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Abstrat

Classial partial transport barriers govern both lassial and quantum dynamis of generi

Hamiltonian systems. Chaoti eigenstates of quantum systems are known to loalize on either

side of a partial barrier if the �ux onneting the two sides is not resolved by means of

Heisenberg's unertainty. Surprisingly, in open systems, in whih orbits an esape, haoti

resonane states exhibit suh a loalization even if the �ux aross the partial barrier is quantum

mehanially resolved. We explain this using the onept of onditionally invariant measures

by introduing a new quantum mehanially relevant lass of suh fratal measures. We

numerially �nd quantum-to-lassial orrespondene for loalization transitions depending

on the openness of the system and on the deay rate of resonane states. Moreover, we show

that the number of long-lived haoti resonane states that loalize on one partiular side

of the partial barrier is desribed by an individual fratal Weyl law. For a generi phase

spae, this implies a hierarhy of fratal Weyl laws, one for eah region of the hierarhial

deomposition of phase spae.

Zusammenfassung

Klassishe partielle Transportbarrieren bestimmen sowohl die klassishe als auh die quan-

tenmehanishe Dynamik generisher hamiltonsher Systeme. Es ist bekannt, dass hao-

tishe Eigenzustände von Quantensystemen jeweils nur auf einer Seite einer partiellen Barriere

lokalisieren, solange der Fluss, der beide Seiten verbindet, im Sinne der heisenbergshen Un-

shärferelation quantenmehanish niht augelöst wird. Überrashenderweise zeigen haotishe

Resonanzzustände in o�enen Systemen, in denen Trajektorien das System verlassen können,

eine ebensolhe Lokalisierung, selbst wenn der Fluss durh die partielle Barriere quanten-

mehanish aufgelöst ist. Wir erklären dies mithilfe von bedingt invariaten klassishen Maÿen,

indem wir eine neue, quantenmehanish relevante Klasse solher fraktalen Maÿe einführen.

Am Beispiel zweier Lokalisierungsübergänge in Abhängigkeit der Stärke der Ö�nung des Sys-

tems und der Zerfallsrate der Resonanzzustände können wir die Korrespondenz von Klassik

und Quantenmehanik numerish bestätigen. Überdies stellt sih heraus, dass die Anzahl lang-

lebiger haotisher Resonanzzustände, die auf einer bestimmten Seite der partiellen Barriere

lokalisieren, durh ein individuelles fraktales Weylgesetz beshrieben wird. In einem gene-

rishen gemishten Phasenraum ergibt dies eine Hierarhie fraktaler Weylgesetze, jeweils eines

für jede Region der hierarhishen Zerlegung des Phasenraumes.
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Chapter 1

Introdution

The understanding of transport in its various manifestations lies at the heart of physis. One

may think of the historially important examples of Ohm's law on the eletri urrent through

a ondutor [1℄, of the �ow of �uids as desribed by the Navier�Stokes equation [2℄, or of

the di�usive transfer of heat [2℄. Also in modern physis transport phenomena are onstantly

subjet to researh, suh as the quantum Hall e�et giving rise to quantized values of the Hall

ondutivity [3℄, superondutivity that implies vanishing eletrial resistane [4℄, or quantum

teleportation by entanglement [5℄. Quite often in quantum mehanis, the transport behavior

is deeply related to the loalization of eigenstates or wave pakets, e.g., strong Anderson

loalization due to disorder suppresses di�usion and implies a metal�insulator transition [6,7℄,

weak loalization due to time-reversal invariane yields orretions to the lassial Drude

ondutivity of a metal [8℄, loalization of edge states due to topologial protetion is related

to the quantized Hall ondutivity [9℄, and many-body loalization in Fok spae implies a

metal�insulator transition at �nite temperatures for systems of interating partiles [10℄.

Quantum eigenstates an also exhibit loalization due to lassially restritive phase-spae

strutures [11�34℄: A lassial Hamiltonian system generially exhibits a mixed phase spae

of regular and haoti motion [35℄. The simplest systems to observe this oexistene are two-

dimensional time-disrete sympleti maps, whih originate for instane from autonomous

Hamiltonian systems with two degrees of freedom or from time-dependent Hamiltonian sys-

tems with one degree of freedom. In suh systems an invariant torus of regular motion is

impenetrable under the time evolution, that is, lassial transport from one side of the torus

to the other is ompletely suppressed [23℄. However, quantum mehanis allows for a small

transmission of wave pakets aross the torus under time evolution by dynamial tunneling [36℄.

Still, the probability for this proess is small and quantum eigenstates are essentially on�ned

to one side of the torus. In this way, a regular torus is a total barrier for transport in phase

spae. On the other hand, there also exist partial transport barriers whih are omnipresent in

the haoti omponent of a generi mixed phase spae and typially our in an in�nite hierar-
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hial pattern [16,17,23℄. A partial barrier admits a small lassial �ux φ from one side to the

other. Interestingly, a quantum wave paket an pass the partial barrier if its �ux is quantum

mehanially resolved by means of Heisenberg's unertainty (φ ≫ h) but the wave paket

remains on one side if the lassial �ux is not resolved (φ ≪ h) [17, 19, 20, 24, 31, 32, 37�39℄.

Here h refers to an e�etive size of Plank's ell. We emphasize that quantum mehanis

an therefore suppress transport that is lassially allowed, in ontrast to the tunneling pro-

ess [6, 32, 40, 41℄. In the same spirit, haoti eigenstates are equipartitioned with respet to

the partial barrier if φ≫ h, as if there were no partial barrier and they turn out to loalize on

either side of the partial transport barrier for φ≪ h. In fat, there is a universal loalization

transition from one regime to the other, depending only on the saling parameter φ/h [32℄.

So far, we onsidered systems isolated from their environment. This is a theoretial ideal-

ization that might be experimentally reasonable on problem spei� time or energy sales. The

desription of a variety of phenomena, however, expliitly requires to inorporate the openness

of the system suh as depolarization, dephasing, or spontaneous emission [42℄. In this thesis we

onsider a spei� kind of open systems, namely systems that allow for esape [33, 34, 43�61℄.

Classially, one might think of a two-dimensional billiard with hole in the boundary or of more

general types of sattering systems in whih orbits an esape [55, 56, 62℄. Quantum mehan-

ially, this orresponds to a subunitary time-evolution operator where the subunitarity refers

to the fat that its spetrum lies inside the unit irle aounting for the deay [48, 63�66℄.

Eigenstates of suh open quantum systems are alled resonane states. This theoretial frame-

work is well suited to desribe optial miroavities for instane [67℄. Their emission pattern

is determined by the phase-spae loalization of their resonane states [67�75℄. As partial

barriers an have a huge in�uene on the loalization of eigenstates in losed systems it is

reasonable to expet that they are also relevant for open systems like optial miroavities,

f. [75℄. However, is the above theory on the loalization of eigenstates for losed systems still

relevant in presene of an opening?

In this thesis we demonstrate that haoti resonane states an loalize on either side of

a partial barrier even in the regime of φ ≫ h, where in the losed system typial haoti

eigenstates are equipartitioned. In partiular, we �nd a smooth transition from equipartition

to loalization of long-lived resonane states on one side of the partial barrier if the system is

opened. In addition, we �nd a transition from loalization on one side of the partial barrier

to loalization on the other side depending on the deay rate of the resonane states. This

phenomenology shows that partial barriers are even more important in open systems than

in losed systems. We explain both loalization transitions using lassial onepts. Based

on the important work by Keating et al. [49℄ and Nonnenmaher et al. [51℄ the lassial

ounterpart of a quantum resonane state is found to be given by a onditionally invariant

measure (im). These measures are invariant under the lassial dynamis up to a global
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fator ompensating the deay [43, 50, 56, 76℄. However, for eah deay rate γ there exist

in�nitely many di�erent ims and it is not lear whih of them is quantum mehanially

relevant. We propose the lass of γ-natural ims. By analytial and numerial analysis

of the partial-barrier map, whih is a model system with a single partial barrier, and of

the generi standard map with a mixed phase spae, we demonstrate quantum-to-lassial

orrespondene between the loalization of haoti resonane states and of γ-natural ims.

This explains both observed loalization transitions of haoti resonane states and gives

a fundamental insight into quantum-to-lassial orrespondene for open systems. Moreover,

using the loalization of haoti resonane states due to partial barriers we generalize the fratal

Weyl law [47,48,51�53,61,71,77�97℄ on the number of long-lived haoti resonane states from

haoti open systems to generi open systems with a mixed phase spae. To this end, we

use the fat that the lassial fratal repeller, that is, the set of points in phase spae whih

do not esape under lassial time evolution, e�etively exhibits individual fratal dimensions

assoiated with the hierarhial deomposition of phase spae by partial barriers [98℄. This

gives rise to a hierarhy of fratal Weyl laws. We give a heuristi argument for their presene

and support it numerially for the partial-barrier map and the generi standard map. The

main results of this thesis have already been published in Refs. [33, 34℄.

The manusript is organized as follows: In Chap. 2 we introdue resonane states and open

quantum maps from a general perspetive. The fundamentals on Hamiltonian haos relevant

for this thesis are disussed in Chap. 3, putting fous on the haoti transport in presene of

partial barriers and the esape from haoti systems. Chapter 4 is dediated to the detailed

introdution of model systems with a single partial barrier that allow for an analytial and a

numerial investigation over a broad range of parameters without the omplexity of an in�nite

hierarhy of partial barriers. Following a review on the loalization transition of haoti

eigenstates due to a partial barrier in losed systems in Chap. 5, we numerially observe the

two new loalization transitions for open systems in Chap. 6. A theoretial disussion on the

semilassial struture of haoti resonane states, reviewing known results and introduing

the new lass of γ-natural ims, is presented in Chap. 7. In Chaps. 8 and 9 we investigate

quantum-to-lassial orrespondene between haoti resonane states and γ-natural ims for

the partial-barrier map and the standard map. Based on these results, we generalize the

fratal Weyl law to generi systems with a mixed phase spae in Chap. 10. We give an

extensive outlook in Chap. 11 where we disuss the next steps towards an appliation of our

results for optial miroavities. Note that in order to appreiate the importane of some

results we expliitly show their proofs or derivations in the main text even if they are rather

tehnial and not essential for the further understanding. In suh ases, the beginning and

end of the proofs is learly visible in the text and they may therefore be skipped if neessary.
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Chapter 2

Open Quantum Systems

In this hapter we introdue resonane states of open quantum systems from a general perspe-

tive and disuss the relation to eigenvetors of subunitary quantum maps whih are studied

throughout this thesis. To this end, we brie�y review a ommon modeling approah for open

quantum systems in Se. 2.1, whih leads to the Lindblad master equation. In Se. 2.2 we

restrit our onsiderations to a speial kind of open quantum systems, namely sattering sys-

tems, and disuss the phenomenon of resonane sattering. The widely used method to study

resonanes in terms of analyti properties of the sattering matrix is desribed in Se. 2.3. In

Se. 2.4 it is outlined how to e�etively model a sattering system by a nonhermitian Hamil-

tonian. Note that in Ses. 2.1�2.4 the derivation of some relations is presented only very short

or not at all as these setions are mainly intended to embed our later results in a broader

ontext. We onlude this hapter by introduing open quantum maps in Se. 2.5, where we

also disuss the eigenvalue problem for subunitary matries.

2.1 General Theory

Every physially relevant system interats with its environment. This interation an be real-

ized in terms of partile exhange or heat transfer for instane. Note that suh an interation

an be desired or not. Think of a measurement devie like a sanning eletron mirosope

where information about the target objet an be extrated from the sattered eletrons [99℄,

or of an optial avity where losses should be redued in order to improve the spetral oher-

ene properties of a laser [67℄. Full isolation of a physial system is a theoretial idealization

whih may be reasonable on ertain problem spei� time or energy sales.

Let us brie�y review the typial theoretial modeling of open quantum systems. An en-

semble of quantum states is desribed by a density operator ̺, that is a hermitian, positive

semide�nite operator of unit trae ating on the system's Hilbert spae [100,101℄. A reasonable

model for the time evolution, regardless of the spei� properties of the system, has to map
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density operators to density operators. For a losed system desribed by the Hamiltonian H ,

this is ensured by von Neumann's equation,

˙̺(t) = − i

~
[H, ̺(t)], ̺(0) = ̺0, (2.1)

whih is solved by the unitary evolution

̺(t) = U(t)̺0U(t)
∗, U(t) = exp

[

− i

~
Ht

]

(2.2)

in the autonomous ase [102, Se. 20.2℄. Here U(t)∗ denotes the adjoint of U(t). Unitary

time evolution, however, is too restritive to desribe typial phenomena in open systems suh

as depolarization, dephasing, or spontaneous emission [42, Se. 6.1.6℄. In order to desribe

suh phenomena, it proves useful to onsider the more general lass of ompletely positive,

trae preserving maps. Suh maps also ensure that density operators are mapped to density

operators. Aording to Stinespring's dilation theorem [103℄ any ompletely positive, trae

preserving map Et an be represented by

̺(t) = Et(̺0) = tr
env

[U(t)(̺0 ⊗ ̺
env

)U(t)∗] , (2.3)

with an appropriate density operator ̺
env

and a unitary operator U(t) [104, Se. 3.15℄. Intu-

itively speaking, the initial state ̺0 of the open system is embedded in its losed environment

by ̺0 ⊗ ̺
env

, the time evolution of whih is unitary. Finally, the environmental degrees of

freedom are traed out, giving the evolved density matrix ̺(t) in the open subsystem. Inter-

estingly, the expliit time evolution in Eq. (2.3) allows a formulation in terms of a di�erential

equation, so to say the open system's equivalent of the von Neumann equation, Eq. (2.1). As-

suming the Markov property, Es+t = EsEt, one �nds a hermitian operator H , an orthonormal

operator basis {Fk}k, and nonnegative oe�ients {ck}k suh that

˙̺(t) = − i

~
[H, ̺(t)]

∣
∣
∣
∣
∣

︸ ︷︷ ︸

onservative

+
1

2

∑

k

ck
(
[Fk̺(t), Fk

∗] + [Fk, ̺(t)Fk
∗]
)

︸ ︷︷ ︸

dissipative

, (2.4)

whih ontains a dissipative ontribution in addition to the onservative von Neumann term

as indiated [105, 106℄. Equation (2.4) is known as the Lindblad master equation in diagonal

form.
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2.2 Resonane Sattering

Let us fous on a speial ategory of open systems, namely sattering systems. The main

idea of the sattering proess is as follows [107�110℄: One or more free partiles approah

a bounded region where they interat with an external potential, by ollisions, or hemial

reations for example. The produts then esape from the interation region again as free

partiles. Although the general framework outlined above in Se. 2.1 is in priniple able to

desribe sattering proesses, f. Refs. [111, 112℄, there are more adapted methods.

Consider the stationary Shrödinger equation,

[

− ~2

2m
△+ V (r)

]

ψ(k, r) =
~2k2

2m
ψ(k, r), (2.5)

for a nonrelativisti partile of mass m and energy E = ~2k2/(2m) subjet to a entral poten-

tial V with limr→∞ rV (r) = 0. It has solutions of the form ψℓm(k, r) = r−1uℓ(k, r)Yℓm(ϑ, ϕ)

where Yℓm denotes the spherial harmonis and uℓ solves the radial Shrödinger equation,

u′′ℓ (k, r)−
(
ℓ(ℓ+ 1)

r2
+

2m

~2
V (r)

)

uℓ(k, r) + k2uℓ(k, r) = 0, (2.6)

where the derivative is taken with respet to the variable r [100, �32℄. Depending on the

spei� shape of V , the solutions of Eq. (2.5) orrespond to bound states for disrete energy

eigenvalues of E < 0, or to unbound sattering states for the ontinuous spetrum with

E > 0 [100, �10℄. However, there an exist sattering states whih are partiularly important.

Sattering states tunneling through a potential barrier for instane are assoiated with an

enhaned life time ompared to sattering states with energy above the barrier threshold [100,

�134℄, see illustration in Fig. 2.1. Suh states are usually alled resonane states, quasibound

states, quasistationary states, or metastable states. They admit quasidisrete energies within

the ontinuous spetrum [100, �134℄. Remarkably, resonane states give rise to harateristi

peaks in the experimentally observable sattering ross setion [100, �145℄.

In order to understand the appearane of these harateristi peaks, let us onsider the

historially important example of sattering of slow neutrons at a nuleus [113℄, where we

losely follow the disussion in Setions T.3 and T.4 from Ref. [107℄. In this ase, it is useful

to assume that the neutron does not interat with the nuleus for r > R, with the radius R

of the nulear sphere. Dealing with slow neutrons, the sattering proess is dominated by the

s-wave ontribution, ℓ = 0. Equation (2.6) thus reads

u′′(k, r) + k2u(k, r) = 0 (2.7)
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0
r

V (r) resonance
state

bound
states

Figure 2.1. Sketh of entral potential V with tunneling barrier (thik solid line). Disrete

levels with energy below zero orrespond to bound states while quasidisrete levels with

energy above zero but below the tunneling threshold orrespond to long-lived resonane

states.

for r > R, dropping the �xed index ℓ. This is solved by

u(k, r) = A
(
e−ikr − S(k)eikr

)
(2.8)

with an appropriate fator A and the sattering matrix element S(k). The sattering matrix

therefore desribes how the inident wave is a�eted by the target depending on the wave

number k. De�ning f(k) := Ru′(k, R)/u(k, R) and inserting the solution u from Eq. (2.8),

the sattering matrix element is given by

S(k) =
f(k) + ikR

f(k)− ikR
e−2ikR. (2.9)

With this, the experimentally relevant ross setion

1 σ = (π/k2) |1− S(k)|2 for elasti sat-

tering reads

σ =
π

k2

∣
∣
∣
∣

−2ikR

f(k)− ikR
︸ ︷︷ ︸

A
res

+
(
e2ikR − 1

)
∣
∣
∣
∣

︸ ︷︷ ︸

A
pot

∣
∣
∣
∣

2

, (2.10)

where A
pot

is referred to as potential sattering term and A
res

implies a resonane phenomenon.

To demonstrate this, a zero E
res

of f is onsidered, where f is now understood as a funtion

1

Note that there is a fator of π missing in Eq. (A37) in Ref. [107℄. The orret expression may be found

in Ref. [108, Se. 2.6℄ or in Ref. [100, �142℄.
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of energy, E = ~2k2/(2m). A �rst order Taylor expansion of f in the viinity of E
res

yields

A
res

=
iΓ

(E − E
res

) + iΓ
2

(2.11)

with Γ := −2kR/f ′(E
res

). Close to E
res

, A
pot

is small ompared to A
res

suh that

σ ≈ π

k2
Γ2

(E −E
res

)2 + Γ2

4

. (2.12)

This is the harateristi Breit�Wigner pro�le of isolated peaks in the sattering ross se-

tion. [107℄

The intuitive interpretation of this resonane peak is based on Bohr's ompound nuleus

model [114℄, see also Refs. [107, Se. T.2℄ or [100, �145℄. At the resonane energy E
res

the

inoming neutron together with the target nuleus forms a ompound nuleus in an exited

state [107℄. The energy of the inoming neutron is then distributed over all onstituents suh

that a single partile does not have the energy neessary to esape from the ompound [100℄.

Statistially, it takes a relatively long time until the event that su�ient energy is stored in

a single partile of the ompound whih is then able to esape [100℄. The ompound nuleus,

thus, represents a long-lived quasibound state, also alled resonane state. The orrespond-

ing resonane peaks in the sattering ross setion are indeed observed in experiment, see

Fig. 2.2 [115, Fig. 6℄.

Figure 2.2. The experimentally measured total ross setion of oxygen depending on

the energy of the inoming neutrons exhibits lear resonane peaks. Reprinted �gure with

permission from [C. K. Bokelman, D. W. Miller, R. K. Adair, and H. H. Barshall, Phys.

Rev. 84, 69 (1951)℄ Copyright (2016) by the Amerian Physial Soiety.
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2.3 Analyti Properties of the Sattering Matrix

A ommon approah to investigate both resonane states as well as bound states on the same

footing is the study of the analyti properties of the sattering matrix. To this end, the

sattering matrix S is onsidered as a funtion of omplex wave number k or of omplex

energy E, and one seeks for its poles within the omplex plane. For the present ase of s-wave

sattering, it is useful to introdue Jost funtions, see Refs. [110, Se. 12.1℄ or [109, Ses. 11.1,

11.2℄. It an be shown that physial s-wave sattering solutions of Eq. (2.6) obey the boundary

onditions [100, �33℄

u(k, 0) = 0, (2.13a)

u(k, r) ∼ sin(kr + δ), (r → ∞) (2.13b)

with the sattering phase shift δ. There are also other solutions whih obey the less restritive

regularity ondition [109, 110℄

u(k, 0) = 0, (2.14a)

u′(k, 0) = 1. (2.14b)

These regular solutions turn out to be useful as they allow for a spei� representation of the

sattering matrix. A regular solution an asymptotially be expressed as

u(k, r) ∼ 1

2ik

[
F (−k)eikr − F (k)e−ikr

]
, (r → ∞) (2.15)

with the analyti Jost funtion F [110℄

2

. Hene, omparing Eqs. (2.8) and (2.15), the satter-

ing matrix element reads

S(k) =
F (−k)
F (k)

, (2.16)

suh that the poles of S are determined by the zeros of the analyti funtion F . Given k0

suh that F (k0) = 0, the regular solution u from Eq. (2.15) sales as eik0r whih is a square-

integrable bound solution for Im k0 > 0 and unbound for Im k0 < 0. For bound solutions

whih have real negative energy E = ~2k2/(2m), it is neessarily Re k0 = 0. For unbound

solutions, however, the real part of k0 does not have to vanish. Due to a symmetry of F ,

the poles for Im k0 < 0 appear in pairs on both sides of the imaginary axis [109℄. Note that

there are also poles with Re k0 = 0 and Im k0 < 0, whih orrespond to so-alled virtual or

2

Note that there are di�erent versions of the Jost funtion F used in the literature varying in the sign of

their argument k, f. Refs. [109, 110℄. Depending on this sign, its zeros assoiated with bound states are also

related to Im k0 < 0 and, vie versa, for the unbound states to Im k0 > 0 [109℄. We follow the notation in

Ref. [110℄, suh that the zeros of F oinide with the position of the poles of S.
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antibound states, but they are of no relevane here, f. [110, Se. 12.1.4℄ or [116, Se. 3.6.7℄.

The desribed typial struture of poles of S(k) is skethed in Fig. 2.3(a). In order to see

the relation of poles in S(k) for Im k0 < 0 to resonane peaks in the sattering ross setion,

Eq. (2.12), it is useful to represent the sattering matrix in terms of the energy E. To this

end, it is neessary to distinguish between the two di�erent Riemann sheets

k =

√

2m

~2
|E| exp

[

i
arg(E)

2

]

, (2.17a)

k =

√

2m

~2
|E| exp

[

i

(
arg(E)

2
+ π

)]

, (2.17b)

the �rst of whih is related to the bound solutions (also alled physial sheet), Im k > 0, while

the seond desribes unbound solutions (also alled unphysial sheet), Im k < 0. Note that by

onvention, the argument arg(E) of the omplex number E is in [0, 2π). The position of poles

of the sattering matrix element as a funtion of E, distinguishing between both Riemann

sheets, is skethed in Fig. 2.3(b).

Let us fous again on the relation of poles in the �rst sheet to bound states. It is useful

to note, that the sattering matrix is more generally de�ned by S = Ω∗
−Ω+ with the Møller

operators Ω± = 1+(E±iε−H)−1V , (ε ց 0), in terms of the HamiltonianH = −~2/(2m)△+V

−1

0

1

−1 0 1Re k

Im k

(a)

−1

0

1

−1 0 1

first sheet

ReE

ImE

(b)
second sheet

0

2π

Figure 2.3. (a) Sketh of the position of poles in the sattering matrix element S(k) as a
funtion of omplex wave number k. The olor in the bakground represents the argument

of the omplex number k, see olor ode on the right. Poles on the imaginary axis in

the physial sheet, Im k > 0, visualized by irles, orrespond to bound states. Poles o�

the imaginary axis in the unphysial sheet, Im k < 0, visualized by rosses, orrespond to

resonane states. Note that the resonane poles ome in pairs of a deaying resonane state

(blak) and an inreasing resonane state (white). (b) Position of poles in the sattering

matrix element as a funtion of omplex energy, E ∼ k2, distinguishing between the �rst

sheet (left), Eq. (2.17a), and the seond sheet (right; same axes as �rst sheet), Eq. (2.17b).

The olor in the bakground represents the argument of k to demonstrate the relation to

(a).
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in the Lippmann�Shwinger representation [110℄. Hene, poles of the sattering matrix are

diretly related to poles of the resolvent (E − H)−1
[117, Se. XI.6℄, whih is an analyti

operator-valued funtion of the energy E on the omplement C\σ(H) of the spetrum σ(H) of

H [118, Thm. VIII.2℄. The disrete spetrum for E < 0 on the real axis, assoiated with bound

states, therefore admits isolated singularities to the resolvent and, thus, also to the sattering

matrix. Likewise, the ontinuous spetrum for real values E > 0 admits a branh ut as an be

seen in Fig. 2.3(b). It is still possible to �nd an analytial (or meromorphi) ontinuation from

the upper half plane to the lower half plane aross the branh ut by swithing to the seond

sheet [119, Se. XII.6℄, see the olor plot in the bakground of Fig. 2.3(b, ). Consider a well

isolated simple pole at E = E
res

− iΓ/2 on the seond sheet. The representation σ = 4π|A|2
of the elasti sattering ross setion σ in terms of the partial s-wave sattering amplitude

A = (S − 1)/(2ik) [100, �123℄, suggests to investigate the in�uene of the seond sheet pole

on A. A Laurent expansion of A around E = E
res

− iΓ/2 gives

A(E) =
̺

E − (E
res

− iΓ
2
)
+A

b

(E), (2.18)

where ̺ denotes the residue of A at the pole and A
b

is the analyti bakground in an appropri-

ate neighborhood of the pole [119, Se. XII.6℄. If the bakground is negligible, this imposes the

Breit�Wigner resonane peak of width Γ in the sattering ross setion, f. Eq. (2.12). Hene,

simple poles in the seond sheet of the sattering matrix are interpreted as resonanes. It an

be seen by time evolution that the norm of a resonane state ψ at energy E = E
res

− iΓ/2 an

desribe deay or apture depending on the sign of Γ,

‖e− i
~
Etψ‖2 = e−

Γ
~
t. (2.19)

Suh deay behavior is typially also haraterized by the deay rate γ = Γ/~ or the life time

τ = 1/γ. As a onsequene of Heisenberg's energy�time unertainty, ∆E∆t ∼ ~, the �nite

life time τ of a resonane state omes along with the �nite width Γ of the quasidisrete energy

level [100, �44℄. In this work, we only study deaying resonane states with Γ > 0 in the lower

half plane of the seond sheet, f. Fig. 2.3(b).

2.4 E�etive Nonhermitian Hamiltonian

Of partiular importane for the interpretation of this thesis is the fat that the sattering

problem an be desribed in terms of an e�etive nonhermitian Hamiltonian, or equivalently

in terms of an e�etive subunitary time-evolution operator. There are di�erent ways to obtain

this e�etive Hamiltonian, a prominent one of whih is known as omplex saling [119, Se.

XII.6℄. Here, we review a formally more diret way. One starts with a Caley transform of the
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sattering matrix,

S = (1− iK)(1+ iK)−1, (2.20)

giving the reatane matrix K = −i(1 − S)(1 + S)−1
[110℄. The ruial idea is then to

deompose the full sattering system into the bounded interation region, desribed by an

internal losed-system Hamiltonian H
int

, and its oupling to open deay hannels, mediated

by the matrix W , whih depends on energy in general [63�65℄. This allows to express the

reatane matrix in form of

K(E) = πW ∗(E)(E −H
int

)−1W (E). (2.21)

It is typially assumed that W only depends weakly on energy, whih eventually leads to the

Mahaux�Weidenmüller formula [64, 65, 120℄,

S(E) = 1− 2πiW ∗(E −H
e�

)−1W, (2.22)

with the nonhermitian e�etive Hamiltonian

H
e�

= H
int

− iπWW ∗. (2.23)

The derivation of Eq. (2.22) from Eqs. (2.20) and (2.21) an be found for instane in Ref. [121,

Se. II.B℄ or in [64℄. Regarding Eq. (2.22), it is evident that the eigenvalues of H
e�

orrespond

to the poles of S. Sine the operator WW ∗
is positive, the spetrum of H

e�

lies in the lower

half of the omplex plane inluding the real axis and, thus, desribes deaying resonane

states and also bound states. Note that this nonhermitian e�etive Hamiltonian is not to

be interpreted as an observable but rather as an auxiliary quantity to desribe the sattering

proess. We point out that there is a very similar expression for the sattering matrix in terms

of an e�etive subunitary time-evolution operator [66℄.

2.5 Open Quantum Maps

In this thesis we study time disrete open quantum systems. They may be interpreted as sat-

tering proesses for whih the interation between the sattering region and the environment

only ats at disrete equidistant times [66, Se. 3.4.1℄. Then the strobosopi time evolution

is haraterized by the iteration of the subunitary operator U
op

= UP , where the unitary

operator U desribes the losed system's time evolution between the opening events that are

mediated by the orthogonal projetion operator P whih projets onto the subspae that re-

mains within the sattering region. Sine U
op

is a partial isometry, its spetrum lies inside the
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unit irle in the omplex plane [122℄, whih motivates the notion of subunitarity. Let λ ∈ C

be suh an eigenvalue of U
op

with modulus |λ| ≤ 1, together with a orresponding normalized

eigenvetor ψ. Then the time evolution of ψ,

‖Un
op

ψ‖2 = |λ|2n ‖ψ‖2 = e−γn, (2.24)

gives an exponential deay of the norm with deay rate γ = −2 log |λ| in agreement with

Eq. (2.19).

The de�nition of the subunitary time-evolution operator U
op

= UP is a onvention as we

ould have equally well hosen U
op

= PU or U
op

= PUP . In fat, all three projetion types

are used in the literature [48,49,94℄. However, we an show that the set of eigenvalues for UP ,

PU , and PUP are equal. Hene, regarding deay in open systems the hoie of the type of

projetion is not relevant. This result is not even restrited to unitary operators U but holds

for any bijetive, bounded linear operator on some separable Hilbert spae.

Proposition. Let U be a bijetive, bounded linear operator on the Hilbert spae H
and let P be a projetion, i.e., P 2 = P . Then the point spetra σ(UP ), σ(PU), and

σ(PUP ) oinide.

Proof. The following proof is worked out in ollaboration with Sasha Trostor�. At �rst,

we separately answer the question whether zero is an eigenvalue. Reall that for any

bounded linear operator A on H, it is

λ ∈ σ(A) :⇔ ∃ψ ∈ H, ψ 6= 0 : Aψ = λψ (2.25)

⇔ dimker(A− λ1) > 0, (2.26)

with

kerA := {ψ ∈ H : Aψ = 0}. (2.27)

To deide whether zero is an eigenvalue of UP , PU , and PUP , we onsider

kerUP = kerP, kerPU = U−1 kerP, (2.28)

and

kerPUP = kerP + imP ∩ U−1 kerP, (2.29)

using that U is bijetive, see Appendix B.1. If zero is an element of one of the three
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onsidered point spetra, it is neessarily dimkerP > 0. Then, however, we �nd

dimkerUP > 0, dimkerPU > 0, dimkerPUP > 0, (2.30)

whih implies that 0 ∈ σ(UP ) ∩ σ(PU) ∩ σ(PUP ).
Now, let λ ∈ σ(UP ) with λ 6= 0. Then there exists ψ ∈ H, ψ 6= 0 suh that UPψ =

λψ. Multipliation from the left by P gives PU(Pψ) = λPψ. Sine λψ 6= 0, it is

ψ 6∈ kerUP = kerP suh that Pψ 6= 0 and λ ∈ σ(PU). Furthermore, using P 2 = P we

�nd PUP (Pψ) = λPψ with Pψ 6= 0 and, thus, λ ∈ σ(PUP ).

On the other hand, let λ ∈ σ(PU) with λ 6= 0. Then there exists ψ ∈ H, ψ 6= 0 suh that

PUψ = λψ. Multipliation from the left by U gives UP (Uψ) = λUψ, where Uψ 6= 0

sine U is bijetive. Thus, λ ∈ σ(UP ) whih is σ(UP ) = σ(PU).

Finally, let λ ∈ σ(PUP ) with λ 6= 0. Then there exists ψ ∈ H, ψ 6= 0 suh that

PUPψ = λψ. Multipliation from the left by P and using P 2 = P gives PU(Pψ) = λPψ.

Sine λψ 6= 0, it is ψ 6∈ kerPUP ⊇ kerP suh that Pψ 6= 0 and λ ∈ σ(PU) = σ(UP ).

To onlude, this gives σ(UP ) = σ(PU) = σ(PUP ). �

Throughout this thesis we use the projetion type UP . However, for numerial purposes it is

more onvenient to diagonalize PUP , whih allows for trunation, and thus, for a redution of

the matrix dimension. Any eigenvalue λ and assoiated eigenvetor ψ of PUP then provides

the eigenvalue λ of UP assoiated with the eigenvetor Uψ. To see this, it is important to

note that Pψ = ψ beause

ψ =
1

λ
PUPψ =

1

λ
P 2UPψ = P

(
1

λ
PUPψ

)

= Pψ, (2.31)

suh that

UP (Uψ) = UP (UPψ) = U(PUPψ) = λUψ. (2.32)

As the eigenvalue problem of nonhermitian Hamiltonians or subunitary time-evolution oper-

ators is more involved than for hermitian or unitary operators, we will revisit the general

eigenvalue problem for �nite-dimensional matries in the following. In this overview we follow

the disussion in Ref. [123, Se. 2.2.2℄.

