(︂
𝑞 − 𝑞*

ℒ𝑞

)︂
𝑓−𝜈2

(︂
𝑝′ − 𝑝*

ℒ𝑝

)︂
,

with basis functions

𝑓+𝜈 (𝑥) = cos (2𝜋𝜈𝑥) , (4.16a)

𝑓−𝜈 (𝑥) = sin (2𝜋𝜈𝑥) . (4.16b)

Thus the coefficients to be optimized are a = (𝑎+𝜈1𝜈2 , 𝑎
−
𝜈1𝜈2) with 𝑎

+
00 = 0. The orders 𝒩𝑞,𝒩𝑝 and the

periods ℒ𝑞,ℒ𝑝 can still be chosen.

Iterative improvement

We now perform the iterative improvement in order to transform the tori of 𝐻0
reg closer to the tori of

𝒰1. First we compute the coefficients 𝐵𝜈 and 𝐶𝜇𝜈 of the cost function, Eqs. (3.21), summing over all

sample points x𝜏
ℓ determined in Sec. 4.2.1. For the generating function (4.15) we choose period lengths

ℒ𝑞,𝑝 ≈ 1 and low orders 𝒩𝑞,𝑝, specifically ℒ𝑞 = ℒ𝑝 = 1.33 and 𝒩𝑞 = 𝒩𝑝 = 2. Finally we obtain a

solution a of Eq. (3.22) which we rescale using the strong damping factor 𝜂 = 0.05, Eq. (3.23).

This solution a defines the first canonical transformation 𝑇1 = 𝑇 a. As shown in Fig. 4.2(b) this

transformation slightly deforms the tori of the initial integrable approximation 𝐻0
reg.

We repeat this procedure iteratively to obtain a sequence of transformations (𝑇1, 𝑇2, . . .) leading to

improved integrable approximations (𝐻1
reg, 𝐻

2
reg, . . .), see Fig. 4.2. To quantify this iterative improve-
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ment we evaluate the cost function L after each iteration step 𝑛, see Fig. 4.3. For large 𝑛 the cost

function saturates as 𝑇𝑛 converges to the identity transformation and the iteration is stopped after

𝑁 = 60 steps. The final integrable approximation 𝐻𝑁
reg(𝑞, 𝑝) closely resembles the dynamics of the

original map 𝒰1, as shown in Fig. 4.2(c) for the shape of the tori and in Fig. 4.2(d) for the individual

points that are used for the cost function, Eq. (3.19).

One would expect further optimization of the results by choosing higher orders 𝒩𝑞,𝑝 in Eq. (4.15)

which increases the number of parameters of the transformation 𝑇 a. However, it turns out that

increasing 𝒩𝑞,𝑝 requires very small damping factors 𝜂 and hence more iteration steps, which reduces

the performance. A possible improvement might be the increase of 𝒩𝑞,𝑝 only during the last iteration

steps.

4.3. Damping mechanism

In this section we explain the damping mechanism, Eq. (3.23). For this, we first examine the problem

of invertibility for the family of canonical transformations {𝑇 a} (Sec. 4.3.1). Then we show how the

damping mechanism can restore this invertibility (Sec. 4.3.2). Finally we illustrate these results using

the example of the standard map (Sec. 4.3.3) and present an adapted damping mechanism to achieve

faster convergence (Sec. 4.3.4).

4.3.1. Invertibility

Formally, the family of canonical transformations {𝑇 a} that is used for the presented method is

induced by the generating function 𝐹 a, Eq. (3.10) and a choice of basis functions 𝐺𝜈 . However, for

a particular parameter a, the transformation 𝑇 a only exists, if the implicit Eqs. (3.11) can be solved

for new variables x′ = (q′,p′) in terms of the old variables x = (q,p). We now derive a condition to

ensure this invertibility, based on implicit function theory.

10−5

10−4

10−3

0 20 40 60n

L

Figure 4.3.: Cost function L , Eq. (3.19), vs. iteration step 𝑛.
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Formally, the implicit Eqs. (3.11) can be written as

𝜑(x,x′) = 0, (4.17)

where the function 𝜑 : R2𝑓 × R2𝑓 ↦→ R2𝑓 is given by a tuple 𝜑 = (𝜑1,𝜑2) with the components

𝜑1,𝑘(q,p,q
′,p′) =

𝜕𝐹 a

𝜕𝑝′𝑘
(q,p′)− 𝑞′𝑘, (4.18a)

𝜑2,𝑘(q,p,q
′,p′) =

𝜕𝐹 a

𝜕𝑞𝑘
(q,p′)− 𝑝𝑘, (4.18b)

for 𝑘 = 1, ..., 𝑓 . Given a two-point solution (x,x′) of Eq. (4.17), the transformation 𝑇 a is defined

locally, if the solution can be uniquely extended in its neighborhood. According to the implicit

function theorem [44], this requires the function 𝜑(·,x′) to have a nonzero Jacobian,

det

(︂
𝐷𝜑

𝐷x

)︂
̸= 0. (4.19)

Here 𝐷u/𝐷v denotes the matrix of the partial derivatives 𝜕𝑢𝑖/𝜕𝑣𝑗 . Using Eq. (4.18), we have

𝐷𝜑

𝐷x
=

⎛
⎜⎜⎝

𝐷𝜑1

𝐷q

𝐷𝜑1

𝐷p

𝐷𝜑2

𝐷q

𝐷𝜑2

𝐷p

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

𝜕2𝐹 a

𝜕𝑞𝑗𝜕𝑝′𝑖
0

𝜕2𝐹 a

𝜕𝑞𝑗𝜕𝑞𝑖
𝛿𝑖𝑗

⎞
⎟⎟⎟⎠ , (4.20)

and the condition (4.19) for the local existence of 𝑇 a reduces to

J (q,p′) := det

(︂
𝜕2𝐹 a

𝜕𝑞𝑗𝜕𝑝′𝑖
(q,p′)

)︂
̸= 0. (4.21)

We now translate this condition for the generator 𝐹 a into a condition for the parameter a. Using the

special form (3.10) of 𝐹 a, we have

J (q,p′) = det

(︃
𝛿𝑖𝑗 +

∑︁

𝜈

𝑎𝜈
𝜕2𝐺𝜈

𝜕𝑞𝑗𝜕𝑝′𝑖
(q,p′)

)︃
. (4.22)

Assuming the basis functions 𝐺𝜈 to be bounded and 𝐶2, this can be estimated as

J (q,p′) = 1 +𝒪 (|a|) . (4.23)

Hence, there exists an upper bound 𝑎crit such that for near-zero parameters with

|a| < 𝑎crit, (4.24)

Eq. (4.21) is guaranteed everywhere in phase space. Consequently, for sufficiently small a, the trans-
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formation 𝑇 a is locally defined everywhere. Additionally the function 𝜑(·,x′) is proper, as shown in

App. C. This allows to apply Hadamard’s global inverse function theorem [44], which for |a| ≪ 1 also

ensures global invertibility and thus the unique existence of 𝑇 a.

4.3.2. Existence of damped solutions

The analysis of the previous section has shown, that small parameters a lead to a globally well defined

transformation 𝑇 a. The iterative improvement algorithm introduced in Sec. 3.3.3 also assumes small

parameters, which, however, does not guarantee the solution parameter a of Eq. (3.22) to be small.

For the case where this solution parameter a is too large, the damping mechanism, Eq. (3.23), was

introduced. Traditionally, “damping” refers to a widespread concept, which essentially means to

stabilize an iterative algorithm by an additional reduction of its step width [45]. Here this is realized

by downscaling the solution parameters a of the transformation 𝑇 a to 𝜂a using a damping factor

𝜂 ∈ (0, 1]. Obviously, by choosing 𝜂 sufficiently small we can reach the valid parameter range (4.24)

and restore invertibility.

However, to justify the damping mechanism, we further need to prove that the downscaled trans-

formation 𝑇 𝜂a is still able to mimic the original transformation 𝑇 a in some sense, which we will do in

the following. For this we need to study the parameter dependence of the family of transformations

{𝑇 a} defined by Eqs. (3.11). First, we consider the expansions of 𝑇 a in a up to second and first order,

which are given by

𝑇 a(x) = x+ af1(x) +𝒪
(︀
|a|2
)︀
, (4.25a)

= x+𝒪 (|a|) , (4.25b)

respectively. The linear coefficients f1 are given by Eq. (3.13), which, however, is not relevant in the

following. Note that the dependence on x is suppressed in the 𝒪-notation for convenience. Using the

linear expansion (4.25a), we compute the linear expansion of two nested transformations as

𝑇 a′
[𝑇 a(x)] = 𝑇 a(x) + a′f1 [𝑇

a(x)] +𝒪
(︀
|a′|2

)︀
. (4.26)

By repeatedly applying Eqs. (4.25), this simplifies to

𝑇 a′
[𝑇 a(x)] = 𝑇 a(x)⏟  ⏞  

x+ af1(x) +𝒪
(︀
|a|2
)︀
+a′ f1 [𝑇

a(x)]⏟  ⏞  
f1 [x+𝒪 (|a|)]⏟  ⏞  
f1(x) +𝒪 (|a|)

+𝒪
(︀
|a′|2

)︀
, (4.27a)

= x+ af1(x) + a′f1(x)⏟  ⏞  
(a+ a′)f1(x)

+𝒪
(︀
|a|2
)︀
+ a′𝒪 (|a|) +𝒪

(︀
|a′|2

)︀
⏟  ⏞  

𝒪2

(︀
|a|, |a′|

)︀
. (4.27b)

Here, the multivariate symbol𝒪𝑘 (𝑦1, 𝑦2, ..., 𝑦𝑛) denotes a function which only has components 𝑦𝑘11 𝑦
𝑘2
2 ...𝑦

𝑘𝑛
𝑛

of total order 𝑘1 + ... + 𝑘𝑛 ≥ 𝑘. However, up to first order this equals 𝑇 a+a′
. If we totally suppress
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the dependence on x, we obtain

𝑇 a′ ∘ 𝑇 a = 𝑇 a+a′
+𝒪2

(︀
|a|, |a′|

)︀
. (4.28)

This result can be interpreted as an approximate group property, i. e., the family {𝑇 a} forms a group

in the small parameter limit. Using this identity, we can derive a 3-fold composition as

𝑇 a ∘ 𝑇 a′ ∘ 𝑇 a′′
= 𝑇 a+a′+a′′

+𝒪2

(︀
|a|, |a′|, |a′′|

)︀
, (4.29)

and by induction we arrive at the corresponding identity for an 𝑁 -fold composition,

𝑇 a1 ∘ ... ∘ 𝑇 a𝑁 = 𝑇 a1+...+a𝑁 +𝒪2 (|a1|, ..., |a𝑁 |) . (4.30)

Using this idea backwards, we can split up a single parameter a into a sequence of 𝑁 identical

fractions,

𝑇 a/𝑁 ∘ ... ∘ 𝑇 a/𝑁 = 𝑇 a +𝒪
(︀
|a|2/𝑁2

)︀
. (4.31)

Introducing the damping factor 𝜂 = 1/𝑁 , this can be rewritten as

⃒⃒
⃒⃒ 𝑇 a − 𝑇 𝜂a ∘ ... ∘ 𝑇 𝜂a

⃒⃒
⃒⃒ = 𝒪

(︀
𝜂2|a|2

)︀
. (4.32)

Consequently 𝑇 a is approximated by a chain of damped transformations 𝑇 𝜂a. This approximation can

reach any precision, by choosing 𝜂 sufficiently small. Moreover, even if 𝑇 a is not defined globally, 𝑇 𝜂a

and thus also 𝑇 𝜂a ∘ ... ∘ 𝑇 𝜂a will be for |𝜂| ≪ 1. Having ensured the existence of this approximating

chain, we can ask for even better approximations of the more general form 𝑇 𝜂a ∘𝑇 a2 ∘ ... ∘𝑇 a𝑁 where

a2, ...,a𝑁 are chosen freely. Using Eq. (4.32) as an upper bound, we can expect a solution whose

quality will be at least

⃒⃒
⃒⃒ 𝑇 a − 𝑇 𝜂a ∘ 𝑇 a2 ... ∘ 𝑇 a𝑁

⃒⃒
⃒⃒ ≤ 𝒪

(︀
𝜂2|a|2

)︀
. (4.33)

For the iterative scheme presented in Sec. 3.3.3, this estimation justifies to approximate 𝑇 a by a

chain of transformations where the first element is 𝑇 𝜂a and the other elements 𝑇 a2 ∘ ... ∘ 𝑇 a𝑁 are to

be determined in the remaining iteration steps.

4.3.3. Illustration for 2D maps

To illustrate the damping mechanism, we now return to the example of the standard map, Eq. (4.4).

We consider this system for the parameter 𝜅 = 0.9, see Fig. 4.4(a). For the target region we choose

the central regular island (black lines).

We implement the iterative canonical transformation method according to Sec. 4.2 using the param-

eters (Δ𝑞,𝒦,ℒ𝑞,ℒ𝑝,𝒩𝑞,𝒩𝑝) = (0.3537, 5, 2.8, 1.3, 2, 3). First, we consider the undamped algorithm,
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Figure 4.4.: (a) Phase space of the standard map (4.4) for 𝜅 = 0.9 with regular orbits (lines) and
chaotic orbits (dots). (b–c) Regions of positive (white) and negative (green) Jacobian J (b) in
(𝑞, 𝑝)-space and (c) in (𝑞′, 𝑝′)-space. Furthermore, tori of the integrable approximations (b) 𝐻0

reg

and (c) 𝐻1
reg are shown (red lines). As the blue torus in (𝑞, 𝑝)-space (b) crosses regions J = 0, its

transformation to (𝑞′, 𝑝′)-space fails (c).

𝜂 = 1. In the first iteration step, Eq. (3.22) is solved for the parameter a. Given this parameter, we

compute the Jacobian (4.21), which in this case reduces to the scalar function

J (𝑞, 𝑝′) =
𝜕𝐹 a

𝜕𝑞𝜕𝑝′
(𝑞, 𝑝′). (4.34)

Due to the choice of the Fourier basis (4.15) for 𝐺𝜈 , this function is periodic in 𝑞 and 𝑝′ with period

lengths ℒ𝑞 and ℒ𝑝, respectively. The upper plot of Fig. 4.5(a) shows the sign of J (𝑞, 𝑝′) in one unit

cell of the (𝑞, 𝑝′)-plane. As one finds regions of both signs, the invertibility condition (4.21) is violated

at the boundary between these regions and 𝑇 a is not globally defined. Using Eqs. (3.11) we map

these regions to the (𝑞, 𝑝)- and (𝑞′, 𝑝′)-plane, as shown in Figs. 4.4(b) and (c), respectively. Avoiding

the lines J = 0, the transformation 𝑇1 = 𝑇 a can only be defined locally in each connected subregion

J < 0 or J > 0. Here, the central white region of Fig. 4.4(b) is chosen, as it contains the target

region for the integrable approximation. For tori which penetrate these lines, the transformation

expectably fails, as shown for the blue torus in Figs. 4.4(b) and (c). However, if one restricts to the

white region J > 0, the Hamiltonian 𝐻1
reg is defined and the iteration can be continued. In principle,

each iteration step would lead to further restrictions of the domain of definition. However, practically

no confinement of the domain of definition occurs, as the following transformations (𝑇2, 𝑇3, ...) will

only add smaller corrections. After 𝑁 = 5 iteration steps, the cost function saturates, see Fig. 4.5(a).

In the following, we consider the damped algorithm for 𝜂 = 1/10. The first transformation is

now given by 𝑇1 = 𝑇 𝜂a. As proposed in Sec. 4.3.2, this expands the white region where 𝐻1
reg is

defined, see Fig. 4.5(b). However, as the rescaled transformation 𝑇 𝜂a is located closer to the identity

transformation than 𝑇 a, less improvement is achieved in one iteration step and the algorithm becomes

slower. Enhancing the total iteration time by the factor 𝜂−1 to 𝑁 = 50 leads to a final integrable

approximation 𝐻50
reg that is similar to the previous result 𝐻5

reg for 𝜂 = 1.

Finally, by choosing a stronger damping 𝜂 = 1/100, the regions J < 0 completely disappear, see
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Figure 4.5.: Illustration of the damping mechanism for the iterative improvement algorithm. Re-
sults are shown for the undamped algorithm 𝜂 = 1 (a) and the damped algorithm with 𝜂 = 1/10
(b) and 𝜂 = 1/100 (c). First row: regions of positive (white) and negative (green) Jacobian J in
(𝑞, 𝑝′)-space, evaluated for the first transformation 𝑇1. Second and third row: orbits of the standard
map (4.4) for 𝜅 = 0.9 (gray lines and dots) with tori of the integrable approximations 𝐻1

reg (second

row) and 𝐻
5/𝜂
reg (third row) (red lines). Fourth row: Cost function L , Eq. (3.19), vs. iteration step

𝑛.
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Fig. 4.5(c). The rescaled parameter 𝜂a now is located in the valid parameter range (4.24) such that

𝑇 𝜂a, 𝐻1
reg, and also the final integrable approximation 𝐻500

reg are globally defined. Furthermore, the

agreement of the final integrable approximations indicates the stability of the algorithm when 𝜂 is

changed. This is also supported by the behavior of the cost function for different 𝜂, which nearly

agree if the iteration time 𝑛 is rescaled by 𝜂−1. This example shows, how the damping mechanism

allows to extend the integrable approximation to a larger domain of definition.

4.3.4. Adapted damping

The main drawback of the damping mechanism is the slowdown of convergence. It is of interest to

use as few iteration steps as possible. To this end we use, that even for the undamped algorithm the

transformations 𝑇𝑛 become smaller when 𝑛 is increased. Thus the damping becomes less necessary

for growing 𝑛 and it is reasonable, to gradually turn it off during the algorithm. This is realized using

an adapted damping factor for each iteration step 𝑛,

𝜂 → 𝜂𝑛. (4.35)

In the following we derive the optimal sequence 𝜂𝑛 from the structure of the family of canonical

transformations {𝑇 a}. For this, we assume all involved transformations to be sufficiently small such

that the group property,

𝑇 a+a′
= 𝑇 a ∘ 𝑇 a′

, (4.36)

becomes exact, see Eq. (4.28). Let (ā1, ā2, ...) and (a1,a2, ...) denote the parameter sequences of

the undamped and the damped algorithm, respectively. As for the undamped algorithm, the first

transformation 𝑇 ā1 typically gives the main contribution, our next approximation is to neglect the

corrections (𝑇 ā2 , 𝑇 ā3 , ...). In this approximation order, the full result of the undamped algorithm is

given by its first iteration step 𝑇1 = 𝑇 ā1 . We now express all parameters (a1,a2, ...) of the damped

algorithm as a function of ā1. Obviously, the first step yields the parameter a1 = 𝜂1ā1. According to

the group property (4.36), the remaining transformation would be given by ā1−a1 and after applying

the damping factor 𝜂2, the second step yields the parameter a2 = 𝜂2(ā1 − a1). Continuing this way,

we obtain

a1 = 𝜂1ā1, (4.37a)

a𝑛+1 = 𝜂𝑛+1

(︃
ā1 −

𝑛∑︁

𝑚=1

a𝑚

)︃
. (4.37b)

As the solution a𝑛 of this convolution recursion must be linear in ā1, we make the ansatz

a𝑛 = 𝜂𝑛𝑅𝑛ā1. (4.38)



4.3.4 Adapted damping 39

Inserting this into Eq. (4.37) leads to a recursion for the prefactors 𝑅𝑛 given by

𝑅1 = 1, (4.39a)

𝑅𝑛+1 = (1− 𝜂𝑛)𝑅𝑛. (4.39b)

The most effective choice for the damping factors 𝜂𝑛 would make each transformation 𝑇 a𝑛 equally

strong. Thus we fix 𝜂𝑛 by requiring all parameters to be of the same magnitude, i. e., |a𝑛| = |a1|.
Using Eq. (4.38) this condition becomes

𝜂𝑛 = 𝜂1
𝑅1

𝑅𝑛
, (4.40)

where we assumed 𝜂𝑛 ≥ 0. This allows to eliminate 𝜂𝑛 in Eq. (4.39b), leading to the linear recursion

𝑅1 = 1 (4.41)

𝑅𝑛+1 = 𝑅𝑛 − 𝜂1 (4.42)

for 𝑅𝑛 only, which has the solution 𝑅𝑛 = 1 + (1 − 𝑛)𝜂1. Finally, inserting this back into Eq. (4.40)

leads to the ideal damping sequence

𝜂𝑛 =
𝜂1

1 + (1− 𝑛)𝜂1
. (4.43)

This sequence behaves differently, depending on the choice of the initial damping factor 𝜂1. For

𝜂1 = 1/𝑁 with 𝑁 ∈ N, the sequence monotonically approaches 𝜂𝑁 = 1 at step 𝑛 = 𝑁 , see Fig. 4.6(a).

In this case, evaluating Eq. (4.37b) for 𝑛 = 𝑁 gives

ā1 =

𝑁∑︁

𝑚=1

a𝑚, (4.44)
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Figure 4.6.: (a) Ideal damping sequence 𝜂𝑛, Eq.(4.43), vs. rescaled iteration time 𝜂1𝑛, shown for
different initial conditions 𝜂1 = 1/10, 1/100, and 1/1000. (b–d) Illustration of the adapted damping
mechanism using the standard map (4.4) with 𝜅 = 0.9: (b) Cost function L , Eq. (3.19), vs. iteration
step 𝑛 for the iterative algorithm with constant damping 𝜂 = 1/100 (gray) and with adapted damping
using 𝜂1 = 1/100 (red). (c,d) Integrable approximations 𝐻100

reg obtained using adapted damping (c)
and 𝐻500

reg obtained using constant damping (d).
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i. e., the full result ā1 is reached and the algorithm finishes after the 𝑁 -th step. Thus, the choice

𝜂1 = 1/𝑁 also suggests an ideal runtime of 𝑁 steps for the algorithm. If 𝜂1 is not an inverse integer,

negative values for 𝜂𝑛 occur, before the algorithm terminates. As we required 𝜂𝑛 ≥ 0, these values for

𝜂1 are invalid.

We now demonstrate the adapted damping mechanism by constructing an integrable approximation

of the standard map at 𝜅 = 0.9. Figure 4.6(b) shows the cost function for the algorithm applied with

constant damping 𝜂 = 1/100 (gray), as implemented in the previous section, and for the algorithm

with adapted damping using 𝜂1 = 1/100 (red). After 𝑁 = 100 iteration steps, the adapted algorithm

is continued without damping by setting 𝜂𝑛 = 1 for 𝑛 > 100. As the cost function abruptly becomes

constant for 98 ≤ 𝑛 ≤ 102 (not shown), the predicted termination after 𝑁 = 100 steps is verified.

Moreover, we find a close agreement between the integrable approximations 𝐻100
reg resulting from the

algorithm with adapted damping and 𝐻500
reg resulting from the algorithm with constant damping, as

shown in Figs. 4.6(c–d).

4.4. Choice of the orders 𝒩 and convergence

For the iterative improvement of the presented method, a family of canonical transformations {𝑇 a}
is used. Until now, the entire discussion was based on one given family. However, this family is

constituted by the order 𝒩 at which the generating function (3.10) is truncated. In the following

we discuss how changing this truncation order 𝒩 influences the convergence of the algorithm and

investigate the asymptotics 𝒩 → ∞.

To this end, we consider the standard map at 𝜅 = 2.9. This choice is convenient for studying

the convergence, as the large perturbation causes a stronger tendency for the algorithm to diverge.

Following Sec. 4.2, the truncation order 𝒩 is represented by two integers (𝒩𝑞,𝒩𝑝) in Eq. (4.15).

First, we consider the undamped algorithm, 𝜂 = 1. We vary the truncation orders in the range

0 ≤ 𝒩𝑞,𝒩𝑝 ≤ 6 and for each choice (𝒩𝑞,𝒩𝑝) we run the iterative canonical transformation method

according to Sec. 4.2 using the parameters (Δ𝑞,𝒦,ℒ𝑞,ℒ𝑝) = (0.1012, 5, 2.8, 1.3). For each (𝒩𝑞,𝒩𝑝) we

compute the final, saturated value of the cost function L𝑁 after a sufficiently long iteration time𝑁 , see

Fig. 4.7(a). As expected, we find that increasing (𝒩𝑞,𝒩𝑝) improves the final integrable approximation.

However, when a critical domain (𝒩𝑞 ≥ 3)∧ (𝒩𝑝 ≥ 3) is reached, the algorithm diverges, as indicated

by the red area. This behavior is also expected, as for growing orders more terms can shift the

determinant (4.22) away from unity, which effectively contracts the valid parameter range (4.24). The

inset at (𝒩𝑞,𝒩𝑝) = (4, 4) shows the integrable approximation 𝐻1
reg(𝑞, 𝑝). Here the transformation 𝑇1

fails for the outer torus. Hence, due to the contraction of the valid parameter range (4.24), the target

region is not fully included in the domain of definition for the used transformation 𝑇1.

In Fig. 4.7(b) we show the analogous results for the damped algorithm with 𝜂 = 1/5. It turns out

that the region of convergence in the (𝒩𝑞,𝒩𝑝)-plane is enlarged as compared to 𝜂 = 1. Hence, the

damping mechanism stabilizes the algorithm and allows to increase the orders (𝒩𝑞,𝒩𝑝) to improve

the final integrable approximation.
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Figure 4.7.: Saturated value of the cost function L𝑁 (green) after a sufficiently long iteration time
𝑁 for different orders (𝒩𝑞,𝒩𝑝) in Eq. (4.15) and damping factors 𝜂 = 1 (a) and 𝜂 = 1/5 (b). Red
areas indicate the divergence of the iterative improvement algorithm. The insets show the phase
space of the standard map (4.4) for 𝜅 = 2.9 (gray) with tori (red) of the corresponding integrable
approximations 𝐻𝑁

reg for (𝒩𝑞,𝒩𝑝, 𝜂) = (2, 2, 1) (left), 𝐻1
reg for (𝒩𝑞,𝒩𝑝, 𝜂) = (4, 4, 1) (center), and

𝐻𝑁
reg for (𝒩𝑞,𝒩𝑝, 𝜂) = (4, 4, 1/5) (right).

However, this improvement is limited, as Fig. 4.7(b) shows a saturation of L𝑁 for large (𝒩𝑞,𝒩𝑝).

This indicates the general observation, that for 𝒩 → ∞ a final, unremovable error L * > 0 is left.

In the following we discuss the source of this final error. One source is the general fact, that the

integrable approximation of a non-integrable regular target region can, of course, never be exact. The

reason for this are the nonlinear resonance chains, which are densely distributed in the target region.

Although these resonances are not included in the sample points for the cost function, their signature

is still present, as they deform all tori of the system.

Apart from this principal error, which cannot be overcome, the final error L * might also include

a specific error caused by insufficiencies of the iterative improvement algorithm. To investigate the

existence of that specific error, we switch off the principal error by considering an integrable target

system𝐻bench(𝑞, 𝑝). According to Sec. 2.2, this system is defined by a frequency function 𝜔bench(𝐽) and

a canonical transformation 𝑇bench. As our focus is on the shape approximation, we set 𝜔bench(𝐽) = 1.

For 𝑇bench we use the combination

𝑇bench = 𝑇 ∘ 𝑇0, (4.45)

where 𝑇0 is given by Eqs. (4.7) and (4.8) with (𝑞*, 𝑝*) = (0, 0), 𝜎 = 1, and 𝛽 = 0. The second
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contribution 𝑇 is given by

𝑇 :

(︃
𝑞

𝑝

)︃
↦→
(︃
𝑞 + 𝑔(𝑝)

𝑝

)︃
, (4.46)

with

𝑔(𝑝) =
(︀
𝑏1𝑝+ 𝑏3𝑝

3 + 𝑏5𝑝
5
)︀
𝑒−𝑏𝑝2 . (4.47)

Note that 𝑔(−𝑝) = −𝑔(𝑝) such that 𝐻bench(𝑞, 𝑝) has the same symmetry (4.13) as the standard map.

In the following we consider this benchmark system 𝐻bench for 𝑏1 = 0.5, 𝑏3 = −𝑏5 = 0.087, and

𝑏 = 0.23, see the gray lines in Fig. 4.8(a). For different values of (𝒩𝑞,𝒩𝑝) we run the iterative

canonical transformation method using the parameters (Δ𝑞,ℒ𝑞,ℒ𝑝) = (3.2, 10, 10) and a damping

𝜂 = 1/5. The saturated values of the cost function L𝑁 are shown in Fig. 4.8(b). As L𝑁 is nearly

independent of 𝒩𝑞, very low orders 𝒩𝑞 are sufficient for this example system. Moreover, by increasing

𝒩𝑝, the quality L𝑁 of the integrable approximation can be brought to the order 10−16 of machine

precision. As no relevant specific error can be observed, numerical or conceptual insufficiencies of

the iterative canonical transformation method can be excluded. Thus, the finite, asymptotic error

L * > 0 which is found for non-integrable target systems, originates from non-integrable phase-space

structures only.
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Figure 4.8.: (a) Phase space of the integrable target system 𝐻bench (gray) and its integrable
approximation 𝐻𝑁

reg for (𝒩𝑞,𝒩𝑝) = (2, 11) (red). (b) Saturated value of the cost function L𝑁 after
a sufficiently long iteration time 𝑁 for different orders (𝒩𝑞,𝒩𝑝) in Eq. (4.15).
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4.5. Comparison to other methods

In the literature, there exist a couple of methods for the construction of integrable approximations.

In this section, we present two prominent methods and compare them to the iterative canonical

transformation method. Namely, we consider the method of normal forms [18, 19] and the method of

Lie transforms [8, 20–22]. A third method based on a Baker–Campbell–Hausdorff expansion is known

[46, 47]. However, for the standard map (4.4) it produces the same results as the Lie method, and is

thus not treated in the following.

4.5.1. Method of normal forms

The first considered method is the method of normal forms, which we review here following Refs. [18,

19]. Although this method is also valid for time-continuous Hamiltonian systems, we present it directly

for the modeling of symplectic maps. Thus our starting point is a symplectic 2D map 𝒰1 with a mixed

phase space. For convenience, we consider its simplified representation ℱ = 𝐶−1 ∘ 𝒰1 ∘ 𝐶, using the

Courant–Snyder transformation

𝐶 : x ↦→x* +ℛx. (4.48)

Here ℛ is given by Eq. (4.8) and x* = (𝑞*, 𝑝*) is the central fixed point of the map 𝒰1. Moreover, we

introduce the complex phase-space coordinates

𝑧 = 𝑞 − 𝑖𝑝, (4.49a)

𝑧* = 𝑞 + 𝑖𝑝, (4.49b)

and rewrite the time evolution as

𝑧′ = ℱ(𝑧, 𝑧*), (4.50a)

(𝑧*)′ = ℱ(𝑧, 𝑧*)*. (4.50b)

Now we consider another canonical transformation 𝑇 : 𝜉 ↦→ 𝑧 which leads to the following diagram:

𝑧
ℱ−−−−→ 𝑧′

𝑇
⌃⎮⎮

⌃⎮⎮𝑇

𝜉
𝑈−−−−→ 𝜉′

(4.51)

The goal is to construct the objects 𝑇 and 𝑈 of this diagram, such that 𝑈 is integrable. As ℱ is

not integrable, this cannot be fulfilled exactly, but rather approximately. Therefore, 𝑇 and 𝑈 are

constructed, to nearly obey the diagram (4.51) while keeping 𝑈 integrable. The conditions for this
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are

ℱ ∘ 𝑇 = 𝑇 ∘ 𝑈, (4.52a)

𝜕𝑇

𝜕𝜉

𝜕𝑇 *

𝜕𝜉*
− 𝜕𝑇

𝜕𝜉*
𝜕𝑇 *

𝜕𝜉
= 1. (4.52b)

Here Eq. (4.52a) just expresses the diagram (4.51) while Eq. (4.52b) ensures the transformation 𝑇 to

be canonical. Now the functions ℱ , 𝑇 , and 𝑈 are expanded in orders of 𝑧 and 𝜉, i. e.,

𝑧′ = ℱ(𝑧, 𝑧*) =
∞∑︁

𝑛=1

𝑛∑︁

𝑘=0

ℱ𝑘,𝑛−𝑘 𝑧
𝑘(𝑧*)𝑛−𝑘, (4.53a)

𝑧 = 𝑇 (𝜉, 𝜉*) =
∞∑︁

𝑛=1

𝑛∑︁

𝑘=0

𝑇𝑘,𝑛−𝑘 𝜉
𝑘(𝜉*)𝑛−𝑘, (4.53b)

𝜉′ = 𝑈(𝜉, 𝜉*) =
∞∑︁

𝑛=1

𝑛∑︁

𝑘=0

𝑈𝑘,𝑛−𝑘 𝜉
𝑘(𝜉*)𝑛−𝑘. (4.53c)

If ℱ is symplectic, 𝑈 obtains the simpler form

𝑈(𝜉, 𝜉*) = 𝑒𝑖Ω(|𝜉|2)𝜉, (4.54)

with one real-valued function Ω(·). Thus 𝑈 performs a circular rotation of 𝜉 with a frequency depend-

ing on the radius |𝜉|. As, due to the Courant–Snyder transformation (4.48), the local dynamics of ℱ
around |𝑧| = 0 is also circular, the lowest order of 𝑇 is the identity transformation. This leads to

ℱ1,0 = 𝑒𝑖𝜔, ℱ0,1 = 0, (4.55a)

𝑈1,0 = 𝑒𝑖𝜔, 𝑈0,1 = 0, (4.55b)

𝑇1,0 = 1, 𝑇0,1 = 0, (4.55c)

where 𝜔 is the local frequency of ℱ around 𝑧 = 0.