To this end, let us onsider the linear map K : CN → CN
. A solution of

Kψ = λψ (2.33)

is given by a pair of an eigenvalue λ ∈ C and a orresponding eigenvetor ψ ∈ CN
. Alterna-

tively, one may onsider the eigenvalue problem on the dual spae (CN)∗ of CN
, that is the
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spae of linear funtionals on CN
. Using the adjoint map K∗ : (CN)∗ → (CN)∗, f 7→ f ◦K,

of K, the dual eigenvalue problem reads

K∗(f) = µf, (2.34)

where µ ∈ C and f ∈ (CN)∗. Typially, the dual eigenvalue problem is also formulated in

C
N
by virtue of the anonial isomorphism between C

N
and its dual that is provided by the

standard salar produt in CN
: For any f ∈ (CN)∗ there exists a unique vetor ψ′ ∈ CN

with

fψ′(·) := f(·) = 〈ψ′ | · 〉 aording to the Riesz representation theorem [118, Se. II.2℄. Hene,

Eq. (2.34) gives

(K∗fψ′) (ϕ)
def

= fψ′(Kϕ) = 〈ψ′ |Kϕ 〉
(2.34)

= µfψ′(ϕ) = µ〈ψ′ |ϕ 〉 = 〈µψ′ |ϕ 〉 (2.35)

for all ϕ ∈ CN
, where µ denotes the omplex onjugate of µ. Identifying the adjoint map K∗

with its matrix representation K∗ = K
T
, the dual eigenvalue problem formulated in CN

reads

K∗ψ′ = µψ′. (2.36)

Due to the representation 〈ψ′ |K(·) 〉 = µ〈ψ′ | · 〉 one distinguishes between the so-alled left

eigenvetor ψL := ψ′
of K assoiated with the eigenvalue µ and the right eigenvetor ψR := ψ

from Eq. (2.33) of K assoiated with the eigenvalue λ [124, Chap. 6℄. As an be seen by

0 = det(K − λ1) = det (K − λ1) = det(K∗ − λ1) (2.37)

the spetra of K and K∗
are omplex onjugate to eah other. Following Ref. [125℄, we de�ne

the matries R and L the olumns of whih ontain the right or left eigenvetors of K, and

the diagonal matrix Λ ontaining the orresponding eigenvalues. Then Eqs. (2.33) and (2.36)

are in matrix notation given by

KR = RΛ, (2.38a)

K∗L = LΛ. (2.38b)

Thus, for hermitian matries, K∗ = K, with real spetrum, right and left eigenspaes oinide.

The same holds true for unitary matries, K∗ = K−1
, with Λ = Λ−1

, for that

KL = KLΛΛ = KK∗LΛ = LΛ. (2.39)

In general, however, there is no simple relation between right and left eigenvetors. We

emphasize that the eigenvetors of K do not have to form an orthogonal basis unless K is
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hermitian or unitary. For a basis expansion in terms of eigenvetors it is therefore useful to

reognize that right and left eigenvetors form a pair of dual bases as follows [126℄. Consider

the adjoint of Eq. (2.38b), i.e., L∗K = ΛL∗
. Multiplying both sides with R from the right

hand side, and multiplying both sides of Eq. (2.38a) by L∗
from the left hand side yields

L∗KR = ΛL∗R = L∗RΛ, (2.40)

that is

[L∗R,Λ] = 0. (2.41)

Sine Λ is a diagonal matrix, L∗R must therefore be a diagonal matrix as well. Thus, from

the o�-diagonal elements of L∗R one �nds

(L∗R)ik =

N∑

j=1

L∗
ijRjk =

N∑

j=1

LjiRjk = 〈ψL

i |ψR

k 〉 = 0 (i 6= k) (2.42)

This is the essential property of dual bases. By appropriate normalization, it is possible to

hoose

‖ψL

k ‖ = ‖ψR

k ‖, 〈ψL

k |ψR

k 〉 = 1 (1 ≤ k ≤ N), (2.43)

as ommonly used more in the mathematial literature. From the physis point of view, it is

more onvenient to normalize the eigenvetors by

‖ψL

k ‖ = 1, ‖ψR

k ‖ = 1 (1 ≤ k ≤ N), (2.44)

suh that 〈ψL

k |ψR

k 〉 is not a �xed value independent of k. This hoie allows for the proba-

bilisti quantum-mehanial interpretation of right and left eigenvetors. Assuming that K is

diagonalizable, the expansion of a vetor ϕ ∈ CN
in terms of right or left eigenvetors thus

reads

ϕ =
N∑

k=1

〈ψL

k |ϕ 〉
〈ψL

k |ψR

k 〉 ψ
R

k =
N∑

k=1

〈ψR

k |ϕ 〉
〈ψR

k |ψL

k 〉
ψL

k . (2.45)
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Chapter 3

Chaoti Dynamis

In the previous hapter on open quantum system, we mainly foused on how to desribe the

interation of a on�ned sattering region with its environment. In this hapter we speify the

kind of dynamis that we assume within the sattering region in terms of lassial mehanis.

To this end we provide an overview on the lassial theory of Hamiltonian dynamial systems

in Se. 3.1. In partiular, we disuss the generi struture of a mixed phase spae with regions

of regular and haoti motion. The di�erene between haoti dynamis in globally haoti

systems and the haoti dynamis within the haoti part of a generi mixed phase spae

is presented in Se. 3.2. We partiularly onsider the in�uene of the generi hierarhy of

partial transport barriers. The bridge to open systems is built in Se. 3.3. There we introdue

lassial open maps and disuss the struture of sets that are trapped although the system is

open. It turns out that the trapped sets of haoti systems have fratal properties.

3.1 Generi Hamiltonian Dynamis

A ommon formulation of the theory of lassial mehanis is the Hamiltonian approah as it

niely paves the way towards the theory of quantum mehanis. The Hamiltonian equations

of motion,

q̇k(t) =
∂H

∂pk

(
q(t), p(t), t

)
, ṗk(t) = −∂H

∂qk

(
q(t), p(t), t

)
, (3.1)

determine the evolution of generalized position and momentum oordinates, q = (q1, . . . , qf )

and p = (p1, . . . , pf), by the Hamilton funtion H : Γ×T → R. This de�nes a dynamial sys-

tem with f degrees of freedom on the extended phase spae Γ×T ⊆ R
2f×R, f. Refs. [127,128℄.

In general the phase spae Γ is onsidered to be a sympleti manifold [129�132℄. Darboux's

theorem, however, allows us to treat Γ loally as a �at Eulidean vetor spae [129,130℄. In this

thesis we study two-dimensional, time-disrete, sympleti maps. They originate for instane
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from restriting the time-ontinuous dynamis of a time-independent Hamilton funtion with

f = 2 from the energy shell to a Poinaré setion, or from strobosopi solutions of a (period-

ially) time-dependent Hamilton funtion with f = 1 [133℄. A di�eomorphism T : Γ → Γ on

a two-dimensional sympleti manifold Γ with the anonial di�erential form ω = dq ∧ dp is

alled sympleti if ω remains invariant under the pullbak by virtue of T [129,130℄. In harts

of the R2
, where ω is represented by the skew-symmetri matrix

Ω =

(

0 1

−1 0

)

, (3.2)

sympletiity of T means that

DT |Tx ΩDT |x = Ω (3.3)

for all x ∈ Γ. Here DT |x denotes the Jaobian of T at the point x. Espeially for the

onsidered two-dimensional ase, Eq. (3.3) redues to [23℄

detDT |x = +1 (x ∈ Γ). (3.4)

This admits the intuitive interpretation that a sympleti map is haraterized by preserving

the phase-spae volume and the orientation. Note that this simple interpretation holds true

only for the two-dimensional ase. Remarkably, an equivalent formulation of Eq. (3.4) is that

the two eigenvalues of DT |x multiply to unity. Hene, if λ is an eigenvalue of DT |x so is λ−1
.

Moreover, sine DT |x is real, if λ is an eigenvalue then λ lies in the spetrum as well. As the

two eigenvalues of DT |x haraterize the linearized dynamis around any �xed point x ∈ Γ,

T (x) = x, the spetral restritions due to sympletiity imply restritions on the possible types

of �xed points. It turns out that sympleti two-dimensional maps only allow for ellipti (λ

imaginary), hyperboli (λ real), or paraboli (λ equals +1 or −1) �xed points [23℄.

If there exists a onstant of motion, that is an observable G : Γ → R for whih globally

G ◦ T = G, then the dynamial system is alled integrable or regular [132℄. In this ase,

the Arnold�Liouville theorem says that the motion takes plae on one-dimensional tori when

looked at in ation�angle variables [130, 132℄. On the other hand, if there is no suh onstant

of motion, orbits are not on�ned to one-dimensional submanifolds of Γ. The dynamis is

then referred to as haoti or irregular. Note that, typially, the absene of regular motion

omes along with a sensitive dependene on initial onditions whih motivates the notion

of deterministi haos. This is usually formulated in terms of the Lyapunov exponent: In

general, the dynamial behavior of points started in a neighborhood of x ∈ Γ is not isotropi

but depends on the diretion. Charateristi diretions are given by the eigenvetors of the
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Jaobian of T at x. Let λ1(x, n) and λ2(x, n) be the two eigenvalues of

[
DT |Tn−1(x) · . . . ·DT |T (x) ·DT |x

] 1
n . (3.5)

The harateristi Lyapunov exponents in x are de�ned by [133℄

Λ(i)(x) := lim
n→∞

log |λi(x, n)|, (i ∈ {1, 2}). (3.6)

Note that for sympleti maps the sum of both Lyapunov exponents is zero. The greater of

the two exponents is denoted by Λ(x), and if it is essentially independent of x the funtional

dependene is also dropped in the notation. The notion of haoti dynamis is usually reserved

for motion with a nonzero Lyapunov exponent. In general sympleti maps or Hamiltonian

dynamial systems are not globally regular or haoti. A generi phase spae rather exhibits

both regions of regular motion and regions of haoti motion [35℄. The involved struture

of suh a mixed phase spae is governed by the Kolgomorov�Arnold�Moser theorem and the

Poinaré�Birkho� theorem [132,133℄.

In order to illustrate the generi mixed phase spae, let us onsider the Chirikov standard

map as a popular example for generi two-dimensional sympleti maps [134℄. It is de�ned by

the time-periodially kiked Hamilton funtion

H(q, p, t) = T (p) + V(q)
∑

n∈Z

δ(t− n), (3.7)

where T (p) = p2/2 denotes the kineti term and V(q) = [κ/(4π2)] cos(2πq) denotes the poten-

tial term with the kiking strength parameter κ. By solving Hamilton's equations of motion

strobosopially at times n ∈ Z, one obtains the standard map

T (q, p) =

(

q + p+ κ
4π

sin(2πq) mod 1
{
p+ κ

4π

[
sin(2πq) + sin

(
2π(q + p+ κ

2
sin(2πq))

)]
+ 1

2
mod 1

}
− 1

2

)

. (3.8)

Intuitively, the hosen strobosopi times orrespond to looking at the dynamis always after

half a kik, whih niely symmetrizes the phase-spae portraits. Sine the map intrinsially

exhibits periodiity in phase spae, it is onvenient to restrit the standard map, Eq. (3.8),

to the torus with unit ell [0, 1) ×
[
−1

2
, 1
2

)
. Depending on the kiking strength κ, the stan-

dard map exhibits the typial patterns of regular, mixed, and haoti dynamis, see Fig. 3.1.

We emphasize that the ase of mixed dynamis provides a selfsimilar island-around-island

struture aording to the Poinaré�Birkho� theorem [133℄.
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Figure 3.1. Phase-spae portraits of the standard map, Eq. (3.8), with (a) regular dynamis

at κ = 0, (b) mixed dynamis at κ = 2.9, and () haoti dynamis at κ = 10. Regular

orbits are olored in orange and haoti orbits are olored in blue. All panels share the same

vertial axis.

3.2 Chaoti Phase-Spae Transport

The transport properties of haoti motion in a generi system with mixed phase spae are very

di�erent from the transport properties in a globally haoti system. This is already indiated

by the shown haoti orbits in Fig. 3.1(b, ): While haoti orbits in the globally haoti

system () explore the phase spae rather uniformly, the haoti orbits in the mixed system

(b) remain longer in the viinity of the regular regions whih leads to an enhaned density of

blue points there. This visual impression an be formulated more rigorously by onsidering

Poinaré reurrene times: Aording to the Poinaré reurrene theorem almost all orbits

initialized in a subset M ⊂ Γ of the bounded phase spae Γ with positive Lebesgue measure,

|M | > 0, will return to M [132℄. The statistial distribution of the orresponding reurrene

times ontains information about the transport properties of the system. For globally haoti

systems, the probabilityR(t) for an orbit to return toM after t iterations deays exponentially.

The haoti motion in generi systems, however, gives rise to an algebrai deay, i.e., R sales

as a power law [16, 17, 23, 135℄. This is a signature of the fat that phase-spae transport is

systematially suppressed in the viinity of regular regions. This is explained by the onept

of partial transport barriers [23℄: Let C be a urve that deomposes the phase spae into two

regions A1 and A2. Then the transport between both regions is governed by the �ux

φC := |T (A1) ∩ A2| (3.9)

that is transmitted between A1 and A2 in one iteration. Due to the sympletiity of the

map T , A1 and A2 may be exhanged in the above de�nition, and T may be replaed by

T−1
. If C is an invariant urve, T (C) = C, like for a regular torus, the orresponding �ux φC
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vanishes suh that there is no transport between A1 and A2, and C may be interpreted as a

transport barrier. In the same spirit, a urve C for whih φC does not vanish is alled a partial

transport barrier. The most interesting partial barriers are the ones whih suppress transport,

orresponding to a relatively small �ux φC ompared to the phase-spae volumes |A1| and |A2|.
There are two ommon types of partial barriers [23℄: A so-alled Cantorus barrier originates

from the remnants of a regular torus of irrational winding number that is broken by a small

perturbation as in the Kolmogorov�Arnold�Moser senario. Restritive partial barriers an

also originate from a ombination of the stable manifold

W
s

(x) := {ξ ∈ Γ : lim
k→∞

‖T nk(ξ)− x‖ = 0} (3.10)

and the unstable manifold

W
u

(x) := {ξ ∈ Γ : lim
k→∞

‖T−nk(ξ)− x‖ = 0} (3.11)

of a hyperboli n-periodi point x, that is a hyperboli �xed point of the n-fold iterate map

T n. Let us point out though that the spei� origin of a partial barrier is of minor relevane

in this thesis. We are rather interested in the signatures of a given partial barrier in terms

of lassial and quantum mehanial loalization and transport. Therefore, instead of going

into the details of the onstrution of partial barriers we fous on disussing their transport

mehanism. To this end, it is useful to introdue the so-alled turnstile of the partial barrier,

sometimes also referred to as revolving door. The turnstile of the partial barrier C is the set

{
A1 ∩ T−1(A2)

}
∪
{
T−1(A1) ∩ A2

}
, (3.12)

where A1 ∩ T−1(A2) is the subset of A1 mapped to A2 under one iteration of the map T ,

and vie versa, T−1(A1) ∩ A2 is the subset of A2 that is mapped to A1. The turnstile is

also haraterized by being the set enlosed by the preimage T−1(C) of the partial barrier C
and C itself. An orbit initialized in A1 will remain in A1 unless it enters the turnstile region

A1∩T−1(A2) and is then mapped to A2 in the next step. This so-alled turnstile mehanism is

visualized in Fig. 3.2 for a kiked model system with an isolated partial barrier as introdued

in Refs. [32, 136℄. Its phase spae, shown in Fig. 3.2(), exhibits regular regions at the top

and the bottom and a large haoti sea in between. Although haoti orbits explore the entire

haoti omponent uniformly in the long run, the orbit started at the red point in Fig. 3.2(a)

remains in the upper half for surprisingly many iterations, Fig. 3.2(a�). In fat, it turns out

that the stable and unstable manifold of a hyperboli �xed point in the enter of the phase

spae form a partial barrier suh that the upper (green) and lower region (orange) beome

almost invariant, see Fig. 3.2(d, e). In a single iteration of the map, only a small part of the
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Figure 3.2. Time evolution of a haoti orbit (gray points) in the kiked model system,

Se. (4.3), initialized at the red point in (a), for (a) 10 iterations, (b) 500 iterations, and ()

2500 iterations. One iteration of the green and orange almost invariant sets in (d) gives the

green and orange sets in (e), respetively. They are separated by a partial transport barrier

(solid magenta line in (e)) the preimage of whih is shown as a dotted line in (e) and as

a solid line in (d). (f) The haoti orbit (a�) rosses the partial barrier through turnstile

during the iterations 672 to 674 (red points). Regular tori are shown as solid gray lines in

all panels.

green region is mapped inside the orange one, just as the other way around. This small region

of exhange is formed by the turnstile of the partial barrier, f. Fig. 3.2(f). The haoti orbit

rosses the partial barrier only by entering the orresponding loop of the turnstile. For the

details of the used map, whih are not relevant at the moment, we refer to Se. 4.3.

Let us brie�y mention that the notion and usage of partial barriers is ambiguous to some

extent: Due to the sympletiity of the dynamis any iterate or preimage of a partial barrier

is again a partial barrier of the same �ux. For instane, it is not mandatory that we refer to

the solid magenta line in Fig. 3.2(e) as partial barrier and not to its preimage in (d). Both

are equally relevant. The question of relevane of a partial barrier depends on the onsidered

problem: If one wants to investigate the transport from a spei� phase-spae region A1 with

lear inside and outside to its omplement A2 = Γ \ A1, then the unique boundary between

them is the relevant partial barrier. One the other hand, if one observes that orbits remain
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in an almost invariant region, the boundary of whih is usually not preisely known, it is

tempting to unover the reason for the low exhange. Then, however, it is su�ient to identify

the Cantorus or the hyperboli periodi point whih in priniple generates partial barriers that

enlose the almost invariant region. In this ase, it is usually not important to speify the

partiular ombination of stable and unstable manifolds, the exat preimage or iterate, sine

the physial origin of the trapping is found. Note that partiularly in the latter ase, where

we started with the observation of an almost invariant region, it is typially relevant that

the partial barrier deomposes phase spae into regions of simple shape and not into regions

that are wildly spread over phase spae. This also redues the number of interesting partial

barriers.

Restritive partial transport barriers our on all sales of a generi mixed phase spae.

This is a onsequene of the selfsimilar island-around-island pattern [23℄. In the viinity of

regular islands, there are in�nitely many partial barriers that are hierarhially organized with

dereasing �uxes towards the regular regions. The �rst levels of suh a hierarhial struture

of partial barriers are shown in Fig. 3.3 for the generi standard map, Eq. (3.8), at κ = 2.9.

The outer partial barrier (purple) is generated by the stable and unstable manifolds of a

hyperboli orbit of period four. One loop of its turnstile is magni�ed in the seond panel.

Around the hain of regular islands of period four, one an already see another partial barrier

(red) generated by the stable and unstable manifolds of a hyperboli orbit of period 28. The

turnstile of this partial barrier is muh smaller than that of the outer partial barrier. Even in

the seond magni�ation, the loop whih onsists of a small inside-to-outside part on the right

and a small outside-to-inside part on the lower left orner, an easily be overlooked. Note

that a third partial barrier (pink) separates the large entral island. Its �ux is even smaller

and not visible on the shown sale. By zooming deeper into phase spae, further islands and

restritive partial barriers appear. The transport within suh a hierarhial struture an be

−0.5

0.0

0.5

0 1q

p

Figure 3.3. Phase-spae portrait of the standard map, Eq. (3.8), at κ = 2.9 with regular

orbits (solid gray lines) and haoti orbits (gray points). Three partial barriers (solid olored

lines) are shown together with their preimage (dashed olored lines).
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modeled by a Markov tree [135, 137℄: The partial barriers provide a partition of the haoti

phase-spae omponent. As long as the dwell times within eah element of this partition

are muh larger than the transition times between them, i.e., for su�iently small transition

probabilities, the dynamis in eah element may be regarded as instantaneously mixing and

an therefore be negleted. Then the transition probabilities beome time independent whih

implies Markovianity. The notion of tree refers to the topology of the island-around-island

struture of a generi mixed phase spae. That is, an orbit an go deeper into the hierarhy

on di�erent paths but an esape from it only on a single path. By assuming a ertain saling

of the areas of the elements of the partition and of the �uxes between them, one an indeed

show the algebrai deay of Poinaré reurrene time statistis mentioned before. It turns

out that also the Markov hain model with a simpler linear topology is apable of produing

this algebrai deay [138℄. This model will be used later in Se. 10.3.3 and will therefore be

introdued in a little more detail now.

For the Markov hain model [138℄, one assumes that the phase spae Γ is deomposed by

partial barriers into a sequene (Ak)k∈N of subsets Ak ⊂ Γ, where only transitions between

adjaent sets are allowed. In the simplest model, one expets a saling of areas as |Ak+1|/|Ak| =
α and for the �ux φk onneting Ak and Ak+1 one uses φk+1/φk = ϕ [30,138℄. To ensure that

the size of the �ux never exeeds the area of the orresponding level of the hierarhy, it is

neessarily ϕ ≤ α ≤ 1. The transition probability pk→k+1 between Ak and Ak+1 is then given

by pk→k+1 = φk/|Ak| and obeys the saling pk−1→k/pk→k+1 = α/ϕ. Note that the transition

probability from Ak to Ak+1 is di�erent from that for going from Ak+1 to Ak whih follows

pk→k+1/pk+1→k = α. With this the time evolution of a given probability distribution (Pk)k∈N

assoiated with (Ak)k∈N reads

Pk 7→ Pk − (pk→k−1 + pk→k+1) · Pk + pk−1→k · Pk−1 + pk+1→k · Pk+1. (3.13)

The di�erent terms allow for a very intuitive interpretation: The probability Pk is redued by

the part (pk→k−1+ pk→k+1) ·Pk that leaves Ak to Ak−1 or Ak+1, and it gains from the adjaent

regions Ak−1 the ontribution pk−1→k · Pk−1 and from Ak+1 the ontribution pk+1→k · Pk+1.

Note that for A1 there is only one diretion of transport and Eq. (3.13) needs to be adapted

straightforwardly.

Think of an orbit started in A1 whih at some point enters A2. Now, one may ask about

the probability R(t) to return to A1 after exatly t further iterations, the so-alled reurrene

probability. In a globally haoti system, R would deay exponentially with rate

γ = − log(1− |A1|). (3.14)

To see this, think of the iteration in the globally haoti system as a random proess where
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the orbit ends up in A1 with probability |A1| and in Γ \A1, |Γ| = 1, with probability 1− |A1|.
The probability for the orbit to return to A1 after exatly t iterations is then given by

R(t) = |A1| (1− |A1|)t−1 = |A1| e−γ(t−1), (3.15)

that is the probability to remain in Γ \ A1 for t − 1 iterations and to be mapped into A1

one. In ontrast, for the Markov hain introdued above the same experiment yields a power-

law deay, see Fig. 3.4. More preisely, the reurrene probability in this ase is omputed

as follows: We apply an auxiliary absorption to A1, i.e., we set P1 to zero in eah iteration

aording to Eq. (3.13). Then the sum S(t) :=
∑

k∈N Pk(t) as a funtion of the iteration step t

desribes the probability to remain in Γ \ A1 for t iterations. The quantity S is also referred

to as survival probability. In Ref. [138℄ it is shown that S(t) ∼ t−γ with

γ =
1

1− log(α)
log(ϕ)

, (3.16)

see also Fig. 3.4. Note that if the initial probability is hosen deep within the hierarhy, e.g.,

a uniform distribution on the entire phase spae, S sales as S(t) ∼ t−(γ−1)
[139℄. Using

the survival probability S, the probability to return to A1 after t iterations reads R(t) =

S(t− 1)− S(t). In the ontinuum limit, this is the negative derivative of S with respet to t,
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R(t) ∼ t −(γ+1)
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Figure 3.4. Reurrene probability R (orange) and survival probability S (green) for the

time evolution in a Markov hain aording to Eq. (3.13) (α = 2/3, ϕ = 1/8, φ1/A1 = 1/4).
The hain is trunated to 100 hierarhial levels. The region of return or esape, respetively,

is A1, and the initial distribution is taken as P2 = 1. The expeted power law (dashed lines)

is de�ned by γ from Eq. (3.16).
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suh that

R(t) ∼ t−(γ+1). (3.17)

Basially, the power-law deay results from a superposition of exponential deays assoiated

with the di�erent levels of the hierarhy as an also be seen in the �gure by the osillatory

behavior. Due to the spei� hierarhial saling of the transition probabilities the di�erent

exponential deays add up to an overall power-law saling.

3.3 Chaoti Systems with Esape

So far, we disussed phase-spae transport for losed Hamiltonian systems. Even the reur-

rene and survival probability are meant to desribe properties of the losed system despite

the fat that an auxiliary absorption was implemented for their numerial omputation. In

this thesis, however, the fous is put on open systems as introdued in Chap. 2 in the ontext

of quantum dynamis. Coming bak to the example of the reurrene probability one observes

that for spei� questions losed and open systems are losely related: The reurrene prob-

ability to return to region A1 is idential to the probability to esape from the same system

if opened by absorption in A1. This is due to the fat the orbits whih one returned to A1

are negleted afterwards just like orbits whih left the system through A1. From the above

onsiderations on the deay of the survival probability S(t) for losed systems, we an thus im-

mediately onlude that open systems exhibit the analogous phenomenology: It is S(t) ∼ e−γt

for globally haoti systems and S(t) ∼ t−γ for generi systems with an in�nite hierarhial

struture of partial transport barriers. The orresponding deay oe�ients γ are again given

by Eq. (3.14) and by Eq. (3.16), respetively.

In order to disuss the properties of systems with esape more rigorously, let us introdue

the notion of an open map [56℄. To this end, we start with a sympleti map T
l

: Γ → Γ

desribing losed system dynamis and de�ne the opening by the absorbing phase-spae region

Ω ⊂ Γ. We extend the phase spae Γ by the auxiliary point ∞, Γ∞ := Γ∪ {∞}, to whih the

opening Ω will be mapped, i.e., ∞ models the environment from where nothing returns to the

bounded part Γ. With this the open map T : Γ∞ → Γ∞ is de�ned by

T (x) :=







T
l

(x) : x ∈ Γ \ Ω,
∞ : x 6∈ Γ \ Ω.

(3.18)

Hene, T ats just like T
l

all over phase spae exept for the opening Ω, from whih points

are mapped to ∞. By extending also T
l

to a map on Γ∞ by setting T
l

(∞) := ∞, the map T
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may be written as T = T
l

◦O, with

O(x) =







x : x ∈ Γ \ Ω,
∞ : x 6∈ Γ \ Ω.

(3.19)

Note that again the order of T
l

◦O desribes open dynamis equally well as O◦T
l

or O◦T
l

◦O.
We hoose this order in agreement with our de�nition of open quantum maps, Se. 2.5. In

ontrast to losed systems, whih are invertible due to sympletiity, for open systems a symbol

like T−1
needs some explanation. When applied to a set X ∈ Γ then the so-alled preimage

T−1(X) := {x ∈ Γ : T (x) ∈ X} (3.20)

is the set of all points that are mapped to X under one iteration by T . We stress that this is

well de�ned regardless of whether T is invertible or not. Using that T−1(X) = O−1
(
T−1
l

(X)
)

and that O−1(X) = O(X) when restrited to Γ, it is T−1(X) = O ◦ T−1
l

(X) within Γ. As O

and T−1
l

are well de�ned maps we may de�ne the map T−1 := O ◦ T−1
l

with T−1
(
T (x)

)
= x

for x ∈ Γ \ Ω and T
(
T−1(x)

)
= x for x ∈ Γ \ T

l

(Ω).

A spei� example of suh a map that will be useful for the purpose of illustration through-

out this thesis is the open Baker map. It is based on the ternary Baker map T
l

: [0, 1)2 →
[0, 1)2, f. Ref. [140, p. 42℄,

T
l

(q, p) =

(

3q − ⌊3q⌋
(p+ ⌊3q⌋)/3

)

, (3.21)

the ation of whih is illustrated in Fig. 3.5. The ternary Baker map is a uniformly hyperboli

map with Lyapunov exponent Λ = log 3. For the open map, one typially uses the entral

third Ω = [1/3, 2/3)× [0, 1) as opening, see Fig. 3.5.

7→

Figure 3.5. Illustration of the ternary Baker map, Eq. (3.21), whih strethes by a fator

3 in the unstable (horizontal) diretion and ontrats by a fator 1/3 in the stable (vertial)

diretion. The initial three stripes (left) are resaled and disontinuously staked on top of

eah other (right). If used in the open version, T = T
l

◦ O, the entral gray stripe in the

left panel esapes and nothing is mapped to the middle gray stripe of the right panel.
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Complementary to the question of esape, one is typially also interested in properties of

the surviving orbits. Partiularly relevant are the forward trapped set

Γ
fwd

:= {x ∈ Γ : T n(x) ∈ Γ (n ∈ N0)} (3.22)

and the bakward trapped set

Γ
bwd

:= {x ∈ Γ : T−n(x) ∈ Γ (n ∈ N0)} (3.23)

of all points that remain in the system for an arbitrary number of forward or bakward itera-

tions, respetively, f. [49℄. The trapped sets of the open Baker map are shown in Fig. 3.6(a,

b) by a �nite-time approximation, i.e., Γ
fwd

and Γ
bwd

are approximated by the set of points

that survive three (a) forward or (b) bakward iterations. Due to the simple struture of the

Baker map, one an intuitively understand the struture of the trapped sets, where we fous

on the example of the forward trapped set Γ
fwd

, Fig. 3.6(a): First of all, the opening Ω esapes

q

p

Γfwd(a)

q

p

Γbwd(b)

q

p

Γrep(c)

q

p

T−n(Ω)(d)

q
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Tn
(

Tcl(Ω)
)
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Figure 3.6. (a) Forward trapped set Γ
fwd

, (b) bakward trapped set Γ
bwd

, and () repeller

Γ
rep

= Γ
fwd

∩ Γ
bwd

of the open Baker map. The sets in (a�) are approximated by being

trapped for at least three iterations in the orresponding time diretion. (e, f) Set of points

whih esape under n+1 (d) forward and (e) bakward iterations (n = 0: light blue, n = 1:
medium blue, n = 2: dark blue).
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from Γ already in the �rst iteration and is therefore exluded from Γ
fwd

. This is the entral

light blue stripe in Fig. 3.6(d) whih gives rise to the large entral gap in Γ
fwd

in (a). The

set that will esape in the seond iteration must be ontained in the opening Ω after the �rst

iteration, that is T−1(Ω) (two medium blue stripes in Fig. 3.6(d)). The set T−1(Ω) is therefore

exluded from Γ
fwd

just like T−2(Ω) (four dark blue stripes in Fig. 3.6(d)) whih esapes in

the third iteration by the open Baker map T . Sine the �nite-time approximation of Γ
fwd

shown in Fig. 3.6(a) has exatly the �rst three forward esaping sets T−n(Ω), 0 ≤ n ≤ 2, as

gaps, it desribes the points whih remain in Γ for at least three iterations. This onstrution

illustrates that the forward trapped set an also be represented by [49℄

Γ
fwd

= Γ \
⋃

n∈N0

T−n(Ω). (3.24)

An analogous onstrution applies to the bakward trapped set Γ
bwd

, Fig. 3.6(b), by exluding

the bakward esaping sets shown in Fig. 3.6(e). The �rst phase-spae region that esapes

under the bakward iteration T−1 = O ◦ T−1
l

is T
l

(Ω) (middle light blue stripe in Fig. 3.6(e)).

The region that esapes in the seond bakward iteration is the one that is mapped into T
l

(Ω)

in the �rst bakward iteration, T (T
l

(Ω)) (two medium blue stripes in Fig. 3.6(e)). Analogously,

T 2(T
l

(Ω)) (four dark blue stripes in Fig. 3.6(e)) esapes in the third bakward iteration suh

that T n(T
l

(Ω)), n ∈ N0, are the bakward esaping sets. This gives another representation of

the bakward trapped set [49℄,

Γ
bwd

= Γ \
⋃

n∈N0

T n
(
T
l

(Ω)
)
. (3.25)

While Γ
fwd

and Γ
bwd

are trapped either under forward or bakward iteration, respetively, their

intersetion Γ
rep

:= Γ
fwd

∩ Γ
bwd

is trapped both under forward and bakward iteration. This

trapped set Γ
rep

is alled (hyperboli) repeller or haoti saddle [49, 56, 62, 76℄. The repeller

of the open Baker map is shown in Fig. 3.6() and is learly the intersetion of the trapped

sets shown in panels (a) and (b). Remarkably, the forward trapped set Γ
fwd

is invariant

under bakward iteration, T−1(Γ
fwd

) = Γ
fwd

, the bakward trapped set Γ
bwd

is invariant under

forward iteration, T (Γ
bwd

) = Γ
bwd

, and the repeller is Γ
rep

invariant both under forward and

bakward iteration [56, 76℄.

As an be seen in Fig. 3.6(a), the forward trapped set Γ
fwd

is ontinuous along the vertial

diretion and strongly gapped along the horizontal diretion. This intuitively originates from

the fat that a set of points in phase spae is exponentially strethed along the unstable

(horizontal) diretion and exponentially ontrated along the stable (vertial) diretion. Due

to the bounded phase spae, the iterates of this set wind along the unstable manifold and

overlap with the opening in�nitely many times. In ontrast, the stable diretion leads to
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a ontration of the set and not to a systemati overlap with the opening. Likewise, the

bakward trapped set is gapped along the vertial diretion whih is the unstable diretion

for the bakward iteration. The �lamentary pattern along the gapped diretion has fratal

properties.

Fratal sets are haraterized by having a noninteger dimension [141℄. Certainly, a non-

integer dimension an only be the result of a generalized notion of dimension, alled fratal

dimension. A ommon example is the box-ounting dimension, whih de�nes the dimension

of a bounded set M through its saling behavior. Let N
b

(M, ε) be the smallest number of

boxes of edge length ε that are neessary to over M , then the box-ounting dimension D(M)

is given by [141℄

D(M) := − lim
εց0

logN
b

(M, ε)

log ε
. (3.26)

That means that N
b

(M, ε) sales as a power law,

N
b

(M, ε) ∼ ε−D(M), (ε ց 0), (3.27)

the exponent of whih is governed by the fratal dimension D(M). Equivalently, N
b

(M, ε)

an be de�ned by the number of boxes of a grid with lattie onstant ε that have a nonempty

intersetion with M [142, p. 43℄. This haraterization is partiularly useful for the numerial

implementation and will be used in this thesis. The box-ounting dimension of a set an be

di�erent from an integer number due to a selfsimilar struture. In view of the trapped sets of

the open Baker map, Fig. 3.6(a�), that means that the gaps appear in a selfsimilar pattern

and obey a ertain saling.

Before oming to the expliit omputation of the box-ounting dimensions of Γ
fwd

, Γ
bwd

,

and Γ
rep

, let us point out that their fratal dimension an be deomposed into the partial

fratal dimensions δs and δu along the stable and unstable manifolds [76, Chap. 6.3.2℄,

D(Γ
fwd

) = δs(Γ
fwd

) + δu(Γ
fwd

), (3.28)

and analogously for Γ
bwd

and Γ
rep

. This is a onsequene of their produt struture. We

already argued that δs(Γ
fwd

) = 1 and that δu(Γ
bwd

) = 1. Moreover, due to time-reversal

symmetry, it is

δu(Γ
fwd

) = δs(Γ
bwd

) =: δ, (3.29)

see Ref. [56℄, and as the repeller is de�ned by the intersetion of Γ
fwd

and Γ
bwd

, it is D(Γ
rep

) =

2δ. Hene, by omputing the partial fratal dimension δ, one obtains the fratal dimension
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of Γ
fwd

, Γ
bwd

, and Γ
rep

at one. A partiularly elegant approah is given by the Kantz�

Grassberger relation [44, 76℄,

δ = 1− γ

Λ
, (3.30)

relating the fratality of the trapped sets with the deay rate γ and the Lyapunov exponent Λ.

Let us motivate this relation for the open Baker map with Λ = log(3) and γ = − log(2/3)

in terms of the box-ounting algorithm. Consider the one-dimensional grid of boxes of edge

length

εn = e−Λn =

(
1

3

)n

, (3.31)

whih de�nes a testing sequene (εn)n∈N for the onvergene of Eq. (3.26). We stress that this

sequene (εn)n∈N is partiularly well adapted to the fratal struture of the open Baker map

as εn exatly agrees with the width of stripes of the �ne-time approximations of the trapped

sets. Reall that the Lyapunov exponent Λ desribes the strething and ontration of sets in

phase spae under time evolution. The number N
b

(εn) of boxes of this one-dimensional grid

that are oupied by the trapped set along its fratal diretion follows from

N
b

(εn) εn = e−γn =

(
2

3

)n

, (3.32)

whih desribes the deay of the oupied phase-spae fration between onseutive levels of

approximation. In ombination, this gives

N
b

(εn) = e(Λ−γ)n = eΛn(1−γ/Λ) = ε−(1−γ/Λ)
n , (3.33)

in agreement with Eq. (3.30). Aordingly, the partial fratal dimension of the open Baker

map reads δ = log(2)/ log(3).

The box-ounting dimension is a speial hoie (q = 0) from the lass of Rényi dimen-

sions [143℄,

Dq(M) :=
1

q − 1
lim
εց0

log
∑N

b

(M,ε)
i=1 pi(ε)

q

log ε
(q ∈ R≥0, q 6= 1), (3.34)

where the sum is taken over all N
b

(M, ε) boxes that are oupied by M and with pi(ε) being

the measure of M within the i-th box. Stritly speaking, the Kantz�Grassberger relation,

Eq. (3.30), is formulated in terms of the information dimension

D1(M) := lim
q→1

Dq(M) = − lim
εց0

∑N
b

(M,ε)
i=1 pi(ε) log

(
pi(ε)

)

log ε−1
, (3.35)
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using l'H�pital's rule, and not in terms of the box-ounting dimension D0 as suggested above.

However, for uniform fratals all Rényi dimensions oinide [143℄. This is usually the ase for

globally haoti open maps. For other systems with nonuniformly fratal trapped sets, whih

are also studied in this thesis, we will spei�ally explain how to apply the above onepts.

To onlude this short introdution on fratal dimensions, let us point out that the fratal

dimension oinides with the ommon notion of dimension for sets whih reasonably allow the

assoiation with an integer dimension. Moreover, the trapped sets of the open Baker map are

based on the so-alled middle third Cantor set. Being Cantor sets, the trapped sets have the

following properties whih are usually expeted also for other fratal sets, f. Refs. [144, Se.

7.1d℄ and [145, p. 66℄: A Cantor set is unountable but of Lebesgue measure zero; it onsists

only of luster points and ontains all its luster points (perfet set); it has no interior points

(nowhere dense); it ontains no onneted subsets (totally disonneted).



Chapter 4

Model Systems with a

Single Partial Transport Barrier

The haoti phase-spae transport in generi Hamiltonian systems is governed by the intriate

hierarhial struture of partial transport barriers, as was disussed in the previous hapter.

In fat, partial barriers also have a strong in�uene on quantum-mehanial properties as will

beome lear later. As a �rst ruial step towards a thorough understanding of the aggregate

behavior of the hierarhial struture of partial barriers, both lassially and quantum me-

hanially, we begin with studying systems with a single partial barrier. To this end we design

a simple model system, the partial-barrier map, in Se. 4.1. The partial-barrier map is the

main dynamial system studied in this thesis. Its quantization is explained in detail in Se. 4.2.

The partial-barrier map was initially developed in ollaboration with Matthias Mihler [123℄.

A random matrix model derived from this map was already presented in Refs. [136, Se. 4.4℄

and [32℄. Moreover, in Se. 4.3 we brie�y present a kiked model system with a generi mixed

phase spae and an isolated partial barrier as introdued in Refs. [32,136℄. This model will be

used in Chap. 5.

4.1 Partial-Barrier Map

Reall that a partial barrier is haraterized by deomposing phase spae into two regions

A1 and A2 that are almost invariant under the map T . The degree to whih A1 and A2 are

invariant is re�eted in the magnitude of the �ux φ = |T (A1)∩A2| between them. The larger

φ the less invariant are A1 and A2, respetively, f. Se. 3.2. We mimi this behavior of a

partial barrier in a system with an opening by the partial-barrier map,

T :=M ◦ E ◦O, (4.1)
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whih is the omposition of three maps, see Fig. 4.1 for illustration: The mapM desribes the

unonneted haoti dynamis within the two regions A1 := [0, |A1|)× [−1
2
, 1
2
) and A2 := Γ\A1

for Γ := [0, 1)× [−1
2
, 1
2
). The map E indues a �ux φ between A1 and A2 by exhanging the

regions Φ1 := [|A1| − φ, |A1|) × [−1
2
, 1
2
) ⊆ A1 and Φ2 := [|A1|, |A1| + φ) × [−1

2
, 1
2
) ⊆ A2 with

|Φ1| = |Φ2| = φ. The map O opens the system by the absorbing region Ω, whih is ontained

in region A1. Note that the order of the maps M , E, and O is mere onvention.

Throughout this thesis, we use two di�erent dynamis for M . First, for the numerial

analysis, we use the standard map, Eq. (3.8), ating individually on eah of the regions Ak,

k ∈ {1, 2}, after appropriate resaling: The resaled standard map SA ating on the torus

A := [a, a+ |A|)× [−1
2
, 1
2
) is dedued from the kiked Hamiltonian from Eq. (3.7) by using

T (p) =
|A|
2
p2, V(q) = κ

|A|
4π2

cos

(
2π(q − a)

|A|

)

, (4.2)

whih gives

SA(q, p) =
( {

q + T ′(p− 1
2
V ′(q))− a mod |A|

}
+ a

{
p− 1

2

[
V ′(q) + V ′

(
q + T ′(p− 1

2
V ′(q))

)]
+ 1

2
mod 1

}
− 1

2

)

(4.3)

instead of Eq. (3.8). In appliation to the mixing step M of the partial-barrier map T , we use

M : Γ → Γ, x 7→







SA1(x) : x ∈ A1,

SA2(x) : x ∈ A2,
(4.4)

for �xed κ = 10, where the standard map displays a fully haoti phase spae. When using the

q

p := ◦ ◦

T

A1 A2

M

Φ2Φ1

E

Ω

O

Figure 4.1. Illustration of the partial-barrier map T := M ◦ E ◦ O as a omposition of

the unonneted mixing dynamis M within the two regions A1 and A2 on eah side of the

partial barrier (solid magenta line) as depited symbolially by gray irular arrows, the

map E that exhanges regions Φ1 and Φ2 (bounded by dotted magenta lines), and the map

O that opens the system by the absorbing region Ω (gray shaded stripe). The gray orbit

(random numbers) in the left panel visualizes the restritive e�et on transport aross the

partial barrier.
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standard map for M , we hoose Ω = [0, |Ω|)× [−1
2
, 1
2
) and refer to the orresponding map T

as partial-barrier standard map.

Seond, for analytial onsiderations below in Chap. 8, we use the uniformly hyperboli

ternary Baker map, Eq. (3.21), ating individually on eah of the regions Ak, k ∈ {1, 2}, after
appropriate resaling: The Baker map BA ating on the region A := [a, a + |A|) × [−1

2
, 1
2
) is

de�ned by

BA(q, p) =
(

{3(q − a) mod |A|}+ a
1
3

(
p+ 1

2
+ ⌊3(q − a)/|A|⌋

)
− 1

2

)

. (4.5)

The appliation to the mixing step M of the partial-barrier map T reads

M : Γ → Γ, x 7→







BA1(x) : x ∈ A1,

BA2(x) : x ∈ A2,
(4.6)

where we hoose |A1| = 1/2, φ = 1/6, and Ω = [1
6
, 2
6
)× [−1

2
, 1
2
), as illustrated in Fig. 4.2. We

refer to the orresponding map T as partial-barrier Baker map.

The expliit form of the exhange map E is given by

E(q, p) =

(

{(q − |A1|+ 2φ) mod 2φ}+ |A1| − φ

p

)

(4.7)

for q ∈ [|A1|−φ, |A1|+φ), and otherwise by the idential transformation. The opening O ats

as de�ned in Eq. (3.19). It an be shown that both, the partial-barrier standard map as well

as the partial-barrier Baker map are sympleti, and thus, desribe Hamiltonian dynamis up

to esape through the absorbing region, and both maps are equipped with an antianonial

symmetry, omparable to the time-reversal invariane [123℄.

7→ 7→ 7→
O E M

Figure 4.2. Illustration of the partial-barrier Baker map T = M ◦ E ◦ O. Magenta line

indiates partial barrier and gray shaded region marks opening Ω (�rst three panels from

left) and image M(E(Ω)) of opening (right panel).
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4.2 Quantized Partial-Barrier Map

In ontrast to Hamiltonian �ows there exists no anonial quantization proedure for time-

disrete maps. There are rather system spei� methods whih are restrited by just a few

onstraints as reviewed in Ref. [146, Se. 2.5.1℄: A quantization of a sympleti map T has to

establish a sequene of unitary operators (UN)N∈N, suh that UN is ating on anN-dimensional

Hilbert spae CN
. The dimension of the Hilbert spae is assoiated with the size of Plank's ell

by h = 1/N for a phase spae of unit area. Most importantly, in order to ensure orrespondene

between lassial and quantum dynamis it is required that

U−n
N op(f)NU

n
N = op(f ◦ T n)N +O(N−1) (n ∈ Z). (4.8)

This means that time evolution and quantization ommute for all observables in the semilas-

sial limit, h ց 0. The quantization op(f) of a lassial observable f : Γ → R is explained

by the Weyl quantization. Note that for the ommon anonial quantization proedures for

Hamiltonian �ows like the Weyl or the anti-Wik quantization [27℄, this property, Eq. (4.8),

is guaranteed by Egorov's theorem. The quantization sheme for sympleti maps as outlined

above an be formulated rigorously in terms of the pseudodi�erential operator formalism,

f. [147, Chap. 2.2.5℄. In some paradigmati ases there are more diret ways to quantization.

The generi standard map allows for a Floquet approah [148℄ due to the periodi kiking

potential. Another approah based on generating funtions, f. [149℄, will be useful to quan-

tize the Baker map. For the quantization of the partial-barrier map we take advantage from

the deomposition T = M ◦ E ◦ O whih translates into an ordinary matrix produt of the

individually quantized maps. The N dependene of UN will be suppressed in the notation in

the following.

4.2.1 Quantized Standard Map

Reall that the standard map, Eq. (3.8), originates from a periodially kiked Hamilton fun-

tion, Eq. (3.7), by a strobosopi solution sheme. The same holds true for the resaled version

in Eq. (4.3). These singular kiks give rise to the fatorization of the quantum time-evolution

operator,

U = e−
i
2~

Ve−
i
~
T e−

i
2~

V . (4.9)

We emphasize that this fatorization is not an approximation by means of the split operator

method [150, Se. 2.3.2℄. The spei� fators orrespond to the hosen observation times for

the strobosopi solution, that is, the potential kik is split into halves and free motion takes

plae in between as in the lassial ase. When applied in position representation, the term
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e−
i
2~

V
is an operator-valued funtion of the multipliation operator q (position), [qψ](x) =

xψ(x), and e−
i
~
T
is an operator-valued funtion of the di�erential operator p (momentum),

[pψ](x) = −i~ψ′(x), by means of funtional alulus [118℄. It is useful to transform the kineti

term e−
i
~
T
into a funtion of the multipliation operator by Fourier transform F , using that

[Fpψ](x) = −i~[Fψ′](x) (4.10)

=
−i~√
2π~

∫

R

e−
i
~
xyψ′(y) dy (4.11)

=
i~√
2π~

∫

R

(

− i

~
x

)

e−
i
~
xyψ(y) dy (4.12)

= x[Fψ](x) = [qFψ](x), (4.13)

with integration by parts and vanishing boundary ontribution [151, �12.2.2℄. Then the time

evolution of a state ψ formally reads

Uψ = e−
i
2~

V
F

−1
F e−

i
~
T e−

i
2~

Vψ = e−
i
2~

V
F

−1e−
i
~
T
F e−

i
2~

Vψ, (4.14)

where in the last expression, e−
i
~
T
now ats as a funtion of the multipliation operator. With

the expliit form of F , it is

Uψ(q) =
1

2π~
e−

i
2~

V(q)

∫

R

∫

R

e
i
~
p(q−q′)e−

i
~
T (p)e−

i
2~

V(q′)
︸ ︷︷ ︸

=:u(q,q′,p)

ψ(q′) dq′ dp, (4.15)

where neither T nor V are operator-valued funtions anymore and q, q′, and p represent usual

oordinates. Assuming periodiity of e−
i
~
T
as a funtion of p with period M

mom

, the integral

over p may be deomposed into an integral over a single period [p
min

, p
min

+M
mom

) and a sum

over the other intervals,

Uψ(q) =
1

2π~
e−

i
2~

V(q)

∫

R

[
∑

k∈Z

∫ p
min

+M
mom

p
min

e
i
~
kM

mom

(q−q′)u(q, q′, p) dp

]

ψ(q′) dq′. (4.16)

Poisson's summation formula [152, p. 153℄ yields

∑

k∈Z

e
i
~
kM

mom

(q−q′) =
∑

k∈Z

δ
(
M

mom

(q−q′)
2π~

− k
)

=
∑

k∈Z

2π~
M

mom

δ
(

q − q′ − k 2π~
M

mom

)

, (4.17)

and thus restrits the q values to the lattie

qk =
2π~

M
mom

(k + ϑ
mom

), (k ∈ Z), (4.18)
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with �xed Bloh phase ϑ
mom

∈ [0, 1). This gives

Uψ(qn) =
1

M
mom

e−
i
2~

V(qn)
∑

k∈Z

∫ p
min

+M
mom

p
min

u(qn, qk, p)ψ(qk) dp. (4.19)

Additionally, we assume periodiity of e−
i
2~

V
as a funtion of q with period M

pos

and qk+N =

qk +M
pos

. Then one obtains

∑

k∈Z

u(qn, qk, p)ψ(qk) =

N−1∑

k=0

u(qn, qk, p)ψ(qk) ·
M

mom

N

∑

m∈Z

δ

(

p− M
mom

(ϑ
pos

−m)

N

)

, (4.20)

analogously to the above disussion by applying Poisson's summation formula and using the

quasiperiodiity of ψ. This restrits also the p values to a lattie de�ned through

pk =
2π~

M
pos

(k + ϑ
pos

), (k ∈ Z) (4.21)

with the Bloh phase ϑ
pos

∈ [0, 1). To ensure ompatibility of the position and momentum

lattie, it needs to be required that

N =
M

pos

M
mom

2π~
∈ N. (4.22)

Hene, the quantization of the standard map (3.8) on the torus reads

Uψ(qn) =

N−1∑

k=0

Unkψ(qk), (4.23)

with

Unk =
1

N
e−

i
2~

V(qn)
N−1∑

m=0

e
i
~
pm(qn−qk)e−

i
~
T (pm)e−

i
2~

V(qk), (4.24)

and we set M
pos

= M
mom

= 1. Note that the disretization of position and momentum spae

is not an approximation in this ontext. It rather follows quite naturally from the toroidal

phase-spae struture and leads to the �nite dimensional Hilbert spae CN
with Eulidean

salar produt, see also [153℄.
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4.2.2 Quantized Baker Map

Another ommon approah for the quantization of sympleti maps is based on the semilas-

sial Gutzwiller�van Vlek propagator [152, Se. 10.2℄,

〈Q |Uq 〉 =
√

| detS ′′(Q, q)|
2πi ~

exp

{
i

~
S(Q, q)− i

π

2
νS(Q, q)

}

, (4.25)

with

√
i = eiπ/4, whih was �rst formulated for quantum maps in Ref. [154℄. It desribes

the transition amplitude for the unitary time evolution from the initial position q to the

�nal position Q within one iteration of the quantum map U . The essential ingredient is the

disrete lassial ation S as explained shortly below. The Morse index νS(Q, q) is the number

of negative eigenvalues of the Hessian S ′′(Q, q), see [155, Se. 5.8℄.

Consider a su�iently smooth funtion S : R2 → R2
, restrited to some appropriate

domain. Then the map T : Γ → Γ, Γ ⊆ R2
, de�ned by

(Q,P ) = T (q, p) ⇔ p = −∂2S(Q, q), P = ∂1S(Q, q), (4.26)

is sympleti provided that suh a T exists, see Se. B.2. The funtion S is alled generating

funtion (of �rst type) for T . Moreover, S(Q, q) assumes the role of a disrete ation for a path

leading from (q, p) to (Q,P ) within one iteration of the map T , as disussed in [23, Se. V.D.℄.

Using this generating funtion S, Eq. (4.25) provides a sheme to obtain a quantization U for

the sympleti map T . Note that if there exists no unique solution T by means of Eq. (4.26)

it is neessary to sum over the di�erent solutions in Eq. (4.25), f. [156, Se. 5.℄. If no suh

solution exists, it is useful to make use of a di�erent type of generating funtion that may be

obtained from S by Legendre transformation. In the following, we only need the partiular

type

G(P, q) := S(Q̃(P, q), q)− P Q̃(P, q), (4.27)

where the funtion Q̃ is de�ned by

Q = Q̃(P, q) ⇔ P = ∂1S(Q, q). (4.28)

The funtion G generates a sympleti map T by

(Q,P ) = T (q, p) ⇔ Q = −∂1G(P, q), p = −∂2G(P, q), (4.29)

whih an be shown analogous to the derivation in Se. B.2. The quantization U of T in terms
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of G then reads [157, Se. 2.4.7℄

1

〈 pm |Uqn 〉 ∼ exp {2πiN G(pm, qn)} , (4.30)

evaluated on a grid with positions q0, . . . , qN−1 and p0, . . . , pN−1. Note that the Hessian

G′′
is onstant for all examples used in this thesis, suh that we may neglet global fators

assoiated with | detG′′(pm, qn)| or with the Morse index. In general, it is neessary to verify

the unitarity of U anyway, whih �xes the prefator up to a phase, and global phase fators are

irrelevant for quantum-to-lassial orrespondene by means of the Egorov property, Eq. (4.8).

Moreover, the ~ dependene is replaed by the dependene on the Hilbert spae dimension

N = 1/(2π~) ∈ N.

It is straightforward to show that

Gj(P, q) := −3Pq + j(P + q) (4.31)

is a generating funtion for the Baker map, Eq. (3.21), for q ∈ [j/3, (j + 1)/3) and P ∈
[j/3, (j + 1)/3) with j ∈ {0, 1, 2}. For the purpose of simpliity in the notation, we restrit

ourselves to the disussion of the usual ternary Baker map. The strethed version, Eq. (4.5),

may be treated analogously. Inserting the above generating funtion into Eq. (4.30), shows

that the quantized Baker map U obeys

〈 pm |Uqn 〉 ∼ exp {2πiN [−3pmqn + j(pm + qn)]} . (4.32)

For the lattie of positions and momenta we use

qn =
n+ ϑ

mom

N
, pm =

m+ ϑ
pos

N
, (4.33)

with j N/3 ≤ m,n < (j + 1)N/3, N ∈ 3N, and arbitrary phases ϑ
pos

, ϑ
mom

∈ [0, 1). We iden-

tify the element qn of the position lattie in position representation with the standard basis

vetor (0, . . . , 0, 1, 0, . . . , 0) ∈ CN
, where unity oupies the n-th entry. Owing to Heisenberg's

unertainty, or the anonial ommutation relation of position and momentum operators, re-

spetively, an element pm of the momentum lattie is assoiated with a vetor in Hilbert spae

by disrete inverse Fourier transformation of the position vetors, that is,

〈 qn | pm 〉 = 1√
N
e2πiN qnpm

(4.34)

is the n-th omponent of the m-th momentum vetor in position representation. Note that we

allow for an ambiguity in the notation by using the same symbol for the element qn ∈ [0, 1) in

1

Note that, given the notation used in [157℄, there is a minus sign missing in the exponential in Eq. (2.4.101).
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the position lattie and the orresponding position vetor qn ∈ CN
in Hilbert spae, and vie

versa, for the momenta. It is onvenient to rearrange Eq. (4.32) to

〈 pm |Uqn 〉 ∼ exp {−2πi 3N (pm − j/3)(qn − j/3)} , (4.35)

again negleting a global phase fator. Subtrating j/3 from pm and qn orresponds to an

index shift in m and n by j N/3, suh that 〈 pm |Uqn 〉 gives the same value for eah j. In

other words, for 0 ≤ m,n < N/3 it is

〈 pm |Uqn 〉 = 〈 pm+N/3 |Uqn+N/3 〉 = 〈 pm+2N/3 |Uqn+2N/3 〉 (4.36)

with

〈 pm |Uqn 〉 ∼ exp

{

−2πi
(n+ ϑ

mom

)(m+ ϑ
pos

)

N/3

}

, (4.37)

and all other omponents are zero. This orresponds to the more intuitive blok-matrix nota-

tion

(〈 pm |Uqn 〉)0≤m,n≤N−1 =






FN/3 0 0

0 FN/3 0

0 0 FN/3




 (4.38)

with the matrix FN of the disrete Fourier transformation,

[FN ]mn :=
1√
N
e−2πi(n+ϑ

mom

)(m+ϑ
pos

)/N . (4.39)

Using

〈 qm |Uqn 〉 =
N−1∑

k=0

〈 qm | pk 〉〈 pk |Uqn 〉 (4.40)

to get from the mixed representation 〈 pk |Uqn 〉 to the position representation 〈 qm |Uqn 〉, one
obtains the quantized Baker map [158�160℄,

U = F
−1
N






FN/3 0 0

0 FN/3 0

0 0 FN/3




 . (4.41)

It is reommended to hoose ϑ
mom

= ϑ
pos

= 0.5 to ensure expeted symmetries [160℄.
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4.2.3 Deomposition of Quantum Dynamis

Already in the lassial ontext, the simpliity of the partial-barrier map T = M ◦ E ◦ O,
being a omposition of three elementary maps and having only retangular subdomains of

type I× [−1
2
, 1
2
) with some I ⊆ [0, 1), is rather onvenient. For the quantization of T , however,

this struture turns out to be a real advantage. The omposition of lassial maps translates

to an ordinary matrix produt of the individually quantized maps, and due to the Cartesian

produt struture of the subdomains, their quantization in position representation is feasible

on an intuitive level.

We onstrut the quantum dynamis on the N dimensional Hilbert spae H := CN
,

equipped with the Eulidean standard salar produt, that is assoiated with the phase-spae

grid Q× P with

Q := {(k + ϑ
mom

)/N : k ∈ {0, . . . , N − 1}} ⊂ [0, 1), (4.42a)

P := {(k + ϑ
pos

)/N − 1
2
: k ∈ {0, . . . , N − 1}} ⊂ [−1

2
, 1
2
), (4.42b)

for ϑ
pos

, ϑ
mom

∈ [0, 1). Starting with the quantization M of the unonneted mixing dynamis

M , we deompose H into the subspaes

H1 := span

{
qk ∈ H : qk ∈ Q ∩ [0, |A1|)

}
, (4.43a)

H2 := span

{
qk ∈ H : qk ∈ Q ∩ [|A1|, 1)

}
, (4.43b)

suh that H ≃ H1 ⊕ H2 with the diret orthogonal sum ⊕, f. Ref. [118, Se II.1℄. This

deomposition orresponds to the partition Γ = A1 ∪A2, A1 ∩A2 = ∅, of phase spae. Reall
that M is ating individually in eah of the regions A1 and A2, where the individual maps

are given by the haoti standard map, Eq. (4.3), or the ternary Baker map, Eq. (4.5). The

quantization for both of these maps is presented in Ses. 4.2.1 and 4.2.2. For the general

onstrution of M, however, we do not have to distinguish between the standard and the

Baker map: Let M1 denote the quantum map ating on H1 and M2 be the quantum map

ating on H2, respetively. Then the quantization of the unonneted mixing dynamis M

reads

M =

(

M1 0

0 M2

)

, (4.44)

using the blok-matrix notation as introdued in Ref. [161, �3℄ for instane. This is also

illustrated in Fig. 4.3. We emphasize that the simple blok struture of M in position repre-

sentation, Eq. (4.44), is a diret onsequene of the simple Cartesian phase-spae struture of

the designed partial-barrier map. In general, suh a blok struture in the quantization of a

lassial dynamial system that is omposed of two invariant phase-spae regions requires the
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onstrution of an appropriate basis in Hilbert spae, whih is just the position basis in our

ase. Note that the Bloh phase ϑ
mom

of the overall position lattie Q an result in di�erent

individual Bloh phases in terms of the quantum maps M1 and M2. Spei�ally, when using

the Baker map with |A1| = 0.5, ϑ
mom

= 0.5 must be assured for both sides of the partial bar-

rier [160℄. Let us further mention that it is of ourse possible to use realizations of a random

matrix ensemble for M1 and M2, whih an be advantageous for spei� questions. In this the-

sis, we are interested in systems equipped with a generalized time-reversal symmetry whih

orresponds to the irular orthogonal ensemble [152℄. By using random matries, system

spei� fratal properties may be swithed o�.

Although one an very well already guess a valid quantization E of exhange map E

and then verify that it obeys quantum-to-lassial orrespondene, we attempt to make the

quantization a little more omprehensible and derive it from a more general quantization

sheme. We present the quantization following the generating funtion approah as is reviewed

in Se. 4.2.2. The exhange map E, Eq. (4.7), is determined by the generating funtion

G(P, q) :=







−Pq : q ∈ [0, |A1| − φ) ∪ [|A1|+ φ, 1),

−P (q + φ) : q ∈ [|A1| − φ, |A1|),
−P (q − φ) : q ∈ [|A1|, |A1|+ φ),

(4.45)

as an easily be veri�ed using Eq. (4.29). We apply Eq. (4.30) to eah of the ases in Eq. (4.45)

individually. First, the identity mapping for qn ∈ [0, |A1| − φ) ∪ [|A1|+ φ, 1) gives

〈 pm | Eqn 〉 =
1√
N
e−2πiN pmqn = 〈 pm | qn 〉, (4.46)

=

U M E P

Figure 4.3. Illustration of the quantum time-evolution matrix of the partial-barrier map U
in position representation. The full quantum map U = U

l

P with U
l

= ME is a omposition

of three maps: The matrix M is blok diagonal (zero on white squares) and, thus, provides

the unonneted mixing dynamis within the two regions A1 and A2. The matrix E has

unit entries on the dark diagonal lines and is zeros otherwise, and thus, exhanges the

regions Φ1 and Φ2 by a shift within the exhange region (indiated by magenta frame). The

projetion P (unity on dark diagonal, zero else) opens the system by the absorbing region

Ω.
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whih are just the omponents of the disrete Fourier transformation. Swithing from the

mixed position�momentum representation to a pure position representation by

〈 qm | Eqn 〉 =
N−1∑

k=0

〈 qm | pk 〉 〈 pk | Eqn 〉
︸ ︷︷ ︸

〈 pk | qn 〉

= 〈 qm | qn 〉 = δm,n, (4.47)

it turns out that, quite intuitively, the quantization of the identity map is the unit matrix. We

proeed analogously with the shifting part of E for qn ∈ [|A1| − φ, |A1|) and obtain

〈 pm | Eqn 〉 =
1√
N
e−2πiN pm(qn+φ) = 〈 pm | qn+C 〉, (4.48)

where we restrit the shift φ to the position lattie, C := Nφ ∈ N0, i.e., qn + φ = qn+C . In

position representation this reads

〈 qm | Eqn 〉 =
N−1∑

k=0

〈 qm | pk 〉 〈 pk | Eqn 〉
︸ ︷︷ ︸

〈 pm | qn+C 〉

= 〈 qm | qn+C 〉 = δm,n+C . (4.49)

Thus, again very intuitively, by quantization the shift map translates into an index shift.

Certainly, the same arguments apply for the shifting part of E in opposite diretion for qn ∈
[|A1|, |A1|+ φ), giving

〈 qm | Eqn 〉 = δm,n−C . (4.50)

Altogether, the quantization E of the exhange map E exhibits the form as illustrated in

Fig. 4.3. The quantized partial-barrier map without opening thus reads U
l

= ME.

In order to obtain the quantized partial-barrier map U = U
l

P with opening, we assoiate

an orthogonal projetion operator P with the map O. Quantum-to-lassial orrespondene

is ensured by hoosing

kerP := {ψ ∈ H : Pψ = 0} = span

{
qk ∈ H : qk ∈ Q ∩ Ω

}
. (4.51)

Again, owing to the simple Cartesian produt struture, we expliitly obtain

P = diag (0, . . . , 0,
︸ ︷︷ ︸

L

1, . . . , 1
︸ ︷︷ ︸

N−L

) (4.52)

in position representation, for the example that Ω = [0, |Ω|) with L := #(Q ∩ Ω). This is

illustrated in Fig. 4.3. To onlude, the subunitary time-evolution operator U = U
l

P with

U
l

= ME provides a quantization of the partial-barrier map T =M ◦ E ◦O.
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4.3 Kiked Model System

A di�erent approah to model a dynamial system with a well isolated partial barrier is put

forward in Refs. [32, 136℄ in terms of a kiked model system. We ame aross this system

already in the disussion of Fig. 3.2. In this setion we brie�y review the de�nition of the map

losely following the original referenes [32, 136℄. Before oming to that, let us mention that

in ontrast to the partial-barrier map the kiked model system allows for studying values of

φ/h 6∈ N whih is neessary for the onsiderations in Chap. 5. However, for the main part of

this thesis, we fous on the partial-barrier map as it admits a lean phase-spae struture and

as it is easy to vary relevant parameters over a broad range.

The kiked model system T = T
rot

◦ T
kik

is a omposition of two maps. The map T
kik

originates from a kiked Hamiltonian, Eq. (3.7), with

T (p) =







νp+ c1 : p < p
reg

,

νp+ b
left

(p− p
reg

)2/2 + c2 : p
reg

≤ p < p
�x

− p
low

,

ap+ b (p− p
�x

)2/2 + c3 : p
�x

− p
low

≤ p < p
�x

+ p
up

,

νp+ b
right

(p− p
�x

− p
up

)2/2 + c4 : p
�x

+ p
up

≤ p < 1− p
reg

,

νp+ c5 : 1− p
reg

≤ p,

(4.53)

and

V(q) = − 1

8π2
cos(2πq), (4.54)

with parameters a = 20, ν = 0.411, p
reg

= 0.125, p
�x

= 0.533, p
low

= 0.15, p
up

= 0.015, and

b = 0.6. The parameters b
left

and b
right

follow from

b
left

=
a+ bp

low

− ν

p
�x

− p
low

− p
reg

, (4.55)

b
right

=
ν − a− bp

up

1− p
�x

− p
low

− p
reg

. (4.56)

The onstants c1, . . . , c5 ∈ R may be hosen suh that T is ontinuous. A strobosopi

solution of the orresponding Hamiltonian yields the map

T
kik

(q, p) =

(

q + T ′(p− 1
2
V ′(q))

p− 1
2
V ′(q)− 1

2
V ′(q + T ′(p− 1

2
V ′(q)))

)

. (4.57)

The phase spae of the map T
kik

basially looks very similar to the one shown in Fig. 3.2.

However, the map T
kik

still has more than one dominating partial barrier. In order to destroy
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additional partial barriers, T
kik

is omposed with the map

T
rot

(q, p) =

(

q


p


)

+

(

cos(ω


) − sin(ω


)

sin(ω


) cos(ω


)

)(

q − q


p− p


)

, (4.58)

within a irle of radius r


around (q


, p


). The map T
rot

is applied at two positions with

parameters q


= 0.5, p


= 0.33, r


= 0.2, ω


= 3.0, and q


= 0.2, p


= 0.66, r


= 0.15,

ω


= 3.0. The phase spae shown in Fig. 3.2 orresponds to the map T = T
rot

◦ T
kik

with a

single dominating partial transport barrier of �ux φ ≈ 0.00532 ≈ 1/200. The partial barrier

deomposes phase spae into two haoti regions of area |A1| ≈ 0.422 and |A2| ≈ 0.421.

The quantization U = U
rot

U
kik

of the kiked model map T = T
rot

◦ T
kik

is obtained from

the quantizations U
rot

of T
rot

and U
kik

of T
kik

. The quantization of U
kik

is the same as the

quantized standard map, Eq. (4.23), when using the de�nitions of T and V from Eq. (4.53)

and Eq. (4.54), respetively. The quantum map U
rot

is obtained as follows: It is onvenient to

use a basis of N
ho

harmoni osillator eigenstates η0, . . . ηN
ho

−1 inside the irle of radius r


,

whih provides the projetor

P
ho

=

N
ho

−1∑

k=0

〈 ηk | · 〉ηk (4.59)

that semilassially orresponds to the region inside the irle. Then

U
rot

= (1− P
ho

) + U
ho

P
ho

(4.60)

with

U
ho

=

N
ho

−1∑

k=0

ei(k+1/2)ω
〈 ηk | · 〉ηk (4.61)

is used as quantization of T
rot

.



Chapter 5

Quantum Loalization Transition

in Closed Systems

This thesis is onerned with the phase-spae loalization of haoti resonane states due to

partial transport barriers. Before oming to the investigation of this entral problem, let

us review two relevant results from Ref. [32℄ on the analogous question addressed for losed

systems. First, in Se. 5.1, we disuss that eigenstates of the unitary time-evolution operator

an loalize on either side of a partial transport barrier or they an be equipartitioned on

both sides depending on a single universal saling parameter. This gives a smooth transition

between the two regimes of loalization and equipartition. In Se. 5.2 we examine the relation

between the loalization of eigenstates of the time-evolution operator and transport properties

of the system.