Given these initial values and ℱ , one systematically constructs the higher orders of 𝑇 and 𝑈 . More

precisely, for 𝑛 = 2, 3, ... one determines 𝑈𝑘,𝑛−𝑘 and 𝑇𝑘,𝑛−𝑘 by solving the projections of Eqs. (4.52a)

and (4.52b) to order |𝜉|𝑛 and |𝜉|𝑛−1, respectively. After step 𝑛 this allows to compute the 𝑛-th

integrable approximation

ℱ𝑛
reg =

⌊︀
𝑇 ∘ 𝑈 ∘ 𝑇−1

⌋︀
𝑛
, (4.56)

where ⌊·⌋𝑛 denotes the truncated expansion up to order 𝑛. As the frequency function is given by

𝜔(𝐽) = Ω(2𝐽) with Ω from Eq. (4.54), the corresponding Hamiltonian reads

ℋ𝑛
nf(𝜉, 𝜉

*) =

⌊︃∫︁ |𝜉|2/2

0
d𝐽Ω(2𝐽)

⌋︃

𝑛

, (4.57)
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as follows from Eq. (2.14) and 𝐽 = |𝜉|2/2. As mentioned, the underlying approach (4.51) is intrinsically

paradox, as the non-integrable system ℱ cannot be canonically connected to an integrable system 𝑈 .

Typically, this leads to the divergence of the series (4.53b) and (4.53c).

4.5.2. Comparison to the method of normal forms

We now apply the method of normal forms to the standard map. Following the presented algorithm,

we construct the integrable approximations ℱ𝑛
reg, Eq. (4.56), up to order 𝑛 = 8. We evaluate these

integrable approximations for the map parameters 𝜅 = 0.5, 1.25, and 2.9. For comparison we use the

integrable approximations 𝐻𝑛
reg from the iterative canonical transformation method with the following

settings

𝜅 = 0.5 : (Δ𝑝,𝒦,ℒ𝑞,ℒ𝑝,𝒩𝑞,𝒩𝑝, 𝜂) = (0.5, 5, 1, 3, 7, 7, 1/3) (Sec. 4.6), (4.58a)

𝜅 = 1.25 : (Δ𝑞,𝒦,ℒ𝑞,ℒ𝑝,𝒩𝑞,𝒩𝑝, 𝜂) = (0.293, 6, 1.33, 1.33, 2, 2, 1/20) (Sec. 4.2), (4.58b)

𝜅 = 2.9 : (Δ𝑞,𝒦,ℒ𝑞,ℒ𝑝,𝒩𝑞,𝒩𝑝, 𝜂) = (0.1012, 5, 2.8, 1.3, 1, 2, 1/10) (Sec. 4.4). (4.58c)

Note that the implementation for 𝜅 = 0.5 uses an enhanced ansatz for 𝐻0
reg including a separatrix,

which will be explained in Sec. 4.6, while the results for 𝜅 = 1.25 and 𝜅 = 2.9 have been determined

previously.

To estimate the quality of the normal-form approximations ℱ𝑛
reg, we compute their frequency

function and their cost function. The frequency function of ℱ𝑛
reg is evaluated straightforwardly as

𝜔𝑛(𝐽) = ⌊Ω(2𝐽)⌋𝑛 with Ω from Eq. (4.54). Note that, in contrast to the iterative canonical trans-

formation method, this frequency function 𝜔𝑛(𝐽) changes during the iteration. The cost function of

ℱ𝑛
reg is evaluated as

L =
1

𝑁p

∑︁

𝜏

∑︁

ℓ

⃒⃒
x𝜏
ℓ − x𝜏,𝑛

ℓ

⃒⃒2
. (4.59)

Here the normalization 𝑁p and the sample points x𝜏
ℓ of the standard map are chosen as in Eq. (3.19).

Moreover, the sample points x𝜏,𝑛
ℓ of the map 𝐶 ∘ℱ𝑛

reg ∘𝐶−1 are chosen as follows. Based on the action

computation of Sec. 4.2.1, we perform a bisection search on a line of initial conditions for a point with

action 𝐽 = 𝐽𝜏 . Using this point x𝜏,𝑛
0 and the corresponding frequency 𝜔𝜏 of the standard map, we

compute

x𝜏,𝑛
ℓ = (𝐶 ∘ 𝑇 )

(︁
𝑒𝑖𝜔

𝜏 ℓ · (𝐶 ∘ 𝑇 )−1(x𝜏,𝑛
0 )
)︁
. (4.60)

We first discuss the near-integrable case 𝜅 = 0.5. Here, the integrable approximations ℱ𝑛
reg converge,

showing no significant improvement after step 𝑛 = 8. In Fig. 4.9(a) we show the numerically deter-

mined frequency function 𝜔8(𝐽) of the normal-form approximation ℱ8
reg (violet line). For comparison,

we also show the frequency data of the target system (dots) and the frequency function 𝜔(𝐽) of 𝐻𝑛
reg

(red line). In Fig. 4.9(b) we show the cost function L for ℱ𝑛
reg (violet) and 𝐻

𝑛
reg (red). Moreover, we
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only find local invertibility for the truncated transformation ⌊𝑇 ⌋𝑛, thus the normal-form approxima-

tions ℱ𝑛
reg have a restricted domain, see the white region in Fig. 4.9(c) for 𝑛 = 8. This domain becomes

smaller when the order 𝑛 is increased. The restriction of the domain of ℱ𝑛
reg is a manifestation of

the invertibility problem, as discussed in Sec. 4.3.1 for the iterative canonical transformation method

without damping. Note that, due to this restriction, only sample points from the elliptic phase-space

region have been included in the cost functions in Fig. 4.9(b).

We now consider the case 𝜅 = 1.25. Here, the best normal-form approximation is obtained at

step 𝑛 = 5, see Fig. 4.10. For higher orders 𝑛 > 5, the domain of ℱ𝑛
reg becomes smaller than the

target region, as shown in Fig. 4.10(d) for ℱ8
reg. In the strongly non-integrable case 𝜅 = 2.9, the same

phenomenon occurs, see Fig. 4.11. Generally, for higher perturbations 𝜅, the domain of ℱ𝑛
reg collapses

faster with 𝑛.
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Figure 4.9.: Comparison of integrable approximations ℱ𝑛
reg and 𝐻

𝑛
reg of the standard map (4.4), for

𝜅 = 0.5. (a) Actions and frequencies (𝐽𝜏 , 𝜔𝜏 ) of the standard map (black dots) with the frequency
functions 𝜔8(𝐽) of ℱ8

reg (violet) and 𝜔(𝐽) of 𝐻𝑛
reg (red). (b) Cost function L vs. iteration step 𝑛

for ℱ𝑛
reg (violet), Eq. (4.59), and for 𝐻𝑛

reg (red), Eq. (3.19). (c–d) Phase space of the standard map
(gray) and the integrable approximations 𝐶 ∘ ℱ8

reg ∘ 𝐶−1 (violet) (c), and 𝐻11
reg (red) (d). In (c) the

domain of ℱ8
reg is restricted to the white region inside the dashed torus.
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Figure 4.10.: Same as Fig. 4.9, but for 𝜅 = 1.25, ℱ5
reg, ℱ8

reg, and 𝐻
18
reg.
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Figure 4.11.: Same as Fig. 4.9, but for 𝜅 = 2.9, ℱ5
reg, ℱ8

reg, and 𝐻
9
reg.
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4.5.3. Method of Lie transforms

The next considered method is the method of Lie transforms [8, 20–22], which we review in the

following. Here, the starting point is a given Hamiltonian system 𝐻(q,p). The application of a

certain canonical transformation 𝑇 : (q,p) ↦→ (q′,p′) would imply a new Hamiltonian, given by

𝐾(q′,p′) = 𝐻
[︀
𝑇−1(q′,p′)

]︀
. (4.61)

This idea is equivalent to the normal-form diagram (4.51) where the Hamiltonians𝐻 and𝐾 correspond

to the maps ℱ and 𝑈 , respectively. Generally, Lie transforms provide a systematic technique to

construct the canonical transformation 𝑇 when 𝐾 is given. For this, 𝑇 is represented by a Lie

generating function 𝑤(q,p). Now, we assume the objects𝐻, 𝐾, and 𝑤 to depend on a small parameter

𝜖 and consider their expansions in 𝜖, i. e.,

𝐻 = 𝐻0 + 𝜖𝐻1 + 𝜖2𝐻2 + ..., (4.62a)

𝐾 = 𝐾0 + 𝜖𝐾1 + 𝜖2𝐾2 + ..., (4.62b)

𝑤 = 𝑤0 + 𝜖𝑤1 + 𝜖2𝑤2 + .... (4.62c)

From Eq. (4.61) one can derive a connection between 𝐾 and 𝑤 which is the Lie equation

𝒟0𝑤𝑛 = 𝑛(𝐾𝑛 −𝐻𝑛)−
𝑛−1∑︁

𝑚=1

(𝐿𝑛−𝑚𝐾𝑚 −𝑚𝒯 −
𝑛−𝑚𝐻𝑚), (𝑛 = 0, 1, 2, ...). (4.63)

Here, the differential operators 𝒟0, 𝐿𝑛, and 𝒯 −
𝑛 are given by

𝒟0 =
𝜕

𝜕𝑡
− {𝐻0, ·}, (4.64a)

𝐿𝑛 = {𝑤𝑛, ·}, (4.64b)

𝒯 −
0 = 1, (4.64c)

𝒯 −
𝑛 =

1

𝑛

𝑛−1∑︁

𝑚=0

𝐿𝑛−𝑚𝒯 −
𝑚 , (𝑛 = 1, 2, ...). (4.64d)

Now, given 𝐾, the Lie equation (4.63) allows to systematically construct the Lie generating function

𝑤 in ascending orders of 𝜖.

If we consider 𝐻 as the target system with a mixed phase space, this scheme allows to construct

integrable approximations as follows. First, we choose the decomposition (4.62a) such that 𝐻0 is

integrable and set 𝑤0 = 0, which implies 𝐾0 = 𝐻0. Then, we iteratively choose 𝐾𝑛 to be integrable

and integrate Eq. (4.63) for 𝑤𝑛. After step 𝑛, we obtain a truncated integrable approximation

𝐾𝑛
reg =

𝑛∑︁

𝑚=0

𝜖𝑚𝐾𝑚. (4.65)
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This strategy is commonly denoted as themethod of Lie transforms (for constructing integrable approx-

imations), or sometimes also as Deprit’s method. Also superconvergent versions of this method have

been developed [48]. Although the Lie ansatz (4.61) is equivalent to the normal-form ansatz (4.52a),

the two methods use principally different expansions. While the Lie expansion (4.62) is based on an

arbitrary system parameter 𝜖, the normal-form expansion (4.53) is done locally around the central

fixed point in phase space.

4.5.4. Comparison to the method of Lie transforms

We now return to the special case of the standard map (4.4), which is the unit flow of a time-periodic

Hamiltonian. For this class of systems, an implementation of the method of Lie transforms is given

in Ref. [8]. Following this reference, we iteratively construct the integrable approximations 𝐾𝑛
reg up

to order 𝑛 = 9. Again, we consider the map parameters 𝜅 = 0.5, 1.25, and 2.9.

Proceeding analogously to Sec. 4.5.2, we compute the frequency function and the cost function of the

Lie approximations 𝐾𝑛
reg. Here some additional technical effort is necessary. As the frequency function

𝜔𝑛(𝐽) is not given explicitly, we compute a discrete sample by applying the numerical procedure of

Sec. 4.2.1 to 𝐾𝑛
reg. Second, for the cost function (4.59), also the sample points x𝜏,𝑛

ℓ are computed

numerically from x𝜏,𝑛
0 . This is realized by the time evolution of 𝐾𝑛

reg over the timespan Δ𝑡 = ℓ𝜔𝜏/𝜔𝜏
lie.

Here 𝜔𝜏 and 𝜔𝜏
lie are the frequencies of the standard map 𝒰1 and of 𝐾𝑛

reg, respectively.

We begin with the near-integrable case 𝜅 = 0.5. Here the integrable approximation 𝐾𝑛
reg rapidly

converges, such that no significant change is visible after 𝑛 = 6 iteration steps. In Fig. 4.12(a) we

show the numerically determined frequency function 𝜔6(𝐽) (green line), which closely approximates

the frequencies of the standard map (dots). For comparison, Fig. 4.12 also includes the corresponding

information for the integrable approximations 𝐻𝑛
reg (red). We also show the cost function L of 𝐻𝑛

reg

and the phase space of 𝐻11
reg for comparison (red). Regarding the frequency function, as well as the

cost function, the results 𝐾6
reg and 𝐻

11
reg are of a comparable quality.

We now consider the case 𝜅 = 1.25. Here we also observe convergence of 𝐾𝑛
reg and stop the iteration

at step 𝑛 = 9, where no further improvement is achieved. In Fig. 4.13 we show the frequency function

𝜔9(𝐽) and the cost function L for 𝐾𝑛
reg (green) compared to the integrable approximation 𝐻18

reg (red)

obtained from the iterative canonical transformation method. Again the results 𝐾9
reg and 𝐻

18
reg are of

a comparable quality, but less accurate compared to the near-integrable case 𝜅 = 0.9.

Finally, we look at the strongly non-integrable case 𝜅 = 2.9. Here, no convergence is observed,

see Fig. 4.14, and 𝐾𝑛
reg does not reach a precision comparable to 𝐻9

reg. We again show the frequency

function 𝜔5(𝐽), the cost function L , and the phase space of 𝐾5
reg (green) compared to the integrable

approximation 𝐻9
reg (red) obtained from the iterative canonical transformation method. Here, 𝐾𝑛

reg

does not reach a precision comparable to 𝐻9
reg.
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Figure 4.12.: Comparison of integrable approximations 𝐾𝑛
reg and 𝐻

𝑛
reg of the standard map (4.4) for

𝜅 = 0.5. (a) Actions and frequencies (𝐽𝜏 , 𝜔𝜏 ) of the standard map (black dots) with the frequency
functions 𝜔6(𝐽) of 𝐾

6
reg (green) and 𝜔(𝐽) of 𝐻𝑛

reg (red). (b) Cost function L vs. iteration step 𝑛
for 𝐾𝑛

reg (green), Eq. (4.59), and for 𝐻𝑛
reg (red), Eq. (3.19). (c–d) Phase space of the standard map

(gray) and the integrable approximations 𝐾6
reg (green) (c), and 𝐻

11
reg (red) (d).
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Figure 4.13.: Same as Fig. 4.12, but for 𝜅 = 1.25, 𝐾9
reg, and 𝐻

18
reg.
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Figure 4.14.: Same as Fig. 4.12, but for 𝜅 = 2.9, 𝐾5
reg, and 𝐻

9
reg.

4.5.5. Conclusion

We now summarize the results from Secs. 4.5.2 and 4.5.4. First, we discuss the complexity of the

considered methods. Figure 4.15 shows the total computation time 𝑡𝑛 (in seconds) after each iteration

step 𝑛 for the application to the standard map at 𝜅 = 0.5. Here our focus is not on the absolute time

– which strongly depends on the architecture and programming language – but on the asymptotics.

For the iterative canonical transformation method, we find a linear behavior 𝑡𝑛 ∝ 𝑛 (red line). This

is expected, as each iteration step consists of the same number of operations. In contrast, both, the

normal-form method (violet line) and the Lie method (green line) show an asymptotic behavior of at

least 𝑡𝑛 ∝ 𝑛3. This is characteristic for analytical methods, as the growing number of coefficients also

requires more algebraic operations in each step.

Considering the quality of the presented results, we find that the iterative canonical transformation

method provides integrable approximations which are comparable to, or even better than the Lie and

normal-form approximations. This is verified when comparing the frequency functions as well as the

cost functions.

For the near integrable case 𝜅 = 0.5, the results from the iterative canonical transformation method

and the method of Lie transforms are comparable, while the method of normal forms fails to give a

satisfactory approximation. This is due to the contraction of the domain of definition, which is faster

than the convergence of the frequency function 𝜔𝑛.

For 𝜅 = 1.25 the normal-form method becomes unstable, while the Lie approximation stays com-
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parable to the approximation from the iterative canonical transformation method.

In the generic case 𝜅 = 2.9, both the Lie method and the method of normal forms fail to give a

close approximation of the standard map, while the iterative canonical transformation method remains

applicable. This is possible due to the damping mechanism, which stabilizes the iterative canonical

transformation method.

These examples illustrate the inapplicability of traditional methods for strongly perturbed systems.

Typically, this inapplicability manifests in integrable approximations, which either (i) give an inac-

curate agreement to 𝐻 (see Fig. 4.14(c)), (ii) diverge in the limit of high orders 𝒩 (see Fig. 4.11(c)),

or (iii) converge only locally (see the inset at (𝒩𝑞,𝒩𝑝) = (4, 4) in Fig. 4.7(a)). As expected, the

damping mechanism solves these problems by (i–ii) allowing arbitrarily large truncation orders 𝒩 of

the family of canonical transformations (Sec. 4.4) and by (iii) extending the region of convergence of

𝐻reg (Sec. 4.3.3). With the invertibility problem of the generating function, we provided a perspective,

where the connection between these three problems becomes obvious (Sec. 4.3.1).

The confirmed applicability of the iterative canonical transformation method to strongly non-

integrable systems is the main achievement of this method. It is expected to be true also in higher

dimensions, as is the theoretical foundation of the damping mechanism given in Sec. 4.3.
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104

100 101n

tn

Figure 4.15.: Computation time 𝑡𝑛 (in seconds) vs. iteration step 𝑛 for the normal-form method
(violet), the method of Lie transforms (green), and the iterative canonical transformation method
(red).
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4.6. Integrable approximations including a separatrix

In general, integrable systems can have phase-space structures of various topologies. In the iterative

canonical transformation method, the topology is generated by the initial canonical transformation

𝑇0, Eq. (3.8). Up to now, 𝑇0 was chosen from Eq. (4.7), which produces a phase space filled with

elliptic tori, see Fig. 4.2(a). In many situations, this choice for 𝑇0 is not suitable, as e. g., for the

standard map with 𝜅 = 0.5. Here, the phase space consists of regions with topologically different

dynamics, which are separated by a thin chaotic layer, see Fig. 4.16(a). In such a situation, integrable

approximations with a purely elliptic structure are inconvenient. Even approximating only the yellow

region in Fig. 4.16(a) is hard, as its outer tori tend to an edgy shape that is not well obtained from

a smooth deformation of ellipses. The considered phase space is similar to that of a pendulum,

see Fig. 4.16(b). In the following, we adapt the iterative canonical transformation method to this

situation by choosing the transformation 𝑇0 from the pendulum. As our focus is on the topological

features, we only discuss the shape approximation. For the special features of the frequency function

in pendulum-like systems, see, e. g., Ref. [22] or Sec. 4.7 for a more general case.

We consider the integrable pendulum Hamiltonian, given by

𝐻pend(𝑞, 𝑝) =
𝐺

2
𝑝2 − cos 𝑞, (4.66)

where 𝐺 > 0 and (𝑞, 𝑝) ∈ [−𝜋, 𝜋) × R with periodic boundary conditions in 𝑞-direction. As shown

in Fig. 4.16(b), the phase space of this system is decomposed into three disjoint regions, which are

separated by a one-dimensional, so-called separatrix (dashed red line). One finds a central region

of libration (yellow) and two regions of rotation (green and white). As the two latter regions are

connected by symmetry, we only discuss the green region where 𝑝 > 0.
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Figure 4.16.: (a) Phase space of the standard map (4.4), for 𝜅 = 0.5. (b–c) Phase space of the
pendulum Hamiltonian (4.66), in its original coordinates (𝑞, 𝑝) (b) and in action–angle coordinates
(𝜗, 𝐽) (c). In all figures, the colors indicate different types of regular dynamics, i. e., libration (yellow)
and rotation (green, white).
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The motion of this system is mapped to action–angle coordinates using the transformation

𝑇pend :

(︃
𝑞

𝑝

)︃
↦→
(︃
𝜗(𝑞, 𝑝)

𝐽(𝑞, 𝑝)

)︃
, (4.67a)

given by [22],

𝜗(𝑞, 𝑝) = 𝜋 ·
{︃

1
2𝒦 [𝑘(𝑞, 𝑝)]−1ℱ [𝜂(𝑞, 𝑝), 𝑘(𝑞, 𝑝)]

𝒦
[︀
𝑘(𝑞, 𝑝)−1

]︀−1ℱ
[︀
1
2𝑞, 𝑘(𝑞, 𝑝)

−1
]︀ 𝑘(𝑞, 𝑝) < 1,

𝑘(𝑞, 𝑝) > 1,
(4.67b)

𝐽(𝑞, 𝑝) = 𝐽sep ·
{︃

ℰ [𝑘(𝑞, 𝑝)]−
[︀
1− 𝑘(𝑞, 𝑝)2

]︀
𝒦 [𝑘(𝑞, 𝑝)]

1
2𝑘(𝑞, 𝑝)ℰ

[︀
𝑘(𝑞, 𝑝)−1

]︀ 𝑘(𝑞, 𝑝) < 1,

𝑘(𝑞, 𝑝) > 1.
(4.67c)

Here, 𝒦(𝑘) and ℰ(𝑘) are the complete elliptic integrals of the first and second kind, respectively,

and ℱ(𝜂, 𝑘) is the incomplete integral of the first kind [49]. Moreover we used

𝜂(𝑞, 𝑝) = arcsin

[︃
sin(12𝑞)

𝑘(𝑞, 𝑝)

]︃
, (4.68)

𝑘(𝑞, 𝑝) =

√︂
1 +𝐻pend(𝑞, 𝑝)/𝐺

2
, (4.69)

and the action of the separatrix,

𝐽sep =
8

𝜋
√
𝐺
. (4.70)

As follows from Eqs. (4.67), the transformation 𝑇pend is discontinuous at the separatrix where 𝑘(𝑞, 𝑝) =

1. In action–angle coordinates, this corresponds to the action 𝐽 = 𝐽sep, see Fig. 4.16(c). For the

iterative canonical transformation method, the inverse transformation 𝑇−1
pend would serve as a suitable

choice for 𝑇0. To apply 𝑇
−1
pend, Eqs. (4.67) need to be inverted for (𝑞, 𝑝), which requires some technical

effort, as discussed in App. D.

We now apply the iterative canonical transformation method using this transformation in order to

produce an integrable approximation with a separatrix. More general, we choose the initial canonical

transformation to be

𝑇0 = 𝑇scale ∘ 𝑇−1
pend, (4.71)

where 𝑇scale shifts the stable fixed point to (𝑞*, 𝑝*) and rescales the periodic 𝑞-domain to width 𝛿, i. e.,

𝑇scale :

(︃
𝑞

𝑝

)︃
↦→
(︃
𝑞* + 𝛿

𝜋 𝑞

𝑝* + 𝜋
𝛿 𝑝

)︃
. (4.72)

The transformation 𝑇0 thus depends on the parameters (𝑞*, 𝑝*), 𝛿, and 𝐽sep. For the standard map

we set (𝑞*, 𝑝*) = (0.5, 0) and 𝛿 = 1. To match the yellow areas of the librational phase-space
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Figure 4.17.: (a–c) Phase space of the standard map (4.4), at 𝜅 = 0.5 (gray) compared to the tori
(thin red lines) of (a) the initial integrable approximation 𝐻0

reg, (b) its transformation after the first
iteration step 𝑇1, and (c) after the final iteration step 𝑇𝑁 , 𝑁 = 15. (d) Cost function L , Eq. (3.19),
vs. iteration step 𝑛.

regions in Figs. 4.16(a) and (b), we numerically determine this area 𝐴 for the standard map and

choose 𝐽sep = 𝐴/(2𝜋), which for 𝜅 = 0.5 yields 𝐽sep = 0.048. This leads to the initial integrable

approximation 𝐻0
reg shown in Fig. 4.17(a) (red lines).

For the iterative improvement, we choose a set of initial conditions on a line going through both

phase-space regions. Specifically, we use the points (𝑞𝜏0 , 𝑝
𝜏
0) = (𝑞*, 𝑝* + 𝜏

100Δ𝑝) with 𝜏 = 1, 2, ..., 100

and Δ𝑝 = 0.5. Using these initial conditions, we perform the iterative improvement according to

Sec. 4.2.2 with the parameters (ℒ𝑞,ℒ𝑝) = (1, 3), (𝒩𝑞,𝒩𝑝) = (7, 7), and a damping factor 𝜂 = 1/3.

Here, the choice ℒ𝑞 = 1 is essential to preserve the phase-space periodicity in 𝑞-direction during each

transformation. After 𝑁 = 15 iteration steps, we obtain an integrable approximation 𝐻𝑁
reg which

accurately resembles the shape of the target tori, see Fig. 4.17(c). We observe an improvement of the

cost function over two orders of magnitude, see Fig. 4.17(d).

4.7. Integrable approximations including a nonlinear resonance chain

In this section, we present a further generalization of the iterative canonical transformation method,

which generates integrable approximations including a nonlinear resonance chain. Note that this work

was done in cooperation with my co-workers Julius Kullig and Normann Mertig and its results are

reported in Refs. [50, 51].

4.7.1. Basic idea

As discussed in Sec. 2.3, the phase space of mixed systems is densely filled with nonlinear resonances.

Up to now, integrable approximations have been constructed to interpolate through these resonances.

In the following, we construct an integrable approximation to a regular phase-space region and one

nonlinear resonance chain. This is preferable for certain applications, especially when one resonance

is large and thus important for the physics of the target system.

Such a situation is shown in Fig. 4.18(a) for the standard map at 𝜅 = 3.4. This system has a

dominant 𝑟:𝑠 = 6:2 resonance consisting of 𝑟 = 6 resonance regions (green). Here 𝑠 denotes the number
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of resonance regions that are surpassed in one iteration step of 𝒰1. Consequently, the 𝑟 resonance

regions are connected by the dynamics of 𝒰1, see Fig. 4.18(a), a property which cannot be modeled by

a time-independent integrable approximation. However, applying the 𝑟-fold map 𝒰𝑟 gives the same

phase-space structure as 𝒰1, while each resonance region is mapped onto itself. Therefore, we consider

𝒰𝑟 for constructing the integrable approximation. More specifically, the integrable approximation

𝐻reg(𝑞, 𝑝) is constructed such that the final point of a time evolution over the timespan Δ𝑡 = 𝑟 is

close to 𝒰𝑟(𝑞, 𝑝), if the initial point (𝑞, 𝑝) is chosen from the target region.

Having said that, we now discuss how to choose the initial integrable approximation 𝐻0
reg(𝑞, 𝑝),

Eq. (3.9), with the appropriate phase-space topology to model the target region of 𝒰𝑟 including the

resonance. As shown in Fig. 4.18(a), the resonance divides the phase space into 𝑟 resonance regions

of size 𝐴𝑟:𝑠 (green), an inner region of size 𝐴1 (yellow), and an outer region (white). A similar

phase-space structure is described by the normal-form Hamiltonian [7, 8, 14, 52–55]

ℋ𝑟:𝑠(𝜃, 𝐼) = ℋ0(𝐼) + 𝒱(𝐼) cos(𝑟𝜃), (4.73)

where 𝑟 is the order of the resonance. The phase space of this Hamiltonian consists of three integrable

parts, see Fig. 4.18(c), which correspond to the different regions of 𝒰𝑟 from Fig. 4.18(a). This ansatz

for ℋ𝑟:𝑠(𝜃, 𝐼) contains two arbitrary functions ℋ0(𝐼) and 𝒱(𝐼) which will be determined in Sec. 4.7.2.

Finally, the initial integrable approximation 𝐻0
reg(𝑞, 𝑝) follows from ℋ𝑟:𝑠(𝜃, 𝐼) by applying a simple

canonical transformation

𝑇0 : (𝜃, 𝐼) ↦→ (𝑞, 𝑝). (4.74)

This transformation should map the tori of ℋ𝑟:𝑠(𝜃, 𝐼) to the neighborhood of the corresponding tori

of 𝒰𝑟. In particular the torus with action 𝐽 = 0 should be mapped onto the fixed point (𝑞*, 𝑝*) of 𝒰𝑟,

see Fig. 4.18(b). An example is given in Sec. 4.7.3.

We mention, that the normal-form Hamiltonian ℋ𝑟:𝑠(𝜃, 𝐼), Eq. (4.73), is not in action–angle coor-
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Figure 4.18.: (a) Phase space of the standard map at 𝜅 = 3.4 (gray) including the dominant 6:2
resonance chain of size 𝐴𝑟:𝑠 (green) with a chaotic layer (inset), and the central region of size 𝐴1

(yellow). The arrows indicate one iteration step, when applying the maps 𝒰1 and 𝒰𝑟. (b) Phase
space of 𝐻0

reg(𝑞, 𝑝) (lines) with resonance regions of size 𝐴𝑟:𝑠 (green) and the central region of size
𝐴1 (yellow). (c) Phase space of ℋreg(𝜃, 𝐼) (lines) with the regions corresponding to (b).



4.7.2 Frequency approximation 57

dinates. However, integrability ensures a transformation to action–angle coordinates,

𝑇 * : (𝜗, 𝐽) ↦→ (𝜃, 𝐼), (4.75)

to exist for each integrable region in Fig. 4.18(c). Formally, the initial canonical transformation 𝑇0 of

the iterative canonical transformation method, Eq. (3.8), equals

𝑇0 = 𝑇0 ∘ 𝑇 *. (4.76)

However, apart from special cases like the pendulum Hamiltonian [22], the transformation 𝑇 * is not

known in a closed form. To use the normal-form ansatz (4.73), we thus start the construction in

the coordinates (𝜃, 𝐼), and, if necessary, use 𝑇 * numerically. The technical details of this numerical

implementation of 𝑇 * are discussed in App. E.

The lack of a closed form for 𝑇0 disables a direct access to the frequency function 𝜔(𝐽) and therefore a

direct fit ofℋ𝑟:𝑠(𝜃, 𝐼) via Eq. (3.5) is impossible. To apply the frequency approximation (Sec. 4.2.1), we

solve this issue in the next section. However, the shape approximation (Sec. 4.2.2) is straightforward.