5.1 Loalization Transition

It is well known that partial transport barriers an have a huge impat on quantum mehanial

properties of a dynamial system [19, 20, 24, 30�34, 75, 162�166℄, suh as the loalization of

eigenstates [19, 20, 30, 32, 34, 75℄ or fratal ondutane �utuations [162, 163, 165℄. Fousing

on the loalization of haoti eigenstates of the time-evolution operator, the in�uene of a

partial transport barrier is essentially governed by the following question: How strong does

an eigenstate in its phase-spae representation deviate from a uniform distribution within the

haoti sea? This is motivated by the fat that in a fully haoti system without restritive

transport barriers, quantum ergodiity ensures that the majority of eigenstates approahes the

uniform distribution in the semilassial limit [27℄. Hene, any harateristi deviation from

a uniform distribution whih is not overed by exeptions of the quantum ergodiity theorem,

i.e., any deviation di�erent from ordinary quantum �utuations or sarring e�ets [29℄, may be

attributed to the presene of a restritive partial transport barrier. We will disuss quantum
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ergodiity in more detail in Se. 7.1.1.

We �rst need to larify what is meant by phase-spae representation of a quantum state.

In order to investigate quantum-to-lassial orrespondene, it is often very useful to onsider

the loalization of quantum eigenstates in phase spae. However, typially quantum mehanis

is formulated either in position or momentum representation. The full phase-spae piture is

ahieved for instane by the so-alled Husimi representation [167,168℄. Note that there are also

other prominent phase-spae representations introdued by Wigner [169℄ or by Glauber and

Sudarshan [170,171℄ with their own advantages and disadvantages. The Husimi representation

Hψ of a quantum state ψ is de�ned by

Hψ(q, p) :=
1

h
|〈α(q,p) |ψ 〉|2 (5.1)

for (q, p) ∈ Γ, and desribes the overlap of the state ψ with a minimal unertainty wave paket

α(q,p) entered around (q, p). In more detail, α(q,p) is hosen to be a oherent state, i.e., an

eigenstate of the annihilation operator

√
mω

2~

(

q +
i

mω
p

)

(5.2)

of the harmoni osillator

H =
1

2m
p2 +

mω2

2
q2, (5.3)

f. [172, Chap. 12℄. Its width is hosen symmetrially and ideally loalized by means of Heisen-

berg's unertainty priniple, ∆q = ∆p =
√

~/2. The enter (q, p) of α(q,p) is determined by

the expetation values of the position and momentum operator in this state. In dimensionless

formulation, it is

α(q,p)(x) ∝ exp

{

−1

h

(
π(x− q)2 − 2πi px

)
}

, (5.4)

up to normalization [168, Eq. (2.29)℄.

Let us now onsider the kiked model system with a single partial barrier introdued in

Se. 4.3. Its lassial phase-spae portrait is shown again in Fig. 5.1 ompared to the Husimi

distribution of quantum eigenstates for two di�erent values of the e�etive size h of Plank's

ell. While for h = 1/50, Fig. 5.1(, d), the shown eigenstates loalize dominantly () in

region A2 below the partial barrier or (d) in region A1 above the partial barrier, the eigenstate

shown in Fig. 5.1(b) for h = 1/1000 does not exhibit striking signatures of the partial barrier.

Hene, the eigenstates in Fig. 5.1(, d) for a rather large value of h are learly a�eted by the

partial barrier whereas the eigenstate in Fig. 5.1(b) for a smaller value of h totally ignores the
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presene of the partial barrier.

It seems intuitive to some extent that haoti eigenstates resemble the semilassial expe-

tation of uniform distribution for small values of h. Note that the lassial haoti dynamis

explores the haoti omponent rather uniformly on su�iently large time sales. However,

whih riterion determines whether h is su�iently small? And when is the drasti on�ne-

ment to either side of the partial barrier to be expeted? Apart from the evident dependene

on the e�etive size h of Plank's ell, one ould easily think of a dependene on the �ux φ

aross the partial barrier, the size of the regions A1 and A2 on both sides of the partial barrier,

or the haotiity in terms of the Lyapunov exponent for instane. Remarkably, as already on-

jetured in Ref. [17℄, the ruial parameter is the ratio of φ and h. Chaoti eigenstates tend

to loalization if the transmission region of the partial barrier is quantum mehanially not

resolved, i.e., if the �ux aross the partial barrier is small ompared to Plank's ell (φ ≪ h).

On the other hand, if the transmission region is quantum mehanially resolved (h ≪ φ),

haoti eigenstates are equipartitioned in the haoti omponent as if there were no partial

barrier at all [19, 20, 24, 31, 32, 37℄.

The preise behavior of the transition between the two regimes of loalization and equipar-

A1

A2

q

p

(a)

q

p

(c)

q

p

(d)

q

p

(b)

Figure 5.1. (a) Phase spae of the kiked model system introdued in Se. 4.3 with one

dominant partial barrier (solid magenta line) of �ux φ ≈ 1/200 in the haoti sea. (b�d)

Husimi representation of harateristi haoti eigenstates for (b) h = 1/1000 and (, d)

h = 1/50.
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titioned is investigated in Ref. [32℄. The authors study the equipartition measure

w
eq

(ψk) :=
‖P1ψk‖2
|A1|

‖P2ψk‖2
|A2|

, (5.5)

of the haoti eigenstate ψk with respet to the two haoti regions A1 and A2, whih are

separated by the partial barrier. Here, P1 and P2 denote orthogonal projetions onto the

Hilbert spaes assoiated with A1 and A2, and we assume without loss of generality that

the haoti region has unit phase-spae volume. Note that numerially it may be useful to

onsider the Husimi weight of ψk in region An instead of ‖Pnψk‖2. The equipartition measure

of ψk is zero if the state is on�ned to one of the regions sine the projetion onto the other

region then yields zero. The equipartition measure reahes unity if ‖Pnψk‖2 = |An| for both
n ∈ {1, 2}. This orresponds to the ase that ψk is distributed like the lassial Liouville

measure. We point out that it is onvenient to onsider the relative weight ‖Pnψk‖2/|An|
instead of the absolute weight ‖Pnψk‖2 for that ‖Pnψk‖2 approahes |An| if there is no partial
barrier. Moreover, the symmetry of A1 and A2 in the formulation of Eq. (5.5) aounts for

the fat that it is not relevant in this setup to distinguish between the loalization on A1

and the loalization on A2. This omes at the ost of the ambiguity that a state ψk with

‖P1ψk‖2 = |A2| and ‖P2ψk‖2 = |A1| also yields weq

(ψk) = 1, a value whih should be reserved

for a truly equipartitioned state. We will omment on this issue again later. From numerial

studies and supported by a heuristi 2×2 matrix model, the authors onlude that the average

equipartition measure of haoti eigenstates obeys

〈w
eq

〉 := 1

N
h

N
h∑

k=1

‖P1ψk‖2
|A1|

‖P2ψk‖2
|A2|

≈ φ/h

1 + φ/h
, (5.6)

where N
h

denotes the number of haoti eigenstates [32℄. Thus, the average equipartition

measure of eigenstates follows a smooth transition from zero to unity, i.e., from loalization

on either side of the partial barrier to equipartition, see Fig. 5.2. It only depends on the single

universal saling parameter φ/h. Figure 5.2 shows that the transition urve is symmetri

around the transition point φ/h = 1, 〈w
eq

〉 = 0.5 and has a width of two orders of magnitude

in φ/h. Note that the algebrai struture of Eq. (5.6) an be derived by a Laurent expansion

of the inverse of 〈w
eq

〉 in lowest order. It must be assumed that the equipartition measure is

zero for φ/h = 0, monotonially inreases, and linearly approahes unity for φ/h→ ∞.

Let us brie�y argue that the mentioned ambiguity in the equipartition measure of a single

haoti eigenstate, Eq. (5.5), is not a serious problem for the averaged quantity in Eq. (5.6).

The question at hand is whether it is possible that the average equipartition measure equals

unity and the states loalize as ‖P1ψk‖2 = |A2| and ‖P2ψk‖2 = |A1| on average. To this end,



5.1 Loalization Transition 53

q

p

q

p

φ/h

〈weq〉

10−3 10−2 10−1 100 101 103
0

1
2

1

Figure 5.2. Theoretial expetation for the average equipartition measure 〈w
eq

〉 of haoti
eigenstates depending on the ratio of the �ux φ aross the partial barrier and the e�etive size

h of Plank's ell, aording to Eq. (5.6). Upper panels: Husimi representation of eigenstates

as in Fig. 5.1, illustrating the di�erent regimes of loalization with φ/h indiated by arrows.

we ompute the average weight of ψk in region An, giving

1

N
h

N
h∑

k=1

‖Pnψk‖2 =
1

N
h

N
h∑

k=1

〈ψk |Pnψk 〉, (5.7)

sine Pn is an orthogonal projetion, P ∗
n = Pn and P 2

n = Pn. We introdue the orthonormal

basis {ηk}Nn

k=1 in the subspae imPn assoiated with An and �nd

1

N
h

N
h∑

k=1

‖Pnψk‖2 =
1

N
h

N
h∑

k=1

〈ψk |
Nn∑

j=1

〈 ηj |ψk 〉ηj 〉 (5.8)

=
1

N
h

Nn∑

j=1

〈
N
h∑

k=1

〈ψk | ηj 〉ψk | ηj 〉. (5.9)

Although {ψk}Nh

k=1 is not a basis of the full Hilbert spae, it is ertainly possible to expand ηj
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in terms of ψk as imPn lies within the haoti omponent. Thus, we obtain

1

N
h

N
h∑

k=1

‖Pnψk‖2 =
1

N
h

Nn∑

j=1

‖ηj‖2 =
Nn

N
h

≈ |An|. (5.10)

The last relation holds true in the semilassial limit, realling that we assumed unit phase-

spae volume for the haoti region as mentioned above. Hene, on average haoti eigenstates

will not loalize as ‖P1ψk‖2 = |A2| and ‖P2ψk‖2 = |A1|, and the ambiguity whih is possible for
individual states may be onsidered irrelevant for Eq. (5.6). The issue that single eigenstates

an oddly loalize unreognized by the equipartition measure an for instane be overome by

studying the weight within only one of the two regions.

5.2 Loalization and Transport

In Ref. [32℄ it is pointed out that there is a fundamental and very intuitive relation between the

loalization of eigenstates with respet to two phase-spae regions A1 and A2, and the weight

that is asymptotially transmitted between both regions when initializing a wave paket in

one of them. The basi idea is as follows: Any wave paket may be expanded in the basis of

eigenstates of the time-evolution operator. The more loalized these eigenstates are the less

are they oupled to eah other. Thus, if the eigenstates predominantly loalize in one of the

regions, transport between both regions is suppressed. This is formulated more preisely in

the following theorem.

Theorem. Let U be a unitary operator on the Hilbert spae CN
with nondegenerate

spetrum together with a basis of normalized eigenvetors {ψk}Nk=1, and let PA denote

an orthogonal projetion onto an arbitrary subspae A ⊆ CN
. Then it is

1

N

N∑

k=1

lim
t→∞

1

t

t−1∑

n=0

‖PA2U
nPA1ψk‖2 =

1

N

N∑

k=1

‖PA1ψk‖2‖PA2ψk‖2, (5.11)

for all subspaes A1 and A2 of C
N
.

Proof. It is onvenient to de�ne the shorthand notation

W∞(PA1ψk) := lim
t→∞

1

t

t−1∑

n=0

‖PA2U
nPA1ψk‖2 (5.12)
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for the absolute weight of PA1ψk that is asymptotially transmitted to the subspae A2.

To begin with, we write

W∞(PA1ψk) = lim
t→∞

1

t

t−1∑

n=0

〈PA2U
nPA1ψk |PA2U

nPA1ψk 〉, (5.13)

and insert the expansion

PA1ψk =

N∑

r=1

〈ψr |PA1ψk 〉ψr. (5.14)

Denoting the eigenvalue of U assoiated with ψk by e
iϕk

, this gives

W∞(PA1ψk) =

N∑

r=1

N∑

s=1

〈ψr |PA1ψk 〉〈ψs |PA1ψk 〉 ×

× lim
t→∞

1

t

t−1∑

n=0

〈PA2U
nψr |PA2U

nψs 〉 (5.15)

=
N∑

r=1

N∑

s=1

〈ψr |PA1ψk 〉〈ψs |PA1ψk 〉〈PA2ψr |PA2ψs 〉 ×

× lim
t→∞

1

t

t−1∑

n=0

ei(ϕs−ϕr)n, (5.16)

where limt→∞
1
t

∑t−1
n=0 exp[i(ϕs − ϕr)n] = δrs as long as there are no degeneraies in the

spetrum of U . We obtain

W∞(PA1ψk) =

N∑

ℓ=1

|〈ψℓ |PA1ψk 〉|2 ‖PA2ψℓ‖2 (5.17)

and perform the average over the full basis of eigenstates,

1

N

N∑

k=1

W∞(PA1ψk) =
1

N

N∑

k=1

N∑

ℓ=1

|〈ψℓ |PA1ψk 〉|2 ‖PA2ψℓ‖2 (5.18)

=
1

N

N∑

ℓ=1

‖PA2ψℓ‖2
N∑

k=1

〈P ∗
A1
ψℓ |ψk 〉〈ψk |P ∗

A1
ψℓ 〉 (5.19)

=
1

N

N∑

ℓ=1

‖P ∗
A1
ψℓ‖2 ‖PA2ψℓ‖2. (5.20)

Using that P ∗
A1

= PA1 for orthogonal projetions, this gives Eq. (5.11) and onludes the
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proof. Note that, in fat, we did not use the projetion property of PA1 or PA2 but only

their selfadjointness. �

Equation (5.11) relates the average equipartition measure of eigenstates (right hand side) to the

asymptoti transmission of weight from one side of the partial barrier to the other (left hand

side). In view of the φ/h dependene of the equipartition measure disussed in Se. 5.1, this

means that also the asymptotially transmitted weight obeys the same φ/h dependene [32℄.

Hene, for small values of φ/h, suh that the transmission region of the partial barrier is quan-

tum mehanially not resolved, a wave paket initialized in one of the regions will remain there

for all times and will essentially not penetrate into the other phase-spae region. We stress

that a lassial trajetory will explore the entire haoti phase-spae omponent in the long

run. Hene, one might think of the loalization due to a partial transport barrier as exhibiting

the opposite phenomenology ompared to the famous tunneling e�et [32℄: The tunneling pro-

ess allows quantum transport in ases where there is no lassial transport [100, �50℄. Here,

one observes suppression of quantum transport although lassial transport is allowed. We

emphasize that omparable relations between loalization and transport have been studied in

other situations before. To mention a few examples: strong Anderson loalization due to dis-

order suppresses di�usion and implies a metal�insulator transition [6,7℄; weak loalization due

to time-reversal invariane yields orretions to the lassial Drude ondutivity of a metal [8℄;

loalization of edge states due to topologial protetion is related to the quantized Hall on-

dutane [3,9℄; and many-body loalization in Fok spae implies a metal�insulator transition

at �nite temperatures for systems of interating partiles [10℄.

The original formulation of Eq. (5.11) in Refs. [32℄ is slightly di�erent. There, the left hand

side of the equality, whih is related to transport, ontains a sum over an arbitrary basis of

wave pakets in region A1. Instead we use the basis of eigenstates of U and projet it onto

A1. The advantage of the latter is that it reveals a remarkable relation to ergodiity as we

will now demonstrate. To this end, we �rst show that Eq. (5.11) semilassially reads

1

N

N∑

k=1

lim
t→∞

1

t

t−1∑

n=0

µψk
(A2 ∩ UnA1) =

1

N

N∑

k=1

µψk
(A1)µψk

(A2), (5.21)

where µψk
(A) := ‖PAψk‖2 de�nes a probability measure on subspaes of CN

whih is invariant

under U . Reall that an orthogonal projetion PA on a subspae A ⊆ CN
an be represented

by

PA =

M∑

k=1

〈 ηk | · 〉ηk (5.22)

in terms of an orthonormal basis {ηk}Mk=1 of A. Sine {Uηk}Mk=1 denotes an orthonormal basis



5.2 Loalization and Transport 57

of UA, we obtain

PUA =

M∑

k=1

〈Uηk | · 〉Uηk = U

M∑

k=1

〈 ηk |U∗· 〉ηk = UPAU
∗. (5.23)

Semilassially, the onatenation of two projetions PA, PB assoiated with phase-spae re-

gions A and B projets onto A∩B, that is PAPB = PA∩B. We stress that in general, i.e., away

from the semilassial regime, this relation is only valid if PA and PB ommute. Having said

this it is

‖PA2U
nPA1ψk‖2 = |e−iϕkn|2 ‖PA2U

nPA1U
−nψk‖2 (5.24)

= ‖PA2PUnA1ψk‖2 (5.25)

= ‖PA2∩UnA1ψk‖2. (5.26)

Inserting this into Eq. (5.11) and using the notation µψk
(A) = ‖PAψk‖2, we �nd Eq. (5.21).

We still have to show that µψk
is a probability measure whih is invariant under U . This

follows from

µψk
(U−1A) = ‖PU∗Aψk‖2 = ‖U∗PAUψk‖2 = |eiϕk |2 ‖PAψk‖2 = µψk

(A), (5.27)

and

‖µψk
‖ = µψk

(CN) = ‖PCNψk‖2 = ‖ψk‖2 = 1. (5.28)

As a rather tehnial remark, note that in order to de�ne a proper measure on an appropriate

σ-algebra, the union of sets needs to be replaed by the span of vetor spaes.

As mentioned above, Eq. (5.21) is related to ergodiity in an interesting way. Reall that

a probability measure µ that is invariant under the map T is ergodi if and only if

lim
t→∞

1

t

t−1∑

n=0

µ(A2 ∩ T−n(A1)) = µ(A1)µ(A2) (5.29)

for all measurable sets A1 and A2 [173, Prop. 9.1℄. Ergodiity it often referred to as �spatial

average equals temporal average� following Birkho�'s ergodi theorem [118, Thm. II.12℄, and

thus relates loalization properties and transport properties. Intuitively speaking, the left hand

side of Eq. (5.29) desribes how muh the set A1 penetrates into region A2 under time evolution,

weighted with µ (transport property), while the right hand side desribes how equipartitioned

the measure µ is with respet to A1 and A2 (loalization property). Comparing Eqs. (5.29)

and (5.21), the latter may thus be interpreted as desribing an averaged ergodiity. Note,

however, that this does not give any indiation of haoti dynamis or mixing behavior for U ,
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apart from the assumption of nondegeneray of the spetrum whih ould be due to haoti

level repulsion for instane. Still, also the left hand side of Eq. (5.21) desribes transport while

the right hand side desribes loalization. Consider two subspaes A1 and A2 suh that the

eigenstates ψk of U are predominantly loalized on one of the two subspaes, e.g., due to a

restritive partial transport barrier. This implies that for eah ψk one of the values µψk
(A1)

and µψk
(A2) is lose to unity while the other one is lose to zero. Thus, the right hand side of

Eq. (5.21) is small. On the other hand, this implies that the overlap A2 ∩UnA1 must also be

small, whih orresponds to weak oupling or suppressed transport. Vie versa, given that the

eigenstates ψk are equipartitioned with respet to A1 and A2, the right hand side of Eq. (5.21)

maximizes. Correspondingly, the overlap A2∩UnA1 is large suh that transport between both

regions is enhaned.



Chapter 6

Observation of Loalization Transitions

in Open Quantum Systems

In this hapter we present two numerial observations on loalization transitions of haoti

resonane states in open quantum systems. They have originally been reported in Ref. [34℄.

Their explanation will be the main subjet of this thesis. We onlude this hapter by a

disussion of the relation between loalization of resonane states and transport for open

systems. It turns out that their relation in open systems is quite di�erent from their intimate

relation in losed systems examined in Se. 5.2.

6.1 Loalization Transitions

To introdue the basi phenomenon, let us again onsider the kiked model system with an

isolated partial barrier studied in the previous hapter, see phase-spae portrait in Fig. 6.1(a).

Following Ref. [32℄, we have disussed that haoti eigenstates of the time-evolution operator

are equipartitioned with respet to the two sides of the partial barrier if the �ux φ aross

the partial barrier is quantum mehanially well resolved, φ ≫ h, see Fig. 6.1(b). This is

the ase for losed systems. One the system is opened by an absorbing region this hanges

drastially, see Fig. 6.1(). Although the ondition φ≫ h is satis�ed for the open system just

as for the losed system, the shown long-lived haoti resonane state learly loalizes above

the partial barrier. Note that the shown loalized state is a typial example and not just an

exeption. Moreover, this loalization is even present for a muh smaller size of Plank's ell,

see Fig. 6.1(d), where the quantum resolution of the �ux aross the partial barrier is even

improved. This loalization of haoti resonane states with respet to the partial transport

barrier, in ases where one observes equipartition of eigenstates in the orresponding losed

system, demonstrates that the presene of partial transport barriers in open systems is even

more in�uential than in losed systems. This phenomenon was �rst reported in Refs. [33,123℄.
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Figure 6.1. (a) Phase spae of the kiked model system introdued in Se. 4.3 with

one dominant partial barrier (solid magenta line) of �ux φ ≈ 1/200 in the haoti sea.

(b) Husimi representation of a harateristi haoti eigenstate for h = 1/1000. (, d) Husimi

representation of a harateristi long-lived haoti resonane state of the opened system

with |Ω| = 0.25 (gray region) for () h = 1/1000 and (d) h = 1/10000.

Let us at �rst numerially investigate the transition from equipartition to loalization

when inreasing the size of the opening, shown in Fig. 6.2. In order to reveal the parameter

dependene of suh a transition, it is useful to have the opportunity to hange the relevant

system parameters arbitrarily. This is simple for parameters like the size h of Plank's ell

or the opening Ω of the system. However, as we also want to hange the �ux φ aross the

partial barrier and later also the areas |A1| and |A2| of the haoti regions on either side of

the partial barrier, we onsider a di�erent model system, namely the partial-barrier standard

map introdued in Chap. 4. Also for this map, we observe the phenomenon that a typial

long-lived resonane state loalizes on one side of the partial barrier while a typial eigenstate

of the orresponding losed system is equipartitioned if φ ≫ h, see Fig. 6.2 (upper panels).

The transition from equipartition to loalization is investigated as follows: For a �xed set of

system parameters (h = 1/6000, |A1| = |A2| = 1/2), partiularly for a �xed pair of φ and Ω,

the time-evolution is desribed by a single subunitary matrix U . This matrix has N = 1/h

di�erent eigenstates with a broad range of deay rates. In the �rst plae, we fous on long-lived

states with a deay rate of γ ≈ γ
nat

. The natural deay rate γ
nat

desribes the asymptoti
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Figure 6.2. Weight ‖P1ψγ‖2 of resonane states in region A1 vs ratio of size |Ω| of opening
and �ux φ aross partial barrier for di�erent parameters of the partial-barrier standard map

(10 ≤ φ/h, |Ω|/h ≤ 2048; |A1| = 1/2; h = 1/6000). Weight of state with γ losest to γ
nat

(red points) and averaged over states with deay rates γ ∈ [γ
nat

/1.1, γ
nat

·1.1] (blak rosses).

Inset: Same data shown on double-logarithmi sale. Upper panels: Husimi representation

of typial resonane states with γ ≈ γ
nat

for h = 1/1000, φ/h = 20, and two values |Ω|/φ
indiated by arrows.

deay of an initially uniform distribution under the lassial open dynamis. We will disuss

this natural deay in muh more detail later. For the moment it is su�ient to think of

it as a harateristi deay rate for long-lived resonane states. We ompute the absolute

weight ‖P1ψγ‖2 of all haoti resonane states ψγ having a deay rate γ ∈ [γ
nat

/1.1, γ
nat

· 1.1]
within a small window around γ

nat

. Here P1 denotes the projetion onto the subspae that

is semilassially assoiated with the phase-spae region A1 (ontaining the opening Ω), suh

that ‖P1ψγ‖2 is the weight of the resonane state ψγ within A1. By taking the arithmeti

mean of the di�erent weights ‖P1ψγ‖2 quantum �utuations are redued. Note that the

fator 1.1 de�ning the window of deay rates is balaned suh that there are su�iently

many resonane states under onsideration in order to redue the �utuations signi�antly

and that all resonane states in the deay-rate window still exhibit approximately the same

magnitude of loalization. The weight ‖P1ψγ‖2 averaged over resonane states with deay rate

lose to γ
nat

provides a simple harateristi quantity to desribe the loalization of long-lived

resonane states in a single open quantum system, shown in Fig. 6.2 as a blak ross. It is
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‖P1ψγ‖2 = |A1| = 1/2 if the states are equipartitioned with respet to the partial barrier,

it is ‖P1ψγ‖2 = 0 if the states entirely loalize in region A2, and it is ‖P1ψγ‖2 = 1 if the

states entirely loalize in region A1. By variation of both φ and |Ω| we an monitor the whole

transition from equipartition to loalization. In Fig. 6.2, we use all ombinations of

φ/h ∈ {10, 22, 32, 68, 84, 122, 172, 238, 402, 508, 848, 1032, 1622, 2048}, (6.1a)

|Ω|/h ∈ {10, 20, 34, 58, 78, 124, 190, 236, 376, 516, 788, 1022, 1804, 2044}, (6.1b)

where pairs of |Ω|/h and φ/h with |Ω| + φ ≥ |A1| (or φ ≥ |A2|) are omitted. Note that the

values of φ/h and |Ω|/h are hosen suh that we obtain many di�erent values of |Ω|/φ, and
that there is no deeper meaning in their exat values. With this, we �nd a smooth transition

from equipartition, ‖P1ψγ‖2 = |A1|, for |Ω| ≪ φ to loalization on A2 for |Ω| ≫ φ, see Fig. 6.2.

The transition, in fat, universally depends only on the ratio of the openness |Ω| and the

�ux φ. The double-logarithmi visualization in the inset reveals that ‖P1ψγ‖2 dereases as

(|Ω|/φ)−1
starting roughly at the order of |Ω|/φ ≈ 1. We stress that this loalization transition

in the open system ours even though φ/h ≥ 10, where in the losed system eigenstates are

equipartitioned [32℄. Moreover, we point out that already individual states niely display this

loalization transition. To demonstrate this, we onsider the single haoti resonane state ψγ

with deay rate losest to γ
nat

on a logarithmi sale, i.e., the state for whih | log(γ)−log(γ
nat

)|
is minimal. Its loalization is shown in Fig. 6.2 by a red point for eah �xed system setting.

Up to �utuations, whih are rather on�ned in this setup, the individual state exhibits the

transition from equipartition to loalization on A2 for inreasing |Ω|/φ.
In the above numerial study, we simpli�ed the problem of loalization of resonane states

due to a partial barrier by piking one typially relevant deay rate and assoiating a single

loalization value to an entire quantum system. Indeed, even for a single quantum system

there is a broad range of deay rates, f. [174℄ for instane. As shown in [49℄ in the ontext of

fully haoti systems, the distribution of weights of a resonane state in phase spae depends

on its deay rate. This indiates that also the loalization with respet to a partial barrier in

terms of the weight ‖P1ψγ‖2 ould hange with the deay rate. In Fig. 6.3, we onsider the

single quantum system for �xed parameters φ/h = 100 and |Ω|/h = 1000 suh that |Ω| ≫ φ,

for whih the long-lived resonane states loalize on A2, f. Fig. 6.2. We diagonalize the

orresponding time-evolution matrix U and show the γ-dependene of the weights ‖P1ψγ‖2 for
all resonane states. We �nd a transition from resonane states whih loalize on A2 for small

γ to resonane states whih loalize on A1 for large γ, inluding equipartitioned resonane

states in between. Let us emphasize that this transition between the two extreme ases of

loalization on both sides of the partial barrier even for a single quantum system is important

for the orret interpretation of Fig. 6.2 where we foused on γ
nat

, only.

To onlude, we observe (i) a transition from equipartition to loalization of long-lived
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Figure 6.3. Weight ‖P1ψγ‖2 (red points) of resonane states ψγ in region A1 vs deay

rate γ for the partial-barrier standard map (φ/h = 100; |Ω|/h = 1000; |A1| = 1/2; h =
1/6000). Upper panels: Husimi representation of typial long-lived (left) and short-lived

(right) resonane state for h = 1/1000 with γ values indiated by arrows.

haoti resonane states on A2 for inreasing size |Ω| of the opening, see Fig. 6.2, and (ii) a

transition from loalization on A2 to loalization on A1 for inreasing γ, see Fig. 6.3. Transi-

tion (i) is surprising as loalization ours for φ ≫ h, where in the losed system the eigenstates

are equipartitioned. Transition (ii) shows that in open systems the loalization depends on

the deay rate γ. The fat that both transitions (i) and (ii) our for φ ≫ h suggests that

the loalization transitions ould be of lassial origin. Furthermore, from the point of view of

deaying lassial phase-spae distributions the observed transitions qualitatively seem to be

rather intuitive: In Fig. 6.2, for a larger size of the opening one has less weight in region A1

that ontains the opening. In Fig. 6.3, a larger weight in A1 orresponds to a larger deay rate.

For a quantitative desription, however, one needs suitable lassial distributions, that is, one

has to �nd the lassial ounterpart of a quantum resonane state. Chapter 7 is dediated to

this question. Before oming to that, let us disuss the relation between the loalization of

resonane states and phase-spae transport for open systems.
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6.2 Loalization and Transport

For open systems, there is no straightforward generalization of the relation between loalization

and transport from losed systems disussed in Se. 5.2. This basially relies on the fat that

the strutural result, Eq. (5.21), uses averaging arguments whih hold true for asymptotially

large times. In open systems, the resonane states are subjet to deay with an individual

deay rate. Thus, any initial wave paket ϕ will eventually die out under the proper subunitary

time evolution by U . Still, one might wonder what the wave paket looks like under an arti�ial

renormalized time evolution Ũ ompensating the deay. To this end, we onsider the nonlinear

but norm-preserving operator

Ũϕ :=
‖ϕ‖
‖Uϕ‖Uϕ. (6.2)

The iteration of Ũ reads

Ũ2ϕ = Ũ

( ‖ϕ‖
‖Uϕ‖Uϕ

)

(6.3)

=

∥
∥
∥

‖ϕ‖
‖Uϕ‖

Uϕ
∥
∥
∥

∥
∥
∥U
(

‖ϕ‖
‖Uϕ‖Uϕ

)∥
∥
∥

U

( ‖ϕ‖
‖Uϕ‖Uϕ

)

(6.4)

=

‖ϕ‖
‖Uϕ‖‖Uϕ‖
‖ϕ‖
‖Uϕ‖‖U2ϕ‖

‖ϕ‖
‖Uϕ‖U

2ϕ (6.5)

=
‖ϕ‖

‖U2ϕ‖U
2ϕ, (6.6)

giving

Ũnϕ =
‖ϕ‖

‖Unϕ‖U
nϕ (6.7)

for the n-th iterate. In words, the n-th iterate of the renormalized time-evolution operator Ũ

is simply given by the renormalization of the n-th iterate of the original time evolution U . We

express ϕ in terms of eigenstates {ψk}Nk=1 of U , Uψk = λkψk, and obtain

Unϕ =
N∑

k=1

ckλ
n
kψk (6.8)

with oe�ients ck as in Eq. (2.45). Sine U is subunitary, the modulus of λk is below unity

suh that asymptotially, i.e., for su�iently large n, the time evolution of ϕ is governed by

the ψk with largest value |λk| and ck 6= 0. All other eigenstates with larger deay rate are

exponentially suppressed.
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Hene, in order to understand the asymptoti evolution of wave pakets in open systems,

one only has to understand the loalization of the longest-lived resonane states. Resonane

states of larger deay rate are relevant only for the initial temporal regime. To demonstrate

this dominane of long-lived resonane states, we onsider the example of the standard map

at κ = 2.9 with a mixed phase spae opened in the haoti sea by two stripes of width 0.05, f.

Se. 3.1. The longest-lived state is the regular ground state loated at the entral ellipti �xed

point. It is oupled to the opening only by the rather slow proess of dynamial tunneling [36℄.

Still, a wave paket initialized in the haoti sea resembles the ground state for su�iently

large times as an be seen in Fig. 6.4. As a tehnial remark, we mention that numerially

these large iteration times, t = 2n, are ahieved by an n-fold loop multiplying U with itself in

eah loop yle.
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Figure 6.4. Husimi representation of the renormalized time evolution of a wave paket

for the standard map, κ = 2.9, h = 1/150, for di�erent number t of iterations as indiated
above eah panel. The system is opened by absorbing stripes (gray shaded) of total area

|Ω| = 0.1. The magenta lines show the dominant partial barriers of the system.
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Chapter 7

Semilassial Struture

of Chaoti Resonane States

The observations on the semilassial loalization of haoti resonane states due to a partial

transport barrier in Se. 6.1 led us to the question: What is the lassial ounterpart of a

quantum resonane state? This is the entral topi of this hapter. First, we review basi

results on the semilassial struture of quantum eigenstates for losed systems in Se. 7.1.

We partiularly disuss the relevane of invariant measures in this ontext. In Se. 7.2 we

fathom the struture of haoti resonane states for open systems based on the work by

Keating et al. [49℄. Semilassially, this leads to the study of onditionally invariant measures.

We introdue the lass of γ-natural onditionally invariant measures, originally published

in [34℄, for whih quantum-to-lassial orrespondene with haoti resonane states will be

demonstrated in Chaps. 8 and 9.

7.1 Quantum�Classial Correspondene in Closed Systems

For losed systems the semilassial phase-spae loalization of quantum eigenstates is well

understood. Following the line of arguments as presented in Ref. [146, Se. 3℄ we review

fundamental results on the semilassial loalization of regular and haoti eigenstates in

the following. It turns out that the relevant lassial objets are invariant measures whih

orrespond to uniform phase-spae distributions for Hamiltonian systems.

7.1.1 Semilassial Struture of Quantum Eigenstates

Let us begin with the ase of integrable dynamis. Here, the lassial dynamis takes plae

as periodi or quasi-periodi (ergodi) motion on invariant tori. From the semilassial eigen-

funtion hypothesis [11,14,15℄, one knows that quantum eigenstates are onentrated in their
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Husimi representation on suh invariant tori with minimal unertainty as de�ned by the size h

of Plank's ell. For an example of suh a regular eigenstate for the standard map, see

Fig. 7.1(a). The quantizing tori Cn obey the Bohr�Sommerfeld quantization ondition [102,

Se. 11.3℄,

∮

Cn

p(q) dq =

(

n +
1

2

)

h, (n ∈ N0) (7.1)

where p denotes the (multivalued) momentum along the irreduible iruit of the torus Cn
as a funtion of the position q, suh that

∮

Cn
p(q) dq is the phase-spae area enlosed by Cn.

From the approximation sheme by Wentzel, Kramers, and Brillouin, one even has an expliit

representation for a regular eigenstate ψ that is semilassially orret, namely

ψ(q) =
∑

±

c±
√

|p(q)|
exp

{

± i

~

∫ q

p(x) dx

}

, (7.2)

with appropriate expansion oe�ients c± [175, Se. VII℄. It has been shown in [13, Se. 3℄

that this approahes a uniform distribution along the regular torus for h ց 0, using the

Wigner�Weyl formalism. We emphasize that, quite intuitively, this uniform distribution on

the torus is invariant under the lassial time evolution.