4.7.2. Frequency approximation

For the frequency approximation (Sec. 4.2.1) we first compute the sample points x𝜏
ℓ𝑟 of 𝒰𝑟 given by

Eq. (3.1) with the sample times 𝑡ℓ = ℓ𝑟. Secondly, we compute the action 𝐽𝜏 and frequency 𝜔𝜏 of

each orbit from Eqs. (3.2) and (3.3), respectively. Note that, according to this definition we have

𝜔𝜏 ∈ [−𝜋
𝑟 ,

𝜋
𝑟 ) where 𝑟𝜔

𝜏 ∈ [−𝜋, 𝜋) is the frequency of the discrete sequence (x𝜏
0 ,x

𝜏
𝑟 ,x

𝜏
2𝑟, ...). Finally

this leads to the dataset of actions and frequencies (𝐽𝜏 , 𝜔𝜏 ).

The next step is to adjust the integrable approximation ℋ𝑟:𝑠(𝜃, 𝐼), Eq. (4.73), to this dataset

according to the following criterion: For every torus of the map 𝒰𝑟 with action 𝐽𝜏 and frequency 𝜔𝜏 ,

there should (i) exist a torus of ℋ𝑟:𝑠(𝜃, 𝐼) with the same action 𝐽 = 𝐽𝜏 having (ii) a similar frequency

𝜔(𝐽 = 𝐽𝜏 ) ≈ 𝜔𝜏 . Here 𝜔(𝐽) is the frequency function induced by the Hamiltonian ℋ𝑟:𝑠(𝜃, 𝐼) in the

corresponding parts of phase space. To achieve (i), ℋ𝑟:𝑠(𝜃, 𝐼) must be chosen such that the total area

𝐴𝑟:𝑠 of the resonance regions and the area 𝐴1 below the resonance region agree with the corresponding

areas of 𝒰𝑟, see Fig. 4.18,

𝐴𝑟:𝑠 ≈ 𝐴𝑟:𝑠, (4.77a)

𝐴1 ≈ 𝐴1. (4.77b)

To achieve (ii), ℋ𝑟:𝑠(𝜃, 𝐼) must be chosen with frequencies close to those of 𝒰𝑟 such that Eq. (3.5) is

minimized. Following Sec. 4.2.1, one would determine the integrable approximation from a direct fit of

𝜔(𝐽). However, as in the present situation the integrable approximation ℋ𝑟:𝑠(𝜃, 𝐼) is not constructed

in action–angle coordinates, a direct fit is impossible. Instead an enhanced strategy is needed, which

we develop in the following.
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We begin by choosing an expansion of the normal-form Hamiltonian ℋ𝑟:𝑠(𝜃, 𝐼), Eq. (4.73), as

ℋ0(𝐼) =
(𝐼 − 𝐼𝑟:𝑠)

2

2𝑀𝑟:𝑠
+

𝒦∑︁

𝑘=3

ℎ𝑘(𝐼 − 𝐼𝑟:𝑠)
𝑘, (4.78)

and the lowest order ansatz for a resonance chain encircling a fixed point [14, 54, 55],

𝒱(𝐼) = 2𝑉𝑟:𝑠

(︂
𝐼

𝐼𝑟:𝑠

)︂𝑟/2

. (4.79)

In the following, we determine the unknown parameters {𝐼𝑟:𝑠,𝑀𝑟:𝑠, 𝑉𝑟:𝑠, ℎ𝑘} from the conditions (4.77)

and (3.5) by analyzing ℋ𝑟:𝑠(𝜃, 𝐼) first close to the resonance and secondly far away from the resonance.

Close to the resonance, the leading order expansion of ℋ𝑟:𝑠(𝜃, 𝐼) around 𝐼𝑟:𝑠 is the pendulum

Hamiltonian [7, 8, 53]

ℋ𝑟:𝑠(𝜃, 𝐼) ≈
(𝐼 − 𝐼𝑟:𝑠)

2

2𝑀𝑟:𝑠
+ 2𝑉𝑟:𝑠 cos(𝑟𝜃). (4.80)

Here 𝐼𝑟:𝑠 gives the location of the resonance, while𝑀𝑟:𝑠 and 𝑉𝑟:𝑠 control the size 𝐴𝑟:𝑠 of the resonance

and the frequency at the center of the resonance region. We compute these parameters according to

[9]

𝐼𝑟:𝑠 =
1

2𝜋
(𝐴1 +

1
2𝐴𝑟:𝑠), (4.81a)

𝑀𝑟:𝑠 =
𝜇𝑟2

16
𝐴𝑟:𝑠 arccos

(︀
1
2Trℳ̄𝑟:𝑠

)︀−1
, (4.81b)

𝑉𝑟:𝑠 =
𝜇

32𝑟2
𝐴𝑟:𝑠 arccos

(︀
1
2Trℳ̄𝑟:𝑠

)︀
. (4.81c)

This accounts for conditions (4.77) by matching the areas 𝐴𝑟:𝑠 and 𝐴1 of 𝒰𝑟, see Fig. 4.18. Further-

more, the frequency at the center of the resonance region enters via the monodromy matrix ℳ̄𝑟:𝑠.

Note that these parameters contain the essential information on action and frequency within the

resonance regions. Finally, the sign 𝜇 can still be chosen.

We now determine the parameters {ℎ𝑘} which describe the frequency behavior far away from the

resonance regions. There the frequency function is approximately

𝜔(𝐽) ≈ ℋ′
0(𝐽) =

𝐽 − 𝐼𝑟:𝑠
𝑀𝑟:𝑠

+

𝒦∑︁

𝑘=3

𝑘ℎ𝑘(𝐽 − 𝐼𝑟:𝑠)
𝑘−1, (4.82)

which neglects the resonance as a perturbation. In this approximation, Eq. (3.5) becomes

∑︁

𝜏

⃒⃒
𝜔𝜏 −ℋ′

0(𝐽
𝜏 )
⃒⃒2
. (4.83)

As ℋ′
0 is linear in the coefficients {ℎ𝑘}, we determine them directly by minimizing Eq. (4.83).
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4.7.3. Application to the standard map

We now apply the iterative canonical transformation method with resonance to the standard map.

We first consider the parameter 𝜅 = 3.4 with a dominant 6:2 resonance, see Fig. 4.18(a).

Frequency approximation

We first compute the sample points x𝜏
ℓ𝑟 of 𝒰𝑟 using ℓmax = 104 iterates of 80 initial conditions on a

line (𝑞*+𝜆, 𝑝*) with 𝜆 ∈ (0,Δ𝑞] and Δ𝑞 = 0.0931. We compute the dataset of actions and frequencies

(𝐽𝜏 , 𝜔𝜏 ), which is depicted by the black dots in Fig. 4.19(a). Note that a similar procedure could be

applied to the tori inside the considered resonance chain. However, for convenience we do not use

those tori which will turn out to be sufficient.

By computing orbits close to the chaotic layer in Fig. 4.18(a), we approximate the areas 𝐴1 and 𝐴𝑟:𝑠

leading to the coefficients {𝐼𝑟:𝑠,𝑀𝑟:𝑠, 𝑉𝑟:𝑠} via Eqs. (4.81). For the involved sign we find 𝜇 = −1, as the

frequencies decrease with increasing action, see Fig. 4.19(a). Moreover, we determine the coefficients

{ℎ𝑘} by minimizing Eq. (4.83). For 𝒦 = 4 we find a satisfactory agreement between the dataset

(𝐽𝜏 , 𝜔𝜏 ) and ℋ′
0(𝐽), see the red line in Fig. 4.19(a). Note that this comparison is meaningful only far

from the resonance, where the approximation (4.82) is justified.

The resulting parameters determine the Hamiltonian ℋ𝑟:𝑠(𝜃, 𝐼), see Fig. 4.18(c). For a global

comparison, we perform a numerical evaluation of the exact frequency function 𝜔(𝐽) of ℋ𝑟:𝑠(𝜃, 𝐼).

We obtain a good agreement with a mean error of Δ𝜔 = 0.0002 for the dataset (𝐽𝜏 , 𝜔𝜏 ) and also

near the resonance (light blue dots in Fig. 4.19(b)) we have Δ𝜔 < 0.001. Moreover, even inside the

resonance regions where no data of tori has been used for the optimization, but only the parameters

of Eqs. (4.81), the frequency is well approximated, see Fig. 4.19(c).
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Figure 4.19.: (a) Numerically determined actions 𝐽𝜏 and frequencies 𝜔𝜏 (black dots) fitted by
ℋ′

0(𝐽), Eq. (4.82), with 𝒦 = 4 (red line). (b–c) Comparison of the frequency function 𝜔(𝐽) of
the determined integrable approximation ℋ𝑟:𝑠(𝜃, 𝐼) (red lines) to frequencies of 𝒰𝑟 (dots): (b) the
determined frequencies 𝜔𝜏 (black dots), frequencies close to the resonance region (light blue dots),
and (c) frequencies inside the resonance region (green dots).
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Shape approximation

We now perform the shape approximation according to Sec. 4.2.2. For the transformation 𝑇0,

Eq. (4.74), we choose

𝑇0 :

(︃
𝜃

𝐼

)︃
↦→
(︃
𝑞*

𝑝*

)︃
+ℛ

(︃ √
2𝐽 cos𝜗

−
√
2𝐽 sin𝜗

)︃
, (4.84)

with

ℛ =

(︃
1 1/2

0 1

)︃(︃
1/
√
𝜎 0

0
√
𝜎

)︃
. (4.85)

Here, 𝜎 = 3.96851 is chosen such that the hyperbolic periodic points of the nonlinear resonance chain

along the line 𝑝 = 0 agree both for the standard map 𝒰𝑟 and 𝐻0
reg(𝑞, 𝑝). The resulting initial integrable

approximation 𝐻0
reg(𝑞, 𝑝) is shown in Fig. 4.18(b).

The iterative improvement is performed according to Sec. 4.2.2 without any modifications. However,

note that due to Eq. (4.76), computing the sample points requires the numerical application of 𝑇 *.

Using the parameters ℒ𝑞 = ℒ𝑝 = 1.1, 𝒩𝑞 = 𝒩𝑝 = 3, 𝜂 = 1/4, and 𝑁 = 15 iteration steps, we obtain

a sequence of improved integrable approximations 𝐻𝑛
reg as shown in Fig. 4.20.

The final integrable approximation 𝐻𝑁
reg gives a very good description of the regular region and the

6:2 resonance regions. Even the tori inside the resonance regions which have not yet been included in

the cost function, are well approximated.
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Figure 4.20.: (a–c) Phase space of the standard map (4.4), at 𝜅 = 3.4 (gray) compared to the
tori (thin colored lines) of (a) the initial integrable approximation 𝐻0

reg, (b) its transformation after
the first iteration step 𝑇1, and (c) after the final iteration step 𝑇𝑁 , 𝑁 = 15. (d) Cost function L ,
Eq. (3.19), vs. iteration step 𝑛.



5. Integrable approximation of 2D billiards

In this chapter, we construct integrable approximations for 2D billiards. We first give an introduction

to these billiard systems (Sec. 5.1) and develop a geometrically convenient description (Sec. 5.2).

Then we explain their underlying scaling behavior (Sec. 5.3) and finally apply the iterative canonical

transformation method (Sec. 5.4). This work is covered in Ref. [41].

5.1. Billiards

One very important class of Hamiltonian model systems are so-called billiards. They are important

models to study questions of quantum chaos [56] and classical nonlinear dynamics [57]. This is

done both numerically and experimentally, where microwave billiards are used [56, 58]. Relevant

applications lie mainly in optics [59], especially in optical cavities and fibers.

Classically, a billiard describes a particle which is confined in a bounded domain Ω ⊂ R𝑓 . While

the particle moves freely inside Ω, it is elastically reflected on the boundary 𝜕Ω. Hence, the dynamics

is described by the Hamiltonian

𝐻(q,p) =

{︃
p2 q ∈ Ω

∞ q /∈ Ω
. (5.1)

Note that the particle’s mass was set to 2𝑚 = 1 for convenience. As 𝜕𝐻
𝜕q becomes infinite at the

boundary 𝜕Ω, the solutions of Hamilton’s equations (2.1) are only defined in an asymptotical sense.

More precisely, one considers a family of smooth Hamiltonians 𝐻𝑟 which approach 𝐻 as 𝑟 → ∞. By

definition, the solutions of 𝐻 are obtained from the solutions of 𝐻𝑟 in this “hard wall limit”. However,

the practical determination of the solutions is much simpler. Here, one successively computes the

intersections between straight rays of free motion and the boundary 𝜕Ω. At each intersection point

one reflects the momentum perpendicular to the boundary’s tangential manifold.

In the following, we restrict to 2D billiards with 𝑓 = 2 degrees of freedom, denoting the phase-space

coordinates by q = (𝑥, 𝑦) and p = (𝑝𝑥, 𝑝𝑦). Hence, 2D billiards have a 4D phase space. The example

system for this chapter will be the cosine billiard, which is a rectangle with q ∈ [−0.5, 0.5]×R+ whose

upper boundary is replaced by the curve

𝑟(𝑥) = ℎ+
𝑤

2
[1 + cos(2𝜋𝑥)]. (5.2)

For 𝑤 = 0, this system describes a rectangle billiard, which is integrable, see Fig. 5.1(a). Here, only

periodic and quasiperiodic trajectories exist. For 𝑤 > 0, the system becomes non-integrable. Figure

61
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5.1(b) shows a generic case, 𝑤 = 0.033, where one finds both regular (red, black) and chaotic solutions

(blue). For sufficiently large deformations the system becomes macroscopically chaotic, as shown in

Fig. 5.1(c) for 𝑤 = 0.22.

We now take a closer look at the generic example (ℎ,𝑤) = (0.2, 0.066) from Fig. 5.1(b). Here the

vertical periodic trajectory at 𝑥 = 0 (black line) is stable, see App. G. Therefore, it is surrounded by

(a) (b) (c)

Figure 5.1.: Dynamics in the 2D cosine billiard (5.2), with ℎ = 0.2. (a) Integrable case, 𝑤 = 0, (b)
generic case, 𝑤 = 0.033, and (c) macroscopically chaotic case, 𝑤 = 0.22. Shown are periodic (black),
quasiperiodic (red), and chaotic trajectories (blue).
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Figure 5.2.: (a) Cosine billiard (5.2), for (ℎ,𝑤) = (0.2, 0.066) with a regular trajectory (red), a
chaotic trajectory (blue), and the positions of the Poincaré sections Σ1 and Σ2 (green lines). (b)
Dynamics of the induced Poincaré map 𝒫1 in Σ1 with regular orbits (lines) and a chaotic orbit
(dots). The gray area defines the action 𝐽1 that is enclosed by the red orbit. (c) Same as (b), but
for 𝒫2, Σ2, and 𝐽2 with a magnification of the region to 𝑝𝑦 ∈ [0.5, 1].
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regular, quasiperiodic trajectories (red lines). According to Sec. 2, this quasiperiodic motion takes

place on 2-tori in 4D phase space. To visualize these KAM tori, we define two Poincaré sections Σ𝑖

given by Σ1 : (𝑦 = 0, 𝑝𝑦 > 0) and Σ2 : (𝑥 = 0, 𝑝𝑥 > 0), as indicated by the green lines in Fig. 5.2(a).

Figures 5.2(b) and (c) show the intersections of some trajectories with these Poincaré sections Σ1 and

Σ2, respectively. In each Poincaré section Σ𝑖 the quasiperiodic trajectory (red) induces a regular orbit

of the Poincaré map 𝒫𝑖, which densely fills a 1D curve, as expected from the dimensional analysis in

Sec. 2.2. In Σ1, Fig. 5.2(b), this 1D curve is an elliptic 1-torus, enwrapping the stable fixed point

(𝑥*, 𝑝*𝑥) = (0, 0) of the Poincaré map 𝒫1, leading to a situation as known from the standard map. In

Σ2, Fig. 5.2(c), this 1D curve has two disjoint segments with 𝑝𝑦 > 0 and 𝑝𝑦 < 0 (red lines). This is

caused by the reflections at 𝑦 = 0 and 𝑦 = ℎ+𝑤 = 0.266, which are visible in Σ2 only, as this section

lies perpendicular to the billiard boundary.

The two intersection curves of the torus with Σ1 and Σ2 are topologically independent, because they

cannot be smoothly deformed into each other without leaving the torus. Hence, these intersection

curves 𝒞𝑖 can be used as fundamental loops to define two actions 𝐽𝑖 of the torus according to Eq. (2.27),

see also Fig. 2.7. Then the 𝐽𝑖 represent the areas enclosed in these loops, as indicated by the gray

areas in Figs. 5.2(b) and (c).

5.2. Boundary simplification

Among other systems with 𝑓 = 2 degrees of freedom, 2D billiards have certain advantages. Their

trajectories follow from a purely geometrical construction, which simplifies their numerical and ana-

lytical treatment. Moreover, as will turn out in Sec. 5.3, the analysis can be effectively reduced by one

dimension. However, one drawback of billiards is that the momentum solutions p(𝑡) are discontinuous

due to the reflections at the boundary. Therefore regular tori consist of disjoint parts in phase space,

whose edges are related in a nontrivial way, depending on the shape of the billiard boundary. It

seems difficult to directly find an integrable approximation 𝐻reg(q,p) whose trajectories reproduce

these properties. However, from a more general perspective, the fragmentation of the tori appears as

a property of the present coordinate system (q,p). Following this idea, one could “repair” the tori by

introducing appropriate coordinates

𝒯 : (q,p) ↦→ (Q,P), (5.3)

in which they appear connected, such that the transformed solutions (Q(𝑡),P(𝑡)) are continuous.

In the following we construct such a transformation 𝒯 as a composition of two transformations

𝒯 = 𝒯2 ∘ 𝒯1. (5.4)
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Here, 𝒯1 is given by a point transformation

𝒯1 :
(︃

q

p

)︃
↦→
(︃

𝑞(q)

𝑝(q,p)

)︃
, (5.5)

that maps the given billiard to a new system which should (i) have a preferably regular boundary

shape and (ii) show elastic reflections on this boundary. If the original billiard domain Ω has C

corners, this number is necessarily preserved under smooth invertible transformations [60]. Therefore,

the boundary simplification needs to be discussed separately for each class C of billiards. In Fig. 5.3

we show such a transformation 𝒯1 in position space for a deformed circle billiard C = 0 (a) and the

cosine billiard C = 4 (b). A derivation of 𝒯1 for these cases C = 0 and C = 4 is given in App. H,

where we consider an arbitrary boundary shape. In the following, we sketch this derivation for the

latter case. More precisely, we consider the general class of rectangular-like billiards, where the upper

boundary curve 𝑟(𝑥) is arbitrary.

First we introduce the point transformation (𝑥, 𝑦) ↦→ (�̄�, 𝑦) in position space. We fill the inner

billiard domain with a family of curves (see the vertical curves in Fig. 5.4) which define the contour

lines of �̄�(𝑥, 𝑦). This family of curves is given by 𝑥 = 𝑓(�̄�, 𝑦) where the function 𝑓 has to be determined.

The transformation equations are

𝑥(�̄�, 𝑦) = 𝑓 [�̄�, 𝑦(�̄�, 𝑦)], (5.6a)

𝑦(�̄�, 𝑦) = 𝑟(�̄�)𝑦. (5.6b)

T1

T1

(a) C = 0

(b) C = 4

q = (x, y) q̄ = (x̄, ȳ)

Figure 5.3.: Visualization of the transformation 𝒯1 used for the boundary simplification for billiards
with C corners, shown for C = 0 (a) and C = 4 (b). The transformed system in the new coordinates
𝑞 = (�̄�, 𝑦) (right) has a regular geometry and its trajectories (red lines) are elastically reflected at
the boundary. Specifically, (a) shows a deformed circle given by 𝑟(𝜑) = 1 + 𝜖 cos(3𝜑) with 𝜖 = 0.08
and (b) shows the cosine billiard (5.2), with (ℎ,𝑤) = (0.2, 0.066).
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For practical reasons we require the coordinates 𝑥 and �̄� to coincide at the upper boundary which

leads to

𝑓 [�̄�, 𝑟(�̄�)] = �̄�, (5.7)

and ensures that 𝑦 ∈ [0, 1]. This position transformation (5.6) implies a canonical transformation in

phase space, described by the generating function

𝐹 (�̄�, 𝑦, 𝑝𝑥, 𝑝𝑦) = 𝑥(�̄�, 𝑦)𝑝𝑥 + 𝑦(�̄�, 𝑦)𝑝𝑦. (5.8)

Solving Eq. (2.9b) leads to the corresponding momentum transformation

(︃
𝑝𝑥(�̄�, 𝑦, 𝑝𝑥, 𝑝𝑦)

𝑝𝑦(�̄�, 𝑦, 𝑝𝑥, 𝑝𝑦)

)︃
=

(︃
𝜕𝑥
𝜕�̄�

𝜕𝑦
𝜕�̄�

𝜕𝑥
𝜕𝑦

𝜕𝑦
𝜕𝑦

)︃⃒⃒
⃒⃒
⃒

−1

(�̄�,𝑦)

(︃
𝑝𝑥

𝑝𝑦

)︃
. (5.9)

Here, the inverse matrix exists, if the underlying position transformation (5.6) is invertible. Taken

together, Eqs. (5.6) and (5.9) define the transformation 𝒯1 which depends on the function 𝑓 .

We now specify 𝑓 by demanding elastic reflections at the boundary of the transformed system.

Specifically, we require the transformed reflections to be of the form

(︃
𝑝𝑥

𝑝𝑦

)︃
↦→
(︃

𝑝𝑥

−𝑝𝑦

)︃
,

(︃
˙̄𝑥

˙̄𝑦

)︃
↦→
(︃

˙̄𝑥

− ˙̄𝑦

)︃
, (5.10)

at the lower (𝑦 = 0) and upper boundary (𝑦 = 1). As we show in App. H.3, this leads to the following

0

r(0)

0

x = x̄
y = r(x)

x̄ = const.

x = f(x̄, y)

x

y

Figure 5.4.: Visualization of the billiard point transformation (5.6). The billiard domain is filled
with a family of curves (vertical lines) that represent the contour lines of �̄�(𝑥, 𝑦) and intersect the
upper boundary 𝑦 = 𝑟(𝑥) at 𝑥 = �̄�.
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conditions for the function 𝑓

𝜕𝑓

𝜕�̄�
[�̄�, 𝑟(�̄�)] = 1 + 𝑟′(�̄�)2, (5.11a)

𝜕𝑓

𝜕𝑦
[�̄�, 𝑟(�̄�)] = −𝑟′(�̄�), (5.11b)

𝜕𝑓

𝜕𝑦
(�̄�, 0) = 0, (5.11c)

𝜕2𝑓

𝜕�̄�𝜕𝑦
(�̄�, 0) = −𝑟

′(�̄�)

𝑟(�̄�)

𝜕𝑓

𝜕𝑦
(�̄�, 0). (5.11d)

We solve the set of conditions (5.7) and (5.11) and obtain

𝑓(�̄�, 𝑦) = �̄�+ 1
2𝑟(�̄�)𝑟

′(�̄�)− 𝑟′(�̄�)𝑦2

2𝑟(�̄�)
. (5.12)

We verify that for the special case of the cosine billiard with 𝑟(𝑥) given by Eq. (5.2), the canonical

transformation 𝒯1 is invertible everywhere in phase space if the parameters satisfy

𝜋2𝑤(ℎ+ 𝑤) < 1, (5.13)

see App. H.4, Eq. (H.41). This includes all configurations of interest for which the central orbit is

stable, see App. G.1, Eq. (G.5).

In Fig. 5.5(a) we visualize this transformation 𝒯1, which maps the cosine billiard 𝐻(q,p) (left) to a

system 𝐻(𝑞,𝑝) with a rectangular spatial domain (center). As required, the new system 𝐻(𝑞,𝑝) has

elastic reflections at the boundary, but a nontrivial time evolution inside the rectangle, as shown for an

example trajectory (red curve). In Fig. 5.5(b–c) we show the corresponding momentum components

of the trajectory before (left) and after applying 𝒯1 (center). Here, as required, 𝑝𝑥 becomes continuous

(Fig. 5.5(b), center) while 𝑝𝑦 flips its sign on the boundary (Fig. 5.5(c), center).

Furthermore, the sign flips of 𝑝𝑦 are removed by applying a simple unfolding transformation of the

rectangle, 𝒯2 : (𝑞,𝑝) ↦→ (Q,P), given by

𝑋 = �̄�, (5.14a)

𝑌 =

{︃
𝑦 𝑝𝑦 ≥ 0

2− 𝑦 𝑝𝑦 < 0
, (5.14b)

𝑃𝑥 = 𝑝𝑥, (5.14c)

𝑃𝑦 = |𝑝𝑦|. (5.14d)

As shown in Fig. 5.5(a), this flips the trajectory segments with 𝑝𝑦 < 0. The resulting components

(𝑋,𝑌 ) become smooth at 𝑌 = 1, where (�̄�, 𝑦) visits the upper boundary. By imposing periodic

boundary conditions, the jump from 𝑌 = 2 to 𝑌 = 0 is formally removed, leading to overall smooth

trajectories (𝑋,𝑌 ). Also the momentum component 𝑃𝑦 becomes continuous, see Fig. 5.5(c, right).
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−0.5 0 0.5
0

h

x

y(a)
T1 T2

−0.5 0 0.5
0

1

x̄

ȳ
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Figure 5.5.: (a) Cosine billiard and a trajectory (red line) in the coordinates q = (𝑥, 𝑦) (left), 𝑞 =
(�̄�, 𝑦) (center), and Q = (𝑋,𝑌 ) (right) using the transformations 𝒯1, Eq. (5.5), and 𝒯2, Eq. (5.14).
The colored dots correspond to the reflection points on the lower (blue) and upper boundary (green)
of the original billiard trajectory (left). The gray grid shows lines of constant 𝑋 and lines of
constant 𝑌 . (b) Momentum components 𝑝𝑥 (left), 𝑝𝑥 (center), and 𝑃𝑥 (right) of the trajectory
and its transformations (red). Colored circles and dashed lines indicate the corresponding reflection
events from (a). (c) Same as (b), but for 𝑝𝑦, 𝑝𝑦, and 𝑃𝑦.

Even, as shown in App. H.3, all trajectory components (𝑋,𝑌, 𝑃𝑥, 𝑃𝑦) become also 𝐶1, except for the

kinks in 𝑃𝑦 at 𝑌 = 1 (green circles in Fig. 5.5(c, right)). Although the goal of continuous trajectories

is achieved, one could go further and ask for a transformation 𝒯1 which also removes all higher order

discontinuities. We verify, that this is impossible for any point transformation 𝒯1. A proof is given in

App. H.2.

5.3. Scaling systems

In the following we work out the characteristic scaling behavior of billiards and derive consequences

for their integrable approximations. If we consider a particular billiard trajectory (q(𝑡),p(𝑡)) and a

scaling factor 𝜆 > 0, then also the modified initial conditions (q(0), 𝜆p(0)) would lead to a similar

trajectory passing through the same path in q-space, but slower or faster depending on 𝜆. More
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formally, if the solution (q(𝑡),p(𝑡)) has energy 𝐸, then for any 𝜆 > 0 the rescaled trajectory

q𝜆(𝑡) := q(𝜆𝑡), (5.15a)

p𝜆(𝑡) := 𝜆p(𝜆𝑡), (5.15b)

is also a solution of the billiard and has energy 𝜆2𝐸. As we show in App. F, this behavior follows

from the Hamiltonian’s scaling property

𝐻(q, 𝜆p) = 𝜆2𝐻(q,p). (5.16)

If we introduce the scaling operator in phase space

𝑆𝜆 : (q,p) ↦→ (q, 𝜆p), (5.17)

we can rewrite this scaling property as

𝐻 ∘ 𝑆𝜆 = 𝜆2𝐻, (5.18)

and the rescaled solutions (5.15) as

(q𝜆,p𝜆)(𝑡) := 𝑆𝜆(q,p)(𝜆𝑡). (5.19)

We now discuss some important properties of this general class of scaling Hamiltonians (5.16),

which includes all billiards. According to Sec. 2.1, any solution is restricted to a (2𝑓 − 1)-dimensional

energy shell where 𝐻(q,p) = 𝐸. In scaling systems (5.16) such a solution of energy 𝐸 is rescaled to

a solution of unit energy 𝐸′ = 1 by applying 𝑆𝜆 with 𝜆 = 1/
√
𝐸. As this is true for all solutions of

energy 𝐸, the operator 𝑆𝜆 relates the whole energy shell 𝐸 to the unit energy shell 𝐸′ = 1. As 𝑆𝜆 is

invertible with 𝑆−1
𝜆 = 𝑆𝜆−1 , this relation is bijective. Finally, as this is true for all energies 𝐸 > 0,

the unit energy shell contains the full information of the system1. Consequently, any analysis of a

scaling system (5.16) is reduced by one dimension to this unit energy shell, which for 2D billiards is

a 3D region.

Moreover, for the action integral (2.8) we find the scaling

𝒥 [𝑆𝜆𝒞] =
1

2𝜋

∮︁

𝑆𝜆𝒞
pdq =

1

2𝜋

∮︁

𝒞
(𝜆p)dq = 𝜆𝒥 [𝒞] . (5.20)

Note that this is just a geometrical property of the operator 𝑆𝜆 for an arbitrary curve 𝒞 and thus

holds independently of any underlying Hamiltonian system.

We now consider the subclass of scaling Hamiltonians (5.16) which are integrable. Following the

decomposition of integrable systems into their frequency function 𝜔(J) and their canonical transfor-

1If also negative energies are relevant, two unit energy shells 𝐸′ = ±1 need to be considered, which, however, is not
necessary for billiards.
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mation 𝑇 (see Sec. 2.2), we conclude special properties of these two objects. By combining the linear

scaling (5.20) of the action with the quadratic scaling (5.16) of energy, we obtain a scaling of the

action representation,

ℋ(𝜆J) = 𝜆2ℋ(J), (5.21)

or equivalently for the frequency function

𝜔(𝜆J) = 𝜆𝜔(J), (5.22)

as follows from differentiating Eq. (5.21) with respect to action J. Note that, as the action is a

momentum variable, the scaling relation (5.21) is also of the form (5.18). As both Hamiltonians

ℋ(J) and 𝐻(q,p) fulfill the same scaling relation, their connecting canonical transformation (q,p) =

𝑇 (𝜗,J) must preserve this scaling, i. e.,

𝑇 ∘ 𝑆𝜆 = 𝑆𝜆 ∘ 𝑇. (5.23)

Finally, if 𝑇 is implied by a type-two generating function 𝐹 , the scaling invariance (5.23) translates

to a condition of 𝐹 , which we derive in the following. For generality we consider a transformation

between two arbitrary sets of coordinates 𝑇 : (q,p) ↦→ (q′,p′), which do not necessarily include

action–angle coordinates. Considering the implicit-function description of 𝑇 via Eq. (4.17), the con-

dition (5.23) reads

𝜑(x,x′) = 0 ⇔ 𝜑(𝑆𝜆x, 𝑆𝜆x
′) = 0. (5.24)

Here, we only need to consider the implication from left to right, as the inverse direction is still

included when replacing 𝜆 ↦→ 𝜆−1. Written in components, Eq. (4.18), this statement becomes2

(︃
q′

p

)︃
=

(︃
𝜕𝐹
𝜕p′ (q,p′)
𝜕𝐹
𝜕q (q,p

′)

)︃
⇒

(︃
q′

𝜆p

)︃
=

(︃
𝜕𝐹
𝜕p′ (q, 𝜆p′)
𝜕𝐹
𝜕q (q, 𝜆p

′)

)︃
. (5.25)

Substituting the left equations into the right ones, we obtain two purely functional equations

𝜕𝐹

𝜕p′ (q, 𝜆p
′) =

𝜕𝐹

𝜕p′ (q,p
′), (5.26a)

𝜕𝐹

𝜕q
(q, 𝜆p′) = 𝜆

𝜕𝐹

𝜕q
(q,p′). (5.26b)

Neglecting the freedom of an additive constant in 𝐹 , which is practically irrelevant, this is equivalent

2For convenience, the symbol 𝜕𝐹
𝜕p′ (·, ·) denotes the derivative of 𝐹 with respect to the second argument regardless of its

value, e. g., 𝜕
𝜕p′𝐹 (q, 𝜆p′) = 𝜆 𝜕𝐹

𝜕p′ (q, 𝜆p
′).
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to

𝐹 (q, 𝜆p′) = 𝜆𝐹 (q,p′). (5.27)

This scaling relation of the generating function 𝐹 ensures the scaling invariance (5.23) of the induced

canonical transformation 𝑇 .

5.4. Application of the iterative canonical transformation method

In this section we show the construction of integrable approximations for 2D billiards via the itera-

tive canonical transformation method. For this we take advantage of the special coordinates (Q,P)

(Sec. 5.2) and the billiard-specific scaling (Sec. 5.3). As a generic example system we consider the

cosine billiard (5.2), at the parameters (ℎ,𝑤) = (0.2, 0.066) where it is strongly non-integrable, see

Fig. 5.2.

5.4.1. Frequency approximation

To define the action representation ℋreg(J) of the integrable approximation, we first compute points

on a set of tori of the billiard 𝐻. As these tori are 2D manifolds in the 4D phase space, there

exist 2 independent directions perpendicular to a given torus. As discussed in Sec. 5.3, it suffices to

explore the phase space only along one direction of constant energy 𝐸 = 1 while requiring the scaling

relation (5.21) for ℋreg(J). For this curve we choose a fixed position at the top of the billiard and a

momentum parametrized by an angle 𝛼,

𝑥0 = 0, (5.28a)

𝑦0 = ℎ+ 𝑤, (5.28b)

𝑝𝑥0 = sin𝛼, (5.28c)

𝑝𝑦0 = − cos𝛼, (5.28d)

with 𝛼 ∈ (0, 0.3926]. For 100 initial conditions on this curve we calculate a trajectory with 104

reflections, sampling the regular tori. We compute their intersections with Σ1 and Σ2 to determine

the actions J𝜏 = (𝐽𝜏
1 , 𝐽

𝜏
2 ) using Eq. (2.8), see the dots in Fig. 5.6(a). We compute the frequencies

𝜔𝜏 = (𝜔𝜏
1 , 𝜔

𝜏
2 ) for each torus.

According to Sec. 3.2 we now determine the Hamiltonian ℋreg(J) which connects the actions to the

corresponding energies. As it must fulfill the scaling relation (5.21), it can be written, e. g., as

ℋreg(J) = 𝐽2
2 · ℱ(𝐽1/𝐽2), (5.29)

with some scalar function ℱ . Expressing ℱ as a power series, the general ansatz (3.4) obtains the



5.4.2 Shape approximation 71

0.075

0.080

0.085

0.00 0.03 0.06J1

J2

E = 1

(a)

10−6

10−4

10−2

0.00 0.02 0.04J1

∆i

i = 0

1

2

(b)

Figure 5.6.: (a) Numerically determined actions J𝜏 = (𝐽𝜏
1 , 𝐽

𝜏
2 ) of the cosine billiard (dots) and

contour line 𝐸 = 1 (red) of the integrable Hamiltonian ℋreg(J), Eq. (5.29). (b) Relative error Δ0 of
the energy (solid) and the frequencies Δ1 (dashed) and Δ2 (dotted).

form

ℋreg(J) = 𝐽2
2 ·

𝒦∑︁

𝑘=0

ℎ𝑘 · (𝐽1/𝐽2)𝑘. (5.30)

With 𝑘 ≥ 0 this ensures finite energies in the center of the regular island, where 𝐽1 = 0, see Fig. 5.2.

We determine the coefficients {ℎ𝑘} such that Eq. (3.7) is minimized. For 𝒦 = 2 we show in Fig. 5.6(a)

the contour line 𝐸 = 1 of ℋreg(J) in good agreement with the numerical actions J𝜏 . In Fig. 5.6(b)

we plot the relative errors of the energy Δ0 = | [ℋreg(J
𝜏 )− 𝐸] /𝐸| for 𝐸 = 1 and of the frequencies

Δ𝑖 = | [𝜕ℋreg(J
𝜏 )/𝜕𝐽𝑖 − 𝜔𝜏

𝑖 ] /𝜔
𝜏
𝑖 | with 𝑖 = 1, 2. Here we use the numerically determined frequencies

𝜔𝜏
𝑖 of the cosine billiard for comparison. All relative errors Δ𝑖 are lower than 10−2.

5.4.2. Shape approximation

In the following we use the special coordinates (Q,P) defined in Sec. 5.2, which give a continuous

representation of trajectories in phase space. In these coordinates we determine an integrable approx-

imation 𝐻reg(Q,P) of 𝐻(Q,P). Finally by returning to the original billiard coordinates (q,p) we

find the integrable approximation 𝐻reg(q,p) of 𝐻(q,p).

Note that the transformation 𝒯 leading to (Q,P) preserves the scaling, Eq. (5.23), such that

𝐻(Q,P) also fulfills the scaling relation (5.16). Moreover, both actions J = (𝐽1, 𝐽2) are preserved

under 𝒯 , individually, such that the previously determined Hamiltonian 𝐻reg(J) remains valid for

𝐻(Q,P).

Initial integrable approximation

We now define the initial transformation 𝑇0 which generates the topology of the tori. As shown in

Figs. 5.7(a) and (d), these tori combine a libration in the (𝑋,𝑃𝑥)-projection with a rotation along the
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periodic 𝑌 -direction. This behavior is modeled by choosing 𝑇0 as

𝑋 =

√︂
2𝐽1
𝛿𝐽2

cos𝜗1, (5.31a)

𝑃𝑥 = −
√︀
2𝛿𝐽1𝐽2 sin𝜗1, (5.31b)

𝑌 =
1

𝜋
𝜗2 +

𝐽1
𝜋𝐽2

sin𝜗1 cos𝜗1, (5.31c)

𝑃𝑦 = 𝜋𝐽2. (5.31d)

The first two Eqs. (5.31a) and (5.31b) lead to the desired, elliptic dynamics in the (𝑋,𝑃𝑥)-projection

with action 𝐽1 and half-axis ratio 𝛿𝐽2, see the red lines in Fig. 5.7(b). We choose the constant

parameter 𝛿 to reproduce the linearized dynamics around the stable periodic orbit at 𝑌 = 0. For

this we derive an analytical expression for 𝛿 as a function of the cosine billiard parameters ℎ and 𝑤,

see App. G.2, Eq. (G.8). Equations (5.31c) and (5.31d) describe dynamics with constant momentum

𝑃𝑦, see the red lines in Fig. 5.7(e). On average 𝑌 increases linearly with 𝜗2 such that 𝜗2 ∈ [0, 2𝜋) is

mapped to 𝑌 ∈ [0, 2) with periodic boundary conditions, see the red lines in Fig. 5.7(e). The second,

oscillatory term in Eq. (5.31c) is required to make the transformation canonical. As the average of this

term vanishes, the coordinates 𝑌 and 𝜗2 both move with the same frequency 𝜔2. We finally obtain

an initial integrable approximation 𝐻0
reg(Q,P). As 𝑇0 fulfills Eq. (5.23), the scaling relation (5.16) is

ensured for 𝐻0
reg(Q,P). Figures 5.7(b) and (e) show that the tori of 𝐻 and 𝐻0

reg agree close to the

central trajectory.

Family of canonical transformations

To improve𝐻0
reg, we introduce a family of canonical transformations 𝑇 a, given by a generating function

𝐹 a(Q,P′) = QP′ +𝐺(Q,P′), (5.32)

with the perturbation

𝐺(Q,P′) =
𝒩∑︁

𝜈=1

𝑎𝜈𝐺𝜈(Q,P
′). (5.33)

In the following, we specify the perturbation 𝐺(Q,P′) according to (i) the scaling relation, (ii) the

symmetries, and (iii) the phase-space geometry.

(i) To preserve the scaling relation (5.18), 𝐹 a, and thus also 𝐺, must satisfy the conditions (5.27).

This is ensured by the form

𝐺(Q,P′) = 𝑃 ′𝑔(Q, 𝜃′), (5.34)

which uses the polar representation P′ = (𝑃 ′ cos 𝜃′, 𝑃 ′ sin 𝜃′) with 𝜃′ ∈ [0, 𝜋) and an arbitrary function

𝑔(𝑋,𝑌, 𝜃′) of 3 variables only.
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(ii) The systems 𝐻 and 𝐻0
reg both have two symmetries, namely the parity in 𝑋-direction and the

time reversal symmetry. In the coordinates (Q,P), these symmetries are represented by

(𝑋,𝑌, 𝑃𝑥, 𝑃𝑦) ↦→ (−𝑋,𝑌,−𝑃𝑥, 𝑃𝑦), (5.35a)

(𝑋,𝑌, 𝑃𝑥, 𝑃𝑦) ↦→ (𝑋, 2− 𝑌,−𝑃𝑥, 𝑃𝑦), (5.35b)

respectively. To preserve these symmetries, the function 𝑔 must satisfy

𝑔(−𝑋,𝑌, 𝜋 − 𝜃′) = 𝑔(𝑋,𝑌, 𝜃′), (5.36a)

𝑔(𝑋, 2− 𝑌, 𝜋 − 𝜃′) = −𝑔(𝑋,𝑌, 𝜃′). (5.36b)

(iii) To match the 𝑌 -periodic structure of the phase space we require

𝑔(𝑋,𝑌 + 2, 𝜃′) = 𝑔(𝑋,𝑌, 𝜃′). (5.37)

We express 𝑔 as a truncated Fourier series in 𝑋, 𝑌 , and 𝜃′ with periodicities ℒ𝑥 = 1, ℒ𝑦 = 2, and

ℒ𝜃 = 2𝜋. Regarding the conditions (5.36) this leads to the expansion

𝑔(𝑋,𝑌, 𝜃′) =

𝒩𝑥∑︁

𝑛=0

𝒩𝑦∑︁

𝑚=1

𝒩𝜃∑︁

𝑙=0

𝑎1𝑛𝑚𝑙𝑓
+
𝑛

(︂
𝑋

ℒ𝑥

)︂
𝑓−𝑚

(︂
𝑌 − 1

ℒ𝑦

)︂
𝑓+𝑙

(︂
𝜃′ − 𝜋

2

ℒ𝜃

)︂

+

𝒩𝑥∑︁

𝑛=1

𝒩𝑦∑︁

𝑚=0

𝒩𝜃∑︁

𝑙=1

𝑎2𝑛𝑚𝑙𝑓
−
𝑛

(︂
𝑋

ℒ𝑥

)︂
𝑓+𝑚

(︂
𝑌 − 1

ℒ𝑦

)︂
𝑓−𝑙

(︂
𝜃′ − 𝜋

2

ℒ𝜃

)︂
, (5.38)

with the Fourier basis functions 𝑓±𝜈 from Eqs. (4.16). In the following example, we choose for the

orders 𝒩𝑥 = 𝒩𝑦 = 𝒩𝜃 = 2.

Iterative improvement

According to Sec. 3.3.3 we use the family of canonical transformations 𝑇 a to successively determine

the parameters a1,a2, ... of the transformations 𝑇1, 𝑇2, ... by minimizing the cost function L (a),

Eq. (3.19). Here, we use ℓ = 1, 2, ..., 103 sample points x𝜏
ℓ of 𝐻 on each of the previously used tori

𝜏 = 1, 2, ..., 100. With a damping factor 𝜂 = 0.3, we obtain a satisfying agreement. After 𝑁 = 6 steps

convergence is achieved. The final integrable approximation 𝐻𝑁
reg(Q,P) is given by Eq. (3.15). In

Figs. 5.7(c) and (f) we compare the Poincaré sections of 𝐻(Q,P) (gray) and 𝐻𝑁
reg(Q,P) (red lines).

We have confirmed that the improvement is of the same quality also in other sections of phase space

(not shown). Figure 5.8 shows the evaluated cost function L after each iteration step 𝑛. Its final

value is about a factor of 2 larger than for a comparable 2D example with a strong perturbation,

see, e. g., Fig. 4.3. However, as L is defined as a squared distance, Eq. (3.19), it scales linear in the

number 𝑓 of degrees of freedom. From that perspective the results are comparable in quality. One

would expect further improvements when choosing a larger family of canonical transformations by

increasing the orders 𝒩𝑥, 𝒩𝑦, 𝒩𝜃 in Eq. (5.38).
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Figure 5.7.: Poincaré sections Σ1 and Σ2 for the cosine billiard 𝐻(Q,P), (a,d), its initial integrable
approximation 𝐻0

reg(Q,P), (b,e), and its final integrable approximation 𝐻𝑁
reg(Q,P), 𝑁 = 6, (c,f).
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Figure 5.8.: Cost function L , Eq. (3.19), vs. iteration step 𝑛.



6. Dynamical tunneling

In this chapter, the integrable approximations from the iterative canonical transformation method are

used to describe dynamical tunneling. We first introduce the concept of dynamical tunneling and its

theoretical prediction (Sec. 6.1) which we then demonstrate for symplectic 2D maps (Sec. 6.2). After

this, we discuss the quantization of integrable approximations (Sec. 6.3). Finally, we derive tunneling

predictions for generic 2D billiards (Sec. 6.4).

6.1. Dynamical tunneling and the fictitious integrable system

approach

Tunneling is one of the most important effects in quantum mechanics. It is possibly the most illus-

trative example among the many ways in which quantum theory challenges an insufficient, classical

picture of the physical reality. In the early times of quantum mechanics, the process of barrier tun-

neling was investigated [61, 62]. This is the transport of probability density through an energetic

barrier, which would be classically impossible. The discovery and theoretical foundation of this ef-

fect explained many important phenomena (e. g., alpha decay, nuclear fusion in stars, or spontaneous

DNA mutation) and lead to numerous technical developments, from the tunnel diode and the scanning

tunnel microscope towards flash memory cards.

Later, the concept of dynamical tunneling [5, 6] was established, which denotes any probability

transport between classically disjoint regions in phase space. While this generalization includes bar-

rier tunneling as a special case, it also comprises new tunneling processes where the classical barrier

becomes visible from a phase-space perspective only. Given a non-integrable system, one such per-

spective is to divide the phase space into regions of regular and chaotic dynamics, leading to the

process of regular-to-chaotic tunneling [63, 64]. It has been shown, that nonlinear resonance chains

of the regular phase-space regions can strongly enhance dynamical tunneling, which is then termed

resonance-assisted tunneling [7–11]. In this thesis we focus on regular-to-chaotic tunneling in the

contrary situation, where resonances can be neglected, which is called direct (regular-to-chaotic) tun-

neling.

In a non-integrable system represented by its unit-time evolution operator �̂� , the regular-to-chaotic

tunneling effect can be characterized by a set of tunneling rates 𝛾n. These rates describe the transport

from the system’s n-th quantizing torus in the regular phase-space region towards the chaotic phase-

space region. Here n is a set of suitable quantum numbers. For a more precise definition of 𝛾n it

75
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seems suggestive to use the eigenstates of �̂� ,

�̂� |𝜓n⟩ = 𝜉n |𝜓n⟩ . (6.1)

This basis includes “regular” eigenstates |𝜓n⟩, which typically localize on these regular quantizing tori.

However, as these eigenstates are invariant under �̂� , their propagation shows no tunneling transport.

Instead, 𝛾n can be defined based on the corresponding open system [65]

�̂�open = (1− 𝑃abs)�̂�(1− 𝑃abs), (6.2)

where 𝑃abs is a projector onto an absorbing domain in the chaotic phase-space region. Due to the

absorption, the modified eigenstates

�̂�open |n⟩ = 𝑧n |n⟩ , (6.3)

show a propagation towards the chaotic region. Due to the subunitarity of �̂�open, their magnitude

|⟨n|n⟩| decreases by a factor |𝑧n|2 ≤ 1 per iteration step. Consequently, the tunneling rate is defined

as their decay rate

𝛾n = −2 log |𝑧n|. (6.4)

For the theoretical prediction of regular-to-chaotic tunneling rates, the fictitious integrable system

approach was developed [12–14]. This approach is based on an integrable approximation 𝐻reg for the

considered non-integrable system. First, the classical function 𝐻reg is translated to an operator

�̂�reg = 𝒬(𝐻reg), (6.5)

by applying an appropriate quantization rule 𝒬. The discussion of this step is shifted to Sec 6.3.

Then the eigenvalue problem of the quantum system �̂�reg is considered,

�̂�reg |𝜓n
reg⟩ = 𝐸n

reg |𝜓n
reg⟩ . (6.6)

Here, the eigenstates |𝜓n
reg⟩ are called quasimodes. When ordered appropriately, |𝜓n

reg⟩ localizes on
the n-th quantizing torus of 𝐻reg. Consequently, if 𝐻reg closely approximates the regular region of

the given, non-integrable system 𝐻, also the quasimodes |𝜓n
reg⟩ approximate the states |𝜓n⟩ in the

regular region. However, while the |𝜓n⟩ also couple to the chaotic regions due to dynamical tunneling,

the quasimodes |𝜓n
reg⟩ decay exponentially outside the quantizing torus, as 𝐻reg is integrable. Due to

this sharp localization, the quasimodes |𝜓n
reg⟩ provide an orthogonal basis to accurately measure the

quantizing tori. Following this idea, the fictitious integrable system approach gives a prediction of the
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direct regular-to-chaotic tunneling rate as

𝛾n =
⃒⃒
⃒𝑃abs�̂� |𝜓n

reg⟩
⃒⃒
⃒
2
. (6.7)

The underlying intuition is to model 𝛾n as the weight of the quasimode |𝜓n
reg⟩ that is propagated into

the absorber via the unit-time operator �̂� .

Apart from this prediction, which will be used in this thesis, there are also other descriptions of

dynamical tunneling which rely on an integrable approximation 𝐻reg. One example is a perturbative

extension of Eq. (6.7), which can also account for resonance-assisted regular-to-chaotic tunneling [14].

Also a perturbation-free extension for this case has been developed, which is based on an integrable

approximation with resonance, as constructed in Sec. 4.7 [50, 66]. Another important concept is the

semiclassical description of dynamical tunneling based on complex paths. Here, the tunneling process

is expanded in terms of trajectories in the complexified phase space of the integrable approximation

𝐻reg. This has been accomplished for tunneling in purely integrable systems [55], for regular-to-

chaotic tunneling in near-integrable microcavities [67, 68] and generic 2D maps [37, 69], as well as for

resonance-assisted regular-to-chaotic tunneling in generic 2D maps [70], where the iterative canonical

transformation method was used.

6.2. Tunneling predictions in 2D maps using integrable

approximations

In this section, we apply the fictitious integrable system approach to symplectic 2D maps, proceeding

along the lines of Ref. [65]. Our purpose is both to illustrate the fictitious integrable system approach

and to verify its applicability with the integrable approximations from the iterative canonical trans-

formation method. Specifically, we consider the standard map (4.4) with 𝜅 = 2.9. Quantizing this

map leads to a quantum map �̂� [71]. For this quantization we choose an inverse integer value for the

effective Planck’s constant ℎeff = 1/𝑁 . Together with the 2𝜋-periodic boundary conditions in both

𝑞 and 𝑝, this leads to an 𝑁 -dimensional Hilbert space that is spanned by a finite, discrete subset of,

e. g., the position eigenstates |𝑞⟩. Using this discrete basis, we define the open system �̂�open, Eq. (6.2),

by choosing an absorber in position space,

𝑃abs =
∑︁

abs

|𝑞⟩ ⟨𝑞| , (6.8)

summing over all (quantized) positions which additionally fulfill 𝑞 ∈ [0, 𝑞abs] ∪ [1 − 𝑞abs, 1]. For the

specific system 𝜅 = 2.9, we choose 𝑞abs = 0.2713, such that the absorber is located close to but outside

the regular region, see the gray areas in Fig. 6.1(e).

For 𝐻reg we choose the integrable approximation obtained from the iterative canonical transfor-

mation method in Sec. 4.4 with (𝒩𝑞,𝒩𝑝) = (1, 2) and 𝑁 = 40, see Fig. 6.1(a). For the numerical
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Figure 6.1.: (a) Phase space of an integrable approximation 𝐻reg obtained from the iterative
canonical transformation method. (b–d) Husimi function of the quasimodes |𝜓𝑛

reg⟩ for 𝑛 = 0 (b),
𝑛 = 1 (c), and 𝑛 = 2 (d) and ℎeff = 1/86, shown on a linear scale. (e) Phase space of the standard
map (4.4) (black) for 𝜅 = 2.9 with an absorbing region (gray) located at 𝑞 ∈ [0, 𝑞abs] ∪ [1 − 𝑞abs, 1]
with 𝑞abs = 0.2713. (f–h) Modulus |𝜓𝑛

reg(𝑞)| of the quasimodes from (b–d) in position representation,
shown on a logarithmic scale (red). The gray dots show the corresponding eigenstates |𝜓𝑛(𝑞)| of the
quantum map �̂� .

evaluation it is convenient to set

ℋreg(𝐽) = 𝐽, (6.9)

for the action representation of 𝐻reg. This enforces a parabolic energy landscape, preventing artificial

couplings due to eventual oscillations in ℋreg(𝐽). Note that this leaves the torus geometry unchanged.

We quantize 𝐻reg(𝑞, 𝑝) according to the Weyl rule, as will be explained in the next section. For the

resulting operator �̂�reg we determine the quasimodes |𝜓𝑛
reg⟩ numerically from Eq. (6.6). In Figs. 6.1(b–

d) we show the Husimi phase-space distribution of the ground state |𝜓𝑛
reg⟩, 𝑛 = 0 (b) and the first

two excited states 𝑛 = 1 (c) and 𝑛 = 2 (d) for ℎeff = 1/86. The red lines in Figs. 6.1(f–h) show the

modulus |𝜓𝑛
reg(𝑞)| of these states in position representation on a logarithmic scale. For comparison we

also show the corresponding eigenstates |𝜓𝑛(𝑞)| of the quantum map �̂� (gray dots). Apart from their

close agreement in the regular region, 𝜓𝑛
reg(𝑞) and 𝜓𝑛(𝑞) differ significantly outside of this region, as

mentioned in Sec. 6.1. Here, 𝜓𝑛(𝑞) has fluctuations of the order 10−5 which are caused by dynamical

tunneling, while 𝜓𝑛
reg(𝑞) decays exponentially.

Using the quasimodes |𝜓𝑛
reg⟩ of �̂�reg, we now apply the fictitious integrable system approach to

predict direct regular-to-chaotic tunneling rates 𝛾𝑛, Eq. (6.7). We evaluate this prediction for values

of the effective Planck’s constant ℎeff where 1/ℎeff is an even integer. In Fig. 6.2 we show this
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Figure 6.2.: Tunneling rates 𝛾𝑛 of the quantized standard map at 𝜅 = 2.9 (bright dots) for 𝑛 = 0
(violet), 𝑛 = 1 (green), and 𝑛 = 2 (red) with their predictions (dark dots and lines) obtained from
the fictitious integrable system approach.

prediction (dark dots and line) for the rates 𝛾0 (blue), 𝛾1 (green), and 𝛾2 (red). For visual clarity,

the predicted values are connected by lines. For comparison, the bright dots depict the numerically

determined values 𝛾𝑛 computed from Eq. (6.4). The prediction shows a rough agreement with the

numerical data with a loss of relative precision in the semiclassical regime where 1/ℎeff becomes large.

Here, the small deviations between 𝐻reg and the regular island of the standard map become more

relevant. The prediction could be improved by using a better integrable approximation 𝐻reg. The

local fluctuations of the prediction are an inherent characteristic of the fictitious integrable system

approach [13]. The prediction based on the integrable approximation 𝐻reg obtained from the iterative

canonical transformation method is of a comparable quality to previous results for the same system,

where other methods have been used to construct 𝐻reg, see, e. g., Ref. [12, Fig. 4].

6.3. Influence of the quantization rule

As explained in Sec. 6.1, the fictitious integrable system approach requires a classical integrable

approximation 𝐻reg which is quantized using a quantization rule 𝒬, Eq. (6.5). Hence, the resulting

prediction of tunneling rates depends on both 𝐻reg and 𝒬. While the influence of 𝐻reg has been

discussed [13], the influence of the quantization rule 𝒬 was not considered so far. In this section, we

give a numerical evidence for the relevance of this choice. Although this has general implications, we

restrict to the case of 𝑓 = 1 degree of freedom for convenience.

Basically, a quantization rule 𝒬 is an instruction which associates a quantum observable 𝐴 to any

classical, scalar observable 𝐴 : R2𝑓 ↦→ C. As 𝐴 depends on the behavior of 𝐴(𝑞, 𝑝) everywhere in

phase space, 𝐴 is a functional of 𝐴(𝑞, 𝑝). As we will see later, this functional is linear, thus it can be
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expressed as an integral operator

𝐴 = 𝒬(𝐴) =
1

(2𝜋)2

∫︁
d𝑞
∫︁

d𝑝
∫︁

d𝜃
∫︁

d𝜏 𝑤(𝜃, 𝜏)𝑒−𝑖𝜃𝑞𝑒−𝑖𝜏𝑝𝑒𝑖𝜃𝑞𝑒𝑖𝜏𝑝𝐴(𝑞, 𝑝). (6.10)

Here the integrals are taken over the real domain R. The operators 𝑞 and 𝑝 denote position and

momentum with the well known commutation relation

[𝑞, 𝑝] = 𝑖~. (6.11)

The function 𝑤(𝜃, 𝜏) is the integral kernel which defines 𝒬. For 𝑤(𝜃, 𝜏) = 1, Eq. (6.10) would simply

describe a two-step Fourier transform, where (𝑞, 𝑝) are first transformed to their conjugated variables

(𝜃, 𝜏), and then back to the quantum mechanical operators (𝑞, 𝑝). However, due to the commutation

relation (6.11) the choice of the exponential term 𝑒𝑖𝜃𝑞𝑒𝑖𝜏𝑝 is arbitrary. One could also choose it, e. g.,

in the reverse order 𝑒𝑖𝜏𝑝𝑒𝑖𝜃𝑞, which using the Baker–Campbell–Hausdorff formula, equals

𝑒𝑖𝜏𝑝𝑒𝑖𝜃𝑞 = 𝑒𝑖𝜃𝜏~𝑒𝑖𝜃𝑞𝑒𝑖𝜏𝑝. (6.12)

Thus, using this reverse order of the exponential factors would imply an integral kernel 𝑤(𝜃, 𝜏) = 𝑒𝑖𝜃𝜏~

in Eq. (6.10). At this point one might ask for the general class of integral kernels 𝑤(𝜃, 𝜏) which are

reasonable from a physical perspective. For this, the transformation rule should fulfill the following

properties

𝒬(1) = 1, (6.13a)

𝒬(𝐴*) = 𝒬(𝐴)†, (6.13b)

lim
~→0

𝒬(𝐴) = 𝐴(𝑞, 𝑝), (6.13c)

𝐴(𝑞, 𝑝) = 𝐴(𝑞) ⇒ 𝒬(𝐴) = 𝐴(𝑞), (6.13d)

𝐴(𝑞, 𝑝) = 𝐴(𝑝) ⇒ 𝒬(𝐴) = 𝐴(𝑝). (6.13e)

Here, property (6.13a) is a normalization, while property (6.13b) ensures the correspondence of real-

valued functions to self-adjoint operators. Property (6.13c) states that any quantized observable

approaches its classical analogue in the semiclassical limit. The reasoning behind properties (6.13d)

and (6.13e) is to allow single-operator functions to be expressed by their series expansions. Note that

this fact also implies, that all Hamiltonians of the so-called Schrödinger form

𝐻(q,p) = 𝑇 (p) + 𝑉 (q), (6.14)

have a unique quantization �̂� = 𝑇 (p̂) + 𝑉 (q̂). As this is the case in many fields of physics, the

quantization is often a straightforward issue. Also, linear coupling terms known from electromagnetics

have a unique form 𝒬(𝑞𝑝) = (𝑞𝑝 + 𝑝𝑞)/2 due to property (6.13b). However, for more complicated

Hamiltonians, the quantization becomes ambiguous and needs more consideration, as it is the case
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for integrable approximations. Here, arbitrary couplings between 𝑞 and 𝑝 occur due to the canonical

transformations in Eq. (3.15). As we show in App. I, the properties (6.13) translate to the following

conditions on the kernel function, given in respective order,

𝑤(0, 0) = 1, (6.15a)

𝑤(−𝜃,−𝜏)* = 𝑤(𝜃, 𝜏)𝑒−𝑖𝜃𝜏~, (6.15b)

lim
~→0

𝑤(𝜃, 𝜏) = 1, (6.15c)

𝜕𝑛𝑤

𝜕𝜃𝑛
(0, 0) = 0, ∀𝑛 ∈ N, (6.15d)

𝜕𝑛𝑤

𝜕𝜏𝑛
(0, 0) = 0, ∀𝑛 ∈ N. (6.15e)

One specific family of quantizations, which solves these conditions is given by

𝑤𝛼(𝜃, 𝜏) =
1

2

(︂
𝑒
𝑖𝜃𝜏~

(︁
1
2−𝛼

)︁
+ 𝑒

𝑖𝜃𝜏~
(︁
1
2+𝛼

)︁)︂
, 𝛼 ∈

[︀
0, 12
]︀
. (6.16)

A similar family of quantization rules also appears in Ref. [72]1. It includes two well known special

cases, namely the Weyl rule [73] for 𝛼 = 0 and the Rivier rule [74] for 𝛼 = 1
2 . In the context of

the fictitious integrable system approach, both rules have been used in the past, see, e. g., Ref. [65,

Eq. (3.41)] for the Weyl rule and Ref. [75, Eq. (3.154)] for the Rivier rule. In the following we construct

a larger class of quantization rules from Eq. (6.16), given by

𝑤(𝜃, 𝜏) =

𝑛∑︁

𝑖=1

𝑐𝑖𝑤𝛼𝑖(𝜃, 𝜏), (6.17)

where we use 𝑛 parameters 𝛼𝑖 ∈
[︀
0, 12
]︀
with normalized, real coefficients

𝑛∑︁

𝑖=1

𝑐𝑖 = 1. (6.18)

This is valid, since the conditions (6.15b), (6.15d), and (6.15e) are linear in 𝑤, while the normal-

ization (6.18) ensures conditions (6.15a) and (6.15c). We construct an ensemble of quantizations by

choosing 𝛼𝑖 and 𝑐𝑖 randomly. More specifically, we once pick 𝑛 parameters 𝛼𝑖 uniformly from
[︀
0, 12
]︀
.

With this choice fixed, we construct an ensemble of quantizations by picking different parameter sets

𝑐𝑖 uniformly from [−1, 1], and normalizing them according to Eq. (6.18). This strategy of fixing the

𝛼𝑖 reduces the computational effort, as the resulting operator is given by 𝑐1𝒬𝛼1(𝐴) + ...+ 𝑐𝑛𝒬𝛼𝑛(𝐴).

Hence, the operators 𝒬𝛼𝑖(𝐴) are determined only once for the whole ensemble, and then just recom-

bined with different coefficients 𝑐𝑖 for each ensemble element.

To estimate the influence of the quantization rule on the fictitious integrable system approach, we

set 𝑛 = 10 and choose an ensemble of 𝑀 = 60 quantization rules. For each quantization rule, we

1More specifically, Eq. (6.16) represents a symmetrized version of Ref. [72, Eq. (4.1.3)].
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compute the prediction of direct regular-to-chaotic tunneling rates, using the same setting as specified

in Sec. 6.2. In Fig. 6.3(a) we show the prediction for the tunneling rates 𝛾0. Here the solid line shows

the prediction averaged over the ensemble, while the dashed lines mark the minimum and maximum

predictions.