For haoti systems there is in general no expliit semilassial expression like Eq. (7.2)

for eigenstates [146, Se. 3.2℄. The generi behavior, however, is aptured by the quantum

ergodiity theorem [27℄: Consider a unitary quantum map UN : CN → CN
orresponding

to an ergodi sympleti map on a tori phase spae with a basis of normalized eigenstates,

ψNn ∈ CN
, n ∈ {1, . . . , N}. Then there exists a sequene (EN)N∈N of sets EN ⊆ {1, . . . , N}

satisfying limN→∞#EN/N = 1, suh that for every sequene (nN )N∈N with nN ∈ EN , the

sequene (HψN
nN

)N∈N of Husimi distributions onverges towards the uniform distribution (in

q

p

(a)

q

p

(b)

Figure 7.1. Husimi representation of a typial eigenstate of the standard map, h = 1/1000,
for (a) κ = 0.5 and (b) κ = 10.0, that is (a) onentrated on a regular torus and (b)

distributed over the haoti sea, f. underlying phase-spae portrait (blak lines and dots).
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the w

∗
-topology). The restrition to sequenes (nN)N∈N is neessary as there exist exeptional

eigenstates that are sarred with enhaned loalization in the viinity of unstable periodi

orbits [29℄. Obviously, suh states do not orrespond to the uniform distribution. An example

of a typial uniformly distributed haoti eigenstate of the standard map is shown in Fig. 7.1(b).

There are other and more general formulations of the quantum ergodiity theorem available,

see e.g., the fundamental results in [12, 18, 21℄, results on quantum ergodi billiards in [25,

26, 29℄, on ergodi Hamiltonian �ows on energy surfaes [22℄, on ergodi quantum maps in

general [27,28℄, and on the quantum Baker map with its disontinuities [176℄. Thus, similar to

the integrable ase, up to dimensionality, typial haoti eigenstates approah the lassially

invariant uniform phase-spae distribution in the semilassial limit.

Let us disuss suh lassially invariant distributions in a little more detail. We hoose a

rather abstrat approah in terms of measures here, whih is suitable as it allows to rigorously

inlude fratal properties for open systems below. For a short overview on measure theory we

refer to Se. A in the appendix.

7.1.2 Invariant Measures

The forward time evolution of a probability measure µ under the map T : Γ → Γ is given by

the pushforward measure T∗µ, whih is de�ned by

T∗µ(X) := µ
(
T−1(X)

)
(7.3)

for all measurable sets X ⊆ Γ. Note that the preimage T−1(X) of X under T is well-de�ned

even in the ase that T is not invertible, whih is relevant for open systems below. Let us give

an intuitive argument, why T∗µ may be interpreted as the iterate of µ: Suppose that µ has a

density ̺ : Γ → [0, 1] with respet to the Lebesgue measure Λ, that is,

µ(X) =

∫

X

̺ dΛ (7.4)

for all measurable X ⊆ Γ. In Fig. 7.2 this is illustrated by a two-dimensional Gaussian

distribution for ̺ in the left panel. Let ˜̺ denote the probability distribution after one iteration

by the map T . In Fig. 7.2 this orresponds to the density distribution in the right panel after

iteration by the Baker map. Numerially, this may be realized by generating a sample of

random points in phase spae whih are distributed aording to the probability distribution ̺

by an aeptane�rejetion algorithm for instane [177,178℄, and by iterating these points one

by virtue of T . The distribution of the iterates obeys a new density funtion ˜̺. This funtion

˜̺ is the density of the measure T∗µ as de�ned by Eq. (7.3). With this it beomes lear that

the weight of T∗µ on the set X is, in fat, the weight of µ on the set T−1(X) sine the
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q

p

µ
(

T−1(X)
)

q

p

T∗µ(X)

Figure 7.2. Sketh motivating the de�nition of the pushforward measure T∗µ in terms of

densities: The weight of the Gaussian density de�ning µ within the set T−1(X) (olored

region; left panel) is the same as the weight of the iterated density orresponding to T∗µ
within the iterated set X (olored region; right panel). The map T is hosen to be the

Baker map; the blak lines in the bakground deomposing the phase spae vertially and

horizontally into thirds are a guide to the eye.

overlap of a density with a given set does not hange if both the density and the set are

iterated. This is visualized in Fig. 7.2 for X = [0, 1/3) × [0, 2/3), the preimage of whih

is T−1(X) = {[0, 1/9)× [0, 1)} ∪ {[1/3, 4/9)× [0, 1)}. In the general situation that µ does

not provide a proper density ̺, Eq. (7.3) must be taken as a de�nition. We stress that T∗µ

orresponds to the forward iteration of µ even though the inverse iteration T−1
enters in

Eq. (7.3).

We are now able to de�ne invariane for a measure as motivated by the above disussion on

the lassial ounterpart of quantum states in losed systems. A measure µ is alled invariant

under the map T if T∗µ = µ. Liouville's theorem states that for Hamiltonian systems, or

sympleti maps respetively, the uniform Lebesgue measure is invariant [129, Prop. 3.3.4℄.

In haoti systems the invariant measure is partiularly important for the asymptoti time

evolution as any generi initial measure onverges towards it: Sine a typial orbit explores

the entire phase spae uniformly in the long run, it seems reasonable to expet some kind

of onvergene of (T n∗ ν)n∈N for suitable initial measures ν towards the invariant Lebesgue

measure µ. First of all, we fous on measures ν that are absolutely ontinuous with respet to

µ, i.e., µ(X) = 0 implies ν(X) = 0 for all measurable sets X ⊆ Γ. This partiularly exludes

exeptional Dira measures loalized on periodi orbits for instane. Moreover, let us onsider

the speial ase that the onsidered haoti system is ergodi. The sympleti map T together

with its invariant measure µ is alled ergodi if for any invariant measurable set X , T (X) = X ,

it is µ(X) = 0 or µ(X) = 1 [173, Se. 6.3℄. As a onsequene of the mean ergodi theorem by
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von Neumann [118, Thm. II.11℄, ergodiity implies

lim
N→∞

1

N

N−1∑

n=0

T n∗ ν(X) = µ(X) (7.5)

for all measurable X . In other words, for ergodi Hamiltonian systems the so-alled Cesàro

average of any absolutely ontinuous measure indeed onverges towards the invariant Lebesgue

measure as expeted. In order to obtain onvergene of the sequene (T n∗ ν)n∈N itself, and not

only onvergene on average, ergodiity is not su�ient. However, if the map T is (strongly)

mixing, i.e., if for all measurable X , Y it holds that [173, Se. 9.1℄

lim
n→∞

µ(T−n(X) ∩ Y ) = µ(X)µ(Y ), (7.6)

it an be shown that

lim
n→∞

T n∗ ν(X) = µ(X) (7.7)

for all measurable X . Hene, in mixing Hamiltonian systems any absolutely ontinuous mea-

sure onverges towards the invariant Lebesgue measure under time evolution. An idea of the

proofs for Eqs. (7.5) and (7.7) is given in Se. B.3 in the appendix.

7.2 Quantum�Classial Correspondene in Open Systems

Invariant measures also exist for sympleti maps that are opened by an absorbing region.

First, if the dynamial system displays regular motion away from the opening, this phase-spae

region supports invariant measures as in losed systems. But invariant measures exist even in

the haoti omponent of phase spae that ontains an opening [58℄. They are supported by

the maximal invariant set in the haoti part of phase spae, the fratal repeller, f. Se. 3.3.

However, by de�nition, suh invariant measures do not display deay and therefore annot be

the lassial ounterpart of quantum resonane states.

In this setion we �rst disuss the struture of haoti resonane states based on the work

by Keating et al. [49℄. It turns out that lassial onditionally invariant measures, whih in on-

trast to invariant measures exhibit deay, obey loalization onditions analogous to quantum

resonane states. Thus, they are ideal andidates for quantum-to-lassial orrespondene.

Still, it is neessary to identify the onditionally invariant measures that are quantum me-

hanially relevant. To this end, we propose the lass of γ-natural onditionally invariant

measures [34℄.
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7.2.1 Semilassial Struture of Chaoti Resonane States

For open systems, quantum-to-lassial orrespondene between the struture of quantum

haoti eigenstates and lassial properties is by far not as well explored as for losed systems.

Still, a few fundamental results are presented in Refs. [46, 48, 49, 51℄ or reviewed in a broader

ontext in Refs. [56, 58℄. We will brie�y disuss them here. Note that there are other related

works on a short periodi orbit approah to resonanes [92, 179, 180℄, disussing sarring ef-

fets [54, 181℄, and investigations on loalization on manifolds [182℄ for open systems. As we

fous on the generi behavior of quantum resonane states in the spirit of quantum ergodiity,

these issues are not taken into aount.

Following the seminal paper by Keating et al. [49℄ we disuss two fundamental semilas-

sial properties of the loalization of quantum resonane states in their Husimi representa-

tion: (i) Chaoti resonane states are semilassially supported by the bakward trapped set.

(ii) Their weight on semilassially resolved forward esaping sets deays by e−γ between on-

seutive levels, determined by the deay rate γ of the resonane state. In the following, it

is instrutive to illustrate the explanation of both statements using the example of the open

Baker map. Its resonane states exhibit the harateristi features of (i) being supported on

bakward trapped set (horizontal stripes), and of (ii) having an additional γ-depending pro�le

governed by the forward esaping sets (vertial stripes), as shown in Fig. 7.3.
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(a)

q
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(b)

Figure 7.3. Average Husimi distribution of haoti resonane states of the Baker map

(1/h = 729; Ω = [1/3, 2/3) × [0, 1); γ
nat

= − log(2/3) ≈ 0.405) with (a) γ ∈ [γ
nat

/1.1, γ
nat

·
1.1] (20 states) and (b) short γ ∈ [0.8/1.1, 0.8 · 1.1] (17 states). Colored regions in the

bakground show the opening (Ω, dark gray), the �rst forward esaping set (T−1(Ω), light
blue), and the seond forward esaping set (T−2(Ω), medium blue)
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(i) The Husimi distribution Hψ of a resonane state ψ is invariant under the quantum time

evolution UP up to normalization, where U denotes the unitary part of the quantum map and

P is the projetion onto the omplement of the opening Ω. More preisely, the time evolution

ψ 7→ UPψ reads Hψ 7→ HUPψ in terms of the Husimi representation. The invariane of Hψ

under time evolution up to normalization partiularly means that even though a substantial

part of the distribution Hψ leaves the system through the opening Ω, the entire phase-spae

distributionHψ has to reonstrut itself after one iteration by UP up to deay. This invariane

property of ψ implies that Hψ must not have any weight on the iterate T
l

(Ω) of the opening

Ω under the lassial losed system dynamis T
l

: Semilassially speaking, under the open

dynamis T = T
l

◦O nothing is mapped to T
l

(Ω) sine

T (Γ) = T
l

(O(Γ)) = T
l

(Γ \ Ω) ∪ {∞} = (Γ \ T
l

(Ω)) ∪ {∞} (7.8)

as T
l

is bijetive. For illustration, see Fig. 7.4 for the Baker map. Here, by iterating the entire
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Figure 7.4. (a) Forward iteration of the uniform phase-spae distribution under the open

Baker map (iteration number n as indiated above eah panel). (b) Forward esaping

sets T−n(Ω) for n = 0 (gray), n = 1 (light blue), n = 2 (medium blue). () Disjoint

representation of the iterates T n
l

(Ω) of the opening under the losed Baker map T
l

for

n = 1 (light blue), n = 2 (medium blue), and n = 3 (dark blue).
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phase spae one under the open map, Fig. 7.4(a), nothing is mapped to the middle horizontal

third whih is T
l

(Ω), Fig. 7.4(). Suppose Hψ does not vanish on T
l

(Ω). While the weight of

Hψ in T
l

(Ω) will redistribute over phase spae within one iteration, nothing enters T
l

(Ω) suh

that Hψ annot reonstrut. Hene, any invariant Husimi distribution Hψ must not have any

weight in T
l

(Ω). The same line of semilassial argument applies to all images T n
l

(Ω) of the

opening up to the Ehrenfest time, n ≤ τ
Ehr

, whih is the time sale of quantum-to-lassial

orrespondene [48℄. Therefore, Hψ is semilassially supported by the set of points in phase

spae that are trapped in the system at least τ
Ehr

bakward iterations. This is on�rmed by

the averaged Husimi distributions of haoti resonane states in Fig. 7.3 whih are zero on the

sets T n
l

(Ω) for n . 3 (horizontal gaps), f. Fig. 7.4(). The remaining weight is supported by

the threefold bakward trapped set. Note that the �nite-time approximation of the bakward

trapped set orresponds to its spatially �nite approximation on the Plank sale h.

We an also show this loalization on the bakward trapped set from a more general

perspetive: Let ψ be a resonane state of the quantum map UP , i.e., UPψ = λψ, λ 6= 0.

This implies

(UP )n
ψ

λn
= ψ (7.9)

for n ∈ N0, suh that ψ ∈ im (UP )n for eah n. Here,

imS := {Sψ : ψ ∈ D(S)} (7.10)

denotes the image or range of an operator S with domain D(S). Using the general relation

imS ⊆ (ker S∗)⊥ between the image of S and the orthogonal omplement of the kernel of

S∗
, f. Eq. (2.27), for a bounded linear operator S on some Hilbert spae [151, �21.3.5℄, we

onlude

ψ ∈
(
ker(PU−1)n

)⊥
, (n ∈ N0). (7.11)

In words, a resonane state ψ is orthogonal to all subspaes that are mapped to zero under

the bakward open quantum time evolution PU−1
. Semilassially, that desribes preisely

the loalization on the lassial bakward trapped set. As the semilassial argument is only

valid for n ≤ τ
Ehr

, we reover the above result (i). We emphasize that Eq. (7.11) is the

quantum-mehanial generalization of the semilassial loalization on the bakward trapped

set. In the original work [49℄, the argument for the semilassial loalization on the τ
Ehr

-fold

bakward trapped set is slightly more tehnial, analyzing the bakward time evolution of

the oherent state whih enters the de�nition of the Husimi representation of the resonane

state. Note that fratal properties in the loalization of quantum resonane states have �rst
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been observed and attributed to the lassial bakward trapped set in the pioneering work by

Casati et al. [46℄.

(ii) We now fous on the weight of resonane states on forward esaping sets T−n(Ω). For

the Baker map the forward esaping sets are vertial stripes in phase spae, see Fig. 7.4(b).

Let us start from the eigenvalue equation UPψ = λψ with |λ| = e−γ/2 whih implies the norm

deay of the resonane state,

‖UPψ‖2 = e−γ . (7.12)

Denoting the orthogonal projetion onto the opening by P0 := 1− P , this gives

‖UPψ‖2 = ‖(1− P0)ψ‖2 (7.13)

= ‖ψ‖2 − 〈ψ |P0ψ 〉 − 〈P0ψ |ψ 〉+ ‖P0ψ‖2 (7.14)

= 1− ‖P0ψ‖2, (7.15)

using that

〈ψ |P0ψ 〉 = 〈ψ |P 2
0ψ 〉 = 〈P0ψ |P0ψ 〉 = ‖P0ψ‖2. (7.16)

Equations (7.12) and (7.15) establish the simple but important relation

‖P0ψ‖2 = 1− e−γ. (7.17)

We stress that this result is remarkable as it relates the loalization of the resonane state ψ

with its deay rate γ. Qualitatively, this is very intuitive: The more weight of ψ lies in the

opening the faster its deay. This is also on�rmed by the averaged haoti resonane states in

Fig. 7.3. The resonane state with larger deay rate (b) has more weight on the opening (gray

region) than the resonane state shown in (a) with smaller deay rate. Note that Eq. (7.17)

is important beyond the study of haoti resonane states, e.g., it an also be used for the

omputation of dynamial-tunneling rates from the regular to the haoti phase-spae region

of mixed systems as initially worked out in ollaboration with Normann Mertig [183, 184℄.

Proeeding with the iterated operators Pn := (UP )∗nP0(UP )
n
, n ∈ N0, one �nds

〈ψ |Pnψ 〉 = 〈 (UP )nψ |P0(UP )
nψ 〉 (7.18)

= e−γn ‖P0ψ‖2 (7.19)

= e−γn(1− e−γ), (7.20)

whih generalizes Eq. (7.17). Semilassially, for n ≤ τ
Ehr

, Pn orresponds to the projetion

onto the forward esaping set T−n(Ω) suh that 〈ψ |Pnψ 〉 desribes the weight on that set.
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We point out though that the operators Pn, n 6= 0, are stritly speaking not projetions if

not onsidered semilassially. This is essentially due to the fat that in general U−1P0UP 6=
PU−1P0UP , although they are equal semilassially. To onlude, Eq. (7.20) expliitly relates

the weight of a resonane state in eah of the forward esaping sets T−n(Ω) up to τ
Ehr

with its

deay rate γ. The ratio of weights 〈ψ |Pn+1ψ 〉/〈ψ |Pnψ 〉 between onseutive levels equals

e−γ for all n ∈ N0, f. Eq. (7.20). Qualitatively, this agrees with the loalization of haoti

resonane states shown in Fig. 7.3. A preursor on this kind of semilassial deomposition of

resonane states an be found already in the work by Shomerus and Tworzydªo [48℄, where

the authors identify regions of ballisti esape in order to study the number of instantaneous

deay modes.

Let us point out that the Ehrenfest time τ
Ehr

being the temporal threshold between lassial

and quantum-mehanial behavior is not sharp but rather de�nes a sale, meaning there is a

smooth transition from one regime to the other. In the same spirit, it is not essential in the

following whether there is quantum-to-lassial orrespondene both in forward and bakward

time diretion up to τ
Ehr

or in eah diretion only up to τ
Ehr

/2, whih seems more appropriate.

In this regard, the above disussion should be rather seen as a proof of onept.

Given the disussed results from [49℄, we have now seen some fundamental semilassial

properties of quantum resonane states. Still, this leaves the question about the orret

lassial framework to apture these properties. The work by Nonnenmaher and Rubin [51℄

suggests the onept of onditionally invariant measures. Before we disuss a few important

results from [51℄, let us introdue onditionally invariant measures as developed in Refs. [43,50℄.

7.2.2 Conditionally Invariant Measures

A probability measure µ is alled onditionally invariant measure (im) with respet to the

lassial map T : Γ → Γ, if it obeys the ondition

T∗µ = ‖T∗µ‖µ, (7.21)

with ‖T∗µ‖ = T∗µ(Γ) and the pushforward measure T∗µ as de�ned in Eq. (7.3). In ontrast

to an invariant measure, T∗µ = µ, a im is invariant under T only up to a global fator ‖T∗µ‖.
In fat, the n-fold iteration

T n∗ µ = ‖T∗µ‖nµ = e−γnµ, (7.22)

using T∗(‖T∗µ‖µ) = ‖T∗µ‖ T∗µ, yields an exponential deay with rate

γ = − log(‖T∗µ‖). (7.23)
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For the speial ase that the opening O is performed before the losed map iteration T
l

,

T = T
l

◦O, it is

‖T∗µ‖ def

= µ
(
T−1(Γ)

)
= µ

(
O
(
T−1
l

(Γ)
︸ ︷︷ ︸

=Γ

))
= µ (Γ \ Ω) (Ω⊆Γ)

= µ(Γ)
︸︷︷︸

=1

−µ(Ω), (7.24)

suh that the deay rate γ may be written as

γ = − log (1− µ(Ω)) . (7.25)

With this, Eq. (7.21) states that the measure µ
(
T−1(X)

)
of the set T−1(X) that will be

mapped to X is smaller than µ(X) by the fator e−γ.

By de�nition, ims obey the same loalization onditions as quantum resonane states do

semilassially in terms of (i) being supported by the bakward trapped set, Eq. (7.11), and

(ii) having deay-rate depending weights in the forward esaping sets aording to Eq. (7.20):

(i) By mathematial indution we show µ (T n
l

(Ω)) = 0 for n ∈ N, that is, a im µ is

supported by the bakward trapped set, f. Eq. (3.25),

Γ
bwd

= Γ \
∞⋃

n=1

T n
l

(Ω). (7.26)

First, for the base ase n = 1, it is

µ
(
T
l

(Ω)
)

Eq. (7.21)

= eγ T∗µ
(
T
l

(Ω)
)

(7.27)

= eγ µ
(
O ◦ T−1

l

◦ T
l

(Ω)
)

(7.28)

= eγ µ
(
O(Ω)

)
(7.29)

= eγ µ(∅) (7.30)

= 0. (7.31)

For the indutive step, we show that µ
(
T n
l

(Ω)
)
= 0 impies µ

(
T n+1
l

(Ω)
)
= 0,

µ
(
T n+1
l

(Ω)
)

= eγ T∗µ
(
T n+1
l

(Ω)
)

(7.32)

= eγ µ
(
O ◦ T−1

l

◦ T n+1
l

(Ω)
)

(7.33)

= eγ µ
(
T n
l

(Ω) \ Ω
)

(7.34)

≤ eγ µ
(
T n
l

(Ω)
)

(7.35)

= 0. (7.36)

A more intuitive argument analogous to the disussion for quantum resonane states applies

for ims as well, i.e., a im must not have any weight in any iterate T n
l

(Ω) of the opening as
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any ontribution on T n
l

(Ω) leaves the region under iteration by T but no weight enters again.

Figure 7.5 shows the loalization of ims on the bakward trapped set (horizontal stripes) for

the Baker map.

(ii) In addition to the loalization on the bakward trapped set, the weights of ims in

the forward esaping sets obey a deay-rate depending relation just like Eq. (7.20) for haoti

resonane states. Diretly from the de�nition of ims, Eq. (7.21), one �nds

µ
(
T−n(Ω)

)
= T n∗ µ(Ω) = e−γnµ(Ω)

(7.25)

= e−γn(1− e−γ), (7.37)

the lassial equivalent of Eq. (7.20). Examples for ims with deay-rate depending weights

in the forward esaping sets are shown in Fig. 7.5 for the open Baker map.

We have seen that ims are invariant up to deay and obey the same two fundamental

loalization properties as quantum haoti resonane states. Hene, they are the ideal an-

didates for quantum-to-lassial orrespondene. So far, however, we have not addressed the

question how many di�erent ims atually exist, i.e., whether there are too few ims to �nd

a ounterpart for eah quantum resonane state or, vie versa, whether there are too many

ims suh that one needs to investigate whih of them are quantum mehanially relevant. In

Ref. [51, Thm. 1℄, it is proved that quantum resonane states neessarily onverge towards

ims in the semilassial limit, provided that they onverge at all. The authors also develop a

method, originally presented in [50, Thm. 3.1℄, to onstrut unountably many ims for eah

deay rate γ [51, Prop. 2℄. They emphasize that it is not lear whih of these in�nitely many

ims are quantum mehanially relevant. In other words, if one expets that for eah γ there

exists a single im that aptures the semilassial behavior of generi haoti resonane states

with the same deay rate γ then one needs to be able to selet this im out of the huge variety

of in�nitely many di�erent ims that exist for this γ.

Let us begin with the following simpler problem: Whih of these in�nitely many ims

are lassially relevant? An appealing attempt to answer this question is put forward in [50,

Se. 5.1℄. Reall that for losed systems, ergodiity and mixing imply a onvergene of almost

arbitrary initial measures towards the invariant uniform Lebesgue measure, f. Eqs. (7.5) or

(7.7). For open systems, an analogue onsideration is based on the nonlinear iteration by

ν 7→ T∗ν

‖T∗ν‖
, (7.38)

where the nonlinearity ompensates the deay. Any im is a �xed point of this iteration as

follows immediately from the de�nition, Eq. (7.21). Likewise, if the iteration onverges, the

limit measure is onditionally invariant. Note that this relation between ims and Eq. (7.38)

atually motivates the notion of onditional invariane as the n-th iterate applied to X ⊆ Γ is

the onditional probability for being in X after n iterations under the ondition of being in Γ
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after n iterations [43℄. Moreover, note that in order to ahieve onvergene, it might also be

useful to onsider onvergene on average in the Cesàro sense as performed in Eq. (7.5). The

relevane of ims may now be lassi�ed by the stability of the orresponding �xed point of

Eq. (7.38). This means, the more di�erent initial measures ν onverge towards a im µ, the

more important µ beomes. A �rst reasonable andidate for whih one ould expet lassial

relevane [55, 56℄ is the so-alled natural im µ
nat

, de�ned by the limit measure aording to

Eq. (7.38) when using the Lebesgue measure for ν [50℄. This yields the uniform distribution

on its support, i.e., the bakward trapped set, as visualized in Fig. 7.5(b) for the Baker map,

see also Fig. 7.4(a). Numerially, one observes that not only the Lebesgue measure but rather

any generi initial measure onverges towards µ
nat

(not shown). This seems reasonable in

view of Eqs. (7.5) and (7.7) for losed haoti systems. Notie, however, that even the mere

existene of µ
nat

, i.e., the onvergene of Eq. (7.38) for the Lebesgue measure ν, is in general

not guaranteed [50, Se. 5.1℄.

Quantum mehanially, the natural im desribes typial long-lived resonane states in

the semilassial limit up to system spei� sarring e�ets, as is already pointed out in [46℄

without using the notion of a natural im though. For instane, ompare the natural im

µ
nat

of the Baker map, Fig. 7.5(b), with the average haoti resonane state with γ ≈ γ
nat

,

Fig. 7.3(a). In the ontext of optial miroavities the natural im oinides with the steady

probability distribution, for whih quantum-to-lassial orrespondene is observed [70℄. Note

that optial miroavities are modeled with partial absorption, i.e., by quantum maps UP

with a unitary part U and a subunitary part P = 1 − αP0, with the absorption oe�ient

α ∈ [0, 1] and the projetion P0 onto the opening, f. [56℄. Throughout this thesis we use

α = 1, whih simpli�es some arguments. For a generalization of our results to systems with

partial absorption, we refer to a short disussion in the outlook in Chap. 11.

As the natural im has a single deay rate only, it annot be the lassial ounterpart for

all quantum resonane states with a wide range of deay rates. ims with other deay rates

may be onstruted as follows [50,51℄: Let ν be an arbitrary probability measure on Ω∩Γ
bwd

,

that is ν(Γ) = ν(Ω ∩ Γ
bwd

) = 1. Then for eah γ > 0, the measure de�ned by

1

µ := (1− e−γ)
∑

n∈N0

e−γn T ∗nν (7.39)

is onditionally invariant with deay rate γ. Here, T ∗ν denotes the pullbak measure of ν,

obeying

T ∗ν(X) := ν
(
T (X)

)
(7.40)

1

Note that, given the di�erent notation used in [51℄, there is a typo in Eq. (2.14): The authors aidentally

use the pushforward measure instead of the pullbak measure.
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q

p

(a) γ < γnat

q

p

(b) γ = γnat

q

p

(c) γ > γnat

q

p

(d) γ < γnat

q

p

(e) γ > γnat

Figure 7.5. (a, ) Constrution of γ-natural ims for the Baker map by trunation of the

series in Eq. (7.49) to n ≤ 2 for (a) γ < γ
nat

and () γ > γ
nat

. This is based on the natural

im shown in (b) for whih the weight in Ω (gray stripe), T−1(Ω) (light blue stripes), and
T−2(Ω) (medium blue stripes) is adapted. (d, e) Finer resolution of γ-natural ims for (d)
γ < γ

nat

and (e) γ > γ
nat

omputed by the integration method disussed on page 82.

for measurable X ⊆ Γ for maps T suh that T (X) is measurable as well. The onditional

invariane of µ as de�ned by Eq. (7.39) an be seen by

T∗µ = (1− e−γ)

{

T∗ν
︸︷︷︸

=0

+

∞∑

n=1

e−γn T∗T
∗nν

︸ ︷︷ ︸

=T ∗(n−1)ν

}

(7.41)

= (1− e−γ) e−γ
∞∑

n=0

e−γn T ∗nν (7.42)

= e−γµ. (7.43)



7.2.2 Conditionally Invariant Measures 81

The pushforward measure T∗ν equals zero beause for eah X ⊆ Γ the preimage T−1(X) is in

Γ\Ω and thus has no overlap with the support Ω∩Γ
bwd

of ν. The relation T∗T
∗nν = T ∗(n−1)ν

also follows from the restrition of ν to Ω∩Γ
bwd

. Due to the arbitrariness of ν, this onstrution

demonstrates that there exist unountably many ims for eah γ. Interestingly, a onstrution

of haoti resonane states analogous to Eq. (7.39) an be proved, see Se. B.4, whih further

indiates quantum-to-lassial orrespondene.

So again, the question arises, whih of these in�nitely many ims is relevant for lassial

or quantum mehanial onsiderations. Classially, ims other than µ
nat

tend to be irrelevant

in terms of the stability for the iteration by Eq. (7.38) as introdued above. An initial mea-

sure ν in the notation of Eq. (7.38) must ful�ll exeptional selfsimilarity properties in order to

onverge towards a spei� im µ as represented by Eq. (7.39). That is, the initial measure ν

of sets that will esape through the opening under forward iteration must be hosen aording

to the deay rate γ suh that µ is essentially already ontained in the �ne struture of ν up

to loalization on the bakward trapped set and therefore exeptional. For a detailed study of

appropriate initial measures as worked out in ollaboration with Tobias Beker and Konstantin

Clauÿ we refer to Ref. [185℄. Still, the results presented in Refs. [49,51℄ suggest that ims with

γ 6= γ
nat

are quantum mehanially relevant even though they may be exeptions lassially.

Whih im out of the huge variety of ims for a single deay rate γ is quantum mehanially

important? We here propose the lass of γ-natural ims and show in Chaps. 8 and 9 that

they are, in fat, quantum mehanially relevant, as they desribe the loalization of quantum

resonane states on both sides of a partial barrier. We use the onstrution desribed by

Eq. (7.39) for the partiularly simple ase that

ν(X) :=
µ
nat

(X ∩ Ω)

µ
nat

(Ω)
, (7.44)

whih is the normalized restrition of the natural im µ
nat

to Ω. This hoie of a measure,

whih is onstant on its support, is motivated in analogy to quantum ergodiity for losed fully

haoti systems, where eigenstates in the semilassial limit approah the onstant invariant

measure [29, 186℄. Then we may write

T ∗nν(X) = ν
(
T n(X)

)
(7.45)

=
µ
nat

(T n(X) ∩ Ω)

µ
nat

(Ω)
(7.46)

=
eγnatn

1− e−γnat
T n∗ µnat

(
T n(X) ∩ Ω

)
(7.47)

=
eγnatn

1− e−γnat
µ
nat

[
T−n

(
T n(X) ∩ Ω

)

︸ ︷︷ ︸

X∩T−n(Ω)

]
. (7.48)
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Note that in general, T−n
(
T n(X) ∩ Ω

)
⊇ X ∩ T−n(Ω) as T is not bijetive (open system).

However, here it is su�ient for equality to hold that T is invertible within all forward esaping

sets T−n(Ω). Inserting Eq. (7.48) in Eq. (7.39), we obtain the im

µγ(X) :=
1− e−γ

1− e−γnat

∑

n∈N0

e(γnat−γ)nµ
nat

(
X ∩ T−n(Ω)

)
(7.49)

of arbitrary deay rate γ, whih we refer to as γ-natural im. This series multiplies µ
nat

in

eah forward esaping set T−n(Ω) by an appropriate fator whih imposes the overall deay

rate γ aording to Eq. (7.21). The γ-natural im µγ is onstant on T−n(Ω) ∩ Γ
bwd

for eah

n ∈ N0. With inreasing n, this onstant is dereasing (inreasing) for γ > γ
nat

(γ < γ
nat

), in

partiular short-lived measures µγ have more weight in the opening. This is shown in Fig. 7.5

for the Baker map. Note that for γ < γ
nat

the density within the intersetion T−n(Ω) ∩ Γnum

bwd

of forward esaping sets with the oarse-grained bakward trapped set Γnum

bwd

inreases with n,

µγ
(
T−n(Ω)

)

|T−n(Ω) ∩ Γnum

bwd

| ∼
µγ
(
T−n(Ω)

)

µ
nat

(
T−n(Ω)

) =
1− e−γ

1− e−γnat
e(γnat−γ)n, (7.50)

although the weight µγ
(
T−n(Ω)

)
dereases aording to Eq. (7.37). The lass of γ-natural

ims de�ned by Eq. (7.49) is the entral objet of our lassial studies.

The onditional invariane of µγ is already shown above as it satis�es Eq. (7.39). Let us

brie�y demonstrate its normalization. By de�nition, it is

‖µγ‖ =
1− e−γ

1− e−γnat

∑

n∈N0

e(γnat−γ)nµ
nat

(
Γ ∩ T−n(Ω)

)
. (7.51)

Using

µ
nat

(
Γ ∩ T−n(Ω)

)
= T n∗ µnat(Ω) = e−γnatn(1− e−γnat), (7.52)

one �nds

‖µγ‖ = (1− e−γ)
∑

n∈N0

e−γn = 1, (7.53)

suh that µγ is indeed a onditionally invariant probability measure with deay rate γ.

Numerial Computation

Coneptually, the struture of γ-natural ims is thoroughly desribed above. A γ-natural im

µγ of deay rate γ is onstruted by the following steps: Compute the bakward trapped set

Γ
bwd

, that is, remove all iterates T
l

(Ω) of the opening Ω under the losed map T
l

. Uniformly
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distribute the weight µγ(T
−n(Ω)) = e−γn(1−e−γ) on the intersetion T−n(Ω)∩Γ

bwd

of the n-th

forward esaping set T−n(Ω) and the bakward trapped set Γ
bwd

. This gives the γ-natural im

of deay rate γ, regardless of the onsidered map T . However, the numerial implementation

of the above steps is not straightforward. Let us therefore explain an algorithm that is apable

of providing γ-natural ims for generi maps as presented in [34℄.

First, one has to approximate (the haoti part of) the bakward trapped set Γ
bwd

. To

this end, one may de�ne a uniform grid of N
grid

points in phase spae of whih one has to

disard points whih leave the system within N
iter

iterations of the map T in bakward time

diretion. Points within a generially existing regular phase-spae region should be omitted

manually. The remaining points provide the �nite-time approximation Γnum

bwd

of Γ
bwd

and need

to be lassi�ed by their forward esaping times. Finally, assuming equidistribution for the

points in T−n(Ω) ∩ Γnum

bwd

, we �nd

µγ(X ∩ T−n(Ω)) ≈ fn(X) e−γn(1− e−γ), (7.54)

with

fn(X) :=
# (X ∩ T−n(Ω) ∩ Γnum

bwd

)

# (T−n(Ω) ∩ Γnum

bwd

)
, (7.55)

for eah measurable subset X of phase spae. Using µγ(X) =
∑∞

n=0 µγ(X ∩ T−n(Ω)) we

have a numerial estimate for the γ-natural im µγ. As the sample Γnum

bwd

is only �nite the

series will terminate and the numerially approximated measure is not perfetly normalized.