To quantify the spreading of the predicted tunneling rate 𝛾0, we compute its standard deviation

𝜎𝛾0 . Note that 𝜎𝛾0 must be evaluated with respect to the average predicted tunneling rate 𝛾0, but not

to the numerically determined tunneling rate, as our interest is on the error between the predictions.

In Fig. 6.3(b) we show this standard deviation (dots). Apart from the absolute deviation, which

might strongly depend on the considered system and the construction of the ensemble, we find an

asymptotically exponential decay 𝜎𝛾0 ∝ 𝑒−const./ℎeff .

The triangles in Fig. 6.3(b) show the standard deviation for a prediction based on the initial

integrable approximation 𝐻0
reg instead of 𝐻𝑁

reg. Here, all predictions agree up to the order of machine

precision. This can be understood as follows. According to Eqs. (3.9), (4.7), and (6.9), 𝐻0
reg is the

harmonic oscillator, modified by a linear canonical transformation ℛ, Eq. (4.8). As the harmonic

oscillator is in Schrödinger form (6.14) and linear transformations have a unique quantum mechanical

representation [76], the quantization 𝒬
(︀
𝐻0

reg

)︀
must be unique. Consequently, the deviations observed

for the predictions based on 𝐻𝑁
reg must arise from the canonical transformations 𝑇𝑛, Eq. (3.15). The

observed relevance of the chosen quantization for 𝐻𝑁
reg will be revisited in the end of the next section.
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Figure 6.3.: (a) Tunneling rates 𝛾0 of the quantized standard map at 𝜅 = 2.9 (bright dots) compared
to their prediction obtained from the fictitious integrable system approach using an ensemble of
𝑀 = 60 quantization rules 𝒬 defined by Eq. (6.17) with 𝑛 = 10. We show the minimum and
maximum predicted value (dashed lines) and the mean prediction (solid line). (b) Standard deviation
𝜎𝛾0 for this prediction (dots), and for a prediction based on the initial integrable approximation 𝐻0

reg

(triangles).
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6.4. Tunneling predictions in 2D billiards using integrable

approximations

In this section we implement the fictitious integrable system approach for generic 2D billiards. After a

short recapitulation of this approach adapted to billiards (Sec. 6.4.1), we derive an effective numerical

scheme for computing quasimodes in 2D confined systems (Sec. 6.4.2). Finally, we present the appli-

cation of the fictitious integrable system approach (Sec. 6.4.3). Note that this application contains

unresolved problems, which, however, make its detailed documentation even more important.

6.4.1. Fictitious integrable system approach for 2D billiards

We now formulate the fictitious integrable system approach for 2D billiards. In contrast to time-

discrete systems, billiards have no special time scale, which allows to consider tunneling rates either

as differential [15] or as absolute transport rates with respect to time. Following Sec. 6.1, we take the

latter perspective and consider the time-discrete open system �̂�open, Eq. (6.2), where the unitary part

is given by

�̂� = 𝑒−𝑖�̂�𝑡0/~. (6.19)

Here, 𝑡0 is the time period between the instantaneous absorption events. Due to the scaling rela-

tion (5.16) of 𝐻, we can rewrite this as

�̂� =
(︁
�̂�0

)︁𝑡0~
, (6.20)

where �̂�0 = 𝑒−𝑖�̂�0 and �̂�0 = �̂�/~2 are dimensionless operators which do not depend on 𝑡0 and ~.
Consequently, for scaling systems (5.16), such as billiards, the tunneling process depends only on the

product 𝑡0~ and the semiclassical limit ~ → 0 coincides with the transition to short times 𝑡0 → 0. To

avoid computational effort, it is convenient to express �̂� in the eigenbasis of �̂�0 as

�̂� =
∑︁

n

𝑒−𝑖𝐸0,n𝑡0~ |𝜓n⟩ ⟨𝜓n| , (6.21)

using the eigenvalues 𝐸0,n of �̂�0. This way, tunneling rates may be computed for different values of 𝑡0
or ~ by just replacing 𝑡0~ in Eq. (6.21) without solving the eigenvalue problem of �̂� again. Moreover,

Eq. (6.21) also allows an enhanced evaluation of the open quantum map �̂�open, Eq. (6.2). Using an

arbitrary basis |𝜙n⟩ and a projector 𝑃abs onto a region defined in position space, we can write the
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matrix elements of �̂�open as

⟨𝜙n|�̂�open|𝜙m⟩ = ⟨𝜙n|(1− 𝑃abs)�̂�(1− 𝑃abs)|𝜙m⟩ (6.22a)

=

∫︁
d2q

∫︁
d2q′ ⟨𝜙n|(1− 𝑃abs)|q⟩ ⟨q|�̂� |q′⟩ ⟨q′|(1− 𝑃abs)|𝜙m⟩ , (6.22b)

=
∑︁

k

𝑒−𝑖𝐸0,k𝑡0~
∫︁

d2q
∫︁

d2q′ ⟨𝜙n|(1− 𝑃abs)|q⟩ ⟨q|𝜓k⟩ ⟨𝜓k|q′⟩ ⟨q′|(1− 𝑃abs)|𝜙m⟩ ,

(6.22c)

=
∑︁

k

𝑒−𝑖𝐸0,k𝑡0~
(︂∫︁

q/∈abs
d2q ⟨𝜙n|q⟩ ⟨q|𝜓k⟩

)︂

⏟  ⏞  
=: ℐk

n

(︂∫︁

q′ /∈abs
d2q′ ⟨𝜓k|q′⟩ ⟨q′|𝜙m⟩

)︂
,

(6.22d)

=
∑︁

k

𝑒−𝑖𝐸0,k𝑡0~ · ℐk
n · ℐk

m
*
. (6.22e)

Thus, for 𝑁 basis states |𝜙n⟩, instead of 𝑁2 4D integrals (6.22b), only 𝑁2 2D integrals ℐk
n need to be

computed. Moreover, as the latter are independent of 𝑡0 and ~, they only have to be computed once.

Keeping this in mind, we use dimensionless units from here, setting 𝑡0~ = 1.

6.4.2. Numerical computation of eigenstates in 2D confined systems

To employ the integrable approximations 𝐻reg constructed in Sec. 5.4 for the fictitious integrable

system approach, the quasimodes |𝜓n
reg⟩ need to be determined. Here, we encounter the difficulty that

𝐻reg is not in Schrödinger form (6.14), due to the canonical transformations in Eq. (3.15). Therefore,

traditional numerical methods for the eigenvalue problem of Hamiltonian systems cannot be used, as

they implicitly assume this form (6.14) with 𝑇 (p) = p2, where the stationary Schrödinger equation

translates to its well known form (−~2Δ+ 𝑉 − 𝐸)𝜓 = 0, which is a second order partial differential

equation. For Hamiltonians which are not in Schrödinger form, however, a differential equation

approach becomes impractical. Therefore, we develop an alternative numerical scheme for computing

the eigenstates of such Hamiltonians in the present section.

For this we proceed in three steps. After formulating the problem (step 1), we derive an analogue of

the Weyl quantization rule for 2D confined systems (step 2) and finally test the computation scheme

with a toy Hamiltonian (step 3).

Problem

In the following we consider the integrable approximation 𝐻reg of a 2D billiard. For convenience, we

use the coordinates (𝑞,𝑝) introduced in Sec. 5.2, where the system is confined to a unit square in

position space,

𝑞 ∈ 𝒮, 𝒮 = [0, 1]× [0, 1]. (6.23)
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To emphasize the generality of this problem, and for a more convenient notation, we ignore the context

of integrable approximations in this section by omitting the overbars of (𝑞,𝑝) and formally consider

𝐻reg(𝑞,𝑝) as a general observable 𝐴(q,p).

Thus we aim to solve the eigenvalue problem

𝐴 |𝜓n⟩ = 𝜆n |𝜓n⟩ , (6.24)

of an operator 𝐴 whose classical representation 𝐴(q,p) is not necessarily in Schrödinger form (6.14)

and confined to the unit square q ∈ 𝒮. Assuming the classical system to feature elastic reflections,

we propose Dirichlet boundary conditions

⟨q|𝜓n⟩|q∈𝜕𝒮 = 0. (6.25)

Consequently, the spectrum is discrete and labeled by two quantum numbers n = (𝑛1, 𝑛2) ∈ N2

corresponding to the two degrees of freedom.

First, we rewrite the eigenstates in an orthonormal basis

|𝜓n⟩ =
∑︁

m∈N2

𝑐nm |𝜙m⟩ , ⟨𝜙n|𝜙m⟩ = 𝛿n,m. (6.26)

By projecting Eq. (6.24) to this basis, we obtain the eigenvalue problem

∑︁

m∈N2

𝐴km𝑐
n
m = 𝜆n𝑐

n
k, (6.27)

for the coefficients 𝑐nk with the matrix

𝐴nm = ⟨𝜙n|𝐴|𝜙m⟩ . (6.28)

Furthermore, we truncate the basis at a cutoff (𝑁1, 𝑁2), i. e., we only consider states |𝜙n⟩ with 𝑛𝑖 ≤ 𝑁𝑖,

such that the eigenvalue problem (6.27) becomes finite and can be solved numerically.

Weyl quantization for 2D confined systems

The remaining task is to compute the matrix elements 𝐴nm = ⟨𝜙n|𝐴|𝜙m⟩, Eq. (6.28). For this we

choose the basis states from the square billiard |𝜙n⟩ = |𝜙𝑛1⟩ |𝜙𝑛2⟩, which have the position represen-

tation

⟨q|𝜙n⟩ = ⟨𝑞1|𝜙𝑛1⟩ ⟨𝑞2|𝜙𝑛2⟩ = 2 sin(𝑛1𝜋𝑞1) sin(𝑛2𝜋𝑞2), (6.29)

see Fig. 6.4. Note that expressing |𝜓n⟩ in the |𝜙m⟩ automatically satisfies the boundary condi-

tions (6.25).

In this basis, we derive an analogue of the Weyl quantization adapted to 2D confined systems,
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0

1

0 1q1

q2

|ϕ1,1〉 |ϕ1,2〉 |ϕ1,3〉 |ϕ2,1〉 |ϕ2,2〉 |ϕ2,3〉

Figure 6.4.: Modulus | ⟨q|𝜙n⟩ | of the square billiard eigenstates in position representation,
Eq. (6.29), with n = (𝑛1, 𝑛2) for 𝑛1 ≤ 2 and 𝑛2 ≤ 3, shown on a linear scale.

which will result in Eq. (6.50). As the position is confined to the unit square (6.23), the Hilbert space

is spanned by the states |𝜙n⟩ and we have

1 =
∑︁

n∈N2

|𝜙n⟩ ⟨𝜙n| , ⟨𝜙n|𝜙m⟩ = 𝛿n,m, (6.30a)

1 =

∫︁

𝒮
d2q |q⟩ ⟨q| , ⟨q|q′⟩ = 𝛿(q− q′). (6.30b)

Here, the Weyl quantization cannot be applied directly, as it is defined for systems with an unbounded

position domain q ∈ R2 only. The Hilbert space spanned by the |𝜙n⟩, however, has different properties,
e. g., the momentum has a discrete spectrum

pn = 𝜋~

(︃
𝑛1

𝑛2

)︃
, 𝑛1, 𝑛2 ∈ Z ∖ {0}. (6.31)

Moreover, as the momentum operator p̂ is self-adjoint, but not Hermitian, its eigenstates |pn⟩ =

|𝑝𝑛1⟩ |𝑝𝑛2⟩ are not orthogonal, but fulfill

⟨pn|pm⟩ = ⟨𝑝𝑛1 |𝑝𝑚1⟩ ⟨𝑝𝑛2 |𝑝𝑚2⟩ , with ⟨𝑝𝑛|𝑝𝑚⟩ =
{︃

1 𝑛 = 𝑚
(−1)𝑚−𝑛−1
𝑖𝜋(𝑚−𝑛) 𝑛 ̸= 𝑚

, (6.32)

as can be shown by inserting 1 =
∫︀
𝒮 d

2q |q⟩ ⟨q|. As the position representation ⟨q|pn⟩ = exp(𝑖𝜋nq)

vanishes nowhere, it violates the boundary conditions on 𝜕𝒮, thus the momentum eigenstates |pn⟩
cannot be expressed in the Hilbert-space basis |𝜙n⟩. However, special linear combinations of the |pn⟩
can still be used to express valid states. For example, comparing the exponential representation of

the sine function with Eq. (6.29), we can write |𝜙n⟩ as

|𝜙n⟩ = |𝜙𝑛1⟩ |𝜙𝑛2⟩ =
(︂−𝑖√

2

)︂2

(|𝑝𝑛1⟩ − |𝑝−𝑛1⟩) (|𝑝𝑛2⟩ − |𝑝−𝑛2⟩) = −1

2

±∑︁

𝑠1,𝑠2

𝑠1𝑠2 |p𝑠1𝑛1,𝑠2𝑛2⟩ .

(6.33)

Here, in the latter, more compact expression, we used the index notation (6.31) summing over two

signs 𝑠1, 𝑠2 ∈ {+,−}, which will turn out as convenient for the following derivation.
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We first recall the Weyl formula 𝒬0 for an unbounded position domain q ∈ R2, given by

𝒬0(𝐴) =
1

(2𝜋)4

∫︁

R2

d2q
∫︁

R2

d2p
∫︁

R2

d2𝜃
∫︁

R2

d2𝜏 𝑒−𝑖𝜃q𝑒−𝑖𝜏p𝑤(𝜃, 𝜏 )𝑒𝑖𝜃q̂𝑒𝑖𝜏 p̂𝐴(q,p), (6.34)

where the kernel is given by Eq. (6.16) with 𝛼 = 0, i. e., 𝑤(𝜃, 𝜏 ) = 𝑒𝑖𝜃𝜏~/2. We remark, that the

exponential operators in the integrand can be symmetrically expressed as

𝑤(𝜃, 𝜏 )𝑒𝑖𝜃q̂𝑒𝑖𝜏 p̂ = 𝑒𝑖𝜏 p̂/2𝑒𝑖𝜃q̂𝑒𝑖𝜏 p̂/2. (6.35)

The general idea behind Eq. (6.34) is a two-fold Fourier transform according to the scheme

(q,p)
FT−→ (𝜃, 𝜏 )

FT−1

−→ (q̂, p̂). (6.36)

Based on this idea, we define the analogue of this quantization rule for the confined system, where

the position variables are restricted to q ∈ 𝒮, by replacing the corresponding Fourier integral trans-

formations with the Fourier series transformations, i. e.,

1

2𝜋

∫︁

R
d𝑞𝑗

∫︁

R
d𝜃𝑗 𝑒

−𝑖𝜃𝑗𝑞𝑗𝑒𝑖𝜃𝑗𝑞𝑗 ↦→
∫︁ 1

0
d𝑞𝑗

∑︁

𝜃𝑗∈Z
𝑒−𝑖2𝜋𝜃𝑗𝑞𝑗𝑒𝑖2𝜋𝜃𝑗𝑞𝑗 . (6.37)

This transfers Eq. (6.34) into

𝒬0(𝐴) =
1

(2𝜋)2

∫︁

𝒮
d2q

∫︁

R
d2p

∑︁

𝜃∈Z2

∫︁

R
d2𝜏 𝑒−𝑖2𝜋𝜃q𝑒−𝑖𝜏p𝑒𝑖𝜏 p̂/2𝑒𝑖2𝜋𝜃q̂𝑒𝑖𝜏 p̂/2𝐴(q,p). (6.38)

Considering the exponential operator terms in this integral, we derive their matrix representation

in the |𝜙n⟩-basis as

⟨𝜙n|𝑒𝑖𝜏 p̂/2𝑒𝑖2𝜋𝜃q̂𝑒𝑖𝜏 p̂/2|𝜙m⟩ =
∏︁

𝑗=1,2

⟨𝜙𝑛𝑗 |𝑒𝑖𝜏𝑗𝑝𝑗/2𝑒𝑖2𝜋𝜃𝑗𝑞𝑗𝑒𝑖𝜏𝑗𝑝𝑗/2|𝜙𝑚𝑗 ⟩ , (6.39a)

=
∏︁

𝑗=1,2

1

2

±∑︁

𝑠𝑗 ,𝑠′𝑗

𝑠𝑗𝑠
′
𝑗 ⟨𝑝𝑠𝑗𝑛𝑗 |𝑒𝑖𝜏𝑗𝑝𝑗/2𝑒𝑖2𝜋𝜃𝑗𝑞𝑗𝑒𝑖𝜏𝑗𝑝𝑗/2|𝑝𝑠′𝑗𝑚𝑗

⟩ , (6.39b)

=
1

4

±∑︁

𝑠1,𝑠2,𝑠′1,𝑠
′
2

𝑠1𝑠2𝑠
′
1𝑠

′
2

∏︁

𝑗=1,2

⟨𝑝𝑠𝑗𝑛𝑗 |𝑒𝑖𝜏𝑗𝑝𝑗/2𝑒𝑖2𝜋𝜃𝑗𝑞𝑗𝑒𝑖𝜏𝑗𝑝𝑗/2|𝑝𝑠′𝑗𝑚𝑗
⟩ ,

(6.39c)

=
1

4

±∑︁

𝑠1,𝑠2,𝑠′1,𝑠
′
2

𝑠1𝑠2𝑠
′
1𝑠

′
2

∏︁

𝑗=1,2

𝑒
𝑖𝜏𝑗(𝑝𝑠𝑗𝑛𝑗+𝑝𝑠′

𝑗
𝑚𝑗

)/2 ⟨𝑝𝑠𝑗𝑛𝑗 |𝑒𝑖2𝜋𝜃𝑗𝑞𝑗 |𝑝𝑠′𝑗𝑚𝑗
⟩ ,

(6.39d)
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=
1

4

±∑︁

𝑠1,𝑠2,𝑠′1,𝑠
′
2

𝑠1𝑠2𝑠
′
1𝑠

′
2

∏︁

𝑗=1,2

𝑒
𝑖𝜏𝑗(𝑝𝑠𝑗𝑛𝑗+𝑝𝑠′

𝑗
𝑚𝑗

)/2 ⟨𝑝𝑠𝑗𝑛𝑗 |𝑝𝑠′𝑗𝑚𝑗+2𝜃𝑗 ⟩ .

(6.39e)

Here, in step (6.39b), we used Eq. (6.33), in step (6.39d) we applied 𝑝𝑗 , and in step (6.39e) we used

the translation operator exp(𝑖𝑎𝑞) |𝑝⟩ = |𝑝+ 𝑎~⟩. For a shorter notation, we define

ps,s′,±
n,m := 𝜋~

(︃
𝑠1𝑛1 ± 𝑠′1𝑚1

𝑠2𝑛2 ± 𝑠′2𝑚2

)︃
, (6.40)

and exploit the invariance

⟨𝑝𝑛|𝑝𝑚+Δ⟩ = ⟨𝑝𝑛−Δ|𝑝𝑚⟩ , (6.41)

to rewrite Eq. (6.39e) as

=
1

4

±∑︁

𝑠1,𝑠2,𝑠′1,𝑠
′
2

𝑠1𝑠2𝑠
′
1𝑠

′
2

∏︁

𝑗=1,2

𝑒
𝑖𝜏𝑗(𝑝𝑠𝑗𝑛𝑗+𝑝𝑠′

𝑗
𝑚𝑗

)/2 ⟨𝑝𝑠𝑗𝑛𝑗−𝑠′𝑗𝑚𝑗
|𝑝2𝜃𝑗 ⟩ , (6.42a)

=
1

4

±∑︁

𝑠1,𝑠2,𝑠′1,𝑠
′
2

𝑠1𝑠2𝑠
′
1𝑠

′
2𝑒

𝑖𝜏ps,s′,+
n,m /2 ⟨ps,s′,−

n,m |p2𝜃⟩ . (6.42b)

Note that, by using the invariance (6.41), also scalar products involving |𝑝0⟩ might occur formally,

e. g., ⟨𝑝1|𝑝1⟩ = ⟨𝑝0|𝑝0⟩ = 1, thus we also allow 𝑛𝑗 = 0 in Eq. (6.31) from now on.

Using Eqs. (6.42b) and (6.38), we derive the Weyl rule in |𝜙n⟩ representation as

𝐴nm = ⟨𝜙n|𝒬0(𝐴)|𝜙m⟩ , (6.43a)

=
1

(2𝜋)2

∫︁

𝒮
d2q

∫︁

R
d2p

∑︁

𝜃∈Z2

∫︁

R
d2𝜏 𝑒−𝑖2𝜋𝜃q𝑒−𝑖𝜏p ⟨𝜙n|𝑒𝑖𝜏 p̂/2𝑒𝑖2𝜋𝜃q̂𝑒𝑖𝜏 p̂/2|𝜙m⟩⏟  ⏞  

= (6.42b)

𝐴(q,p),

(6.43b)

=
1

(4𝜋)2

±∑︁

𝑠1,𝑠2,𝑠′1,𝑠
′
2

𝑠1𝑠2𝑠
′
1𝑠

′
2

∫︁

𝒮
d2q

∫︁

R
d2p

∑︁

𝜃∈Z2

𝑒−𝑖2𝜋𝜃q (6.43c)

×
∫︁

R
d2𝜏 𝑒𝑖𝜏 (p

s,s′,+
n,m /2−p)

⏟  ⏞  
= (2𝜋)2𝛿(p− ps,s′,+

n,m /2)

⟨ps,s′,−
n,m |p2𝜃⟩𝐴(q,p), (6.43d)

=
1

4

±∑︁

𝑠1,𝑠2,𝑠′1,𝑠
′
2

𝑠1𝑠2𝑠
′
1𝑠

′
2

∫︁

𝒮
d2q 𝐴

(︁
q,ps,s′,+

n,m /2
)︁ ∑︁

𝜃∈Z2

𝑒−𝑖2𝜋𝜃q ⟨ps,s′,−
n,m |p2𝜃⟩ . (6.43e)

The last step is to evaluate the double-sum over 𝜃 = (𝜃1, 𝜃2). This sum factorizes to 𝒦1𝒦2 with the
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components

𝒦𝑗 :=
∑︁

𝜃𝑗∈Z
𝑒−𝑖2𝜋𝜃𝑗𝑞𝑗 ⟨𝑝𝑠𝑗𝑛𝑗−𝑠′𝑗𝑚𝑗

|𝑝2𝜃𝑗 ⟩ . (6.44)

We first consider the case, where (𝑛𝑗 + 𝑚𝑗) is an even number. Note that this implies that also

(𝑠𝑗𝑛𝑗 − 𝑠′𝑗𝑚𝑗) is even for all signs (𝑠𝑗 , 𝑠′𝑗). As 2𝜃𝑗 is even too, only the term with (𝑠𝑗𝑛𝑗 − 𝑠′𝑗𝑚𝑗) = 2𝜃𝑗

contributes according to Eq. (6.32) and we obtain

𝒦𝑗 = 𝑒−𝑖𝜋(𝑠𝑗𝑛𝑗−𝑠′𝑗𝑚𝑗)𝑞𝑗 . (6.45)

Secondly, we consider (𝑛𝑗 +𝑚𝑗) to be odd. With Eq. (6.32), we have

𝒦𝑗 =
∑︁

𝜃𝑗∈Z
𝑒−𝑖2𝜋𝜃𝑗𝑞𝑗 ,

(−1)2𝜃𝑗−(𝑠𝑗𝑛𝑗−𝑠′𝑗𝑚𝑗) − 1

𝑖𝜋
[︁
2𝜃𝑗 − (𝑠𝑗𝑛𝑗 − 𝑠′𝑗𝑚𝑗)

]︁ . (6.46)

As 2𝜃𝑗 − (𝑠𝑗𝑛𝑗 − 𝑠′𝑗𝑚𝑗) is odd too, the numerator evaluates to (−2), and we obtain

𝒦𝑗 = − 2

𝑖𝜋

∑︁

𝜃𝑗∈Z

𝑒−𝑖2𝜋𝜃𝑗𝑞𝑗

2𝜃𝑗 − (𝑠𝑗𝑛𝑗 − 𝑠′𝑗𝑚𝑗)
. (6.47)

We evaluate this sum using that

∑︁

𝜃∈Z

𝑒−𝑖2𝜋𝜃𝑞

2𝜃 − 𝜉
= − 𝑖𝜋

2
𝑒−𝑖𝜋𝜉𝑞 for 𝑞 ∈ [0, 1) and 𝜉 odd, (6.48)

which can be shown by elementary methods. For 𝜉 = (𝑠𝑗𝑛𝑗 − 𝑠′𝑗𝑚𝑗) this leads to the same result 𝒦𝑗

as for the even case (6.45). Finally, by reinserting 𝒦𝑗 into Eq. (6.43e), we obtain the matrix elements

of the Weyl quantized observable,

𝐴nm =
1

4

±∑︁

𝑠1,𝑠2,𝑠′1,𝑠
′
2

𝑠1𝑠2𝑠
′
1𝑠

′
2

∫︁

𝒮
d2q 𝐴

(︁
q,ps,s′,+

n,m /2
)︁
𝑒−𝑖qps,s′,−

n,m /~. (6.49)

By resubstituting the ps,s′,±
n,m and assuming the scaling relation (5.16) for the classical observable

𝐴(q,p), this is simplified to

𝐴nm =

(︂
𝜋~
4

)︂2 ±∑︁

𝑠1,𝑠2,𝑠′1,𝑠
′
2

𝑠1𝑠2𝑠
′
1𝑠

′
2

∫︁

𝒮
d2q 𝐴

[︃
q,

(︃
𝑠1𝑛1 + 𝑠′1𝑚1

𝑠2𝑛2 + 𝑠′2𝑚2

)︃]︃
exp

[︃
−𝑖𝜋q

(︃
𝑠1𝑛1 − 𝑠′1𝑚1

𝑠2𝑛2 − 𝑠′2𝑚2

)︃]︃
.

(6.50)

To evaluate the integrals, we discretize the position domain 𝒮 into 𝑁𝑞 points along each direction

𝑞1 and 𝑞2. As (n,m) = (𝑛1, 𝑛2,𝑚1,𝑚2), the matrix size of 𝐴nm is 𝑁mat = 𝑁1𝑁2 and the total
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computation time grows like 𝒪
(︀
𝑁2

mat

)︀
. In App. J, we present an optimized algorithm which reduces

this to 𝒪 (𝑁mat).

Numerical test

To test the presented computation scheme, we first consider a toy Hamiltonian �̂�, whose eigenvalues

and eigenvectors are known exactly. Here, any textbook system seems out of the question, as we

require �̂� to be not in Schrödinger form. However, we can construct a non-Schrödinger Hamiltonian

by considering, e. g., the modified square billiard on the unit square q′ ∈ 𝒮, given by

𝐻 ′(p′) = 𝑝′1
2
+ 𝑍𝑝′2

2
. (6.51)

Here the factor 𝑍 =
√
3 is chosen to circumvent eigenvalue degeneracies between the uncoupled

degrees of freedom. Compared to the square billiard 𝑍 = 1, this only changes the spectrum, while

the eigenfunctions remain unchanged and are given by

(q′|𝜓n⟩ = 2 sin(𝑛1𝜋𝑞
′
1) sin(𝑛2𝜋𝑞

′
2). (6.52)

Then by applying a canonical transformation 𝒯toy : (q′,p′) ↦→ (q,p), we construct a new classical

Hamiltonian

𝐻(q,p) = 𝐻 ′ [︀𝒯 −1
toy (q,p)

]︀
, (6.53)

that is not in Schrödinger form. If we choose 𝒯toy as a point transformation, there is a unique relation

between the eigenfunctions in both coordinates, given by [77, Eq. (1.2)]

⟨q|𝜓n⟩ =
√︃⃒⃒
⃒⃒dq′

dq
(q)

⃒⃒
⃒⃒ · (q′|𝜓n⟩

⃒⃒
q′=q′(q)

. (6.54)

Here |q⟩ and |q′) denote the (different) eigenbases of q̂ and q̂′, respectively. This relation follows

directly from the probability conservation 𝜌(q)dq = 𝜌′(q′)dq′ for 𝜌(q) = ⟨q|𝜓n⟩ and 𝜌′(q′) = (q′|𝜓n⟩.
For the present purpose, the point transformation 𝒯toy should preserve the unit square 𝒮, which is

fulfilled, e. g., by the polynomial transformation

𝑥′(𝑥, 𝑦) = 𝑥+ 𝜖
[︀
1− 4(𝑥− 1

2)
2
]︀ [︀
1− 2(2𝑦 − 1)2 + (2𝑦 − 1)4

]︀
, (6.55a)

𝑦′(𝑥, 𝑦) = 𝑦, (6.55b)

where we choose 𝜖 = 0.1 in the following. Figure 6.5 shows the eigenfunction (q′|𝜓n⟩ for n = (3, 5)

(a), Eq. (6.52), and the transformed eigenfunction ⟨q|𝜓n⟩ (b), Eq. (6.54).
We now test our computation scheme by computing numerical solutions |𝜓num

n ⟩ for the transformed

toy Hamiltonian (6.53) using the parameters (𝑁1, 𝑁2, 𝑁𝑞) = (30, 30, 100). We compute the matrix

elements (6.50) for the observable 𝐴(q,p) = 𝐻(q,p) and from its eigenvectors 𝑐nm we obtain the
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Figure 6.5.: (a) Modulus | (q′|𝜓2,4⟩ | of an eigenstate in q′ = (𝑥′, 𝑦′)-representation for the modified
square billiard (6.51), shown on a linear scale. (b) Transformed eigenstate | ⟨q|𝜓2,4⟩ |, corresponding
to the toy Hamiltonian (6.54). (c) Scalar product ⟨𝜓n|𝜓num

n ⟩ of the predicted and the numerically
computed eigenstates for different quantum numbers n = (𝑛1, 𝑛2), together with insets (right) which
show ⟨q|𝜓num

n ⟩ and ⟨q|𝜓n⟩ for a state near the critical threshold n = (19, 19) and a well approximated
state n = (11, 4).

eigenstates |𝜓num
n ⟩. Note that due to the scaling relation (5.16) of 𝐻(q,p), Planck’s constant ~ does

not influence the eigenstates, while the eigenvalues scale with ~2. We sort the resulting eigenstates,

such that |𝜓num
n ⟩ has 𝑛𝑗 modes along each direction 𝑞𝑗 . To compare these eigenstates to the exact

solutions, we compute the scalar product | ⟨𝜓n|𝜓num
n ⟩ |, see Fig. 6.5(c). Below a critical threshold

𝑛1 < 15, 𝑛2 < 25, the eigenstates are well approximated. For states outside of this threshold, the

cutoff parameters (𝑁1, 𝑁2) do not suffice. This is illustrated in Fig. 6.5(c) where we compare ⟨q|𝜓n⟩
and ⟨q|𝜓num

n ⟩ for n = (11, 4) and n = (19, 19). Apparently, choosing higher cutoff parameters (𝑁1, 𝑁2)

increases the critical threshold. As this increase leaves any well approximated state |𝜓num
n ⟩ invariant,

it also serves as a check for convergence when the true solutions |𝜓n⟩ are unknown.
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6.4.3. Application

We now apply the fictitious integrable system approach to the cosine billiard (5.2). We use the

parameters (ℎ,𝑤) = (0.2, 0.066) where the system has a generic, mixed phase space and an inte-

grable approximation has been determined in Sec. 5.4. We consider the Hamiltonians of the billiard

𝐻, Eq. (5.1), and its integrable approximation 𝐻reg, Eq. (3.15), additionally transformed to the

coordinates (𝑞,𝑝) defined in Sec. 5.2. Moreover, we shift �̄� to the interval [0, 1] according to the

convention (6.23).