This method is not appropriate for exeedingly small γ sine the weight on forward esaping

sets T−n(Ω) ∩ Γnum

bwd

with large esape times n beomes inreasingly important while they are

approximated by a few points only.

7.2.3 Perron�Frobenius Theory

Another approah to ompute ims is based on the Perron�Frobenius theory on the time

evolution of phase-spae densities brie�y reviewed in this setion. This approah will be

used for the analytial study of ims of the partial-barrier Baker map in Chap. 8. To this

end, we restrit ourselves to absolutely ontinuous measures with densities and fous on their

time evolution. In order to illustrate the general idea, onsider the simple ase of a losed

autonomous Hamiltonian system with Hamilton funtion H . In this ase the ontinuous time

evolution of a phase-spae density ̺ : Γ× R → R≥0 is given by the Liouville equation,

∂t̺(x, t) = LH̺(x, t), (7.56)
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with the Liouville operator LH̺ := {H, ̺} in terms of the Poisson braket, f. Ref. [187, Se.

2.3℄. Then the expliit time evolution of ̺ reads

̺(x, t) = FH(t)̺(x, 0), (7.57)

with the so-alled Perron�Frobenius operator

FH(t) := exp
(
LHt

)
. (7.58)

Here, we are interested in maps rather than time-ontinuous dynamial systems, whih are

not neessarily desribed by a Hamilton funtion. For losed systems, the most general ase of

importane in this thesis is a sympleti map T in a two-dimensional phase spae Γ, suh that

detDT = 1. Note that this partiularly implies the loal invertibility of T . Given an absolutely

ontinuous measure µ with respet to the Lebesgue measure Λ and the orresponding density

̺ : Γ → R≥0, i.e.,

µ(X) =

∫

X

̺ dΛ, (7.59)

the temporal iterate FT̺ of ̺ is given by the density of T∗µ,

T∗µ(X) =

∫

X

FT̺ dΛ. (7.60)

By the hange of variables formula for pushforward measures, f. Eq. (A.2), it is

T∗µ(X) =

∫

Γ

χX dT∗µ =

∫

Γ

χX ◦ T dµ =

∫

Γ

χT−1(X) dµ, (7.61)

with the indiator funtion χ. Using that µ has density ̺, one obtains

T∗µ(X) =

∫

T−1(X)

̺ dΛ (7.62)

=

∫

X

(
̺ ◦ T−1

)
·| detDT−1| dΛ. (7.63)

Sine T is sympleti the Jaobian determinant is idential to unity (Liouville theorem) and

the Perron�Frobenius operator FT simply reads

FT̺ = ̺ ◦ T−1, (7.64)

f. Ref. [187, Se. 2.2℄. If T is not sympleti but the omposition T = T
l

◦O of a sympleti

map T
l

and the opening map O on region Ω, the above derivation is valid up to Eq. (7.62),
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where T−1(X), Eq. (3.20), is the preimage of X as the inverse map T−1
does not exist. In

order to apply the transformation law leading to Eq. (7.63), the domain T−1(X) of integration

needs to be deomposed. For X ⊆ T
l

(Ω), it is T−1(X) ∩ Γ = ∅ suh that T∗µ(X) = 0 and

(FT̺)|X = 0. Otherwise, for X ∩ T
l

(Ω) = ∅, the inverse T−1
exists and one obtains Eq. (7.64)

again. In total, this gives

FT̺(x) =







̺ ◦ T−1
l

(x) : x 6∈ T
l

(Ω),

0 : x ∈ T
l

(Ω).
(7.65)

The advantage of using densities instead of measures is that it immediately provides thor-

oughly developed Hilbert spae methods for the time-evolution operator FT like the spetral

theorem [173℄. To this end, one needs to restrit the set of allowed density funtions on phase

spae Γ to the spae L2(Γ) provided that suh densities exist at all. We stress that solving the

eigenvalue problem for FT , i.e., FT̺ = λ̺, λ ∈ C, in priniple establishes all absolutely on-

tinuous ims. However, there is a ruial drawbak: Numerially feasible �nite-dimensional

approximations of FT provide the natural im only, as we will disuss now.

First, let us brie�y explain what is meant by �nite-dimensional approximations of FT . The

Perron�Frobenius operator FT ating on the Hilbert spae L2(Γ) is of in�nite dimensionality.

In order to treat FT numerially, an approximation sheme for FT is desired, whih approxi-

mates FT by a sequene of �nite-dimensional matries and provides some kind of onvergene

of the �nite-dimensional eigenvetors towards the in�nite-dimensional eigenfuntions of FT . A

ommon approah is the Ulam method [188, Chap. 4℄: One de�nes a �nite partition of phase

spae Γ into disjoint subsets Sk, k ∈ {1, . . . , n}, ⋃k Sk = Γ, and assoiates a transition proba-

bility with eah pair of phase-spae regions Si and Sk. Usually, this transition probability is

de�ned by

F k→i
nat

:=
|Sk ∩ T−1(Si)|

|Sk|
(7.66)

for the transition from Sk to Si, that is the fration of Sk whih is mapped to Si under T [188,

Chap. 4℄. Numerially, this orresponds to iterating a uniform sample of initial onditions in

Sk and to ounting how many of these points end up in Si after one iteration. This gives an

n× n matrix approximation (F k→i
nat

)ik for FT .

In general, one may also use initial distributions other than the uniform distribution to

ompute the transition probability from Si to Sk. We will omment on the dependene on

initial distributions below. For systems with a two-dimensional mixed phase spae it is useful

to derive the transition probabilities from a single long orbit instead of many orbits that are

iterated only one. This preserves the invariane of phase-spae regions [189, 190℄. Another

important generalization is the Ulam�Galerkin method [188, Chap. 4℄, where one selets a
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�nite number of appropriate basis funtions and projets FT onto their span. The advantage

of this method is that the basis funtions may be hosen adapted to a spei� system. In

Ref. [191, 192℄ for instane, spherial harmonis are used for the kiked top on a spherial

phase spae. The ommon Ulam method may be interpreted as a speial ase of the Ulam�

Galerkin method by hoosing indiator funtions that are supported by the elements of the

used phase-spae partitions.

The understanding of the asymptoti dynamis that one an obtain from �nite-dimensional

approximations of FT is limited essentially due to the Perron�Frobenius theorem [193, Se. 1.1℄.

For referene it is stated here in full detail followed by an interpretation.

Theorem. Let F ∈ R
N×N
≥0 be an irreduible matrix with nonnegative entries, spe-

trum σ(F ) and spetral radius r := maxλ∈σ(F ) |λ|. Then the following assertions hold:

(i) The spetral radius r is an algebraially simple eigenvalue of F , i.e., dim ker(F −
r1) = 1; moreover it is r > 0 if F 6= 0,

(ii) There exists a normalized eigenvetor ̺ orresponding to the eigenvalue r ∈ σ(F ),

that has only positive omponents,

(iii) Any eigenvetor of F that has exlusively nonnegative omponents is a multiple

of ̺,

(iv) If F has exatly q eigenvalues λ with |λ| = r, then these eigenvalues are given by

r e2πi k/q for 0 ≤ k < q,

(v) If the omponents of F are stritly positive, it is |λ| < r for eah λ ∈ σ(F ) with

λ 6= r.

For the proof see Refs. [194, Ses. 15.3, 15.4℄ and [195, Ses. 8.2, 8.3℄. The Perron�Frobenius

theorem basially states that the eigenvalue r ∈ σ(F ) of maximal modulus lies on the positive

real axis. It is alled Perron�Frobenius eigenvalue. The orresponding eigenspae is one-

dimensional and provides the only eigenvetor ̺ that has purely nonnegative omponents,

alled Perron�Frobenius eigenvetor. In ontrast to all other eigenvetors it may therefore be

interpreted as a lassial probability density. Sine r has maximal modulus, ̺ is the eigenvetor

of slowest deay interpreting the Perron�Frobenius theorem as though r < 1 like in our studies.

Note that the irreduibility of F exludes that there are invariant subregions in phase spae.

If there are any, the theorem may be applied to eah of them individually.

In appliation to the Perron�Frobenius operator FT this theorem implies that any �nite-
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dimensional matrix approximation provides an approximation for a single im, only. It is

not lear whether the other eigenstates, whih have negative entries, arry enoded infor-

mation about other ims. They are ertainly important for the transient time evolution by

means of spetral deomposition of initial distributions. In priniple, for any im µ a Perron�

Frobenius matrix Fµ =
(
F k→i
µ

)

ik
whih approximates µ by its Perron�Frobenius eigenstate

̺ :=
(
µ(S1), . . . , µ(Sn)

)
an be onstruted by a generalized Ulam method, if the transition

probabilities are not hosen aording to Eq. (7.66) but with respet to µ itself as

F k→i
µ :=

µ
(
Sk ∩ T−1(Si)

)

µ(Sk)
. (7.67)

This an be veri�ed by expliitly alulating the i-th omponent of Fµ̺,

[Fµ̺]i =
n∑

k=1

F k→i
µ µ(Sk) (7.68)

=
n∑

k=1

µ
(
Sk ∩ T−1(Si)

)
(7.69)

=

n∑

k=1

T∗µ
(
T (Sk) ∩ Si

)
(7.70)

= T∗µ(Si) (7.71)

= ‖T∗µ‖µ(Si), (7.72)

where we use that T−1
(
T (Sk)∩Si

)
= Sk ∩T−1(Si) beause T

−1(Si)∩Ω = ∅, and that the sets

T (Sk), k ∈ {1, . . . , n}, provide a partition of the support of T∗µ.

This onstrution, however, is based on the im µ one is eventually interested in. It is

therefore not useful to obtain µ. For the natural im µ
nat

this is not an issue sine generi initial

distributions onverge towards µ
nat

as disussed on page 79. Thus, the transition probabilities

of the Perron�Frobenius matrix Fµ
nat

do not need to be hosen arefully in order to obtain

µ
nat

. For instane, in view of the de�nition of µ
nat

by the asymptoti behavior of an initial

Lebesgue measure Λ, F
nat

= FΛ is an ideal substitute for Fµ
nat

. For γ-natural ims µγ with

γ 6= γ
nat

, however, only exeptional initial distributions onverge towards µγ as disussed on

page 81. Hene, one has to �nd the orret Perron�Frobenius matrix Fµγ without knowing µγ.

To the best of our knowledge it is not known how to solve this problem.

As a tehnial remark, we mention that fratal measures are nonzero even on sets of

Lebesgue measure zero, and thus, annot be absolutely ontinuous with respet to the Lebesgue

measure. Hene, they do not have a proper density. Therefore, a naive approah using

Perron�Frobenius operators for open systems, where fratal measures are omnipresent, is not

fruitful. This issue an be overome for ims that are absolutely ontinuous with respet to

the Lebesgue measure on the bakward trapped set [50℄. In the physis literature, a rigorous
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disussion of this issue is usually omitted as �nite-resolution approximations of densities for

fratal measures are often su�ient.



Chapter 8

Loalization in the

Partial-Barrier Baker Map

In order to eventually understand the loalization phenomena of haoti resonane states due

to a partial transport barrier presented in Chap. 6, we have introdued the lass of γ-natural

ims in Se. 7.2.2 for whih we expet quantum-to-lassial orrespondene. In this hapter we

investigate the loalization of both lassial γ-natural ims and quantum resonane states for

the partial-barrier Baker map. We show that, indeed, the lassial and quantum-mehanial

loalization due to a partial barrier semilassially oinide. We start with an analytial

onstrution of an Ulam approximation of the Perron�Frobenius operator on arbitrary �ne

sales in Se. 8.1. In Se. 8.2 we prove that the eigenvalue problem of the Perron�Frobenius

operator of arbitrary resolution an be rigorously redued to the solution of a 2×2matrix. This

allows us to alulate the Perron�Frobenius eigenvetor and eigenvalue, whih orresponds to

the natural im in Se. 8.3, where we also demonstrate quantum-to-lassial orrespondene

with resonane states of natural deay rate. In Se. 8.4 we generalize the natural im to

the lass of γ-natural ims and show quantum-to-lassial orrespondene with resonane

states of arbitrary deay rate. We emphasize that the subsequent study of loalization in

generi systems strongly relies on our insights gained in this hapter. The idea to study the

partial-barrier Baker map and a �rst solution for the loalization of the natural im of a

related one-dimensional problem goes bak to Roland Ketzmerik. The tensor formulation

established in Se. 8.1, whih is the key to rigorously prove the redution in Se. 8.2, is worked

out in ollaboration with Marus Waurik.

8.1 Perron�Frobenius Operator: Ulam Approximations

Let us start with an introdutory example. We onsider a grid of three ells on eah side of

the partial barrier as illustrated in Fig. 8.1, and want to understand the Perron�Frobenius
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operator as applied to this grid. As we neglet anything that happens on �ner sales than this

grid, this is a very oarse Ulam approximation of the true dynamis. We will generalize this

approah to arbitrary �ne approximations below.

Consider an initial density v = (v1, . . . , v6)
T
on this grid, where the enumeration follows

Fig. 8.1. The �rst omponent (lower left ell) after one iteration of the map is given by

v′1 =
1

3
v1 +

1

3
v2 +

1

3
v3 =: 〈v1 v2 v3〉, (8.1)

whih is the average weight that has been on the left hand side of the partial barrier before

the iteration. This step is visualized by the green shaded regions in Fig. 8.1. We stress that

there is no information ontained in the initial distribution v that orresponds to sales whih

are �ner than the grid. Hene, eah ell on the left ontributes a third of its total weight to

the lower left ell after one iteration. Proeeding analogously for the other ells of the grid,

the full iteration is desribed by the map

v = (v1, . . . , v6)
T 7→ T1v = (〈v1 v2 v3〉, 0, 〈v4 v5 v6〉, 〈v1 v2 v3〉, 〈v4 v5 v6〉, 〈v4 v5 v6〉)T, (8.2)

with the Ulam approximation

T1 =
1

3














1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 1 1 1

1 1 1 0 0 0

0 0 0 1 1 1

0 0 0 1 1 1














(8.3)

7→
T1

〈v4 v5 v6〉

〈v1 v2 v3〉

〈v4 v5 v6〉

〈v4 v5 v6〉

〈v1 v2 v3〉v1

v2

v3 v6

v5

v4

Figure 8.1. Illustration of Ulam approximation T1 for the partial-barrier Baker map. After

one iteration, the value in eah ell is given by the average over the initial values either on

the left hand side or on the right hand side of the partial barrier (magenta line). The weight

in the middle left ell drops to zero due to the opening.
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of the partial-barrier Baker map. For the following generalization it is useful to deompose T1

into the averaging matrix A3 := (1, 1, 1)/3 ∈ R1×3
and the sorting matrix

σ3 :=

(

1 0 0 1 0 0

0 0 1 0 1 1

)T

∈ R
6×2, (8.4)

whih yields

T1 = σ3 ⊗A3. (8.5)

The Kroneker produt ⊗ of the m × n matrix A = (Aik)ik and the p × q matrix B is given

by the mp× nq matrix

A⊗ B :=









A11B A12B . . . A1nB

A21B A22B . . . A2nB
.

.

.

.

.

.

.

.

.

Am1B Am2B . . . AmnB









. (8.6)

It represents the tensor produt of the two linear maps A and B in a suitable basis.

In order to generalize this Ulam approximation sheme of the Perron�Frobenius operator

to arbitrary �ne grids, we de�ne for any given k ∈ N the ells of the partition by

[0, 1
2
)× [(n− 1)/3k, n/3k), (1 ≤ n ≤ 3k) (8.7a)

and

[1
2
, 1)× [(n− 1)/3k, n/3k), (1 ≤ n ≤ 3k), (8.7b)

having 3k ells on eah side of the partial barrier. Note that for the purpose of a onvenient

notation, we here onsider the partial-barrier Baker map on [0, 1) × [0, 1) instead of [0, 1) ×
[−1

2
, 1
2
) as was introdued for the general partial-barrier map in Chap. 4. This grid is exatly

that of Fig. 8.1 for k = 1. In order to eventually de�ne a vetor v ∈ R
2·3k

whih desribes

a density on this grid, we order the ells orresponding to the above index n on the left and

n+ 3k on the right.

The general iteration sheme for any k is depited in Fig. 8.2, deomposing a single iteration

into two parts: First, the phase-spae regions on eah side are shrunk by one third in their

height. This is ahieved by an average on the highest order of resolution, that is an average

over onseutive triples for a given vetor. In matrix notation, this reads

Ek = 13k−1 ⊗ A3 ∈ R
3k−1×3k . (8.8)
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7→ 7→

shrink
(average) sort

copy
&

Figure 8.2. Sketh of the ation of the Perron�Frobenius operator of the partial-barrier

Baker map as applied to the grid in Eqs. (8.7a) and (8.7b). In a �rst step, the two regions

on eah side of the partial barrier are shrunk to a third of their initial height by averaging

over the highest order of resolution de�ned by k. In a seond step, these regions are opied

and sorted into the orresponding phase-spae parts.

For the example of k = 2, the matrix E2 is

E2 =
1

3






1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1




 , (8.9)

and learly maps a vetor of dimension nine to a vetor of a third of this dimension by averaging

over onseutive triples. In a seond step, these averaged objets are sorted in just the same

way as in the introdutory example before, that is, by virtue of the sorting matrix σ3. In total,

the Ulam approximation of order k of the Perron�Frobenius operator for the partial-barrier

Baker map is given by

Tk := σ3 ⊗ Ek. (8.10)

Finally, we generalize this Ulam approximation sheme to a more general map: Instead

of the partial-barrier Baker map based on the ternary Baker map, we onsider the partial-

barrier N
B

-Baker map. The ation of this map for the example of N
B

= 5 is illustrated in

Fig. 8.3. This generalization is an important step in order to investigate di�erent values for

the opening |Ω| and the �ux φ. For the partial-barrier Baker map based on the ternary Baker

map the openness and the oupling is always given by |Ω| = φ = 1/6. In ontrast, using an

arbitrary integer N
B

instead of the spei� ase N
B

= 3 allows us to adapt the oupling aross

the partial barrier and the size of the opening by hoosing C oupling stripes and L opening

stripes instead of a single one. To this end, we adapt the grid, Eqs. (8.7a) and (8.7b), to the

new parameter N
B

, and obtain the Nk
B

ells

[0, 1
2
)× [(n− 1)/Nk

B

, n/Nk
B

), (1 ≤ n ≤ Nk
B

) (8.11a)
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7→
T

︸ ︷︷ ︸

NBC

︸︷︷︸︸︷︷︸

L

Figure 8.3. Illustration of the partial-barrier map T based on the 5-Baker map with

N
B

= 5, C = 2, L = 2. The ation of T within eah stripe is given by horizontal strething

and vertial ompression just as for the usual partial-barrier Baker map, f. Fig. 4.2.

on the left hand side of the partial barrier, and vie versa the Nk
B

ells

[1
2
, 1)× [(n− 1)/Nk

B

, n/Nk
B

), (1 ≤ n ≤ Nk
B

) (8.11b)

on the right hand side. This grid is exatly that of Fig. 8.1 for N
B

= 3 and k = 1. Again,

the ells are ordered orresponding to the above index n on the left and n +Nk
B

on the right.

Now, the averaging matrix is

AN
B

:=
1

N
B

(1, . . . , 1
︸ ︷︷ ︸

N
B

) ∈ R
1×N

B, (8.12)

with the orresponding operator

Ek := 1Nk−1
B

⊗ AN
B

∈ R
Nk−1
B

×Nk
B, (8.13)

and the sorting matrix reads

σN
B

:=

(

1 . . . 1 0 . . . 0 0 . . . 0 1 . . . 1 0 . . . 0

︸ ︷︷ ︸

N
B

− L− C

0 . . . 0
︸ ︷︷ ︸

L

0 . . . 0
︸ ︷︷ ︸

C

1 . . . 1
︸ ︷︷ ︸

C

0 . . . 0
︸ ︷︷ ︸

N
B

− C

1 . . . 1

)T

∈ R
2N

B

×2. (8.14)

The iteration in Ulam approximation of order k then obeys

Tk := σN
B

⊗ Ek. (8.15)
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8.2 Perron�Frobenius Operator: Selfsimilarity Redution

Reall that we treat the Perron�Frobenius operator of the partial-barrier Baker map in order

to ompute its Perron�Frobenius vetor ϕ and eigenvalue λ, i.e., the density distribution

and deay rate orresponding to the natural im. In this setion we will proof that the full

information about the Perron�Frobenius pair (λk, ϕk) of Tk lies in the ombination of a simple

2× 2 matrix and the sorting operator σN
B

. Atually, this reduibility is already suggested by

the tensor struture of Tk as developed in the previous setion.

Proposition. Let Tk for k ∈ N be de�ned as in Eq. (8.15). There exist at most two

nontrivial solutions (λk, ϕk) of the eigenvalue problem Tkϕk = λkϕk. They are given by

λk = λ0, ϕk = σ̂N
B

(k − 1) · · · σ̂N
B

(0)ϕ0, (8.16)

with σ̂N
B

(n) := σN
B

⊗ 1Nn
B

, n ∈ N0, and where (λ0, ϕ0) solves the eigenvalue problem

for

T0 :=
1

N
B

(

N
B

− L− C C

C N
B

− C

)

. (8.17)

Proof. First, we show that the eigenstates of T0 give eigenstates of Tk as stated in the propo-

sition. To this end, we prove that

Tk+1σ̂N
B

(k) = σ̂N
B

(k)Tk (8.18)

for k ∈ N. By de�nition, it is

Tk+1σ̂N
B

(k) = (σN
B

⊗Ek+1)(σN
B

⊗ 1Nk
B

). (8.19)

Furthermore, we �nd

Ek+1 = 1Nk
B

⊗ AN
B

= 1N
B

⊗ 1Nk−1
B

⊗AN
B

= 1N
B

⊗Ek. (8.20)

Using that the Kroneker produt is assoiative, A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C, and

that (A⊗ B)(C ⊗D) = (AC)⊗ (BD) as long as the matrix produts AC and BD are
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well-de�ned, we obtain

Tk+1σ̂N
B

(k) = ((σN
B

⊗ 1N
B

)⊗ Ek)(σN
B

⊗ 1Nk
B

) (8.21)

= ((σN
B

⊗ 1N
B

)σN
B

)⊗
(

Ek1Nk
B

)

(8.22)

= ((σN
B

⊗ 1N
B

)σN
B

)⊗
(

1Nk−1
B

Ek

)

(8.23)

=
(

(σN
B

⊗ 1N
B

)⊗ 1Nk−1
B

)

(σN
B

⊗Ek) (8.24)

=
(

σN
B

⊗ 1Nk
B

)

(σN
B

⊗ Ek) (8.25)

= σ̂N
B

(k)Tk. (8.26)

Thus, given Tkϕk = λkϕk, we de�ne ϕk+1 := σ̂N
B

(k)ϕk whih obeys

Tk+1ϕk+1 = Tk+1σ̂N
B

(k)ϕk = σ̂N
B

(k)Tkϕk = λkσ̂N
B

(k)ϕk = λkϕk+1, (8.27)

i.e., ϕk+1 = σ̂N
B

(k)ϕk is an eigenvetor of Tk+1 assoiated with the eigenvalue λk+1 := λk

for k ∈ N.

Moreover, let (λ0, ϕ0) be a solution of the eigenvalue problem for T0. By ordinary

matrix multipliation, it is straightforward to show that T1σN
B

= σN
B

T0, whih just as

before yields that σ̂N
B

(0)ϕ0 = σN
B

ϕ0 is an eigenvetor of T1 = σN
B

⊗ E1 = σN
B

⊗ AN
B

orresponding to the eigenvalue λ0, f. Eq. (8.27).

Hene, from the at most two di�erent solutions of the eigenvalue problem for T0, we an

dedue two solutions for Tk, k ∈ N, as laimed in the proposition. We still have to show

that these are the only nontrivial solutions. This will be aomplished by demonstrating

that it is possible to redue an eigenvetor of Tk+1 to an eigenvetor of Tk and that this

redution is injetive. To this end, we have to study the left inverse

σ−1
N
B

=

(
1

N
B

−L . . . 1
N
B

−L 0 . . . 0 0 . . . 0 1
N
B

−L . . . 1
N
B

−L 0 . . . 0

︸ ︷︷ ︸

N
B

− L− C

0 . . . 0
︸ ︷︷ ︸

L

0 . . . 0
︸ ︷︷ ︸

C

1
N
B

. . . 1
N
B

︸ ︷︷ ︸

C

0 . . . 0
︸ ︷︷ ︸

N
B

− C

1
N
B

. . . 1
N
B

)

(8.28)

of σN
B

, i.e., σ−1
N
B

σN
B

= 12. This immediately provides the left inverse

σ̂N
B

(n)−1 = σ−1
N
B

⊗ 1Nn
B

(8.29)

of σ̂N
B

(n) beause

σ̂N
B

(n)−1σ̂N
B

(n) =
(
σ−1
N
B

σN
B

)
⊗
(
1Nn

B

1Nn
B

)
= 12 ⊗ 1Nn

B

= 12Nn
B

(8.30)
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for n ∈ N0.

We emphasize that σN
B

σ−1
N
B

6= 12N
B

, that is, the left inverse is not the right inverse.

Nevertheless, for an arbitrary eigenvetor ϕk+1 of Tk+1, it is

σ̂N
B

(k)σ̂N
B

(k)−1ϕk+1 = ϕk+1 (8.31)

for k ∈ N0 as we now show. At �rst

ϕk+1 ∈ imTk+1 = im (σN
B

⊗ 1Nk
B

⊗AN
B

) = span{ols(σN
B

⊗ 1Nk
B

)}, (8.32)

where ols(X) denotes the set of olumns of the matrix X . Note that the Kroneker

produt with AN
B

does not generate additional linearly independent olumns, suh that

the dimension of imTk+1 is 2N
k
B

. The olumns of σN
B

⊗ 1Nk
B

may be written as

σ
(1)
N
B

⊗ 1(j)
Nk
B

, σ
(2)
N
B

⊗ 1(j)
Nk
B

, (1 ≤ j ≤ Nk
B

), (8.33)

where the two olumns of σN
B

are denoted by σ
(1)
N
B

and σ
(2)
N
B

, and the j-th olumn of 1Nk
B

is denoted by 1

(j)

Nk
B

, respetively. With this, the eigenvetor ϕk+1 an be represented as

ϕk+1 =

Nk
B∑

j=1

(

s
(j)
1 σ

(1)
N
B

⊗ 1(j)
Nk
B

+ s
(j)
2 σ

(2)
N
B

⊗ 1(j)
Nk
B

)

, (8.34)

with appropriate oe�ients s
(j)
1 , s

(j)
2 . Using

σ̂N
B

(k)−1
(

σ
(ℓ)
N
B

⊗ 1(j)
Nk
B

)

= (σ−1
N
B

⊗ 1Nk
B

)
(

σ
(ℓ)
N
B

⊗ 1(j)
Nk
B

)

(8.35)

=
(

σ−1
N
B

σ
(ℓ)
N
B

)

⊗
(

1Nk
B

1

(j)

Nk
B

)

(8.36)

=
(

1

(ℓ)
2 ⊗ 1(j)

Nk
B

)

(8.37)

for ℓ ∈ {1, 2}, suh that

σ̂N
B

(k)σ̂N
B

(k)−1
(

σ
(ℓ)
N
B

⊗ 1(j)
Nk
B

)

= (σN
B

⊗ 1Nk
B

)
(

1

(ℓ)
2 ⊗ 1(j)

Nk
B

)

(8.38)

=
(

σN
B

1

(ℓ)
2

)

⊗
(

1Nk
B

1

(j)

Nk
B

)

(8.39)

=
(

σ
(ℓ)
N
B

⊗ 1(j)
Nk
B

)

, (8.40)

we obtain Eq. (8.31) by linearity.

Now, we are able to redue the eigenvetor ϕk+1 of Tk+1 to an eigenvetor of Tk. By
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multipliation of Tk+1σ̂N
B

(k) = σ̂N
B

(k)Tk with σ̂N
B

(k)−1
from the left and the right, we

in general obtain

σ̂N
B

(k)−1Tk+1σ̂N
B

(k)σ̂N
B

(k)−1 = Tkσ̂N
B

(k)−1, (8.41)

for k ∈ N0, and after restrition to the eigenspaes of Tk+1, we further �nd

σ̂N
B

(k)−1Tk+1ϕk+1 = Tkσ̂N
B

(k)−1ϕk+1 (8.42)

for k ∈ N0. Thus, given Tk+1ϕk+1 = λk+1ϕk+1, it is

Tkσ̂N
B

(k)−1ϕk+1 = λk+1σ̂N
B

(k)−1ϕk+1, (8.43)

suh that ϕk := σ̂N
B

(k)−1ϕk+1 an eigenvetor of Tk assoiated with the eigenvalue λk :=

λk+1. Let us stress that σ̂N
B

(k)−1
is injetive on the eigenspaes of Tk+1, following from

Eqs. (8.34) and (8.37),

σ̂N
B

(k)−1ϕk+1 =

Nk
B∑

j=1

(

s
(j)
1 1

(1)
2 ⊗ 1(j)

Nk
B

+ s
(j)
2 1

(2)
2 ⊗ 1(j)

Nk
B

)

. (8.44)

Hene, the only pairs of eigenvetors and eigenvalues of Tk+1 are the ones lifted from the

eigenvalue problem for Tk by virtue of σ̂N
B

(k) for k ∈ N0. �

This proposition simpli�es the analytial omputation of the natural im for the partial-barrier

Baker map tremendously. We only have to solve the eigenvalue problem of the 2×2 matrix T0,

Eq. (8.17), and lift its eigenvetors by mere matrix multipliation to the required resolution.

The matrix T0 desribes the iteration of weights from one side of the partial barrier to the

other side in the lowest reasonable Ulam approximation, that is, assoiated with the two ells

[0, 1/2)× [0, 1) and [1/2, 1)× [0, 1). As this 2×2 matrix is partiularly relevant in the following

analysis of the partial-barrier Baker map and also for the generalization to generi maps, we

express it in terms of the variables |A1| = |A2| = 1/2, |Ω| = L/N
B

, and φ = C/N
B

, whih

gives

T0 =

(

1− (|Ω|+ φ)/|A1| φ/|A2|
φ/|A1| 1− φ/|A2|

)

. (8.45)

The diagonal elements desribe the probability to remain on one or the other side of the

partial barrier within one iteration of the map, while the o�-diagonal elements desribe the

probability to get from one side to the other. Note that the main purpose of the generalization

of the partial-barrier Baker map to the partial-barrier N
B

-Baker map with variables L and C
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was to plausibly motivate Eq. (8.45) in terms of more general variables. That this 2×2 matrix

is atually important for more generi systems will be shown in Chap. 9. In the following, we

again fous on the example of the partial-barrier Baker map based on the ternary Baker map.

In this speial ase, T0 reads

T0 =
1

3

(

1 1

1 2

)

. (8.46)

8.3 Natural Conditionally Invariant Measure

Let us now study the natural im of the partial-barrier Baker map. From the redued Perron�

Frobenius operator T0, Eq. (8.46), we ompute the Perron�Frobenius eigenvetor ϕ0, i.e., the

one with larger eigenvalue λ, and lift ϕ0 to an eigenvetor of Tk by ϕk = σ̂3(k − 1) · · · σ̂3(0)ϕ0

as explained in Se. 8.2. For referene, the preise value of ϕ0 and λ is

ϕ0 =
1√
5 + 1

(√
5− 1

2

)

, λ =
1

6
(3 +

√
5). (8.47)

We normalized ϕ0 suh that the sum of the two omponents equals unity. Note that both om-

ponents an be hosen nonnegative due to the Perron�Frobenius theorem, Se. 7.2.3. More-

over, note that ϕk omputed as above is not yet normalized. The phase-spae distribution

orresponding to ϕk is shown in Fig. 8.4(a�e) for di�erent values of k. These distributions

approximate the natural im µ
nat

of the studied map. The two di�erent nonzero heights in

eah of the distributions orrespond to the two di�erent omponents of ϕ0. The lift by virtue

of σ̂3(n) just opies these two values and rearranges them appropriately. Therefore, preisely

these two values, up to normalization, appear in eah ϕk.

In Se. 7.2.2 we argued that the natural im is provided by the uniform distribution

on the bakward trapped set, Fig. 8.4(f). The two di�erent heights in the shown phase-spae

distributions seem to ontradit this uniformity at �rst sight. However, the two values originate

from an integration over ells of the phase-spae partition used for the Ulam approximation,

f. Se. 8.1. Depending on the number and size of gaps in eah ell, the integration over these

ells an yield di�erent values for di�erent ells although the distribution may be uniform on

the asymptoti objet, i.e., the proper fratal. This is illustrated in Fig. 8.5. It is lear that

an integration over the uniform distribution on the bakward trapped set in [0, 1/2)× [0, 1/9)

gives a di�erent value than an integration over [0, 1/2)× [2/9, 3/9).

In priniple, there are at least two reasonable ways to approximate µ
nat

. One ould either

use a uniform distribution on a �nite-time approximation of the proper bakward trapped

set, or an integration of the proper µ
nat

over ells of a phase-spae partition. The latter

approah orresponds to the ϕk distributions assoiated with the Ulam approximation Tk
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shown in Fig. 8.4. We stress that both alternatives produe di�erent but valid approximations

of µ
nat

, i.e., both ways onverge towards µ
nat

on asymptotially �ne sales. Still, one of the

two shemes ould be more useful than the other, meaning that it ould be more suitable to

address spei� questions. In the present study, the relevane of lassial measures and its

q

p

k = 0(a)

q

p

k = 1(b)

q

p

k = 2(c)

q

p

k = 3(d)

q

p

k = 4(e)

q

p

k = 5(f)

Figure 8.4. (a�e) Perron�Frobenius eigenvetor ϕk of the Ulam approximation Tk of the

partial-barrier Baker map, omputed aording to Eqs. (8.16) and (8.17). The resolution

parameter k is indiated above eah panel. Eah ϕk is an approximation of the natural im

when integrated over ells of the partition aording to Se. 7.2.2. (f) Approximation of the

bakward trapped set Γ
bwd

for k = 5 bakward iterations.
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Figure 8.5. (a) Perron�Frobenius eigenvetor ϕ2 of the Ulam approximation T2 of the

partial-barrier Baker map. The two di�erent nonzero heights originate from integration of

the uniform distribution on the nonuniformly fratal bakward trapped set over ells. This

an be seen in (b) the �nite-time approximation Γ
bwd

for k = 3 bakward iterations, whih

learly has two di�erent weights in the sets [0, 1/2) × [0, 1/9) and [0, 1/2) × [2/9, 3/9).

approximations is determined by quantum-to-lassial orrespondene. A lassial measure is

helpful if it provides a good estimate for ertain properties of quantum resonane states. The

property whih is of most interest to us is the loalization with respet to the partial barrier.

Regarding this issue, let us fous on the loalization of the ϕk obtained by the Ulam

approximation Tk. For the �rst approximation ϕ0, see Fig. 8.4(a), the total weight is split as

ϕ
(1)
0 to the left and ϕ

(2)
0 to the right, where ϕ

(ℓ)
0 denotes the ℓ-th omponent of ϕ0, ℓ ∈ {1, 2}.

The next level of approximation is given by

ϕ1 = σ3

(

ϕ
(1)
0 , ϕ

(2)
0

)T

=
(

ϕ
(1)
0 , 0, ϕ

(2)
0 ,

︸ ︷︷ ︸

left

ϕ
(1)
0 , ϕ

(2)
0 , ϕ

(2)
0

︸ ︷︷ ︸

right

)T

, (8.48)

up to normalization, f. Fig. 8.4(b). Thus, the vetor of new weights on the left and right of

the partial barrier is given by

(

ϕ
(1)
0 + ϕ

(2)
0

ϕ
(1)
0 + 2ϕ

(2)
0

)

=

(

1 1

1 2

)(

ϕ
(1)
0

ϕ
(2)
0

)

, (8.49)

again up to normalization. The matrix relating the weights from one level of approximation

to the next is just T0 up to a fator suh that ϕ0 is an eigenvetor of the iteration of weights.

This holds true for all approximations ϕk. Hene, the weights of µnat on the left and right of

the partial barrier are exatly the omponents of the oarsest approximation ϕ0.

The situation is di�erent for the other approximation sheme, using a uniform distribution

on the �nite-time approximation Γ
(k)
bwd

= Γ \ ⋃k
n=1 T

n
l

(Ω) of the bakward trapped set Γ
bwd

.

The weight of a uniform distribution on Γ
(k)
bwd

on the left and right of the partial barrier is
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given by

(

|Γ(k)
bwd

∩A1|
|Γ(k)

bwd

∩A2|

)

∼ T k0

(

1

1

)

, (8.50)

up to normalization. Although this onverges towards ϕ0 in agreement with the previously

disussed Ulam approximation, now the weight on eah side depends on the level of approxi-

mation.

In order to judge whih of the two approximation shemes is more appropriate to desribe

the loalization of quantum resonane states, the most onvenient way would be to diretly

ompare the approximate phase-spae distribution of µ
nat

with the Husimi representation of

resonane states. This is done in Fig. 8.6. One might suspet that there are indeed lower

weights on the horizontal stripes indiated by the arrows, just like in the lassial phase-spae

distribution orresponding to ϕk from the Ulam approximation Tk. However, there are two

drawbaks. First, the quantum �utuations are relatively large ompared to the di�erene

of the two heights in the approximate lassial measure. A seond problem is that it is not

lear how to distinguish between two possible reasons for di�erent weights in the Husimi

distribution: Either the di�erent weights are due to integration on the Plank ell level like in

the lassial ase or the di�erent weights originate from an already resolved next level of gaps

that is only smeared out. Thus, this omparison is not onvining and inonlusive.

This problem an be overome by looking at how the weights of quantum resonane states

on the left and right of the partial barrier depend on the e�etive size h of Plank's ell.

q

p

Figure 8.6. Average Husimi representation of resonane states of the partial-barrier Baker

map with 1/h = 2 · 33 = 54. The average is performed over the Husimi distributions of

all twelve resonane states with γ ∈ [γ
nat

/1.25, γ
nat

· 1.25]. The arrows indiate horizontal

stripes of lower weight possibly related to the di�erent heights in Fig. 8.5(a).
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Figure 8.7 demonstrates that they essentially remain onstant under variation of h = 1/N up

to �utuations. In partiular, the quantum data is not desribed by the resolution depending

weights omputed from the uniform distribution on a �nite-time approximation Γ
(k)
bwd

of the

bakward trapped set. Instead, the quantum data is well desribed by the weights of ϕk whih

are independent of the level of approximation. In order to amplify the imbalane in the two

nonzero heights of the phase-spae distribution orresponding to ϕk, and thus, to emphasize

the di�erene between the two approximation shemes, we use N
B

= 10, L = 5, and C = 1

instead of the partial-barrier map based on the ternary Baker map.

Hene, we onlude that the loalization of quantum resonane states with γ ≈ γ
nat

should

be approximated by the Perron�Frobenius vetor of an appropriate Ulam approximation of

the lassial Perron�Frobenius operator if feasible. We point out that it is not lear whether

this also holds for generi maps or whether this might be related to spei� properties of the

Baker map, suh as its strongly disontinuous behavior.

0.0
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0.2

0.3

0.4

10
1

10
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N

‖P1ψ‖
2

Figure 8.7. Weight ‖P1ψ‖2 (blak rosses) of resonane states ψ in region A1 on the left

side of the partial barrier for the partial-barrier Baker map (N
B

= 10, L = 5, C = 1)
vs matrix dimension N = 1/h of the quantum time-evolution operator. The weights are

averaged over all states ψ with γ ∈ [γ
nat

/1.05, γ
nat

·1.05]. This is ompared with the lassial

preditions from the Perron�Frobenius vetor ϕk of an Ulam approximation Tk (green solid

line; Eq. (8.47)), and from a uniform distribution on a �nite-time approximation of bakward

trapped set (orange points; Eq. (8.50)). They are semilassially related to the quantum

data by hoosing the ell size as h.
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8.4 γ-Natural Conditionally Invariant Measures

The generalization of the natural im µ
nat

with the single deay rate γ
nat

to the lass of γ-

natural ims µγ of arbitrary deay rate γ is disussed in detail in Se. 7.2.2. Considering again

their de�nition in Eq. (7.49),

µγ(X) :=
1− e−γ

1− e−γnat

∑

n∈N0

e(γnat−γ)nµ
nat

(
X ∩ T−n(Ω)

)
, (8.51)

the measure µγ results from µ
nat

by adapting its weight within eah forward esaping set

T−n(Ω) in order to ahieve the overall deay rate γ. This onstrution is illustrated for the

partial-barrier Baker map in Fig. 8.8(a�). Sine the partial-barrier Baker map exhibits a

simple deomposition in the stable (vertial) and unstable (horizontal) diretion, the forward

esaping sets are vertial stripes splitting the phase spae in horizontal diretion, see blue

q

p

(a) γ < γnat

q

p

(b) γ = γnat

q

p

(c) γ > γnat

q

p

(d) γ < γnat

q

p

(e) γ > γnat

Figure 8.8. (a, ) Constrution of γ-natural ims for the partial-barrier Baker map by

trunation of the series in Eq. (7.49) to n ≤ 2 for (a) γ < γ
nat

and () γ > γ
nat

. This

is based on the natural im shown in (b) for whih the weight in Ω (gray stripe), T−1(Ω)
(light blue stripes), and T−2(Ω) (medium blue stripes) is adapted. The level T−3(Ω) (dark
blue stripes) is not yet resolved. (d, e) Finer resolution µγ for (d) γ < γ

nat

and (e) γ > γ
nat

omputed by the integration method disussed in Se. 7.2.2.
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regions in the bakground of Fig. 8.8. Starting with the approximation of the natural im µ
nat

shown in Fig. 8.8(b), we �rst adapt the weight on the opening to µγ(Ω) = 1−e−γ. As this only
requires an appropriately hosen fator the struture of µ

nat

within Ω is not a�eted by this, see

Figs. 8.8(a) and (). Depending on whether the new deay rate γ is larger or smaller than the

original γ
nat

, the weight in Ω is inreased or dereased, respetively. We proeed analogously

with the weight in T−1(Ω) (two light blue stripes) and T−2(Ω) (�ve blue stripes) using that

µγ(T
−n(Ω)) = e−γnµγ(Ω). This gives the phase-spae distributions shown in Figs. 8.8(a) and

(), whih orresponds to a trunation of the series in Eq. (7.49) to n ≤ 2. We see that for the

generalization of µ
nat

to µγ in ase of the partial-barrier Baker map, an additional pro�le in

horizontal diretion is imposed on µ
nat

but the struture along the vertial axis is not a�eted.

For a �ner resolution the outome of this onstrution is again shown in Figs. 8.8(d) and (e)

for γ < γ
nat

and γ > γ
nat

, respetively. This resolution highlights the omplex fratal nature

of the measures. Note that in Figs. 8.8(d) and (e), the measures are omputed aording to

Se. 7.2.2: We ompute the esape time for eah point of a phase-spae grid and assoiate an

intensity to it aording to the weight µγ(T
−n(Ω)) and the number of grid points in T−n(Ω).

Afterwards, this intensity is integrated over the ells of an appropriate phase-spae partition.

It is demonstrated in Fig. 8.9 that the proposed onstrution of γ-natural ims qualitatively

learly exhibits quantum-to-lassial orrespondene. The quantum resonane state is well

resembled by the lassial measure even on �ne sales up to quantum �utuations.

In order to quantitatively study quantum-to-lassial orrespondene, we now analytially

q

p

(a) quantum:

q

p

(b) classics:

Figure 8.9. (a) Average Husimi distribution of resonane states for the partial-barrier

Baker map (1/h = 480) with γ ∈ [4γ
nat

/1.25, 4γ
nat

· 1.25] (24 states). (b) Approximate

γ-natural im for γ = 4γ
nat

.
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ompute the lassial weights µγ(Ak) on either side of the partial barrier. A onise version

of the following derivation is presented in Ref. [34℄. In virtue of Eq. (7.49), we only have to

analyze the natural im µ
nat

(Ak ∩ T−n(Ω)) in more detail to ompute µγ(Ak) for all deay

rates γ instantaneously. As a �rst essential step, we �nd that the natural im of Ak ∩ T−n(Ω)

is proportional to the relative area inside Ak,

µ
nat

(
Ak ∩ T−n(Ω)

)
= µ

nat

(Ak) ·
|Ak ∩ T−n(Ω)|

|Ak|
. (8.52)

This follows from the fat that the forward esaping sets T−n(Ω) (vertial stripes) deompose

the bakward trapped set Γ
bwd

in the unstable (horizontal) diretion, on whih µ
nat

is uniformly

distributed within A1 and A2 individually, see Fig. 8.10.

The distribution of the opening Ω over phase spae under bakward time evolution, whih

enters Eq. (8.52) in terms of |Ak ∩ T−n(Ω)|, follows from
(

|A1 ∩ T−n(Ω)|
|A2 ∩ T−n(Ω)|

)

= T n0

(

|Ω|
0

)

, (8.53)

with T0 given by Eq. (8.46). Note that the transition matrix for the bakward time evolution

of Ω is given by T0 itself. We illustrate this relation by examining the �rst steps expliitly.

Consider Fig. 8.10: In the beginning, Ω (gray vertial stripe) is supported on A1. In the

q

p

Figure 8.10. Finite-time approximation of the bakward trapped set Γ
bwd

of the partial-

barrier Baker map (blak). Blue vertial stripes in the bakground are forward esaping

sets (light blue: T−1(Ω); medium blue: T−2(Ω); dark blue: T−3(Ω)).
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next step, T−1(Ω) (light blue) splits into equal parts of size |Ω|/3 on A1 and A2. Afterwards,

T−2(Ω) (medium blue) ontributes two stripes of size |Ω|/32 to A1 and three to A2, and region

T−3(Ω) (dark blue) splits into piees of size |Ω|/33 �ve stripes of whih are in A1 while eight

are in A2. This is preisely desribed by the iteration with T0,

|Ω|
(

1

0

)

T07→ |Ω|
3

(

1

1

)

T07→ |Ω|
32

(

2

3

)

T07→ |Ω|
33

(

5

8

)

. (8.54)

Inserting the relations (8.52) and (8.53) in Eq. (7.49), we obtain

µγ(Ak) =
1− e−γ

1− e−γnat
µ
nat

(Ak)

|Ak|

[
∑

n∈N0

(
eγnat−γT0

)n

(

|Ω|
0

)]

k

, (8.55)

and using Neumann's series, this is

µγ(Ak) =
1− e−γ

1− e−γnat
µ
nat

(Ak)

|Ak|

[

(
1− eγnat−γT0

)−1

(

|Ω|
0

)]

k

. (8.56)

This expression already ontains all physially relevant ideas and ould be interpreted as

the �nal result on the loalization of µγ due to a partial barrier for the partial-barrier Baker

map. By spetral deomposition of the vetor (|Ω|, 0), however, it an still be simpli�ed

onsiderably. This leads to one of the main results of this thesis:

Theorem. The loalization of the γ-natural im µγ of the partial-barrier N
B

-Baker

map due to the partial transport barrier is given by

µγ(A1) =
µ
nat

(A1)− cγ
1− cγ

, µγ(A2) = 1− µγ(A1), (8.57)

with

cγ =
(
1− eγ−γnat

) (
1− e−γnat

) |A1|
|Ω|

|A2|
φ
. (8.58)

Here, Ak denotes the region on eah side of the partial barrier, Ω denotes the opening,

and φ the �ux aross the partial barrier. Moreover, for the natural deay it is

µ
nat

(A1) =
|A1|
|Ω|

(
1− e−γnat

)
, (8.59)

and e−γnat is the Perron�Frobenius eigenvalue of the 2× 2 matrix T0, Eq. (8.45).
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Proof. The simpli�ation of Eq. (8.56) to Eq. (8.57) as presented in the following is to a large

extent based on a alulation by Roland Ketzmerik. Consider the eigenvalue problem

of

J := 1− T0 =

(
|Ω|+φ
|A1|

− φ
|A2|

− φ
|A1|

φ
|A2|

)

, (8.60)

Jxk = λkxk, with λk ∈ C and xk ∈ C2
for k ∈ {1, 2}. The eigenspaes are spanned by

xk =

(

λk − φ
|A2|

− φ
|A1|

)

, (8.61)

using that φ/|A1| 6= 0. The essential step to treat Eq. (8.56) is the deomposition of

(|Ω|, 0) in terms of eigenvetors of J ,

(

|Ω|
0

)

= α (x1 − x2) (8.62)

with α := |Ω|/(λ1 − λ2), and to use that J and (1 − eγnat−γT0)
−1

share the same

eigenspaes,

(
1− eγnat−γT0

)−1
xk =

(
1− eγnat−γ(1− λk)

)−1
xk. (8.63)

Using this spetral deomposition, we obtain

µγ(A1) =
1− e−γ

1− e−γnat
µ
nat

(A1)

|A1|
|Ω|

λ1 − λ2

[
λ1 − φ

|A2|

1− eγnat−γ(1− λ1)
−

λ2 − φ
|A2|

1− eγnat−γ(1− λ2)

]

.

(8.64)

We apply Eq. (8.52) for k = 1, n = 0 with Ω ⊆ A1 and �nd

µ
nat

(Ω)

µ
nat

(A1)
=

|Ω|
|A1|

. (8.65)

Having µ
nat

(Ω) = 1− e−γnat , Eq. (8.64) reads

µγ(A1) =
1− e−γ

λ1 − λ2

[
λ1 − φ

|A2|

1− eγnat−γ(1− λ1)
−

λ2 − φ
|A2|

1− eγnat−γ(1− λ2)

]

. (8.66)
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In view of

T0

(

µ
nat

(A1)

µ
nat

(A2)

)

= e−γnat

(

µ
nat

(A1)

µ
nat

(A2)

)

, (8.67)

we already know one of the eigenvalues λk of J . Without loss of generality, let

λ1 = 1− e−γnat = µ
nat

(Ω). (8.68)

This implies

λ2 =
det J

λ1
=

|Ω|φ
|A1||A2|

1

λ1
=

φ

|A2|µnat(A1)
, (8.69)

suh that

φ

|A2|
= λ2 µnat(A1). (8.70)

Inserting Eq. (8.70) in Eq. (8.66) and using eγnat = (1− λ1)
−1
, f. Eq. (8.68), we obtain

µγ(A1) =
1− e−γ

λ1 − λ2

[

λ1 − λ2 µnat(A1)

1− e−γ
− λ2 − λ2 µnat(A1)

1− e−γ 1−λ2
1−λ1

]

. (8.71)

After some straightforward algebrai manipulations, where we only show the essential

intermediate steps for referene, we get

µγ(A1) =
µ
nat

(A1)

λ1 − λ2

[

λ2 (1− e−γ)

1 − e−γ 1−λ2
1−λ1

− λ2

]

+
1

λ1 − λ2

[

λ1 −
λ2 (1− e−γ)

1− e−γ 1−λ2
1−λ1

]

(8.72)

= µ
nat

(A1)
λ2 e

−γ

1− λ1 − e−γ(1− λ2)
− λ1 + e−γ − 1

1− λ1 − e−γ(1− λ2)
(8.73)

=
1

1− λ1+e−γ−1
λ2 e−γ

[

µ
nat

(A1)−
λ1 + e−γ − 1

λ2 e−γ

]

, (8.74)

and de�ne

cγ :=
λ1 + e−γ − 1

λ2 e−γ
. (8.75)

Inserting Eqs. (8.68) and (8.69) gives Eqs. (8.58) and (8.57). Equation (8.59) follows

from Eq. (8.65). �

With this, we are able to quantitatively investigate quantum-to-lassial orrespondene for

the loalization due to the partial barrier. To this end, we diagonalize the quantum time-
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evolution operator for the matrix dimension 1/h = 2100 and ompute the weight of eah

resonane state in A1. This is shown in Fig. 8.11 in dependene of the deay rate γ (red dots).

We observe a transition from predominant loalization in A2 to loalization in A1 for inreasing

γ. The quantum mehanial behavior is very well desribed by the lassial loalization of

the lass of γ-natural ims, Eq. (8.57) (green line). Small deviations apart from �utuations

in the quantum data are disussed in detail in Se. 9.2 in the ontext of generi systems. To

demonstrate both the validity of our analytial lassial predition as well as the auray of

our approximation shemes for µγ, we also integrate the numerially determined approximation

of µγ, f. Se. 7.2.2, over A1 for di�erent values of γ (blak rosses). The analytial lassial

result and the numerially determined lassial data are in perfet agreement. Note that we

will omment on the quantitative study of quantum-to-lassial orrespondene on �ner sales

in the outlook, Chap. 11.

q
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p
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Figure 8.11. Weight ‖P1ψγ‖2 (red points) of resonane states ψγ in region A1 vs deay

rate γ for the partial-barrier Baker map (h = 1/2100). This is ompared to the γ-natural
im µγ(A1) omputed aording to Eq. (8.57) (solid green line), and by integration over

numerial approximations (blak rosses). Upper panels: Husimi representation of typi-

al long-lived (left) and short-lived (right) resonane state for h = 1/1080 with γ values

indiated by arrows.
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Chapter 9

Loalization in Generi Maps

Chaoti resonane states display loalization transitions with respet to a partial barrier for

varying ratio of openness |Ω| and �ux φ, and for varying deay rates γ. This is observed for the

partial-barrier standard map in Chap. 6 and explained for the partial-barrier Baker map using

γ-natural ims in Chap. 8. The goal of this hapter is to demonstrate this quantum-to-lassial

orrespondene between haoti resonane states and γ-natural ims also for generi maps.

To this end, we numerially examine the partial-barrier standard map for whih we initially

observed the studied loalization transitions in Se. 9.1. We will see that the loalization of

haoti resonane states is indeed very well desribed by the loalization of γ-natural ims

in the semilassial regime. Charateristi deviations away from the semilassial regime are

presented in Se. 9.2. Finally, we verify quantum-to-lassial orrespondene for the generi

standard map with a mixed phase spae of regular and haoti motion in Se. 9.3. The

limitations for the appliability of the analytial predition, Eq. (8.57), for the weights of

γ-natural ims on eah side of a partial barrier for generi systems and its generalization are

disussed in detail. The main results of this hapter were originally reported in Ref. [34℄.

9.1 Partial-Barrier Standard Map

First of all, let us qualitatively demonstrate the orrespondene between quantum resonane

states and lassial γ-natural ims for the partial-barrier standard map by merely looking

at the orresponding phase-spae distributions. Figure 9.1 shows that for a single but typ-

ial example (|Ω| = 0.2, φ = 0.1, |A1| = |A2| = 0.5) we indeed �nd very good agreement

between the quantum and lassial loalization. Owing to the omplex fratal struture of

the partial-barrier standard map, we additionally show the quantum and lassial phase-spae

distributions in top view and in a mutual olor sale. This reveals that quantum-to-lassial

orrespondene is evident even on �ne sales up to the quantum resolution limit.

In order to investigate this agreement between lassial and quantum mehanis quantita-
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Figure 9.1. (a) Average Husimi distribution of resonane states for the partial-barrier

standard map (|Ω| = 0.2; φ = 0.1; |A1| = 1/2; h = 1/1000) with γ ∈ [4γ
nat

/1.4, 4γ
nat

· 1.4]
(88 states). (b) Approximate γ-natural im for γ = 4γ

nat

. Lower panels: Same data on

mutual gray sale, top view. Blak dashed line illustrates opening; magenta line shows

partial barrier.

tively, we restrit ourselves to the loalization with respet to the partial barrier, that is, we

ompute the lassial measure µγ(A1) and ompare it with the quantum mehanial weight

‖P1ψγ‖2 in region A1. This is ertainly a omparison on a rather oarse sale. However, reall

that our major goal is to understand the loalization transitions introdued in Se. 6.1. In

partiular, this is (i) a transition from equipartition to loalization of long-lived haoti reso-

nane states on A2 for inreasing size |Ω| of the opening, Fig. 6.2, and (ii) a transition from

loalization on A2 to loalization on A1 for inreasing γ, Fig. 6.3. In order to see whether

both transitions semilassially orrespond to loalization transitions of γ-natural ims, we

basially need to ompute µγ(A1) for di�erent parameter setups. To this end, we have two
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possibilities: First we an numerially approximate µγ as desribed in Se. 7.2.2 and integrate

over A1. The seond opportunity is given by the analytial result for the partial-barrier Baker

map, Eq. (8.57). One should be autious when applying Eq. (8.57) here as we derived this

relation spei�ally for the partial-barrier Baker map. However, as we shall see below it turns

out that Eq. (8.57) is perfetly appliable also for the partial-barrier standard map.

For the investigation of quantum-to-lassial orrespondene for transition (i) from equipar-

tition to loalization when opening the system, we fous on long-lived resonane states with

γ ≈ γ
nat

. We ompute the lassial measure µ
nat

(A1) diretly from Eq. (8.57) for γ = γ
nat

(cγ = 0 in this ase). The results are shown in Fig. 9.2, whih is analogous to Fig. 6.2, now

inluding the lassial loalization (green line). The loalization of µ
nat

perfetly desribes

the loalization transition (i) of quantum resonane states of the partial-barrier standard map

over the whole range of parameters. We point out that at �rst sight, the parameters |Ω| and
φ enter individually in the lassial loalization aording to Eq. (8.57) when using Eq. (8.45)

µnat(A1)

‖P1ψγ‖
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Figure 9.2. Weight ‖P1ψγ‖2 (symbols) of resonane states on region A1 vs ratio of size |Ω|
of opening and �ux φ aross partial barrier for di�erent parameters of the partial-barrier

standard map (10 ≤ φ/h, |Ω|/h ≤ 2048; |A1| = 1/2; h = 1/6000). Weight of state with γ
losest to γ

nat

(red points) and averaged over states with deay rates γ ∈ [γ
nat

/1.1, γ
nat

·1.1]
(blak rosses). This is ompared to the natural im µ

nat

(A1) (Eq. (8.57), solid green line).

Inset: Same data shown on double-logarithmi sale. Upper panels: Husimi representation

of typial resonane states with γ ≈ γ
nat

for h = 1/1000, φ/h = 20, and two values |Ω|/φ
indiated by arrows.
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for the fundamental 2× 2 transition matrix T0. That this transition, in fat, only depends on

the single parameter |Ω|/φ an be easily seen the following way. We rephrase the transition

matrix T0, whih approximates the Perron�Frobenius operator with respet to the two sides

of the partial barrier, aording to

T0 =

(

1− (|Ω|+ φ)/|A1| φ/|A2|
φ/|A1| 1− φ/|A2|

)

(9.1)

= 1−
(

(|Ω|+ φ)/|A1| −φ/|A2|
−φ/|A1| φ/|A2|

)

(9.2)

= 1− φ

|A1|

(

|Ω|/φ+ 1 −|A1|/|A2|
−1 |A1|/|A2|

)

. (9.3)

Note that for the natural deay, the weights µ
nat

(A1) and µ
nat

(A2) are simply given by the

omponents of the long-lived Perron�Frobenius eigenvetor of T0. However, following Eq. (9.3),

T0 admits the same eigenvetors as the matrix

|A1|
φ

(1− T0) =

(

|Ω|/φ+ 1 −|A1|/|A2|
−1 |A1|/|A2|

)

(9.4)

whih only depends on the two ratios of |Ω|/φ and |A1|/|A2|. In Fig. 9.2 we �x |A1|, and thus,

of ourse, also |A2| suh that transition (i) from equipartition to loalization for resonane

states with γ ≈ γ
nat

indeed depends exatly on the single parameter |Ω|/φ, only.

For ompleteness, we show that Eq. (8.57) aurately desribes the loalization transition (i)

not only in the symmetri ase |A1| = |A2| but also for |A1| 6= |A2|, see Fig. 9.3. The �gure is
analogous to Fig. 9.2 using (a) |A1| = 2/3 and (b) |A1| = 1/3. Again, the lassial loalization

of the natural im µ
nat

perfetly desribes the transition of quantum resonane states from

equipartition, µ
nat

(A1) = |A1|, for |Ω| ≪ φ to loalization in A2, µnat(A1) ≈ 0, for |Ω| ≫ φ.

For a single quantum system, we found the loalization transition (ii) from loalization on

region A2 for long-lived resonane states (small γ) to loalization on region A1 for short-lived

resonane states (large γ), Fig. 6.3. We again ompute the loalization of the orresponding

γ-natural ims and ompare the lassial and quantum data in Fig. 9.4. In addition to deter-

mining µγ(A1) from the analytial predition, Eq. (8.57) (green line), we also plot the values

for µγ(A1) obtained by integration over the numerially determined measure µγ as desribed

in Se. 7.2.2 (blak rosses). For the numerially determined measure, we use a uniform grid

of N
grid

= 106 points and approximate the bakward trapped set Γ
bwd

by N
iter

= 50 steps.

The two ways of omputing µγ(A1) perfetly math. Even more important, the lassial loal-

ization of µγ displays preisely the same transition depending on γ as the quantum resonane

states. Both loalization transitions for haoti resonane states introdued in Chap. 6 are
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Figure 9.3. Weight ‖P1ψγ‖2 (symbols) of resonane states on region A1 vs ratio of size |Ω|
of opening and �ux φ aross partial barrier for di�erent parameters of the partial-barrier

standard map (10 ≤ φ/h, |Ω|/h ≤ 2048; h = 1/6000; (a) |A1| = 2/3 and (b) |A1| = 1/3).
Weight of state with γ losest to γ

nat

(red points) and averaged over states with deay

rates γ ∈ [γ
nat

/1.1, γ
nat

· 1.1] (blak rosses). This is ompared to the natural im µ
nat

(A1)
(Eq. (8.57), solid green line). Inset: Same data shown on double-logarithmi sale. Upper

panels: Husimi representation of typial resonane states with γ ≈ γ
nat

for h = 1/1000,
φ/h = 20, and two values |Ω|/φ indiated by arrows.
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Figure 9.4. Weight ‖P1ψγ‖2 (red points) of resonane states ψγ in region A1 vs deay rate γ
for the partial-barrier standard map (φ/h = 100; |Ω|/h = 1000; |A1| = 1/2; h = 1/6000).
This is ompared to the γ-natural im µγ(A1) omputed aording to Eq. (8.57) (solid

green line), and by integration over numerial approximations (blak rosses). Upper panels:

Husimi representation of typial long-lived (left) and short-lived (right) resonane state for

h = 1/1000 with γ values indiated by arrows.

thus of lassial origin and the new lass of γ-natural ims provides the appropriate lassial

ounterpart. The ase of asymmetri regions, |A1| 6= |A2| is shown in Fig. 9.5 and niely

exhibits quantum-to-lassial orrespondene again. Nevertheless, Fig. 9.5(a) for |A1| = 2/3

is the �rst example where the lassial quantity µγ(A1) deviates systematially from the mean

behavior of ‖P1ψγ‖2. Although the deviations are small, it seems as if the slope in the quan-

tum data is a little larger than in the lassial ase. We emphasize that even though the

quantum and lassial data do not perfetly agree, it is still irrelevant whether the lassial

measures µγ(A1) are omputed by integration over numerial approximations (blak rosses)

or by the analytial predition, Eq. (8.57), whih is derived for the partial-barrier Baker map.

9.2 Deviations due to Quantum Suppression of Transport

In order to understand the origin of the small deviations between the lassial and the quantum-

mehanial loalization values as observed in Fig. 9.5(a), we now onsider the partial-barrier

standard map for rather extreme parameter values. Reall that the study of lassial ims
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Figure 9.5. Weight ‖P1ψγ‖2 (red points) of resonane states ψγ in region A1 vs deay rate γ
for the partial-barrier standard map (φ/h = 134; |Ω|/h = 1334; h = 1/6000; (a) |A1| = 2/3
and (b) |A1| = 1/3). This is ompared to the γ-natural im µγ(A1) omputed aording

to Eq. (8.57) (solid green line), and by integration over numerial approximations (blak

rosses). Upper panels: Husimi representation of typial long-lived (left) and short-lived

(right) resonane state for h = 1/1000 with γ values indiated by arrows.
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is motivated by the fat that the loalization transitions of quantum resonane states have

been observed for values of |Ω| ≫ h and φ ≫ h, where quantum e�ets should be negligible,

f. Chap. 6. Still, for su�iently large values of h quantum deviations should be observable.

Partiularly the known quantum loalization transition for a partial transport barrier in a

losed system depending on φ/h, see Se. 5.1, is expeted to have a strong in�uene. More-

over, for su�iently large h, it is quite reasonable to expet that the phase-spae struture

of quantum resonane states might di�er from the struture of γ-natural ims on �ner sales,

even in systems without partial barriers. In suh parameter regimes, we do not expet agree-

ment between lassial γ-natural ims and quantum resonane states. In fat, we will see

below that the phenomenology of suh quantum deviations is very harateristi. Moreover,

it turns out that the regime where one might observe remnants of suh quantum deviations

an be surprisingly large, i.e., for parameters for whih one ould expet quantum-to-lassial

orrespondene at �rst glane. For instane, we will attribute the deviations in Fig. 9.5(a) to

not being su�iently semilassial although h = 6000 and φ/h = 134, |Ω|/h = 1334.

In Fig. 9.6, we again show the loalization transition of a single quantum system depending

on the deay rate γ of resonane states. We emphasize that the �ux φ aross the partial barrier

is hosen very small, φ/h = 2, suh that we expet a strong impat of the quantum-mehanial

suppression of transport aross the partial barrier in view of the quantum loalization tran-

sition known from losed system, Se. 5.1. Indeed, the quantum data learly di�er from the

orresponding lassial loalization. In partiular, we observe that the quantum data niely

obeys the linear behavior

‖P1ψγ‖2 =
µ
nat

(A1)

γ
nat

γ. (9.5)

This an be seen on a linear, Fig. 9.6(a), and on a logarithmi sale of the ordinate, Fig. 9.6(b),

over several orders of γ up to ‖P1ψγ‖2 ≈ 1. We point out that the quantum loalization

aording to Eq. (9.5) oinides with the lassial loalization for γ = γ
nat

. In agreement

with the fat that quantum transport aross the partial barrier is suppressed for φ ≈ h, the

loalization of resonane states is enhaned ompared to the lassial loalization. That means,

a quantum resonane state for whih the orresponding lassial γ-natural im loalizes in A1

has quantum mehanially enhaned weight in A1 and vie versa for A2. The transition

takes plae at the natural deay rate, whih orresponds to a im with onstant measure

on its support. Note that Eq. (9.5) is merely a numerial observation the veri�ation and

explanation of whih remains for future studies.

The enhanement of loalization due the quantum suppression of transport is also sup-

ported by the quantum and lassial phase-spae distribution shown in Fig. 9.7. For the

partial-barrier standard map with φ/h = 2 and |Ω|/h = 16 the deviations between quantum
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Figure 9.6. Weight ‖P1ψγ‖2 (red points) of resonane states ψγ in region A1 vs deay

rate γ for the partial-barrier standard map (φ/h = 2; |Ω|/h = 512; |A1| = 1/2; h =
1/6000) for linear ordinate (a) and for logarithmi ordinate (b). This is ompared to the γ-
natural im µγ(A1) [aording to Eq. (8.57) (solid green line); by integration over numerial

approximations (N
grid

= 106, N
iter

= 3000; blak rosses)℄ and ompared to the linear

saling aording to Eq. (9.5) (dashed gray line).

and lassial loalization are omparable with the deviations in Fig. 9.6. We hoose the deay

rate γ = γ
nat

/µ
nat

(A1) ≈ 10 γ
nat

orresponding to the deay rate where ‖P1ψγ‖2 reahes its

maximum aording to Eq. (9.5). For this example the numerially determined weights in

A1 are ‖P1ψγ‖2 ≈ 0.807 and µγ(A1) ≈ 0.537. The weight of the quantum resonane state,

Fig. 9.7(a), is enhaned or lowered over the entire region A1 or A2, respetively, ompared

to the lassial γ-natural im, Fig. 9.7(b). In partiular, the larger quantum-mehanial

weight ‖P1ψγ‖2 does not arise from new types of loalization on harateristi subsets of the

fratal trapped sets or from pronouned peaks. Instead, the loalization enhanement ats on

the entire region on eah side of the partial barrier.

Coming bak to Fig. 9.6 for the example of a system with extremely small �ux φ = 1/3000,
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Figure 9.7. (a) Average Husimi distribution of resonane states for the partial-

barrier standard map (φ/h = 2; |Ω|/h = 16; |A1| = 1/2; h = 1/1000) with γ ∈
[(γ

nat

/µ
nat

(A1))/1.2, (γnat/µnat(A1)) · 1.2] (77 states). (b) Approximate γ-natural im for

γ = γ
nat

/µ
nat

(A1). The phase-spae distributions in (a) and (b) are plotted with a mutual

olor sale; the dashed blak line indiates the boundary of the opening Ω.

we also observe slightly di�erent lassial expetations around γ ≈ 1.0 (green line vs blak

rosses). However, it is not lear whether this results from a failure of Eq. (8.57) or whether

the numerial approximation of µγ is not su�iently aurate (N
grid

= 106, N
iter

= 3000). The

very di�erent esape probabilities from regions A1 and A2 indiate that, in fat, the numerial

approximation of µγ with the algorithm presented in Se. 7.2.2 is not su�iently aurate

here. Still, sine both lassial estimates are lose to eah other and learly o� the quantum

data, the deviations between the lassial and the quantum loalization ertainly annot be

attributed to an insu�ient approximation of the lassial γ-natural ims.