Applying the computation scheme from Sec. 6.4.2 with the numerical parameters (𝑁1, 𝑁2, 𝑁𝑞) =

(40, 40, 100), we obtain the eigenstates of �̂� and �̂�reg. The first row in Fig. 6.6 shows different

regular eigenstates |𝜓n⟩ of the cosine billiard �̂� in q-representation, which locate in the regular

region, see also Fig. 5.2(a). In the second row, we show the same eigenstates in 𝑞-representation.

For comparison, the third row (d–f) shows the corresponding eigenstates |𝜓n
reg⟩ of �̂�reg. Note that,

as the connection (5.5) between the coordinates (𝑞,𝑝) and the original billiard coordinates (q,p)

is a point transformation, also the transformation between quantum states ⟨𝑞|𝜓⟩ and (q|𝜓⟩ follows
straightforwardly from Eq. (6.54).

Due to the mixed phase space of 𝐻, the basis |𝜓n⟩ contains “regular” states which localize on a

quantizing torus (see Fig. 6.6(a–c)) and “chaotic” states (not shown). In contrast, the basis |𝜓n
reg⟩ only

contains “regular” quasimodes, as the integrable approximation 𝐻reg globally extrapolates the regular

x̄

ȳ

(d) |ψ1,6
reg〉

x̄

ȳ

(e) |ψ2,6
reg〉 (f) |ψ3,6

reg〉

(a) |ψ1,6〉

x

y

(b) |ψ2,6〉 (c) |ψ3,6〉

Figure 6.6.: (a–c) Billiard eigenstates |𝜓n⟩ in q = (𝑥, 𝑦)-representation (first row) and 𝑞 = (�̄�, 𝑦)-
representation (second row), for n = (1, 6) (a), n = (2, 6) (b), and n = (3, 6) (c), shown on a linear
scale. (d–f) Corresponding quasimodes |𝜓n

reg⟩ in 𝑞 = (�̄�, 𝑦)-representation.
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region of 𝐻. Thus, some of the quasimodes |𝜓n
reg⟩ are located in the regular region of 𝐻, and some are

located outside. These two parts of the basis |𝜓n
reg⟩ can be distinguished very easily by considering

the action–angle coordinates (𝜗,J), where each torus corresponds to a point J in the action plane.

Here, according to the EBK quantization [78], the eigenstates |𝜓n
reg⟩ localize on quantizing actions

given by

Jn =
(︁
n+

𝜇

4

)︁
~+𝒪

(︀
~2
)︀
, n ∈ N2. (6.56)

The numbers 𝜇 = (𝜇1, 𝜇2) are the Maslov indices of the fundamental loops (𝒞1, 𝒞2) on the considered

torus. As discussed in Sec. 5.1, 𝒞1 includes two turning points, while 𝒞2 includes two hard-wall

reflections. This leads to 𝜇1 = 2 and 𝜇2 = 4 [78, App. D.2]. Neglecting 𝒪
(︀
~2
)︀
, the resulting

grid of quantizing actions (6.56) is sketched in Fig. 6.7. Now, the scaling relation (5.21) of 𝐻reg(J)

decomposes the action plane into families of similar tori located on radial lines through the origin

J = 0. Particularly, the line 𝐽1 = 0 corresponds to the family of stable periodic orbits in the center of

the regular region, see Sec. 5.1. Consequently, the border of the regular region is completely defined,

if one point J* = (𝐽*
1 , 𝐽

*
2 ) on this border is known, see the dashed line in Fig. 6.7. Note that one

such point J* is determined when applying the iterative canonical transformation method, see the

rightmost dot in Fig. 5.6(a). Therefore, |𝜓n
reg⟩ belongs to the regular region of 𝐻 if

𝑛1 +
𝜇1

4

𝑛2 +
𝜇2

4

<
𝐽*
1

𝐽*
2

. (6.57)

As the main regular island of the cosine billiard is restricted in �̄�-direction, we choose a position

�̄�abs slightly left of the outermost torus and introduce the symmetric absorber

𝑃abs =

∫︁

abs

d2𝑞 |𝑞⟩ ⟨𝑞| , (6.58)

0

2

4

0 2 4

J∗

regular chaotic

J1/~

J2/~

Figure 6.7.: Action plane with a grid of quantizing actions (6.56) (black dots), and a radial line
through a point J* (cross) separating the regular from the chaotic phase-space region.
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where the integral goes over all positions with �̄� ∈ [0, �̄�abs] ∪ [1− �̄�abs, 1]. For the considered system

(ℎ,𝑤) = (0.2, 0.066) we set �̄�abs = 0.26. The inset in Fig. 6.8(a) shows this absorber in the billiard

coordinates (𝑥, 𝑦) (gray areas) and a trajectory on the outermost torus J* (red).

Using this absorber, we first compute the tunneling rates, Eq. (6.4), from the eigenvalues of the open

system �̂�open, which we evaluate with Eq. (6.22e). Secondly, we compute the predicted tunneling rates

using the fictitious integrable system approach (6.7). For the following purpose it is sufficient to use the

integrable approximation �̂�1
reg obtained after the first step of the iterative canonical transformation

method. In Fig. 6.8(a) we compare the tunneling rates 𝛾n for 𝑛1 = 1 (bright dots) with their

prediction (dark dots and line). As can be seen, this prediction fails for the most values of 𝑛2, where

it is systematically larger than the true rates. This behavior is caused by the quasimodes |𝜓n
reg⟩,

which are not purely located at the n-th quantizing tori but also include small couplings to other

tori n′ ̸= n. This can be seen, e. g., for the states |𝜓1,4
reg⟩ and |𝜓7,3

reg⟩ in Figs. 6.8(b) and (c), where

we find small contributions of |𝜓1,4
reg⟩ located far from the central orbit �̄� = 1

2 which replicate the

structure of |𝜓7,3
reg⟩. This hybridization is possible due to a quasi-degeneracy of the tori n = (1, 4) and

n′ = (7, 3) in energy with Δ𝐸/𝐸 ≈ 0.006. This can be understood by considering the action plane,

where the tori n = (1, 4) and n′ = (7, 3) lie close to a contour line of the Hamiltonian ℋreg(J), see the

red line in Fig. 6.8(d). From this figure it becomes obvious, that quasi-degeneracies are unavoidable.

They arise whenever a contour line of ℋreg(J) passes the neighborhoods of multiple points from

10−8
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ȳ
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Figure 6.8.: (a) Tunneling rates 𝛾1,𝑛2
of the cosine billiard (5.2) with (ℎ,𝑤) = (0.2, 0.066) (bright

dots) compared to their prediction obtained from the fictitious integrable system approach (dark
dots and line) using an integrable approximation 𝐻1

reg obtained from the iterative canonical trans-
formation method. (b–c) Quasimodes ⟨𝑞|𝜓n

reg⟩ for (b) n = (1, 4) and (c) n = (7, 3). (d) Action plane
with quantizing actions (6.56) (dots) and contour lines of the integrable approximation ℋreg(J) (red
and gray lines).
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the quantizing grid (6.56), which happens systematically for an equidistant grid and is independent

of the chosen function ℋreg(J). This is in contrast to the situation of 𝑓 = 1 degree of freedom,

where such quasi-degeneracies can be removed by enforcing the monotony of ℋreg(𝐽), Eq. (6.9).

Moreover, choosing higher basis cutoffs (𝑁1, 𝑁2) enlarges the grid of quantizing actions (6.56), which

incrementally enhances the appearance of quasi-degeneracies. Having stated the statistical necessity

of quasi-degenerate states, however, only explains the possibility of couplings, but not their existence.

A hint to their origin comes up, if we consider the initial integrable approximation �̂�0
reg, Eq. (3.9),

for which we obtain the prediction shown in Fig. 6.9. Here, the tunneling rate predictions for 𝛾n
with 𝑛1 = 1, 2, 3 (blue, green, and red, respectively) show a vague agreement, only. This is expected,

as 𝐻0
reg gives only a rough approximation of 𝐻. Apart from this, however, we observe no couplings

between energetically close tori, see Figs. 6.9(b) and (c). This example shows that the couplings in

�̂�1
reg between different tori are caused by the canonical transformation 𝑇1. Although we could not

resolve this issue, we emphasize an alternative interpretation. It was already exposed in Sec. 6.3,

that the canonical transformations 𝑇𝑛, 𝑛 > 0 give rise to quantum mechanical ambiguities, namely

in the quantization rule 𝒬, which is related to the current problem. Denote by |Jn⟩ a state purely

localizing on the n-th quantizing torus. Among all possible quantizations, the fictitious integrable

system approach requires an integrable approximation �̂�𝑛*
reg which is diagonal in this basis, i. e.,

⟨Jn|�̂�𝑛*
reg|Jm⟩ = 𝛿n,m. (6.59)

However, as the classical Hamiltonian 𝐻𝑛
reg, has no unique quantization for 𝑛 ̸= 0, any two quantiza-

tions differ by a term 𝒪 (~), Eq. (6.13c). From a perturbative perspective it is clear, that even this

small perturbation 𝒬(𝐻𝑛
reg) = �̂�𝑛*

reg + 𝒪 (~) leads to significant couplings ⟨Jn|𝒬(𝐻𝑛
reg)|Jm⟩ between

energetically close tori. Therefore, the unwanted couplings appear as the consequence of an improp-
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Figure 6.9.: (a) Tunneling rates 𝛾n as in Fig. 6.8(a) but for 𝐻0
reg and 𝑛1 = 1 (blue), 𝑛1 = 2 (green),

and 𝑛1 = 3 (red). (b–c) Quasimodes ⟨𝑞|𝜓n
reg⟩ for (b) n = (1, 4) and (c) n = (7, 3).
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erly chosen quantization rule. An equivalent problem arose for 𝑓 = 1 degree of freedom in Ref. [50,

Sec. 4.3.2], where integrable approximations from the iterative canonical transformation method are

used to describe resonance-assisted tunneling. There, the Weyl quantization also causes undesired

couplings in �̂�𝑛
reg if 𝑛 ̸= 0. This is resolved by the author due to an analytical quantization procedure

based on selection rules for the couplings, which requires to reset ℋreg(𝐽) according to Eq. (6.9). This

way the quantization rule remains ambiguous, but its influence on the couplings is effectively sup-

pressed by a selective removal of the quasi-degeneracies. However, as stated above, quasi-degeneracies

are unavoidable in the present situation.

These considerations suggest, that the missing piece for a successful generalization of the fictitious

integrable system approach to 𝑓 ≥ 2 can possibly be found from two perspectives. One option would be

a deeper investigation of the interplay between canonical transformations and quantization, possibly

including the role of the Egorov theorem. A second option would be, to not choose the quasimodes

from the eigenbasis of �̂�reg, but from the eigenbasis |Jn⟩ of the complete set of commuting observables

Ĵ = (𝐽1, ..., 𝐽𝑓 ), whose classical counterparts J(q,p) are also determined by the iterative canonical

transformation method. Although this complete set formally defines a unique eigenbasis, its practical

determination becomes difficult, as 𝑓 operators need to be considered simultaneously, whose spectra

are completely degenerate.

Finally, we apply the fictitious integrable system approach in the near-integrable case, where the

integrable approximation 𝐻0
reg is sufficient. Specifically, we choose the cosine billiard with (ℎ,𝑤) =

(0.115, 0.06) and �̄�abs = 0.148. We compute the quasimodes with the computation scheme from

Sec. 6.4.2 with the numerical parameters (𝑁1, 𝑁2, 𝑁𝑞) = (60, 20, 100). The comparison of the tunnel-

ing rates with their prediction based on 𝐻0
reg is shown in Fig. 6.10. Here, for all numerically accessible

tunneling rates 𝛾n > 10−16, we obtain a closer prediction. This confirms the validity of our imple-
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Figure 6.10.: Tunneling rates 𝛾n as in Fig. 6.8(a) but for (ℎ,𝑤) = (0.115, 0.06), 𝐻0
reg, and the

quantum numbers 𝑛1 = 1 (blue), 𝑛1 = 2 (green), 𝑛1 = 3 (red), 𝑛1 = 4 (purple), 𝑛1 = 5 (light blue),
and 𝑛1 = 6 (gray).
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mentation based on the derived Weyl quantization and demonstrates the principal applicability of the

fictitious integrable system approach to 2D billiards.





7. Summary and outlook

In this thesis, we developed a new method which constructs an integrable approximation 𝐻reg to

a given, non-integrable system 𝐻 (Sec. 3). This iterative canonical transformation method requires

no specification on the system 𝐻 or its dimension, aside from an increasing numerical effort for

higher dimensions. The basic idea of this method is to determine 𝐻reg by independently constructing

its frequency function 𝜔(J) (frequency approximation) and its canonical transformation 𝑇 (shape

approximation), where both 𝜔(J) and 𝑇 are optimized using sampled data of the target system

𝐻. In the second step, the canonical transformation 𝑇 is decomposed into a sequence of individual

transformations (𝑇0, 𝑇1, ..., 𝑇𝑁 ) which are chosen iteratively from a family of canonical transformations

(iterative improvement).

Up to now, the construction of a globally accurate integrable approximation was practically re-

stricted to near-integrable target systems, due to the perturbative character of traditional methods.

The main result of this thesis was to overcome this restriction. Technically, this was achieved by a

damping mechanism, which restabilizes the iterative improvement even for strongly perturbed sys-

tems. This advancement was confirmed by an explicit comparison to the methods of normal forms

[18, 19] and Lie transforms [8, 20–22] (Sec. 4.5).

We demonstrated the applicability of the method to symplectic 2D maps (Sec. 4) and 2D billiards

(Sec. 5) far from the near-integrable regime. For both system classes, we obtained comparably accurate

results. Moreover, we have shown that the method is able to reach the insurmountable, optimal

accuracy of any integrable approximation, which is caused by the presence of nonlinear resonances

and chaotic layers (Sec. 4.4).

We have emphasized, that the proper choice of the initial canonical transformation 𝑇0 allows to

enhance the phase-space topology of 𝐻reg. For symplectic 2D maps, we have used this to incorporate

a separatrix (Sec. 4.6) or a nonlinear resonance chain (Sec. 4.7) into the integrable approximation

𝐻reg. Here, the latter result was obtained in cooperation with Julius Kullig and Normann Mertig.

Finally, we have used the integrable approximations for the theoretical prediction of direct regular-

to-chaotic tunneling rates (Sec. 6). This was accomplished by applying the fictitious integrable system

approach [12–14] with the previously constructed integrable approximations 𝐻reg.

For symplectic 2D maps, we performed this prediction with success (Sec. 6.2). We emphasized that

the required quantized integrable approximation �̂�reg is ambiguous due to the non-Schrödinger form

of the classical Hamiltonian 𝐻reg (Sec. 6.3). For the standard map, we gave numerical evidence for

the resulting ambiguity of the tunneling predictions.

For generic 2D billiards, we also implemented this prediction (Sec. 6.4). We first derived an analogue

of the Weyl quantization adapted to spatially confined systems. For the cosine billiard, a successful
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prediction was only achieved in the near-integrable case, where the initial integrable approximation

𝐻0
reg is sufficient. For 𝐻𝑛

reg with 𝑛 > 0, however, we found unexpected inter-torus couplings in the

quantized integrable approximation �̂�𝑛
reg. The nature of these couplings represents the most important

open question raised by this work, as it prevents a successful application of the fictitious integrable

system approach to generic billiards, up to now. Our results give strong evidence, that these couplings

occur generally for systems with 𝑓 > 1 degrees of freedom. We related them to the ambiguity of the

quantization of 𝐻reg, which is inherent in the fictitious integrable system approach, and discussed

possible solutions. We stress, that the occurring question for the “correct” quantization of a general

Hamiltonian is equivalent to the question for the “correct” quantum analogue of a general canonical

transformation, which has a long history and is not yet answered [79–82]. However, in the present

context “correct” refers to the concrete requirement of vanishing inter-torus couplings, which might

simplify the problem.

In principle, the fictitious integrable system approach allows to predict tunneling rates in 2D billiards

and quality factors in open microcavities. Up to now, this was only possible for special boundary

geometries [15, 16], where a direct construction of the quasimodes avoids to determine a proper

quantization of 𝐻reg. If, however, the fictitious integrable system approach can be extended by such

a quantization, the iterative canonical transformation method allows its application to billiards and

microcavities with arbitrary boundary geometries, as well as to higher-dimensional smooth-potential

systems.

Apart from that, the results of this thesis allow to readily extend some tunneling applications,

where the torus-coupling problem is not relevant. The first application is based on Ref. [14]. Here,

the authors extend the prediction of direct tunneling from the fictitious integrable system approach

with the theory of resonance-assisted tunneling [7–11]. While the direct tunneling rate follows from an

integrable approximation 𝐻reg, the resonant contributions appear as perturbative corrections based

on properties of the dominant resonance chain. Recently, using the iterative canonical transformation

method with resonance (Sec. 4.7) this prediction was simplified by including the resonance already in

𝐻reg [50, 66].

Further applications arise in the semiclassical description of tunneling in complex phase space. Here,

the tunneling mechanism is expressed by paths on the complexified torus, which can propagate into

the classically forbidden regions in real phase space. However, as non-integrable tori are not analytic,

their complex continuation is limited due to a “natural boundary” [7, 8, 83]. To avoid this, one uses

analytic tori of an integrable approximation 𝐻reg instead. The iterative canonical transformation

method is especially suitable for this, as 𝑇 (𝜗,J) gives a direct parametrization of the complex tori

in terms of complex angles 𝜗. For the direct tunneling mechanism, this complex-path approach was

applied before in 2D maps [37, 69] and near-integrable optical microcavities [67, 68]. Recently, with

the iterative canonical transformation method with resonance for 2D maps, also complex paths for

the resonance-assisted tunneling mechanism have been constructed successfully [70]. Moreover, the

present results for 2D billiards would also allow for an application to strongly deformed microcavities.

We mention, however, that this poses the additional challenge of finding the relevant tunneling paths
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in the billiard’s complexified, eight-dimensional phase space, which is complicated even for simple

geometries [84].

We mention, that another general area of potential applications is transport in Hamiltonian systems,

such as Arnold diffusion or random diffusion. Here, the diffusion between different tori is naturally

described in action space. This requires a global, smooth function J(q,p) in phase space, which is

directly determined by the iterative canonical transformation method. Especially for the conceptually

simple case of 2D maps, our results would allow to generalize works such as Ref. [3] to strongly-

perturbed systems. Also, recent work on random diffusion in 2D maps which uses action coordinates

equivalent to 𝐻0
reg [35] could be extended.

From the methodical perspective, it would be of interest to generalize the iterative canonical trans-

formation method with resonance (i) to include multiple resonances and (ii) to higher dimensions.

This would, however, require resonant normal forms (i) with multiple resonances or (ii) in higher

dimensions. The first is still an open question, while for the second, the implementation of the correct

actions and frequencies represents the main difficulty. If those requirements were given, however, the

shape approximation using the iterative canonical transformation method should be straightforward.





Appendix

A. Approximation of the cost function L

In the following we derive the coefficients 𝐵𝜈 and 𝐶𝜇𝜈 , Eqs. (3.21), for the quadratic approxima-

tion (3.20) of the cost function L (a). This approximation follows from inserting Eqs. (3.13) into

Eq. (3.19) which gives

L (a) =
1

𝑁p

∑︁

𝜏ℓ

(︃
q𝜏
ℓ − q𝜏,𝑛

ℓ +
∑︁

𝜆

𝑎𝜆
𝜕𝐺𝜆

𝜕p
(q𝜏,𝑛

ℓ ,p𝜏,𝑛
ℓ )

)︃2

(A.1)

+
1

𝑁p

∑︁

𝜏ℓ

(︃
p𝜏
ℓ − p𝜏,𝑛

ℓ −
∑︁

𝜆

𝑎𝜆
𝜕𝐺𝜆

𝜕q
(q𝜏,𝑛

ℓ ,p𝜏,𝑛
ℓ )

)︃2

. (A.2)

Using the chain rule, we obtain the first derivatives

𝜕L

𝜕𝑎𝜈
(a) =

2

𝑁p

∑︁

𝜏ℓ

(︃
q𝜏
ℓ − q𝜏,𝑛

ℓ +
∑︁

𝜆

𝑎𝜆
𝜕𝐺𝜆

𝜕p
(q𝜏,𝑛

ℓ ,p𝜏,𝑛
ℓ )

)︃
𝜕𝐺𝜈

𝜕p
(q𝜏,𝑛

ℓ ,p𝜏,𝑛
ℓ ) (A.3)

− 2

𝑁p

∑︁

𝜏ℓ

(︃
p𝜏
ℓ − p𝜏,𝑛

ℓ −
∑︁

𝜆

𝑎𝜆
𝜕𝐺𝜆

𝜕q
(q𝜏,𝑛

ℓ ,p𝜏,𝑛
ℓ )

)︃
𝜕𝐺𝜈

𝜕q
(q𝜏,𝑛

ℓ ,p𝜏,𝑛
ℓ ), (A.4)

and the constant, second derivatives

𝜕

𝜕𝑎𝜇

𝜕L

𝜕𝑎𝜈
=

2

𝑁p

∑︁

𝜏ℓ

(︂
𝜕𝐺𝜇

𝜕p
(q𝜏,𝑛

ℓ ,p𝜏,𝑛
ℓ )

𝜕𝐺𝜈

𝜕p
(q𝜏,𝑛

ℓ ,p𝜏,𝑛
ℓ ) +

𝜕𝐺𝜇

𝜕q
(q𝜏,𝑛

ℓ ,p𝜏,𝑛
ℓ )

𝜕𝐺𝜈

𝜕q
(q𝜏,𝑛

ℓ ,p𝜏,𝑛
ℓ )

)︂
.

(A.5)

This allows to compute the coefficients appearing in Eq. (3.20) as

𝐵𝜈 = −𝑁p

2

𝜕L

𝜕𝑎𝜈
(a = 0), (A.6)

𝐶𝜇𝜈 =
𝑁p

2

𝜕2L

𝜕𝑎𝜇𝜕𝑎𝜈
(a = 0), (A.7)

which leads to the results (3.21).
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B. Closed form for 𝐻𝑁
reg

One drawback of the iterative canonical transformation method is, that the resulting integrable ap-

proximation 𝐻𝑁
reg(q,p) is not constructed in a closed form. Instead, the canonical transformations 𝑇𝑛

in Eq. (3.15) follow from the implicit Eqs. (3.11) and are applied only numerically. We remark that,

however, such a closed form can be derived as a series expansion up to any order in the transformation

parameters. In the following, we do not explicitly perform this expansion, but sketch its idea.

We start by denoting the phase-space point by x = (q,p) and express the transformations by their

parameters, 𝑇𝑛 = 𝑇 a𝑛 . With this, Eq. (3.15) takes the form

𝐻𝑁
reg(x) = 𝐻0

reg

[︁
(𝑇 a1)−1 ∘ . . . ∘ (𝑇 a𝑁 )−1 (x)

]︁
. (B.1)

Now, Eq. (3.11) allows in principle to derive an explicit expansion of (𝑇 a)−1 in a up to any order 𝑟,

which is of the general form

(𝑇 a)−1 (x) = x+
∑︁

k∈N𝒩
0

|k|≤𝑟

𝑇k(x) · 𝑎𝑘1𝜈1 . . . 𝑎
𝑘𝒩
𝒩 +𝒪

(︀
|a|𝑟+1

)︀
. (B.2)

Here |k| = 𝑘1 + ... + 𝑘𝒩 . The explicit solution of Eqs. (3.11) gives the coefficients as polynomials of

the generating function’s partial derivatives,

𝑇k(x) ∼
𝜕𝑟1+...+𝑟2𝑓𝐺𝜈

𝜕𝑥𝑟11 . . . 𝜕𝑥
𝑟2𝑓
2𝑓

(x), 𝑟1 + ...+ 𝑟2𝑓 ≤ 𝑟 + 1. (B.3)

For example, the linear order solution 𝑟 = 1 follows from inverting Eq. (3.13). As in linear order

(𝑇 a)−1 = 𝑇−a, this inversion reduces to exchanging x and x′ and replacing a ↦→ −a.

By combining the expansions (B.2) into Eq. (B.1) and expanding the result again, one can finally

derive a closed form

𝐻𝑁
reg(x) = 𝐻0

reg(x) +
∑︁

k𝑛∈N𝒩
0

1≤|k1|+...+|k𝑁 |≤𝑟

𝐻reg,k1,...,k𝑁
(x)

𝑁∏︁

𝑛=1

𝒩∏︁

𝜈=1

(a𝑛)
(k𝑛)𝜈
𝜈 +𝒪𝑟+1 (|a1|, ..., |a𝑁 |) .

(B.4)

Formally, this result generalizes the Lie formula (4.65) to multiple transformations. However, in

contrast to the Lie formula, this expansion converges for 𝑟 → ∞, as the underlying Hamiltonian 𝐻𝑁
reg

is integrable. Once, this closed form (B.4) is derived up to order 𝑟, its error 𝒪𝑟+1 (|a1|, ..., |a𝑁 |) can
be made arbitrarily small by choosing 𝐻𝑁

reg with a sufficiently strong damping.
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C. Properness of the implicit function 𝜑

In the following we show, that the function 𝜑(x,x′) given by Eq. (4.18) is proper in x. Keeping x′

fixed, this function is of the type R2𝑓 ↦→ R2𝑓 , thus properness is ensured by [44]

lim
|x|→∞

⃒⃒
𝜑(x,x′)

⃒⃒2
= ∞. (C.1)

Using Eqs. (4.18) and (3.11), we have

⃒⃒
𝜑(x,x′)

⃒⃒2
=
⃒⃒
𝜑1(q,p,q

′,p′)
⃒⃒2
+
⃒⃒
𝜑2(q,p,q

′,p′)
⃒⃒2

(C.2)

=
⃒⃒
q−Δ1(q,q

′,p′)
⃒⃒2
+
⃒⃒
p−Δ2(q,p

′)
⃒⃒2
, (C.3)

where

Δ1(q,q
′,p′) = q′ −

∑︁

𝜈

𝑎𝜈
𝜕𝐺𝜈

𝜕p′ (q,p
′), (C.4)

Δ2(q,p
′) = −p′ −

∑︁

𝜈

𝑎𝜈
𝜕𝐺𝜈

𝜕q
(q,p′). (C.5)

As the basis functions 𝐺𝜈 are bounded and 𝐶2 with respect to q, so are the functions Δ1 and Δ2.

Thus, they can be estimated as

Δ1(q,q
′,p′) < 𝐾1(q

′,p′), (C.6)

Δ2(q,p
′) < 𝐾2(p

′). (C.7)

Using these bounds and the alternate triangle inequality, we obtain a lower estimate for Eq. (C.3)

given by

⃒⃒
𝜑(x,x′)

⃒⃒2 ≥
(︀
|q| − |Δ1(q,q

′,p′)|
)︀2

+
(︀
|p| − |Δ2(q,p

′)|
)︀2
, (C.8)

= |q|2 − 2|Δ1(q,q
′,p′)||q|+Δ1(q,q

′,p′)2 + |p|2 − 2|Δ2(q,p
′)||p|+Δ2(q,p

′)2,

(C.9)

> |q|2 + |p|2 − 2𝐾1(q
′,p′)|q| − 2𝐾2(p

′)|p|⏟  ⏞  
=: 𝐴

+Δ1(q,q
′,p′)2 +Δ2(q,p

′)2⏟  ⏞  
=: 𝐵

. (C.10)

This estimator consists of two contributions 𝐴 and 𝐵. As for for |x| → ∞ we have 𝐴 → ∞ while 𝐵

is bounded in x, also (𝐴+𝐵) → ∞, which ensures Eq. (C.1).

D. Inversion of the pendulum transformation 𝑇pend

In this appendix, we demonstrate the numerical inversion of the pendulum transformation 𝑇pend,

Eqs. (4.67). As these equations are discontinuous at the separatrix 𝑘(𝑞, 𝑝) = 1, a straightforward
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application of, e. g., the Newton–Raphson method [45], would fail. Instead, we invert Eqs. (4.67)

by treating different phase-space regions separately. In each region, we decompose the 2D inversion

problem into two subsequent 1D inversion problems and discuss appropriate inversion algorithms.

As the transformation parameter 𝐽sep appears linearly in Eqs. (4.67c), also the inverse transfor-

mation has a trivial dependence on 𝐽sep. Namely, for any value 𝐽sep the inversion for (𝜗, 𝐽) gives

(𝑞, 𝑝) = (𝑞0, 𝐽sep𝑝0), where (𝑞0, 𝑝0) is the corresponding result for (𝜗, 𝐽/𝐽sep) and 𝐽sep = 1. Therefore,

we set 𝐽sep = 1 in the following. As a second simplification, we restrict to the upper part of phase

space 𝑝 > 0. By symmetry, the inversion in the lower part for (𝜗, 𝐽) gives (𝑞, 𝑝) = (−𝑞0,−𝑝0), where
(𝑞0, 𝑝0) is the corresponding result of the inversion for (𝜗+ 𝜋, 𝐽).

We first discuss the inversion in the region inside the separatrix, where 𝐽 < 1 (yellow areas in

Fig. 4.16(b–c)). Here it is suitable, to first invert Eq. (4.67c) for 𝑘, i. e., solve

𝐽 = ℰ (𝑘)−
(︀
1− 𝑘2

)︀
𝒦 (𝑘) =: 𝐴(𝑘), (D.1)

for 𝑘 ∈ (0, 1). This is a 1D inversion problem of a continuous, monotonous function 𝐴 : (0, 1) → (0, 1).

A solution via the Newton–Raphson method turns out as sufficient for all 𝑘. Here we use the initial

conditions 𝑘0 = 𝐽 . The next step is to invert Eq. (4.67b) with 𝑘 < 1 for 𝜂, i. e., solve

𝜗 =
𝜋

2
· ℱ (𝜂, 𝑘)

𝒦 (𝑘)
=: 𝐵(𝜂), (D.2)

for 𝜂 ∈ [−𝜋
2 ,

𝜋
2 ). The introduced function 𝐵 : [−𝜋

2 ,
𝜋
2 ) → [−𝜋

2 ,
𝜋
2 ) is monotonous with 𝐵(±𝜋

2 ) = ±𝜋
2 .

Again, we apply the Newton–Raphson method using the initial condition

𝜂0 =
2𝜗

𝜋
· 𝒦(𝑘)
𝜕ℱ
𝜕𝜂 (0, 𝑘)

, (D.3)

which is the first order solution of Eq. (D.2) near 𝜂 = 0. This even works out when leaving the

neighborhood of the solution 𝜂 = 𝜗 = 0 and approaching the solutions 𝜂 = 𝜗 = ±𝜋
2 , as long as

𝑘 < 0.8. However, for 𝑘 > 0.8 and |𝜗| > 1 the Newton–Raphson method fails, and we apply a less

efficient bisection algorithm [85]. Here, we use the initial intervals [±𝜋
2 − 0.5,±𝜋

2 + 0.5] for 𝜗 ≷ 0.

Finally, using Eqs. (4.66), (4.68), and (4.69) we obtain the solution

𝑞 = 2arcsin(𝑘 sin 𝜂). (D.4a)

𝑝 =
𝜋

8

√︀
2(2𝑘2 − 1 + cos 𝑞). (D.4b)

We now discuss the inversion in the region outside the separatrix, where 𝐽 > 1 (green areas in

Fig. 4.16(b–c)). Again, we first invert Eq. (4.67c) by solving

𝐽 =
𝑘

2ℰ (𝑘−1)
=: 𝐶(𝑘), (D.5)

for 𝑘 ∈ (1,∞). Here the Newton–Raphson method with the initial condition 𝑘0 = 2𝐽/𝜋 is applicable
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only far from the separatrix where 𝐽 > 5. For 𝐽 < 5, we use a bisection algorithm with the initial

𝑘-interval [1, 10]. Given 𝑘, we then invert Eq. (4.67b) by solving

𝜗 =
𝜋ℱ(𝑞/2, 𝑘)

𝒦 (𝑘−1)
=: 𝐷(𝑞), (D.6)

for 𝑞 ∈ [−𝜋, 𝜋). Here, the Newton–Raphson algorithm works out globally, using the initial condition

𝑞0 = 𝜗− 𝜋
2 . Finally, given 𝑞, we compute 𝑝 from Eq. (D.4b).

E. Implementation of the normal-form transformation 𝑇 *

Here, we describe a numerical procedure to implement the transformation

𝑇 * : (𝜗, 𝐽) ↦→ (𝜃, 𝐼), (E.1)

which gives access to the action–angle coordinates (𝜗, 𝐽) of the normal-form Hamiltonian ℋ𝑟:𝑠(𝜃, 𝐼),

Eq. (4.73). Figure E.1(b) shows the phase space of ℋ𝑟:𝑠(𝜃, 𝐼) with two regions of rotation (yellow,

white) and one region of libration (green). Due to the topological change between these regions,

the transformation 𝑇 * is not defined globally in phase space. Instead, it connects the phase-space

coordinates (𝜃, 𝐼) of each region to action–angle coordinates (𝜗, 𝐽) ∈ [0, 2𝜋) × ℐ. Here the intervals

ℐ are given by (0, 𝐽−) for the yellow region, (𝐽+,∞) for the white region, and (0, 𝐽𝑟:𝑠) for the green

0
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T ∗
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Figure E.1.: Visualization of the transformation 𝑇 * from action–angle coordinates (𝜗, 𝐽) (a) to
the original coordinates (𝜃, 𝐼) (b) of the normal-form Hamiltonian ℋ𝑟:𝑠(𝜃, 𝐼), Eq. (4.73). The colors
indicate different regions, which are connected by the transformation.
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region, see Fig. E.1(a). The interval boundaries follow from the phase-space areas 𝐴1 and 𝐴𝑟:𝑠 defined

in Fig. 4.18(c) according to

𝐽− =
𝐴1

2𝜋
, (E.2a)

𝐽+ =
𝐴1 +𝐴𝑟:𝑠

2𝜋
, (E.2b)

𝐽𝑟:𝑠 =
𝐴𝑟:𝑠

2𝜋𝑟
. (E.2c)

For a unique definition of the action–angle coordinates (𝜗, 𝐽), in each region a curve 𝒞0 has to be

chosen which defines 𝜗 = 0, see the blue lines in Fig. E.1(b) for a convenient choice.

In the following we describe an algorithm for the application of 𝑇 * and (𝑇 *)−1. This algorithm is

based on the numerical time evolution of ℋ𝑟:𝑠(𝜃, 𝐼) in the (𝜃, 𝐼)-plane. Moreover, it uses the numerical

computation of the action 𝐽 and the frequency 𝜔 for a given, closed trajectory according to Sec. 4.2.1.

The transformation of a point (𝜗, 𝐽) is computed as follows:

1. Search for an initial condition (𝜃0, 𝐼0) ∈ 𝒞0 with action 𝐽 using numerical time evolution.

2. For this initial condition (𝜃0, 𝐼0) compute a trajectory (𝜃, 𝐼)(𝑡) and its frequency 𝜔.

3. Compute the transformed point as

𝑇 *(𝜗, 𝐽) = (𝜃, 𝐼)(𝑡 = 𝜗/𝜔). (E.3)

The inverse transformation of a point (𝜃, 𝐼) is computed as follows:

1. For the initial condition (𝜃, 𝐼) compute a trajectory (𝜃, 𝐼)(𝑡), its action 𝐽 , and its frequency 𝜔.

2. Compute the time 𝑡0, when this trajectory first intersects 𝒞0.

3. Compute the transformed point as

(𝑇 *)−1(𝜃, 𝐼) = (2𝜋 − 𝜔𝑡0, 𝐽). (E.4)

F. Scaling property

Here we show, that the scaling property (5.16) of a Hamiltonian 𝐻(q,p) implies the scaling behavior

of its solutions as described in Sec. 5.3. This scaling behavior means, that for any solution (q,p)(𝑡)

with 𝐻(q,p) = 𝐸, the rescaled trajectory (q𝜆,p𝜆)(𝑡), Eq. (5.15), is also a solution of energy 𝜆2𝐸.

First, we mention that the scaling property (5.16) implies the scaling of the derivatives

𝜕𝐻

𝜕q
(q, 𝜆p) = 𝜆2

𝜕𝐻

𝜕q
(q,p), (F.1a)

𝜕𝐻

𝜕p
(q, 𝜆p) = 𝜆

𝜕𝐻

𝜕p
(q,p), (F.1b)
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which we use in the following.

Next, we show that if (q,p)(𝑡) fulfills Hamilton’s equations (2.1), then also does (q𝜆,p𝜆)(𝑡). For

the position component q𝜆(𝑡) we find

d
d𝑡

q𝜆(𝑡) = 𝜆q̇(𝜆𝑡), (F.2a)

= 𝜆
𝜕𝐻

𝜕p
[q(𝜆𝑡),p(𝜆𝑡)], (F.2b)

=
𝜕𝐻

𝜕p
[q(𝜆𝑡), 𝜆p(𝜆𝑡)], (F.2c)

=
𝜕𝐻

𝜕p
[q𝜆(𝑡),p𝜆(𝑡)]. (F.2d)

Here we used Eqs. (2.1), (5.15), and (F.1b). For the momentum component p𝜆(𝑡) we find analogously

d
d𝑡

p𝜆(𝑡) = 𝜆2ṗ(𝜆𝑡), (F.3a)

= −𝜆2𝜕𝐻
𝜕q

[q(𝜆𝑡),p(𝜆𝑡)], (F.3b)

= −𝜕𝐻
𝜕q

[q(𝜆𝑡), 𝜆p(𝜆𝑡)], (F.3c)

= −𝜕𝐻
𝜕q

[q𝜆(𝑡),p𝜆(𝑡)]. (F.3d)

Thus, we obtain the equivalence between the scaling property (5.16) and the scaling behavior of the

solutions (q𝜆,p𝜆)(𝑡) as claimed in Sec. 5.3.

G. Stability of the cosine billiard

Here, we analyze the stability of the vertical, periodic trajectory of the cosine billiard (5.2), see the

black line in Fig. 5.1(b).

G.1. Stability condition

First we consider the Poincaré map 𝒫1 : (𝑥, 𝑝𝑥) ↦→ (𝑥′, 𝑝′𝑥) on the Poincaré section Σ1. This map has

a fixed point (𝑥*, 𝑝*𝑥) = (0, 0) which corresponds to the central, periodic trajectory of the billiard.

According to Ref. [86] we compute its monodromy matrix as

𝑀 =

(︃
1− ℓ𝜅 ℓ(1− ℓ𝜅

2 )

−2𝜅 1− ℓ𝜅

)︃
. (G.1)
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Here ℓ is the the length of the periodic trajectory and 𝜅 is the curvature of its reflection point on the

upper boundary. They are given by

ℓ = 2(ℎ+ 𝑤), (G.2a)

𝜅 = 𝑟′′(0) = 2𝜋2𝑤. (G.2b)

For later use we mention, that the action of this trajectory is given by

𝐽2 =
ℓ

2𝜋
. (G.3)

The eigenvalues of 𝑀 are

𝛽± = (1− ℓ𝜅)±
√︃

2ℓ𝜅

(︂
ℓ𝜅

2
− 1

)︂
. (G.4)

The considered central orbit is stable, if 𝛽± ∈ R, which requires the term under the root to be positive.

Reexpressing ℓ and 𝜅 with Eqs. (G.2) this leads to the stability condition

𝜋2𝑤(ℎ+ 𝑤) < 1
2 . (G.5)

G.2. Derivation of the parameter 𝛿 for the cosine billiard

We now derive the parameter 𝛿, Eqs. (5.31a) and (5.31b), which controls the half-axis ratio of the

regular tori shown in Fig. 5.7(b) (red lines). Using Eqs. (4.10) and (4.11), the half-axis ratio 𝜎 of

the local elliptic dynamics in Σ1 can be expressed in terms of the monodromy matrix (G.1). When

changing to the coordinates (Q,P) under the transformation 𝒯 , Eq. (5.4), this half-axis ratio changes
to

𝜎′ = 𝜎

(︂
1− ℓ𝜅

4

)︂2

. (G.6)

On the other hand, for 𝐻0
reg(Q,P) this half-axis ratio is

𝜎′ = 𝛿𝐽2, (G.7)

as follows from Eqs. (5.31a) and (5.31b). Finally, by combining Eqs. (G.3), (G.6), and (G.7) we

obtain

𝛿 =
2𝜋

ℓ

(︂
1− ℓ𝜅

4

)︂2
√︃⃒⃒

2𝜅+ ℓ(1− ℓ𝜅
2 )
⃒⃒
−
⃒⃒
2𝜅− ℓ(1− ℓ𝜅

2 )
⃒⃒

⃒⃒
2𝜅+ ℓ(1− ℓ𝜅

2 )
⃒⃒
+
⃒⃒
2𝜅− ℓ(1− ℓ𝜅

2 )
⃒⃒ . (G.8)
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H. Derivation of the boundary transformation 𝒯1

In this appendix we derive the boundary transformation 𝒯1. As motivated in Sec. 5.2, this transforma-

tion should map a given billiard to a new system confined in a domain of a simple shape with elastic

reflections. Proposing this, we first consider a billiard with C = 4 corners and derive a general set

of conditions for the boundary transformation (App. H.1). Then we prove that this set of conditions

cannot be solved (App. H.2), as it was claimed in Sec. 5.2. By removing one condition, we obtain

a relaxed problem and demonstrate its solution (App. H.3) which was outlined roughly in Sec. 5.2.

Moreover, we give an invertibility condition for the transformation in the case of the cosine billiard

(App. H.4). Finally, we derive the boundary transformation 𝒯1 for a class of billiards with a smooth

domain C = 0 (App. H.5).

H.1. Conditions

As outlined in Sec. 5.2, we consider a general billiard domain defined by a rectangle with an arbitrary

upper boundary curve 𝑟(𝑥) according to −0.5 ≤ 𝑥 ≤ 0.5 and 0 ≤ 𝑦 ≤ 𝑟(𝑥). Our goal is to derive an

invertible point transformation

𝑥 = 𝑥(�̄�, 𝑦), (H.1a)

𝑦 = 𝑦(�̄�, 𝑦), (H.1b)

which maps the billiard domain to a square where (�̄�, 𝑦) ∈ [−0.5, 0.5]×[0, 1]. For reasons of continuity,

the four boundary segments of the billiard need to be mapped onto the corresponding edges of the

unit square, i. e.,

𝑥(±0.5, 𝑦) = ±0.5, (H.2a)

𝑦(�̄�, 0) = 0, (H.2b)

𝑦(�̄�, 1) = 𝑟(𝑥(�̄�, 1)). (H.2c)

In this section, we shall remain with this general form (H.1), which expands the following derivation,

but will make the non-existence statement in App. H.2 universal.

In the following we denote the Jacobi matrix of the point transformation (H.1) by

𝒜(�̄�, 𝑦) =

(︃
𝒜11(�̄�, 𝑦) 𝒜12(�̄�, 𝑦)

𝒜21(�̄�, 𝑦) 𝒜22(�̄�, 𝑦)

)︃
=

(︃
𝜕𝑥
𝜕�̄�(�̄�, 𝑦)

𝜕𝑦
𝜕�̄�(�̄�, 𝑦)

𝜕𝑥
𝜕𝑦 (�̄�, 𝑦)

𝜕𝑦
𝜕𝑦 (�̄�, 𝑦)

)︃
, (H.3)

and its determinant by

𝒟(�̄�, 𝑦) = 𝒜11(�̄�, 𝑦)𝒜22(�̄�, 𝑦)−𝒜12(�̄�, 𝑦)𝒜21(�̄�, 𝑦). (H.4)

Moreover, we mention that the point transformation (H.1) implies a momentum transformation ac-
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cording to

(︃
𝑝𝑥

𝑝𝑦

)︃
= 𝒜(�̄�, 𝑦)−1

(︃
𝑝𝑥

𝑝𝑦

)︃
=

1

𝒟(�̄�, 𝑦)

(︃
𝒜22(�̄�, 𝑦) −𝒜12(�̄�, 𝑦)

−𝒜21(�̄�, 𝑦) 𝒜11(�̄�, 𝑦)

)︃(︃
𝑝𝑥

𝑝𝑦

)︃
. (H.5)

The conditions to be evaluated in the following are those of elastic reflections

(𝑝𝑥, 𝑝𝑦) ↦→ (𝑝𝑥,−𝑝𝑦), (H.6a)

( ˙̄𝑥, ˙̄𝑦) ↦→ ( ˙̄𝑥,− ˙̄𝑦), (H.6b)

( ˙̄𝑝𝑥, ˙̄𝑝𝑦) ↦→ ( ˙̄𝑝𝑥,− ˙̄𝑝𝑦), (H.6c)

which we require on the lower (𝑦 = 0) and on the upper boundary (𝑦 = 1).

The condition (H.6a) on the upper boundary 𝑦 = 1

On the upper billiard boundary, the momentum vector (𝑝𝑥, 𝑝𝑦) is reflected perpendicular to the

boundary curve 𝑟(𝑥). This immediate reflection corresponds to the action of a linear operator on

(𝑝𝑥, 𝑝𝑦) which is given by

𝑅2(�̄�) =

(︃
1 0

0 −1

)︃
+

2𝑟′ [𝑥(�̄�, 1)]

1 + 𝑟′ [𝑥(�̄�, 1)]2

(︃
−𝑟′ [𝑥(�̄�, 1)] 1

1 𝑟′ [𝑥(�̄�, 1)]

)︃
. (H.7)

The condition (H.6a) requires the transformed reflection operator to be

�̄�2 =

(︃
1 0

0 −1

)︃
. (H.8)

According to Eq. (H.5), the matrices 𝑅2(�̄�) and �̄�2 are connected by

𝒜(�̄�, 1) ·𝑅2(�̄�) = �̄�2 · 𝒜(�̄�, 1). (H.9)

With Eqs. (H.7) and (H.8) this leads to

(︃
𝒜11 𝒜12

𝒜21 𝒜22

)︃[︃(︃
1 0

0 −1

)︃
+

2𝑟′

1 + 𝑟′2

(︃
−𝑟′ 1

1 𝑟′

)︃]︃
=

(︃
1 0

0 −1

)︃(︃
𝒜11 𝒜12

𝒜21 𝒜22

)︃
. (H.10)

From now on, we suppress the positional arguments for convenience. For 𝑟′ ̸= 0 this matrix equation

implies

𝒜21 = −𝑟′𝒜22, (H.11a)

𝒜12 = 𝑟′𝒜11. (H.11b)
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Geometrically, this states that the contour lines of �̄� and 𝑦 lie perpendicular and parallel to the

boundary 𝑦 = 𝑟(𝑥), respectively.

The condition (H.6a) on the lower boundary 𝑦 = 0

On the lower boundary, condition (H.6a) is evaluated analogously. Here the reflection of the old

momentum (𝑝𝑥, 𝑝𝑦) has the simple form

𝑅1 =

(︃
1 0

0 −1

)︃
, (H.12)

which corresponds to Eq. (H.7) with a straight boundary 𝑟′ = 0. Hence, we find the same matrix

equation (H.10) with 𝑟′ = 0,

(︃
𝒜11 𝒜12

𝒜21 𝒜22

)︃(︃
1 0

0 −1

)︃
=

(︃
1 0

0 −1

)︃(︃
𝒜11 𝒜12

𝒜21 𝒜22

)︃
, (H.13)

which leads to the condition

𝒜12 = 𝒜21 = 0. (H.14)

The condition (H.6b) on both boundaries

To evaluate condition (H.6b) the velocities ˙̄𝑞 = ( ˙̄𝑥, ˙̄𝑦) need to be expressed as functions of the phase-

space coordinates (𝑞,𝑝) using Hamilton’s equations (2.1) with the billiard Hamiltonian (5.1). For ˙̄𝑥

this is

˙̄𝑥 =
𝜕

𝜕𝑝𝑥

[︀
𝑝𝑥(𝑞,𝑝)

2 + 𝑝𝑦(𝑞,𝑝)
2
]︀
, (H.15a)

= 2

(︃
𝑝𝑥(𝑞,𝑝)

𝑝𝑦(𝑞,𝑝)

)︃ᵀ
𝜕

𝜕𝑝𝑥

(︃
𝑝𝑥(𝑞,𝑝)

𝑝𝑦(𝑞,𝑝)

)︃
. (H.15b)

Using Eq. (H.5) this becomes

˙̄𝑥 =
2

𝒟2

[︃(︃
𝒜22 −𝒜12

−𝒜21 𝒜11

)︃(︃
𝑝𝑥

𝑝𝑦

)︃]︃ᵀ(︃ 𝒜22 −𝒜12

−𝒜21 𝒜11

)︃
𝜕

𝜕𝑝𝑥

(︃
𝑝𝑥

𝑝𝑦

)︃
(H.15c)

=
2

𝒟2

[︀
(𝒜2

21 +𝒜2
22)𝑝𝑥 − (𝒜11𝒜21 +𝒜12𝒜22)𝑝𝑦

]︀
. (H.15d)

Keeping in mind that 𝒜𝑖𝑗 and 𝒟 depend on 𝑞, this expresses ˙̄𝑥 in terms of (𝑞,𝑝). Considering an

infinitesimal time interval around a reflection event, this equation translates the momentum reflection

(𝑝𝑥, 𝑝𝑦) ↦→ (𝑝𝑥,−𝑝𝑦) to an intermediate change of ˙̄𝑥. To fulfill condition (H.6b), i. e., ˙̄𝑥 ↦→ ˙̄𝑥, the
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coefficient of 𝑝𝑦 must vanish, leading to

𝒜11𝒜21 +𝒜12𝒜22 = 0. (H.16)

Analogously, for ˙̄𝑦 we find

˙̄𝑦 =
2

𝒟2

[︀
(𝒜2

11 +𝒜2
12)𝑝𝑦 − (𝒜11𝒜21 +𝒜12𝒜22)𝑝𝑥

]︀
. (H.17)

To obtain the reflection ˙̄𝑦 ↦→ − ˙̄𝑦, the coefficient of 𝑝𝑥 must vanish, giving the same condition (H.16).

Note that this derivation is valid for both boundaries 𝑦 = 0 and 𝑦 = 1.

The condition (H.6c) on both boundaries

Proceeding as before, we evaluate the last condition (H.6c) by expressing the momentum velocities
˙̄𝑝 = ( ˙̄𝑝𝑥, ˙̄𝑝𝑦) as functions of (𝑞,𝑝). For ˙̄𝑝𝑥 this is

˙̄𝑝𝑥 = − 𝜕

𝜕�̄�

[︀
𝑝𝑥(𝑞,𝑝)

2 + 𝑝𝑦(𝑞,𝑝)
2
]︀
, (H.18a)

= −2

(︃
𝑝𝑥(𝑞,𝑝)

𝑝𝑦(𝑞,𝑝)

)︃ᵀ
𝜕

𝜕�̄�

(︃
𝑝𝑥(𝑞,𝑝)

𝑝𝑦(𝑞,𝑝)

)︃
, (H.18b)

= −2

[︃
1

𝒟

(︃
𝒜22 −𝒜12

−𝒜21 𝒜11

)︃(︃
𝑝𝑥

𝑝𝑦

)︃]︃ᵀ
𝜕

𝜕�̄�

1

𝒟

(︃
𝒜22 −𝒜12

−𝒜21 𝒜11

)︃(︃
𝑝𝑥

𝑝𝑦

)︃
, (H.18c)

= − 2

𝒟

(︃
𝑝𝑥

𝑝𝑦

)︃ᵀ(︃ 𝒜22 −𝒜21

−𝒜12 𝒜11

)︃
𝜕

𝜕�̄�

1

𝒟

(︃
𝒜22 −𝒜12

−𝒜21 𝒜11

)︃

⏟  ⏞  

=:

(︃
𝛽11 𝛽12

𝛽21 𝛽22

)︃

(︃
𝑝𝑥

𝑝𝑦

)︃
, (H.18d)

= − 2

𝒟
[︀
𝛽11𝑝

2
𝑥 + 𝛽22𝑝

2
𝑦 + (𝛽12 + 𝛽21)𝑝𝑥𝑝𝑦

]︀
. (H.18e)

Thus, we obtain a quadratic form in 𝑝 = (𝑝𝑥, 𝑝𝑦), whose coefficients are evaluated as

𝛽11 = 𝒜21
𝜕

𝜕�̄�

1

𝒟𝒜21 +𝒜22
𝜕

𝜕�̄�

1

𝒟𝒜22, (H.19a)

𝛽22 = 𝒜11
𝜕

𝜕�̄�

1

𝒟𝒜11 +𝒜12
𝜕

𝜕�̄�

1

𝒟𝒜12, (H.19b)

𝛽12 + 𝛽21 = −𝒜11
𝜕

𝜕�̄�

1

𝒟𝒜21 −𝒜21
𝜕

𝜕�̄�

1

𝒟𝒜11 −𝒜12
𝜕

𝜕�̄�

1

𝒟𝒜22 −𝒜22
𝜕

𝜕�̄�

1

𝒟𝒜12. (H.19c)
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Condition (H.6c) requires that ˙̄𝑝𝑥 is preserved under the reflection (𝑝𝑥, 𝑝𝑦) ↦→ (𝑝𝑥,−𝑝𝑦), thus the

coefficient (𝛽12 + 𝛽21) in Eq. (H.18e) must vanish. With Eq. (H.19c) this implies

0 = 𝒜11
𝜕

𝜕�̄�

1

𝒟𝒜21 +𝒜21
𝜕

𝜕�̄�

1

𝒟𝒜11 +𝒜12
𝜕

𝜕�̄�

1

𝒟𝒜22 +𝒜22
𝜕

𝜕�̄�

1

𝒟𝒜12, (H.20a)

=
𝒜12

𝒟

(︂
𝒜22,𝑥 −

𝜕𝒟
𝜕�̄�

𝒜22

𝒟

)︂
+

𝒜11

𝒟

(︂
𝒜21,𝑥 −

𝜕𝒟
𝜕�̄�

𝒜21

𝒟

)︂

+
𝒜22

𝒟

(︂
𝒜12,𝑥 −

𝜕𝒟
𝜕�̄�

𝒜12

𝒟

)︂
+

𝒜21

𝒟

(︂
𝒜11,𝑥 −

𝜕𝒟
𝜕�̄�

𝒜11

𝒟

)︂
, (H.20b)

and can be regrouped to

0 =
𝜕

𝜕�̄�
(𝒜11𝒜21 +𝒜12𝒜22)−

2

𝒟
𝜕𝒟
𝜕�̄�

(𝒜11𝒜21 +𝒜12𝒜22) . (H.21)

As the second term already vanishes due to condition (H.16), this simplifies to

0 =
𝜕

𝜕�̄�
(𝒜11𝒜21 +𝒜12𝒜22) . (H.22)

For the momentum velocity ˙̄𝑝𝑦, we proceed analogously, getting the same results (H.18e) and (H.19),

but with 𝜕/𝜕�̄� being replaced by 𝜕/𝜕𝑦. To satisfy condition (H.6c), i. e., ˙̄𝑝𝑦 ↦→ − ˙̄𝑝𝑦, we must have

𝛽11 = 𝛽22 = 0, which leads to

0 =
𝜕

𝜕𝑦
(𝒜2

21 +𝒜2
22)−

2

𝒟
𝜕𝒟
𝜕𝑦

(𝒜2
21 +𝒜2

22), (H.23a)

0 =
𝜕

𝜕𝑦
(𝒜2

11 +𝒜2
12)−

2

𝒟
𝜕𝒟
𝜕𝑦

(𝒜2
11 +𝒜2

12). (H.23b)

Summary and reduction of the conditions

For clarity, we summarize the derived conditions

𝒜12 = 𝒜21 = 0 at 𝑦 = 0 (H.24a)

𝒜12 − 𝑟′𝒜11 = 𝒜21 + 𝑟′𝒜22 = 0 at 𝑦 = 1 (H.24b)

𝒜11𝒜21 +𝒜12𝒜22 = 0 at 𝑦 = 0, 1 (H.24c)

𝜕

𝜕�̄�
(𝒜11𝒜21 +𝒜12𝒜22) = 0 at 𝑦 = 0, 1 (H.24d)

𝜕

𝜕𝑦
(𝒜2

21 +𝒜2
22)−

2

𝒟
𝜕𝒟
𝜕𝑦

(𝒜2
21 +𝒜2

22) = 0 at 𝑦 = 0, 1 (H.24e)

𝜕

𝜕𝑦
(𝒜2

11 +𝒜2
12)−

2

𝒟
𝜕𝒟
𝜕𝑦

(𝒜2
11 +𝒜2

12) = 0 at 𝑦 = 0, 1. (H.24f)

We reduce this set of conditions as follows. First, we remove condition (H.24c), as (H.24a) ⇒ (H.24c)

for 𝑦 = 0 and (H.24b) ⇒ (H.24c) for 𝑦 = 1. Second, we remove condition (H.24d), as (H.24c) ⇒
(H.24d). Finally, we simplify the conditions (H.24e) and (H.24f) as follows:
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1. Condition (H.24e) for 𝑦 = 0: With Eq. (H.24a) and 𝒟 = 𝒜11𝒜22 we obtain

0 =
𝜕

𝜕𝑦
(𝒜2

21 +𝒜2
22)−

2

𝒟
𝜕𝒟
𝜕𝑦

(𝒜2
21 +𝒜2

22), (H.25a)

= 2 𝒜21⏟ ⏞ 
0

𝜕𝒜21

𝜕𝑦
+ 2𝒜22

𝜕𝒜22

𝜕𝑦

− 2

𝒟

⎛
⎝𝒜22

𝜕𝒜11

𝜕𝑦
+𝒜11

𝜕𝒜22

𝜕𝑦
− 𝒜21⏟ ⏞ 

0

𝜕𝒜12

𝜕𝑦
− 𝒜12⏟ ⏞ 

0

𝜕𝒜21

𝜕𝑦

⎞
⎠ (𝒜2

21⏟ ⏞ 
0

+𝒜2
22), (H.25b)

= − 2

𝒟𝒜3
22

𝜕𝒜11

𝜕𝑦
. (H.25c)

Thus, to ensure 𝒟 = 𝒜11𝒜22 ̸= 0, this condition leads to

𝜕𝒜11

𝜕𝑦
= 0 at 𝑦 = 0. (H.26)

2. Condition (H.24f) for 𝑦 = 0: Analogously, we find

𝜕𝒜22

𝜕𝑦
= 0 at 𝑦 = 0. (H.27)

3. Condition (H.24e) for 𝑦 = 1: With Eq. (H.24b) and 𝒟 = 𝒜11𝒜22(1 + 𝑟′2) we obtain

0 =
2(1 + 𝑟′2)𝒜3

22

𝒟

(︂
𝜕𝒜11

𝜕𝑦
+ 𝑟′

𝜕𝒜12

𝜕𝑦

)︂
, (H.28)

which for 𝒟 = 𝒜11𝒜22(1 + 𝑟′2) ̸= 0 requires

𝜕𝒜11

𝜕𝑦
+ 𝑟′

𝜕𝒜12

𝜕𝑦
= 0 at 𝑦 = 1. (H.29)

4. Condition (H.24f) for 𝑦 = 1: Analogously, we find

𝜕𝒜22

𝜕𝑦
− 𝑟′

𝜕𝒜21

𝜕𝑦
= 0 at 𝑦 = 1. (H.30)

In total, we obtain a reduced system of conditions given by

𝒜12 = 𝒜21 = 0 at 𝑦 = 0, (H.31a)

𝒜12 − 𝑟′𝒜11 = 𝒜21 + 𝑟′𝒜22 = 0 at 𝑦 = 1, (H.31b)

𝜕𝒜11

𝜕𝑦
=
𝜕𝒜22

𝜕𝑦
= 0 at 𝑦 = 0, (H.31c)

𝜕𝒜11

𝜕𝑦
+ 𝑟′

𝜕𝒜12

𝜕𝑦
=
𝜕𝒜22

𝜕𝑦
− 𝑟′

𝜕𝒜21

𝜕𝑦
= 0 at 𝑦 = 1. (H.31d)
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This system of conditions ensures the reflection behavior (H.6). It is a boundary value problem for

the partial derivatives 𝒜𝑖𝑗(�̄�, 𝑦) of the point transformation (H.1) at the boundaries 𝑦 = 0 and 𝑦 = 1.

H.2. Nonexistence of a solution

We now prove, that the boundary value problem (H.31) is overdetermined, by showing that any

solution is not invertible and thus no valid transformation. Any transformation (H.1) connects the

billiard domain Ω to a unit square [−1
2 ,

1
2 ]×[0, 1]. As these sets are technically “manifolds with corners”,

the local invertibility conditions for the transformation are stated as follows: (i) the boundaries and

corners of both manifolds must be mapped onto each other and (ii) the Jacobian determinant 𝒟 ≠ 0

everywhere, including the boundary [60]. While (i) is fulfilled, we show in the following, that (ii) is

violated on the upper boundary 𝑦 = 1. First, we differentiate the right hand condition (H.31b) with

respect to �̄�,

0 =
𝜕

𝜕�̄�

[︀
𝒜21(�̄�, 1) + 𝑟′ [𝑥(�̄�, 1)]𝒜22(�̄�, 1)

]︀
, (H.32a)

=
𝜕𝒜21

𝜕�̄�
(�̄�, 1) + 𝑟′ [𝑥(�̄�, 1)]

𝜕𝒜22

𝜕�̄�
(�̄�, 1) + 𝑟′′ [𝑥(�̄�, 1)]𝒜11(�̄�, 1)𝒜22(�̄�, 1). (H.32b)

By symmetry of the second derivatives, we can replace 𝜕𝒜2𝑗

𝜕�̄� =
𝜕𝒜1𝑗

𝜕𝑦 and get

0 =
𝜕𝒜11

𝜕𝑦
(�̄�, 1) + 𝑟′ [𝑥(�̄�, 1)]

𝜕𝒜12

𝜕𝑦
(�̄�, 1) + 𝑟′′ [𝑥(�̄�, 1)]𝒜11(�̄�, 1)𝒜22(�̄�, 1). (H.32c)

Here, 𝜕𝒜11
𝜕𝑦 + 𝑟′ 𝜕𝒜12

𝜕𝑦 must vanish too because of condition (H.31d), and we conclude

0 = 𝑟′′ [𝑥(�̄�, 1)]𝒜11(�̄�, 1)𝒜22(�̄�, 1). (H.32d)

This, however, contradicts the requirement of invertibility 𝒟 = 𝒜11𝒜22(1 + 𝑟′2) ̸= 0. Consequently,

there exists no invertible transformation which solves the problem (H.31) in general. An exception is

the trivial case of an overall straight billiard boundary 𝑟′′ = 0.

H.3. Solution for the relaxed problem

We now slightly relax the problem (H.31) by removing condition (H.31d), i. e., going without the

reflection ˙̄𝑝𝑦 ↦→ − ˙̄𝑝𝑦 on the upper boundary 𝑦 = 1. We solve this relaxed problem using the ansatz (5.6)

which involves the function 𝑓(�̄�, 𝑦). We justify the conditions (5.11) on 𝑓(�̄�, 𝑦) and solve them.
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With the ansatz (5.6) and (5.7), the Jacobian (H.3) becomes

𝒜11(�̄�, 𝑦) =
𝜕𝑓

𝜕�̄�
(�̄�)[�̄�, 𝑟(�̄�)𝑦] +

𝜕𝑓

𝜕𝑦
[�̄�, 𝑟(�̄�)𝑦]𝒜12(�̄�, 𝑦), (H.33a)

𝒜12(�̄�, 𝑦) = 𝑟′(�̄�)𝑦, (H.33b)

𝒜21(�̄�, 𝑦) =
𝜕𝑓

𝜕𝑦
[�̄�, 𝑟(�̄�)𝑦]𝒜22(�̄�, 𝑦), (H.33c)

𝒜22(�̄�, 𝑦) = 𝑟(�̄�). (H.33d)

Inserting this into the relaxed boundary value problem (H.31) (without (H.31d)), yields

𝜕𝑓

𝜕�̄�
[�̄�, 𝑟(�̄�)] = 1 + 𝑟′(�̄�)2, (H.34a)

𝜕𝑓

𝜕𝑦
[�̄�, 𝑟(�̄�)] = −𝑟′(�̄�), (H.34b)

𝜕𝑓

𝜕𝑦
(�̄�, 0) = 0, (H.34c)

𝜕2𝑓

𝜕�̄�𝜕𝑦
(�̄�, 0) = −𝑟

′(�̄�)

𝑟(�̄�)

𝜕𝑓

𝜕𝑦
(�̄�, 0). (H.34d)

We solve these equations while also accounting for the connection condition (5.7). Choosing 𝑓(�̄�, 𝑦)

as a polynomial in 𝑦, the lowest order solution is the quadratic function

𝑓(�̄�, 𝑦) = �̄�+ 1
2𝑟(�̄�)𝑟

′(�̄�)− 𝑟′(�̄�)𝑦2

2𝑟(�̄�)
. (H.35)

H.4. Invertibility for the cosine billiard

Finally, we discuss the invertibility of the derived point transformation for the cosine billiard (5.2). As

the coordinate 𝑦 grows monotonously with 𝑦, Eq. (5.6b), the contour lines of 𝑦 never intersect. Thus,

noninvertibility can only occur due to an intersection of the contour lines of �̄�. One such contour line

in the in the (𝑥, 𝑦)-plane is shown by the red curve in Fig. 5.4. By construction, it meets the upper

boundary at 𝑥 = �̄�. Let (𝑥0(�̄�), 0) denote the point where this line meets the lower boundary, i. e.,

𝑥0(�̄�) = 𝑥(�̄�, 0) = �̄�+ 1
2𝑟(�̄�)𝑟

′(�̄�). (H.36)

Now we consider the whole family of these lines, which is parametrized by �̄�. As these lines are

parabolas, the only possibility to get an intersection of two contours is, when the lower point 𝑥0(�̄�)

moves contrary to the upper point. This is the case where

d𝑥0
d�̄�

(�̄�) = 0. (H.37)
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With Eq. (H.36) and the specific boundary curve (5.2) of the cosine billiard, this condition is

1 + (𝜋𝑤)2

2 sin(2𝜋�̄�)2 − 𝜋2𝑤
[︀
ℎ+ 𝑤

2 + 𝑤
2 cos(2𝜋�̄�)

]︀
cos(2𝜋�̄�) = 0. (H.38)

Substituting 𝑐 = cos(2𝜋�̄�), this is rearranged to a quadratic equation

𝑐2 +
2ℎ+ 𝑤

2𝑤
𝑐− 2 + (𝜋𝑤)2

2(𝜋𝑤)2
= 0, (H.39)

with the solutions

𝑐± = −2ℎ+ 𝑤

4𝑤
±
√︃(︂

2ℎ+ 𝑤

4𝑤

)︂2

+
2 + (𝜋𝑤)2

2(𝜋𝑤)2
. (H.40)

For 𝑐± = cos(2𝜋�̄�) only solutions −1 ≤ 𝑐± ≤ 1 are valid. As the solutions 𝑐± are located symmetrically

around the negative center (𝑐+ + 𝑐−)/2 < 0, 𝑐+ is the first of both solutions which enters the interval

[−1, 1]. To ensure global invertibility, we set 𝑐+ > 1 which implies the sufficient condition

𝜋2𝑤(ℎ+ 𝑤) < 1, (H.41)

as claimed in Sec. 5.2.

H.5. Boundary transformation for smooth billiards

In the previous Apps. H.1 to H.3, we developed the boundary transformation 𝒯1 for a general class of
2D billiards with C = 4 corners. Here, we demonstrate the generality of this approach by deriving an

analogous boundary transformation for a large class of smooth 2D billiards without corners, C = 0.

Specifically, we consider all billiards, whose boundary can be expressed in polar coordinates (𝜑, 𝑟) as

𝑟 = 𝑅(𝜑), (H.42)

where the boundary curve 𝑅(𝜑) is an arbitrary smooth, positive, 2𝜋-periodic function.

To this end, we decompose the boundary transformation 𝒯1 into

𝒯1 = 𝒯pol ∘ 𝒯 ′
1 ∘ 𝒯 −1

pol , (H.43)

as shown in Fig. H.1. Here, 𝒯pol is the transformation to polar coordinates

𝒯pol :
(︃
𝜑

𝑟

)︃
↦→
(︃
𝑥

𝑦

)︃
=

(︃
𝑟 cos𝜑

𝑟 sin𝜑

)︃
. (H.44)
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For the transformation 𝒯 ′
1 , we choose an ansatz analogous to Eqs. (5.6),

𝜑(𝜑, 𝑟) = ℱ
[︀
𝜑, 𝑟(𝜑, 𝑟)

]︀
, (H.45a)

𝑟(𝜑, 𝑟) = 𝑟𝑅(𝜑), (H.45b)

leading to a straight boundary 𝑟 = 1, see Fig. H.1(d). In this analogy, ℱ(𝜑, 𝑟) corresponds to 𝑓(�̄�, 𝑦),

however, as different conditions will be derived for ℱ(𝜑, 𝑟), its solution will also differ from 𝑓(�̄�, 𝑦).

In correspondence to Eq. (5.7), we require

ℱ
[︀
𝜑,𝑅(𝜑)

]︀
= 𝜑. (H.46)

The remaining task is to find ℱ(𝜑, 𝑟) by ensuring elastic reflections in (�̄�, 𝑦). The conditions for

these reflection are given by Eqs. (H.6a) and (H.6b) when all �̄�- and 𝑦-components are replaced by

the corresponding components that are parallel and perpendicular to the boundary, respectively. In

x

y

T1

Tpol

(a)

x̄

ȳ

Tpol

(b)

0 2π φ

r

T ′
1

(c)

r = R(φ)

0 2π φ̄

r̄

(d)

r̄ = 1

Figure H.1.: Visualization of the boundary transformation 𝒯1 for a smooth billiard and its decom-
position (H.43). We show the billiard boundary (black lines), an orbit (red) and lines of 𝑟 = const.
and 𝜑 = const. (gray) in the coordinates (𝑥, 𝑦) (a), (�̄�, 𝑦) (b), (𝜑, 𝑟) (c), and (𝜑, 𝑟) (d).
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polar coordinates (𝜑, 𝑟), these reflections have a notably simple representation, given by

1

2

(︃
˙̄𝜑′ + ˙̄𝜑

˙̄𝑟′ + ˙̄𝑟

)︃
=

(︃
˙̄𝜑

0

)︃
, (H.47a)

1

2

(︃
˙̄𝑝′𝜑 + ˙̄𝑝𝜑
˙̄𝑝′𝑟 + ˙̄𝑝𝑟

)︃
=

(︃
˙̄𝑝𝜑

0

)︃
. (H.47b)

The previous derivation for the cornered billiard has shown, that requiring elastic reflections in the

momentum velocities ṗ cannot be accomplished. As this is impossibility occurred as a local property

on the boundary, independently of the corners, we also expect this to be impossible in the present

case.

We now formulate the reflections in the untransformed polar coordinates (𝜑, 𝑟) that are implied

by the boundary curve 𝑅(𝜑). We start in the original coordinates r = (𝑥, 𝑦). Here, the velocity

reflections are given by

ṙ′ + ṙ = 2
(︀
ṙ · e‖

)︀
· e‖, e‖ =

𝜌(𝜑)e𝜑 + e𝑟√︀
1 + 𝜌(𝜑)2

, (H.48)

where e𝜑 and e𝑟 denote the unit vectors in 𝜑- and 𝑟-direction, respectively, and

𝜌(𝜑) : =
𝑅′(𝜑)

𝑅(𝜑)
. (H.49)

Translated into polar velocities (�̇�, �̇�), these reflections are

1

2

(︃
�̇�′ + �̇�

�̇�′ + �̇�

)︃
=
�̇�+𝑅(𝜑)−1𝜌(𝜑)�̇�

1 + 𝜌(𝜑)2

(︃
𝑅′(𝜑)

1

)︃
. (H.50a)

In analogy to App. H.1, we derive the reflections of the polar momentum (𝑝𝜑, 𝑝𝑟) as

1

2

(︃
𝑝′𝜑 + 𝑝𝜑

𝑝′𝑟 + 𝑝𝑟

)︃
=
𝑟−1𝑝𝜑 + 𝜌(𝜑)𝑝𝑟

1 + 𝜌(𝜑)2

(︃
𝑟

𝜌(𝜑)

)︃
. (H.50b)

The condition for ℱ(𝜑, 𝑟) is, that the reflections (H.47) should be transformed to the reflections (H.50).

To formulate this condition, we express the velocities (�̇�, �̇�) in terms of ( ˙̄𝜑, ˙̄𝑟) using Eqs. (H.45), which

gives

�̇� =
d
d𝑡
𝑟𝑅(𝜑) = ˙̄𝑟𝑅(𝜑) + 𝑟𝑅′(𝜑) ˙̄𝜑, (H.51a)

�̇� =
d
d𝑡

ℱ
[︀
𝜑, 𝑟(𝜑, 𝑟)

]︀
=
𝜕ℱ
𝜕𝜑

[︀
𝜑, 𝑟𝑅(𝜑)

]︀ ˙̄𝜑+
𝜕ℱ
𝜕𝑟

[︀
𝜑, 𝑟𝑅(𝜑)

]︀
·
[︁
˙̄𝑟𝑅(𝜑) + 𝑟𝑅′(𝜑) ˙̄𝜑

]︁
. (H.51b)

With this relation between (�̇�, �̇�) and ( ˙̄𝜑, ˙̄𝑟), we connect the reflections (H.47a) and (H.50a), leading
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to the conditions

𝜕ℱ
𝜕𝑟

[︀
𝜑, 𝑟𝑅(𝜑)

]︀
= −𝑅′(𝜑)

𝑅(𝜑)2
, (H.52a)

𝜕ℱ
𝜕𝜑

[︀
𝜑, 𝑟𝑅(𝜑)

]︀
= 𝑅(𝜑)2 +𝑅′(𝜑)2. (H.52b)

By solving Eqs. (H.46) and (H.52) for ℱ(𝜑, 𝑟) using a second order polynomial in 𝜑, we obtain

ℱ(𝜑, 𝑟) = 𝜑+
𝑅′(𝜑)

2𝑅(𝜑)

[︃
1−

(︂
𝑟

𝑅(𝜑)

)︂2
]︃
. (H.53)

We remark, that an analogous treatment would be necessary to connect the momentum reflections

(H.47b) and (H.50b). Here, we skipped this treatment, as it implies no additional conditions when the

ansatz for ℱ is quadratic in 𝜑. The resulting transformation has been visualized already in Fig. H.1

for the boundary function

𝑅(𝜑) = 1 + 𝜖 cos(𝑘𝜑), (H.54)

with 𝜖 = 0.08 and 𝑘 = 3.

I. Generalized quantizations 𝒬

In this appendix, we perform certain derivations concerning the generalized quantization𝒬, Eq. (6.10).

We first derive a general monomial formula, which will be helpful (App. I.1), deduce the condi-

tions (6.15) for the integral kernel (App. I.2), and finally derive matrix element formulae for the

practical evaluation of the quantization (App. I.3).

I.1. Monomial formulae

Apart from the integral representation (6.10) of a quantization rule 𝒬 it is also convenient, to charac-

terize 𝒬 by its application to a monomial 𝒬(𝑞𝑛𝑝𝑚). Due to linearity, this completely defines the action

of 𝒬 on arbitrary analytic functions. We now connect the integral representation to the monomial

representation by expressing 𝒬(𝑞𝑛𝑝𝑚) in terms of the integral kernel 𝑤(𝜃, 𝜏). Starting with Eq. (6.10),

we have

𝒬(𝑞𝑛𝑝𝑚) =
1

(2𝜋)2

∫︁
d𝑞
∫︁

d𝑝
∫︁

d𝜃
∫︁

d𝜏 𝑤(𝜃, 𝜏)𝑒−𝑖𝜃𝑞𝑒−𝑖𝜏𝑝𝑒𝑖𝜃𝑞𝑒𝑖𝜏𝑝𝑞𝑛𝑝𝑚. (I.1)

By rewriting

𝑒−𝑖𝜃𝑞𝑒−𝑖𝜏𝑝𝑞𝑛𝑝𝑚 = 𝑖𝑛+𝑚

(︂
𝜕

𝜕𝜃

)︂𝑛(︂ 𝜕

𝜕𝜏

)︂𝑚

𝑒−𝑖𝜃𝑞𝑒−𝑖𝜏𝑝, (I.2)
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this can be rearranged to

=
𝑖𝑛+𝑚

(2𝜋)2

∫︁
d𝜃
∫︁

d𝜏 𝑤(𝜃, 𝜏)𝑒𝑖𝜃𝑞𝑒𝑖𝜏𝑝
(︂
𝜕

𝜕𝜃

)︂𝑛(︂ 𝜕

𝜕𝜏

)︂𝑚 ∫︁
d𝑞 𝑒−𝑖𝜃𝑞

⏟  ⏞  
= 2𝜋𝛿(𝜃)

∫︁
d𝑝 𝑒−𝑖𝜏𝑝

⏟  ⏞  
= 2𝜋𝛿(𝜏)

, (I.3a)

= 𝑖𝑛+𝑚

∫︁
d𝜃
∫︁

d𝜏 𝑤(𝜃, 𝜏)𝑒𝑖𝜃𝑞𝑒𝑖𝜏𝑝
(︂
𝜕

𝜕𝜃

)︂𝑛(︂ 𝜕

𝜕𝜏

)︂𝑚

𝛿(𝜃)𝛿(𝜏). (I.3b)

To detach the differentiation operators from the 𝛿-functions, we use integration by parts, applied 𝑛

times in 𝜃 and 𝑚 times in 𝜏 . Here, all intermediate terms vanish due to the fast asymptotic decay of

the 𝛿-function and its derivatives [87]. As each application of integration by parts changes the sign of

the integral, we collect a total factor of (−1)𝑛+𝑚, leading to

= (−𝑖)𝑛+𝑚

∫︁
d𝜃
∫︁

d𝜏 𝛿(𝜃)𝛿(𝜏)

(︂
𝜕

𝜕𝜃

)︂𝑛(︂ 𝜕

𝜕𝜏

)︂𝑚

𝑤(𝜃, 𝜏)𝑒𝑖𝜃𝑞𝑒𝑖𝜏𝑝. (I.4)

Finally, we obtain the monomial formula

𝒬(𝑞𝑛𝑝𝑚) = (−𝑖)𝑛+𝑚

[︂(︂
𝜕

𝜕𝜃

)︂𝑛(︂ 𝜕

𝜕𝜏

)︂𝑚

𝑤(𝜃, 𝜏)𝑒𝑖𝜃𝑞𝑒𝑖𝜏𝑝
]︂

𝜃=𝜏=0

. (I.5)

As a side result, we find that Rivier’s rule, Eq. (6.16) with 𝛼 = 1
2 , has the monomial representation

𝒬(𝑞𝑛𝑝𝑚) =
𝑞𝑛𝑝𝑚 + 𝑝𝑚𝑞𝑛

2
. (I.6)

I.2. Conditions for the integral kernel 𝑤(𝜃, 𝜏)

We now translate the properties (6.13) of a quantization rule 𝒬 to the conditions (6.15) of its integral

kernel 𝑤(𝜃, 𝜏). Considering condition (6.13a), Eq. (6.10) becomes

𝒬(1) =
1

(2𝜋)2

∫︁
d𝜃
∫︁

d𝜏 𝑤(𝜃, 𝜏)

(︂∫︁
d𝑞 𝑒−𝑖𝜃𝑞

)︂

⏟  ⏞  
= 2𝜋𝛿(𝜃)

(︂∫︁
d𝑝 𝑒−𝑖𝜏𝑝

)︂

⏟  ⏞  
= 2𝜋𝛿(𝜏)

𝑒𝑖𝜃𝑞𝑒𝑖𝜏𝑝 (I.7a)

= 𝑤(0, 0), (I.7b)

leading to condition (6.15a).

For condition (6.13b), we first consider the right hand side, which is

𝒬(𝐴)† =
1

(2𝜋)2

∫︁
d𝑞
∫︁

d𝑝
∫︁

d𝜃
∫︁

d𝜏
[︁
𝑤(𝜃, 𝜏)𝑒−𝑖𝜃𝑞𝑒−𝑖𝜏𝑝𝑒𝑖𝜃𝑞𝑒𝑖𝜏𝑝𝐴(𝑞, 𝑝)

]︁†
. (I.8)

Using the Baker-Campbell-Hausdorff formula and the self-adjointness of 𝑞 and 𝑝 we have

[︁
𝑒𝑖𝜃𝑞𝑒𝑖𝜏𝑝

]︁†
= 𝑒−𝑖𝜏𝑝𝑒−𝑖𝜃𝑞 = 𝑒𝑖𝜃𝜏~𝑒−𝑖𝜃𝑞𝑒−𝑖𝜏𝑝, (I.9)
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and Eq. (I.8) becomes

=
1

(2𝜋)2

∫︁
d𝑞
∫︁

d𝑝
∫︁

d𝜃
∫︁

d𝜏 𝑤(𝜃, 𝜏)*𝑒𝑖𝜃𝜏~𝑒𝑖𝜃𝑞𝑒𝑖𝜏𝑝𝑒−𝑖𝜃𝑞𝑒−𝑖𝜏𝑝𝐴(𝑞, 𝑝)*. (I.10)

By substituting the integration parameters (𝜃, 𝜏) ↦→ (−𝜃,−𝜏), we obtain

=
1

(2𝜋)2

∫︁
d𝑞
∫︁

d𝑝
∫︁

d𝜃
∫︁

d𝜏 𝑤(−𝜃,−𝜏)*𝑒𝑖𝜃𝜏~𝑒−𝑖𝜃𝑞𝑒−𝑖𝜏𝑝𝑒𝑖𝜃𝑞𝑒𝑖𝜏𝑝𝐴(𝑞, 𝑝)*. (I.11)

Identifying this with 𝒬(𝐴*) leads to the condition (6.15b) for the kernel 𝑤(𝜃, 𝜏).

To evaluate condition (6.13c), we consider the classical limit ~ → 0, where 𝑞 → 𝑞 and 𝑝→ 𝑝. Here,

condition (6.13c) becomes

𝐴(𝑞′, 𝑝′) =
1

(2𝜋)2

∫︁
d𝑞
∫︁

d𝑝
∫︁

d𝜃
∫︁

d𝜏 𝑤0(𝜃, 𝜏)𝑒
−𝑖𝜃𝑞𝑒−𝑖𝜏𝑝𝑒𝑖𝜃𝑞

′
𝑒𝑖𝜏𝑝

′
𝐴(𝑞, 𝑝) (I.12)

where we substituted

𝑤0(𝜃, 𝜏) = lim
~→0

𝑤(𝜃, 𝜏). (I.13)

Thus, it is required that any function 𝐴(𝑞, 𝑝) must be invariant under the integral operator (I.12).

Clearly this is true for 𝑤0(𝜃, 𝜏) = 1, where Eq. (I.12) is just the identity transformation in Fourier

integral representation. Consequently, Eq. (I.12) is necessary for condition (6.15c). To be sufficient,

the solution 𝑤0(𝜃, 𝜏) = 1 must be unique. We prove this by showing that

𝑢(𝜃, 𝜏) := 𝑤0(𝜃, 𝜏)− 1 = 0. (I.14)

Substituting 𝑤0(𝜃, 𝜏) by 𝑢(𝜃, 𝜏) in Eq. (I.12) we have

0 =
1

(2𝜋)2

∫︁
d𝑞
∫︁

d𝑝
∫︁

d𝜃
∫︁

d𝜏 𝑢(𝜃, 𝜏)𝑒−𝑖𝜃𝑞𝑒−𝑖𝜏𝑝𝑒𝑖𝜃𝑞
′
𝑒𝑖𝜏𝑝

′
𝐴(𝑞, 𝑝). (I.15)

Using the test function 𝐴(𝑞, 𝑝) = 𝛿(𝑞 − 𝑞0)𝛿(𝑝 − 𝑝0) with arbitrary (𝑞0, 𝑝0) and substituting (𝑞, 𝑝) =

(𝑞′ − 𝑞0, 𝑝
′ − 𝑝′0) leads to

0 =
1

(2𝜋)2

∫︁
d𝜃
∫︁

d𝜏 𝑢(𝜃, 𝜏)𝑒𝑖𝜃𝑞𝑒𝑖𝜏𝑝. (I.16)

Thus the Fourier transform of 𝑢(𝜃, 𝜏) vanishes. As (𝑞, 𝑝) is arbitrary, the whole function must vanish,

leading to Eq. (I.14).

Finally, to evaluate condition (6.13d), we consider the power series expansion of 𝐴(𝑞). Here, due

to linearity, the condition becomes 𝒬(𝑞𝑛) = 𝑞𝑛 which can be expressed recursively as

𝒬(𝑞𝑛) = 𝑞𝒬(𝑞𝑛−1), ∀𝑛 ∈ N. (I.17)
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Using the monomial formula (I.5), we have

𝒬(𝑞𝑛) = (−𝑖)𝑛
[︂(︂

𝜕

𝜕𝜃

)︂𝑛

𝑤(𝜃, 0)𝑒𝑖𝜃𝑞
]︂

𝜃=0

. (I.18)

With the product rule of differentiation we get

= (−𝑖)𝑛
[︃(︂

𝜕

𝜕𝜃

)︂𝑛−1(︂
𝑤(𝜃, 0)𝑖𝑞𝑒𝑖𝜃𝑞 +

𝜕𝑤

𝜕𝜃
(𝜃, 𝜏)𝑒𝑖𝜃𝑞

)︂]︃

𝜃=0

, (I.19a)

= 𝑞 (−𝑖)𝑛−1

[︃(︂
𝜕

𝜕𝜃

)︂𝑛−1

𝑤(𝜃, 0)𝑒𝑖𝜃𝑞

]︃

𝜃=0⏟  ⏞  
= 𝒬(𝑞𝑛−1)

+(−𝑖)𝑛
[︃(︂

𝜕

𝜕𝜃

)︂𝑛−1 𝜕𝑤

𝜕𝜃
(𝜃, 0)𝑒𝑖𝜃𝑞

]︃

𝜃=0

. (I.19b)

To fulfill Eq. (I.17), the second term in Eq. (I.19b) must vanish. This second terms evaluates to

(−𝑖)𝑛
[︃(︂

𝜕

𝜕𝜃

)︂𝑛−1 𝜕𝑤

𝜕𝜃
(𝜃, 0)𝑒𝑖𝜃𝑞

]︃

𝜃=0

= (−𝑖)𝑛
𝑛−1∑︁

𝑘=0

(︂
𝑛− 1

𝑘

)︂
(𝑖𝑞)𝑘

𝜕𝑛−𝑘𝑤

𝜕𝜃𝑛−𝑘
(0, 0). (I.20)

Consequently, all derivatives of the kernel need to be zero in the origin,

𝜕𝑘𝑤

𝜕𝜃𝑘
(0, 0) = 0, (I.21)

with 𝑘 ≤ 𝑛. To hold for all powers 𝑛, Eq. (I.21) is required for any 𝑘 ∈ N, leading to condition (6.15d).

The conjugate condition (6.15e) is derived analogously.

I.3. Matrix element formulae

Evaluating a quantization rule via the monomial formula becomes impractical for functions 𝐴(𝑞, 𝑝)

which are not given in polynomial form. For this case, integral formulae can be derived, which we do

in the following for the parametrized quantization rule 𝒬𝛼 given by Eq. (6.16).

Considering the matrix elements in position representation, we obtain

⟨𝑞1|𝒬𝛼(𝐴)|𝑞2⟩ =
1

(2𝜋)2

∫︁
d𝑞
∫︁

d𝑝
∫︁

d𝜃
∫︁

d𝜏 𝑤𝛼(𝜃, 𝜏)𝑒
−𝑖𝜃𝑞𝑒−𝑖𝜏𝑝𝑒𝑖𝜃𝑞1 ⟨𝑞1|𝑒𝑖𝜏𝑝|𝑞2⟩𝐴(𝑞, 𝑝).

(I.22)

Evaluating the translation operator 𝑒𝑖𝜏𝑝 gives

⟨𝑞1|𝑒𝑖𝜏𝑝|𝑞2⟩ = ⟨𝑞1|𝑞2 − 𝜏~⟩ = 𝛿 (𝑞1 − 𝑞2 + 𝜏~) =
1

~
𝛿

(︂
𝜏 − 𝑞2 − 𝑞1

~

)︂
. (I.23)
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Applying this delta function and inserting 𝑤𝛼 via Eq. (6.16), Eq. (I.22) becomes

=
1

4𝜋~

∫︁
d𝑞
∫︁

d𝑝 𝑒−𝑖(𝑞2−𝑞1)𝑝/~𝐴(𝑞, 𝑝)
∑︁

𝑠=±1

1

2𝜋

∫︁
d𝜃 𝑒

𝑖𝜃
[︁
(𝑞2−𝑞1)

(︁
1
2+𝑠𝛼

)︁
+𝑞1−𝑞

]︁
⏟  ⏞  

= 𝛿
[︀
𝑞 − 𝑞1

(︀
1
2 − 𝑠𝛼

)︀
− 𝑞2

(︀
1
2 + 𝑠𝛼

)︀]︀
, (I.24)

=
1

4𝜋~

∫︁
d𝑝 𝑒𝑖(𝑞1−𝑞2)𝑝/~

∑︁

𝑠=±1

𝐴
[︀
𝑞1
(︀
1
2 − 𝑠𝛼

)︀
+ 𝑞2

(︀
1
2 + 𝑠𝛼

)︀
, 𝑝
]︀
. (I.25)

For the Weyl rule, 𝛼 = 0, this becomes

⟨𝑞1|𝒬0(𝐴)|𝑞2⟩ =
1

2𝜋~

∫︁
d𝑝 𝑒𝑖(𝑞1−𝑞2)𝑝/~𝐴

(︂
𝑞1 + 𝑞2

2
, 𝑝

)︂
. (I.26)

The corresponding matrix elements in momentum representation are derived analogously, leading to

⟨𝑝1|𝒬0(𝐴)|𝑝2⟩ =
1

2𝜋~

∫︁
d𝑞 𝑒−𝑖𝑞(𝑝1−𝑝2)/~𝐴

(︂
𝑞,
𝑝1 + 𝑝2

2

)︂
. (I.27)

J. Optimized algorithm for the Weyl matrix elements 𝐴nm

In this appendix, we design an optimized algorithm to compute the matrix elements

𝐴nm =

(︂
𝜋~
4

)︂2 ±∑︁

𝑠1,𝑠2,𝑠′1,𝑠
′
2

𝑠1𝑠2𝑠
′
1𝑠

′
2

∫︁

𝒮
d2q 𝐴

[︃
q,

(︃
𝑠1𝑛1 + 𝑠′1𝑚1

𝑠2𝑛2 + 𝑠′2𝑚2

)︃]︃
exp

[︃
−𝑖𝜋q

(︃
𝑠1𝑛1 − 𝑠′1𝑚1

𝑠2𝑛2 − 𝑠′2𝑚2

)︃]︃
,

(J.1)

see Eq. (6.50). When evaluating this equation, many different combinations of the signs {𝑠1, 𝑠2, 𝑠′1, 𝑠′2}
and the indices {𝑛1, 𝑛2,𝑚1,𝑚2} lead to the same momentum argument in the function 𝐴(q,p). This

makes a straightforward computation of the matrix elements (J.1) inefficient, especially when 𝐴 refers

to an integrable approximation 𝐻𝑛
reg, Eq. (3.15), which is evaluated rather slowly for large orders 𝑛.

To compute the matrix elements while calling the function 𝐴(q,p) as rarely as possible, we define the

integral

𝒜ℓ+1 ,ℓ+2
ℓ−1 ,ℓ−2

:=

(︂
𝜋~
4

)︂2 ∫︁

𝒮
d2q 𝐴(q, ℓ+1 , ℓ

+
2 ) exp

[︀
−𝑖𝜋

(︀
ℓ−1 𝑞1 + ℓ−2 𝑞2

)︀]︀
, (J.2a)

and rewrite Eq. (J.1) as

𝐴nm =

±∑︁

𝑠1,𝑠2,𝑠′1,𝑠
′
2

𝑠1𝑠2𝑠
′
1𝑠

′
2𝒜

𝑠1𝑛1+𝑠′1𝑚1,𝑠2𝑛2+𝑠′2𝑚2

𝑠1𝑛1−𝑠′1𝑚1,𝑠2𝑛2−𝑠′2𝑚2
. (J.2b)

Here the new indices

ℓ±𝑖 = 𝑠𝑖𝑛𝑖 ± 𝑠′𝑖𝑚𝑖, (J.3)
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have been introduced, which for 𝑛𝑖 = 1, 2, ..., 𝑁𝑖 take the values

ℓ+𝑖 = −2𝑁𝑖, −2𝑁𝑖 + 1, ..., 2𝑁𝑖, (J.4a)

ℓ−𝑖 = |ℓ+𝑖 | − 2𝑁𝑖, |ℓ+𝑖 | − 2𝑁𝑖 + 2, ..., 2𝑁𝑖 − |ℓ+𝑖 |, (J.4b)

see Fig. J.1 Now, the following scheme is applied:

1. For each index pair (ℓ+1 , ℓ
+
2 ), compute the values 𝐴(q, ℓ+1 , ℓ

+
2 ) at the positions q that are required

for the integration.

1.1. For each index pair (ℓ−1 , ℓ
−
2 ), compute the integral 𝒜ℓ+1 ,ℓ+2

ℓ−1 ,ℓ−2
from these values via Eq. (J.2a)

and store it.

2. For each (n,m), compute 𝐴nm by summing over 𝒜ℓ+1 ,ℓ+2
ℓ−1 ,ℓ−2

via Eq. (J.2b).

Compared to a straightforward evaluation of Eq. (J.1), where 𝐴(q,p) would be called (4𝑁1𝑁2)
2 times

on each position q, this optimized scheme only needs (4𝑁1 + 1)(4𝑁2 + 1) calls, as the momentum

argument of 𝐴(q,p) in Eq. (J.2a) depends on two indices (ℓ+1 , ℓ
+
2 ) only. This improves the complexity

by two orders from 𝒪
(︀
𝑁2

1𝑁
2
2

)︀
to 𝒪 (𝑁1𝑁2), thus the algorithm grows linear in matrix size 𝑁1𝑁2.

Moreover, if the observable 𝐴(q,p) fulfills the scaling property (5.16), the number of function calls

can be reduced further on. Here, for each index pair (ℓ+1 , ℓ
+
2 ) with a common integer factor 𝜆 > 1,

we have 𝒜ℓ+1 ,ℓ+2
ℓ−1 ,ℓ−2

= 𝜆2𝒜ℓ+1 /𝜆,ℓ+2 /𝜆

ℓ−1 ,ℓ−2
. However, as the asymptotic rate of coprime integer pairs is 6/𝜋2 [88,

theorem 332] this only enhances the computation speed by a factor of order 1.

−Ni

Ni

−Ni Nisini

s′imi

(a)

−2Ni

2Ni

−2Ni 2Niℓ+i

ℓ−i

(b)

Figure J.1.: Visualisation of the index transformation (J.3) from the integer grid −𝑁𝑖 ≤
𝑠𝑖𝑛𝑖, 𝑠

′
𝑖𝑚𝑖 ≤ 𝑁𝑖 (a) to the grid of (ℓ+𝑖 , ℓ

−
𝑖 ) (b), shown for 𝑁𝑖 = 3. Colors indicate different sign

combinations of 𝑠𝑖 and 𝑠
′
𝑖.
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