Let us onsider another example of the same kind of loalization transition. In Fig. 9.8 we

hoose a value of φ/h = 16. Although from the losed system's point of view, the quantum-

mehanial in�uene of the partial barrier should be negligible, φ≫ h, f. Fig. 5.2, we observe

a similar loalization for quantum resonane states as in Fig. 9.6. Even though the quantum

data do not follow the linear behavior from Eq. (9.5) as in the previous ase, the tendeny is

evident. Roughly speaking, the quantum data are somewhere in between the deeply quantum-

mehanial regime (dashed gray line), Eq. (9.5), and the semilassial behavior (solid green

line) in terms of the loalization of γ-natural ims. Moreover, it seems as though there are

two di�erent ways of approahing the semilassial expetation distinguishing between deay

rates γ & γ
nat

and γ . γ
nat

. While one observes a systemati intermediate behavior for

γ & γ
nat

, Fig. 9.8(a), the resonanes for γ . γ
nat

simply disappear, Fig. 9.8(b). In partiular,
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Figure 9.8. Weight ‖P1ψγ‖2 (red points) of resonane states ψγ in region A1 vs deay

rate γ for the partial-barrier standard map (φ/h = 16; |Ω|/h = 128; |A1| = 1/2; h =
1/6000) for linear ordinate (a) and for logarithmi ordinate (b). This is ompared to the γ-
natural im µγ(A1) [aording to Eq. (8.57) (solid green line); by integration over numerial

approximations (N
grid

= 106, N
iter

= 100; blak rosses)℄ and ompared to the linear saling

aording to Eq. (9.5) (dashed gray line).

the quantum data for γ . γ
nat

always seem to follow the deeply quantum-mehanial behavior

and never obey the lassial expetation (green line) but the smaller h the less resonanes

exist in this regime.

Let us investigate this transition from the deeply quantum-mehanial behavior to the

semilassial behavior in a little more detail. To this end, we investigate yet another example

in Fig. 9.9, whih allows to observe this transition diretly in a single system by varying the

size h of Plank's ell on numerially feasible sales. First, for h = 1/375 the transition region

of the partial barrier is quantum mehanially not well resolved, φ/h = 2. Aordingly, the

loalization of quantum resonane states basially follows the linear behavior from Eq. (9.5),

see Fig. 9.9(a) for γ > γ
nat

and Fig. 9.9() for γ < γ
nat

. However, by dereasing the size h of
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Figure 9.9. Weight ‖P1ψγ‖2 (red points) of resonane states ψγ in region A1 vs deay rate γ
for the partial-barrier standard map (φ = 2/375; |Ω| = 64/375; |A1| = 1/2) for two di�erent

values of h as spei�ed. The data are shown with linear ordinate (a, b; shared axes) and

with logarithmi ordinate (, d; shared axes). This is ompared to the γ-natural im µγ(A1)
[aording to Eq. (8.57) (solid green line); by integration over numerial approximations

(N
grid

= 106, N
iter

= 100; blak rosses)℄ and ompared to the linear saling aording to

Eq. (9.5) (dashed gray line).

Plank's ell by a fator of 24 to h = 1/9000, suh that φ/h = 48 the quantum-mehanial

in�uene of the partial barrier is partiularly redued and the loalization approahes the

semilassial expetation, see Fig. 9.9(b, d). The shown transition on�rms our previous

observation, Fig. 9.8, of two di�erent regimes: For γ & γ
nat

the quantum data systematially

pass the gray shaded region between the deeply quantum-mehanial regime, Eq. (9.5), and

the loalization of γ-natural ims, Eq. (8.57). For γ . γ
nat

, the resonanes seem to vanish in

the semilassial limit.

The statement that the loalization of quantum resonane states due to the partial barrier

semilassially follows the loalization of orresponding γ-natural ims is further supported by

Fig. 9.10. Here, we ompare the loalization transition of two systems with the same values of

|Ω|/φ and |A1| . However, in Fig. 9.10(a), φ and |Ω| are both in the regime where we expet

quantum suppression of transport in view of the losed system's theory, φ/h = 2, |Ω|/h = 8,



9.2 Deviations due to Quantum Suppression of Transport 123

10−6 10−5 10−4 10−3 10−2 100γ

0.0

0.5

1.0

µγ(A1)

‖P1ψγ‖
2 (a)

γnat

10−2 10−1 100 101γ

0.0

0.5

1.0

µγ(A1)

‖P1ψγ‖
2 (b)

γnat

Figure 9.10. Weight ‖P1ψγ‖2 (red points) of resonane states ψγ in region A1 vs deay

rate γ for the partial-barrier standard map for (a) φ/h = 2, |Ω|/h = 8, and (b) φ/h = 512,
|Ω|/h = 2048 with |A1| = 1/2 and h = 1/6000 in both ases. This is ompared to the γ-
natural im µγ(A1) [aording to Eq. (8.57) (solid green line); by integration over numerial

approximations (N
grid

= 106, (a) N
iter

= 3000 and (b) N
iter

= 10; blak rosses)℄ and

ompared to the linear saling aording to Eq. (9.5) (dashed gray line).

f. Se. 5.1. Aordingly, the weight of quantum resonane states ‖P1ψγ‖2 basially follows the
linear behavior, Eq. (9.5), whih we interpret as the deeply quantum-mehanial regime. We

attribute the pronouned width of the quantum data around their mean behavior to the small

ratio of |Ω|/h whih has been observed in other examples as well (not shown). In Fig. 9.10(b)

where the quantum resolution of the �ux φ and the opening Ω is improved by a fator of 256,

i.e., φ/h = 512 and |Ω|/h = 2048, we atually observe perfet orrespondene between the

loalization of quantum resonane states and the loalization of γ-natural ims in dependene

of their deay rates γ. Note that the weight µ
nat

(A1) of the natural im is the same for (a)

and (b) aording to Eq. (8.57), as we hoose the same values for |Ω|/φ and |A1|, but the
natural deay rate γ

nat

di�ers.
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Even though this study indiates that the loalization of haoti resonane states with

respet to a partial barrier, indeed, approahes the lassial loalization of γ-natural ims for

su�iently small values of h, it also demonstrates that the onvergene is rather slow. While

for losed systems one �nds quantum-mehanial in�uene for the loalization due to partial

barrier roughly up to φ/h ≈ 10, the quantum in�uene for open systems seems to extend to

even larger ratios of φ/h. A more areful analysis should take into aount results on the

spetral gap [196℄ and on super sharp resonanes [197℄.

9.3 Standard Map

So far, we have seen that our lassial theory for the loalization of haoti resonane states

proves orret for the partial-barrier Baker map and the partial-barrier standard map in the

semilassial regime. Even the analytial result for the loalization of γ-natural ims with

respet to a partial barrier, Eq. (8.57), whih was rigorously derived for the partial-barrier

Baker map, turns out to perfetly desribe the loalization of γ-natural ims also for the

example of the partial-barrier standard map. Still, in order to validate our approah more

generally we now examine whether the loalization of haoti resonane states semilassially

follows the loalization of γ-natural ims also for the paradigmati standard map (κ = 2.9)

with a generi mixed phase spae, f. Se. 3.1.

Let us onsider the standard map with �xed opening Ω =
(
[0, |Ω|/2) ∪ [1 − |Ω|/2, 1)

)
×

[−1
2
, 1
2
), |Ω| = 0.1, i.e., two vertial stripes on the left and right edge of the phase-spae ell of

width 0.05 eah. As a �rst qualitative veri�ation of quantum-to-lassial orrespondene, we

ompare the average Husimi distribution of resonane states with deay rate γ ≈ 0.12 with the

numerially determined phase-spae density of the orresponding γ-natural im in Fig. 9.11.

We observe that the quantum and lassial distributions are supported by the same sets, i.e.,

the haoti part of the bakward trapped set, and thus, are zero on the forward esaping

sets and the regular regions. Moreover, the loation of high and low density regions math.

Owing to the involved fratal struture of the trapped sets we show the same quantum and

lassial phase-spae distributions from Fig. 9.11 again in Fig. 9.12(, d) in top view to better

demonstrate their agreement even on �ner sales of the fratal sets. Indeed, the dark and

bright regions of large or low intensity niely math up the quantum resolution limit. This

orrespondene is essentially also on�rmed for haoti resonane states and γ-natural ims of

other deay rate in Fig. 9.12(a, b) for γ = 0.05 and in Fig. 9.12(e, f) for γ = 0.2. However, when

examining these two examples very losely they already indiate the limitations of quantum-

to-lassial orrespondene: In Fig. 9.12(a, b) for γ = 0.05 the quantum resonane states (a)

exhibit an overall enhaned loalization behind the outer partial barrier. This phenomenon

agrees with the deviations already observed in Se. 9.2. The �ux aross this dominant partial
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Figure 9.11. (a) Average Husimi distribution of resonane states for the standard map

(κ = 2.9; |Ω| = 0.1; h = 1/1000) with γ ∈ [0.12/1.25, 0.12·1.25] (93 states). (b) Approximate

γ-natural im for γ = 0.12.

barrier is quantum mehanially not su�iently resolved, φ/h ≈ 12. Thus, the enhanement

of loalization is due to the quantum-mehanial suppression of transport aross the partial

barrier. In Fig. 9.12(e, f) for γ = 0.2, we observe a new kind of deviation. The quantum

resonane states show pronouned peaks on ertain lobes of the bakward trapped set. This

quantum e�et is not diretly related to the partial barrier. It is rather related to the question:

How does quantum mehanis resolve fratal sets? This issue is beyond the sope of this thesis

and left for future studies. We will omment on this again in the outlook in Chap. 11. Note

that this quantum loalization on �ne sales of the fratal turns out to be irrelevant when

onsidering only the weights on eah side of the partial barrier for the examples studied in

this work.

Let us now fous on the loalization with respet to the main partial barrier (φ ≈ 0.0126;

Fig. 9.13 inset: magenta line) in order to quantitatively study quantum-to-lassial orre-

spondene. The dominant partial barrier deomposes phase spae into the outer region A1

(Fig. 9.13 inset: medium gray shaded) of area |A1| ≈ 0.6664, and the inner region A2 (Fig. 9.13

inset: light gray shaded) of area |A2| ≈ 0.2061. The next hierarhial level is well separated

on the numerial sales onsidered. The �ux aross the partial barrier around the island hain

of period four (Fig. 9.13 inset: red lines) is smaller by a fator of about 474; the �ux aross

the next partial barrier towards the entral regular island (Fig. 9.13 inset: pink line) is even

smaller. For the standard map with opening Ω, we ompute the Husimi weight ‖P1ψγ‖2 of

eah haoti resonane state within A1. Regular and deeper hierarhial states having less

than 50% of their weight within A1 and A2 are disarded. As some of the remaining haoti
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Figure 9.12. (a, , e) Average Husimi distribution of resonane states for the standard

map (κ = 2.9; |Ω| = 0.1; h = 1/1000) with (a) γ ∈ [0.05/1.25, 0.05 · 1.25] (88 states), ()

γ ∈ [0.12/1.25, 0.12 · 1.25] (93 states), and (e) γ ∈ [0.2/1.25, 0.2 · 1.25] (77 states). (b, d, f)

Approximate γ-natural im for (b) γ = 0.05, (d) γ = 0.12, and (f) γ = 0.2. Mutual gray

olor sale for orresponding quantum and lassial phase-spae distributions used.
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Figure 9.13. Weight ‖P1ψγ‖2 (red points) of haoti resonane states ψγ in region A1

vs deay rate γ for the standard map at κ = 2.9, with |A1| ≈ 0.6664, |A2| ≈ 0.2061,
φ ≈ 0.0126, |Ω| = 0.1, and h = 1/10000. This is ompared to the γ-natural im µγ(A1)
determined by integration over numerial approximations (N

grid

= 106, N
iter

= 50; solid
green line), aording to Eq. (8.57) (dotted blue line), and by semianalytial generalizations

of Eq. (8.57) by omputing T
nat

numerially (dashed blue line) and by omputing |A1 ∩
T−n(Ω)| numerially (solid blue line). In addition, the loalization is ompared to the linear

saling aording to Eq. (9.5) (dashed gray line). Inset: Phase spae of the standard map

with regular and haoti regions, illustrating regions A1 (medium gray shaded), A2 (light

gray shaded) on either side of the main partial barrier (thik solid magenta line), and opening

Ω (dark gray shaded). Upper panels: Husimi representation of typial long-lived (left) and

short-lived (right) resonane state for h = 1/1000 with γ values indiated by arrows.

resonane states still have signi�ant ontribution outside of A1 ∪ A2, we renormalize them

suh that ‖P1ψγ‖2 + ‖P2ψγ‖2 = 1. Qualitatively, we again �nd the loalization transition

from resonane states whih loalize on A2 for small γ to resonane states loalizing on A1 for

large γ, see Fig. 9.13. Quantitatively, the transition is well desribed by the weight µγ(A1)

of orresponding γ-natural ims whih are omputed by integration over numerially approxi-

mated measures as desribed in Se. 7.2.2 (solid green line). The lassial estimate aording

to Eq. (8.57) (dotted blue line) also aptures the basi behavior of the loalization transition

although the agreement with the numerially determined measures (solid green line) is not as

good as for the partial-barrier standard map for instane. Before disussing this disrepany

between analytially and numerially determined weights µγ(A1) in more detail, we point out

that also the linear behavior related to the deeply quantum-mehanial regime (dashed gray
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line), Eq. (9.5), seems to be relevant for the loalization transition. This an be seen for

resonane states with γ . γ
nat

whih sale di�erent than the states with γ & γ
nat

.

For the partial-barrier Baker map, Eq. (8.57) together with Eq. (8.45) for T0 exatly de-

sribes the loalization of γ-natural ims in terms of the weight µγ(A1). For other systems

like the standard map, however, Eq. (8.57) is in general not valid. This is due to following

three steps in its derivation, Se. 8.4:

(i) For the partial-barrier Baker map the measure µ
nat

(A1) is preisely given by the om-

ponents of the Perron�Frobenius eigenvetor of the 2 × 2 matrix T0, Eq. (8.45). The matrix

T0 ontains the transition probabilities to get from one side of the partial barrier to the other

side or to esape from the system within one iteration for an initially uniform phase-spae

distribution. However, to ensure that the omponents of the Perron�Frobenius eigenvetor of

T0 provide the weights µnat(A1) (and µnat(A2)) for generi maps these transition probabilities

must orrespond to using the true natural im µ
nat

as initial phase-spae distribution instead

of the uniform one. We all this adapted 2 × 2 transition matrix T
nat

. It an be ahieved

numerially, for instane, by the one-step iteration of a numerially approximated bakward

trapped set. In view of the loalization transition of the standard map, Fig. 9.13, the improve-

ment when using T
nat

instead of T0 an be seen by omparing the dashed and the dotted blue

line.

(ii) For the partial-barrier Baker map, the weight µ
nat

(
Ak ∩ T−n(Ω)

)
of µ

nat

within the

forward esaping sets T−n(Ω) assoiated with A1 or A2 follows from the exat relation

µ
nat

(
Ak ∩ T−n(Ω)

)

µ
nat

(
Ak)

=
|Ak ∩ T−n(Ω)|

|Ak|
, (9.6)

f. Eq. (8.52). This proportionality is a diret onsequene of the Cartesian produt struture

of stable and unstable manifolds within eah region Ak. It seems reasonable to expet that

this relation an be generalized to generi systems for whih stable and unstable manifolds

also display a produt struture. To this end, the argument needs to be revised in the natural

oordinates of the invariant manifolds.

(iii) For the partial-barrier Baker map the Lebesgue measure |Ak ∩T−n(Ω)| of the forward
esaping set T−n(Ω) within Ak is given by Eq. (8.53),

(

|A1 ∩ T−n(Ω)|
|A2 ∩ T−n(Ω)|

)

= T n0

(

|Ω|
0

)

. (9.7)

Even when replaing T0 by Tnat, f. step (i), this relation is not neessarily orret for generi

systems. For large n the iteration of Ω will lead to a phase-spae distribution given by the

natural im of the inverse dynamis. For this, reall that any generi phase-spae distribution

onverges towards the natural im under time evolution whih in this ase is the bakward
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iteration, see Se. 7.2.2. Hene, asymptotially the transition of weights from one side of the

partial barrier to the other when iterating Ω is indeed given by the single matrix orresponding

the natural measure whih may be related to T
nat

by time-reversal invariane. However,

initially the iteration of Ω is not neessarily desribed by one and the same matrix for di�erent

iteration steps n. In ontrast, the transition probabilities to go from one side of the partial

barrier to the other when iterating Ω need to be investigated individually for eah time step

up to the asymptoti regime where these transition probabilities remain onstant. In view

of the loalization transition of the standard map, Fig. 9.13, the improvement when using

this adapted approah and not T
nat

for all steps n an be seen by omparing the solid and

the dashed blue line. At least for the standard map, using the preise iteration of Ω seems

not to be spei�ally relevant. This impression is also supported by the expliit values of

the transition probabilities: The absolute di�erene in the initial and asymptoti transition

probabilities is below 0.05 already in the �rst iteration, and at most about 0.01 in the fourth

iteration.

Sine the steps (i�iii) are the only approximations made when applying Eq. (8.57) to the

generi standard map, and as we numerially took are of steps (i) and (iii), the di�erene

between the full numerial result, solid green line in Fig. 9.13, and the semianalytial result

(solid blue line) is attributed to the approximation in step (ii).

Summary of Central Results

This hapter onludes the entral part of this thesis, i.e., Chaps. 6�9. Let us therefore brie�y

summarize the ruial points. We observe two transitions for the loalization of haoti reso-

nane states due to a partial barrier: (i) A transition from equipartition to loalization when

opening the system, and (ii) a transition from loalization on one side of the partial barrier

to the other for inreasing deay rates of the resonane states. Both transitions take plae

also in the semilassial regime, meaning that the exhange region of the partial barrier is

quantum mehanially well resolved. This has two impliations: First, partial barriers are

more in�uential in open quantum systems than in losed ones, as in the latter ase, eigen-

states are semilassially equipartitioned with respet to the partial barrier as if there were

no partial barrier at all. Seondly, a lassial origin of the observed loalization transitions

is suspeted. We introdue the new lass of γ-natural ims and demonstrate quantum-to-

lassial orrespondene with haoti resonane states for the partial-barrier Baker map, the

partial-barrier standard map, and the generi standard map with a mixed phase spae. In

partiular, the observed loalization transitions are niely desribed by the loalization of the

orresponding lassial measures, whih thus shows that the transitions are indeed of lassial

origin. A useful analytial predition, Eq. (8.57), for the weights of γ-natural ims on eah side

of a partial barrier is rigorously derived for the partial-barrier Baker map. It turns out that
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Eq. (8.57) provides exellent results even when applied to the partial-barrier standard map

and works reasonably well also for the standard map. If the �ux aross the partial barrier is

not su�iently well resolved by Plank ells, we observe a quantum-mehanial enhanement

of loalization ompared to the lassial expetation.



Chapter 10

Hierarhial Fratal Weyl Laws

In this hapter we present an important appliation of the loalization of haoti resonane

states due to a partial barrier. We show that the number of resonane states that are pre-

dominantly loated on either side of the partial barrier obeys an individual e�etive fratal

Weyl law. To this end, we �rst review the Weyl law for losed systems and the fratal Weyl

law for globally haoti systems in Se. 10.1. In Se. 10.2 we generalize the fratal Weyl law

to the partial-barrier Baker map and partiularly fous on the in�uene of the partial barrier.

It turns out that the repeller e�etively exhibits di�erent fratal dimensions on eah side of

the partial barrier. Quantum mehanially, this implies e�etively di�erent fratal Weyl laws

for the number of resonane states assoiated with eah side. In Se. 10.3 we demonstrate

that these individual fratal Weyl laws an also be found for the generi standard map. For

the partial-barrier standard map with two partial barriers we an show numerially that the

individual fratal Weyl laws are even present in systems with multiple partial barriers. We

then disuss the presene of a hierarhy of fratal Weyl laws for generi systems with an in�n-

ity hierarhy of partial barriers. We onlude by disussing the relation of these hierarhial

fratal Weyl laws with other frational Weyl laws. The main results of this hapter have �rst

been reported in Ref. [33℄.

10.1 Weyl Law and Fratal Weyl Law

Consider the free stationary Shrödinger equation,

(△+ k2)ψ = 0, (10.1)

for the Hamiltonian H = −(~2/2m)△ on a bounded domain G ⊂ Rf
with Dirihlet boundary

ondition ψ|∂G = 0 for the pieewise smooth boundary ∂G and k2 = 2mE/~2
. Weyl's law [77,
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78℄ desribes the asymptoti distribution of the eigenvalues En of H . It states that the number

N(E) := #{En ∈ σ(H) : En ≤ E} (10.2)

of eigenvalues of H below energy E sales as

lim
E→∞

N(E)

Ef/2
=

(
2m

~2

) f
2 Vf
(2π)f

|G|, (10.3)

where Vf = πf/2/Γ(1 + f/2) is the volume of the f -dimensional unit ball, f. [198, Eq. 7.3.9℄.

Note that the ommon but sloppy notation of the ounting funtion, Eq. (10.2), is meant

to ount eigenvalues inluding their multipliity. Equation (10.3) ontains two remarkable

insights. First, the number N(E) of eigenvalues below E asymptotially sales as a power

law in the variable E the exponent of whih is related to the dimensionality f of the problem.

For an example where this is relevant, think of an ideal quantum gas of n free idential

partiles in a d-dimensional box, whih is inluded in the above setting (f = d · n). Then

Weyl's law yields that the density of states for the quantum gas on�ned to two spatial

dimensions is very di�erent from that in three-dimensional spae. This is entral to the

Mermin�Wagner�Hohenberg theorem [199, 200℄ that forbids Bose�Einstein ondensation and

(anti)ferromagnetism for nonzero temperature in the two-dimensional ase although they are

allowed in three dimensions, see Refs. [201, Se. 8.1.1℄ and [202, Chap. 9℄. Note that in order to

ompute the density of states, one needs to modify Eq. (10.3) by taking into aount additional

fators due to spin degeneray as well as the indistinguishability of partiles. Seondly, the

asymptoti saling of the number N(E) of eigenvalues below E does not depend on the shape

of G but only on its volume |G|. The shape of G determines lower-order orretions in terms

of the urvature of the boundary for instane, see e.g. Refs. [203, 204℄. This motivates the

question whether there exist regions G of di�erent shape that share idential spetrum [205℄,

whih is indeed possible [206℄. Note that Weyl's law is, of ourse, not restrited to the quantum

mehanial ontext but applies to all problems desribed by the Helmholtz equation, Eq. (10.1).

For instane it is widely studied in the ontext of aoustis, optial avities, and quantum

billiards [198, 203, 205℄.

The Weyl law for the free Hamiltonian, Eq. (10.3), an be generalized to Hamiltonians

with nonvanishing potential. This more general Weyl law reads

N(E) =
1

hf

∫

H(q,p)≤E

dfq dfp+O(h1−f ), (hց 0) (10.4)

where H denotes the lassial Hamilton funtion here [207, Se. 6.4℄. Equation (10.4) allows for

the intuitive interpretation that an eigenstate oupies the phase-spae volume hf of a Plank
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ell, onsistent with Heisenberg's unertainty priniple. The total number of eigenvalues up to

energy E is thus given by partitioning the total available phase-spae region enlosed by the

energy shell for E by Plank ells. This priniple belongs to the foundations of statistial me-

hanis. We stress that this deomposition argument relies on the orthogonality of eigenstates.

For a quantum map U ∈ CN×N
semilassially orresponding to time-disrete dynamis on a

d-dimensional phase spae Γ, the Weyl law relates the number NI of eigenstates assoiated

with an invariant phase spae region I ⊆ Γ and the e�etive size hd/2 of Plank's ell by

NI = |I|/hd/2. For the number of all eigenstates this boils down to the quantization ondition

N = h−d/2 for a phase spae of unit volume. Note that for quantum maps the fous is put on

the power-law dependene of h sine there is no energy parameter.

In order to generalize the Weyl law to open systems, the nonorthogonality of resonane

states turns out to be the major hallenge [48℄. As a onsequene of nonorthogonality, it is no

longer reasonable to deompose the available phase-spae region disjointly by Plank ells in

order to ompute the number of resonane states. This issue an be overome by restriting

to long-lived resonane states whih are mutually almost orthogonal, that is, 〈ψm |ψn 〉 ≈ δmn

if γm, γn ≪ 1. To begin with, let us onsider a fully haoti quantum map with a totally

absorbing region and subunitary time-evolution operator U . In this ase, the set of long-lived

resonane states may be de�ned as

L := {λ ∈ σ(U) : |λ| ≥ e−γ/2 }, (10.5)

with a onstant uto� deay rate γ


in order to distinguish between short-lived and long-lived

states. This is a ommon way of disarding short-lived states [47℄. Sine resonane states

are not arbitrarily loalized in phase spae but supported by the trapped set, the available

phase-spae region turns out to be the fratal repeller Γ
rep

smeared out on the sale of Plank's

ell [47℄. Asymptotially for h ց 0, deomposing the h-resolved repeller by Plank ells is

nothing but ounting the minimal number of boxes of side length

√
h neessary to over Γ

rep

.

This, however, turns out to be equivalent to ounting the number of boxes of an appropriate

phase-spae partition oupied by Γ
rep

[142, p. 43℄. We have already seen in Se. 3.3 that

suh a box-ounting algorithm gives a power law depending on the box size when applied to

a uniformly fratal set. Its exponent is determined by the fratal dimension of the set. By

means of quantum-to-lassial orrespondene, it is

lim
hց0

N
res

(h)

h−D(Γ
rep

)/2
= s(γ



), (10.6)

where N
res

(h) := #L denotes the number of long-lived haoti resonane states, D(Γ
rep

) is the

fratal box-ounting dimension of the repeller, and s(γ


) is the so-alled shape funtion [208℄.

Note that the uto� rate γ


, when hosen in a reasonable range, enters in the ounting funtion
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N
res

only through this proportionality fator s. In partiular, γ


does not ontribute to the

power-law exponent. In open haoti systems, the number N
res

of long-lived resonane states

therefore sales as a power law depending on the e�etive size h of Plank's ell similar to the

Weyl law. In ontrast to losed systems, however, the power-law exponent is not determined

by the ordinary integer dimension of phase spae but by the fratal dimension of the trapped

set Γ
rep

. Equation (10.6) is therefore referred to as fratal Weyl law. Fratal Weyl laws

for haoti open systems have been numerously veri�ed numerially [47, 48, 51, 52, 61, 71, 81,

82, 86�88, 90�92, 96℄, analytially [53, 79, 80, 83�85, 95, 97℄, and even experimentally [93℄. In

partiular, fratal Weyl laws are also studied for haoti sattering systems [47, 90, 93℄ and

for haoti systems with partial absorption suh as miroavities [52, 61, 71℄. They have been

investigated even in the ontext of lassial Perron�Frobenius operators [209℄ and for the

Google matrix [210℄.

The above heuristi box-ounting argument for determining the number of long-lived reso-

nane states, whih was put forward in Ref. [47℄, sometimes reates a little onfusion. Chaoti

resonane states, no matter whether they are short-lived or long-lived, are semilassially sup-

ported by the bakward trapped set Γ
bwd

and not by Γ
rep

[49℄. One might argue that therefore

the h-resolved bakward trapped set should be deomposed by Plank ells, suh that the

fratal dimension of Γ
bwd

should enter the ounting argument rather than the fratal dimen-

sion of Γ
rep

. Note that Γ
bwd

is muh larger than Γ
rep

and should support more resonanes.

Roughly speaking, the problem with this argument is that the loalization of resonane states

in the subregions Γ
bwd

∩ T−n(Ω) (forward esaping sets) is related by time evolution and,

therefore, these regions do not ontribute independently. In fat, it is shown for instane in

Ref. [53, Se. 6℄ that it is possible to redue the dynamis onto the h-resolved repeller without

losing the relevant information about the spetrum. More preisely, the Hamiltonian, sub-

jet to omplex saling in order to unover the resonane poles, is onjugate to an auxiliary

Hamiltonian whih suppresses ontributions outside of the h-resolved repeller by an exponen-

tial weight. This onjugay assures that the set of resonane poles remains unhanged under

this transformation. Thus, indeed, the h-resolved repeller needs to be partitioned by Plank

ells in order to ompute the number of long-lived resonanes. In other words, deomposing

the h-resolved bakward trapped set by Plank ells overestimates the number of long-lived

resonanes. Still this ounting argument using Plank ells is not rigorous to some extent for

that the resonane states are nonorthogonal. In order to address this issue, it is suggested in

Ref. [48℄ to investigate the Hilbert subspae assoiated with instantaneous deay modes. By

partial Shur deomposition of the subunitary time-evolution operator the authors determine

the dimension of this spae and thereby �nd the number of instantaneous deay modes taking

into aount their mutual nonorthogonality. Sine this task is omplementary to the study of

long-lived resonane states, the fratal Weyl law is reovered where the exponent is given by
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the fratal dimension of the repeller.

So far, we onsidered open systems that are fully haoti. This has the advantage that the

repeller is typially a rather homogeneous fratal. In this ase, it is irrelevant whether one

onsiders the box-ounting dimension, the Hausdor� dimension, or any other Rényi dimension

as they all oinide [143℄. The Kantz�Grassberger relation, Eq. (3.30),

δu(Γ
rep

) = 1− γ
nat

Λ
, (10.7)

even yields an analyti estimate for the partial fratal dimension along the unstable diretion

in terms of the Lyapunov exponent Λ and the natural deay rate γ
nat

. For time-reversal invari-

ant systems, the partial fratal dimensions along the stable and unstable diretion oinide,

δs(Γ
rep

) = δu(Γ
rep

) =: δ(Γ
rep

) [56℄, suh that the fratal dimensionD(Γ
rep

) of the repeller reads

D(Γ
rep

) = 2 ·
(

1− γ
nat

Λ

)

. (10.8)

As mentioned, this relation serves as a predition for any Rényi dimension as long as the

studied fratal is homogeneous. It then also provides a useful estimate for the exponent in the

fratal Weyl law.

However, if the repeller is an inhomogeneous fratal the di�erent notions of fratal dimen-

sion are not equivalent and it is still under debate, whih of the dimensions enters the fratal

Weyl law. There are two situations where suh an inhomogeneous fratal repeller appears

very naturally: In systems with a mixed phase spae partial transport barriers may indue

e�etively an inhomogeneity in the haoti repeller. This is the subjet of the next setion.

Furthermore, for systems with partial absorption there is no orbit whih fully esapes, suh

that the repeller is stritly speaking the entire phase spae. In suh ases, the fratal Weyl

law seems to be determined by the multifratality of the natural im µ
nat

[52, 61, 71℄.

10.2 Partial-Barrier Baker Map

In this setion we show that already a single partial transport barrier an have a strong

in�uene on the homogeneity of the fratal repeller for the example of the partial-barrier

Baker map. It turns out that the repeller exhibits e�etively two di�erent fratal dimensions

on eah side of the partial barrier. Moreover, we demonstrate that this gives rise to individual

fratal Weyl laws for the number of long-lived haoti resonane states assoiated with the

two regions.
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10.2.1 E�etive Fratal Dimensions

Just by looking at Fig. 10.1, one tends to think that the repeller Γ
rep

of the partial-barrier

Baker map ontributes more �weight� to region A2 on the right hand side of the partial barrier

than to A1. Of ourse, the repeller is a fratal set of Lebesgue measure zero suh that the

notion of weight is ambiguous here. Still, this visual imbalane ould be re�eted in di�erent

fratal dimensions of Γ
rep

∩ A1 and Γ
rep

∩ A2. In order to analyze the fratal dimension

individually in eah region, we de�ne a phase-spae partition of retangular boxes of side

length εn = 1/3n in vertial diretion and εn/2 in horizontal diretion, where n ∈ N denotes

the order of approximation, see Fig. 10.1. As an be seen, the number of boxes oupied by

Γ
rep

is larger in A2 than in A1 for all n:

(a) n = 1: 4 out of 9 boxes in A1 and 9 out of 9 boxes in A2,

(b) n = 2: 25 out of 81 boxes in A1 and 64 out of 81 boxes in A2,

() n = 3: 169 out of 729 boxes in A1 and 441 out of 729 boxes in A2.

This is onsistent with our previous visual pereption of di�erent weights.

Again the Cartesian produt struture of Γ
rep

∩ A1 and Γ
rep

∩ A2 allows us to deompose

the fratal box-ounting dimension of Γ
rep

into its stable and unstable diretion individually

within eah region Ak,

Dk = δsk + δuk , (10.9)

where we introdued the short-hand notation Dk := D(Γ
rep

∩ Ak), δ
s

k := δs(Γ
rep

∩ Ak), and

δuk := δu(Γ
rep

∩Ak). Due to time-reversal invariane, the partial fratal dimension along both
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Figure 10.1. Repeller Γ
rep

of the partial-barrier Baker map (blak set) in ombination with

a box-ounting grid (green lines) of order (a) n = 1, (b) n = 2, and () n = 3 for retangular
boxes of side length εn = 1/3n in vertial diretion and εn/2 in horizontal diretion.
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diretions oinides, δsk = δuk [56℄. Let us fous on the partial fratal dimension δsk assoiated

with the vertial stable diretion. This is the diretion of fratality of the bakward trapped

set Γ
bwd

whih supports ims and semilassially also resonane states, f. Fig. 10.2. Choosing

a one-dimensional box-ounting grid with boxes of side length εn = 1/3n in eah region,

onsistent with the two-dimensional grid used above for Γ
rep

, the number of oupied boxes

an be alulated from the redued 2 × 2 Perron�Frobenius operator T0, Eq. (8.45). Reall

that T n0 (1, 1)
T
desribes the weight of the uniform distribution after n forward iterations in

eah of the regions Ak. This initial uniform distribution onverges towards Γ
bwd

. For �nite

n, the iterated distribution is exatly Γ
bwd

when resolved on the box-ounting grid of order

n. Taking into aount that we want to alulate the number of oupied boxes and not the

weight in eah region, we have resale T0 by the strething fator N
B

= 3, giving

T# := 3T0 =

(

1 1

1 2

)

. (10.10)

Thus, the number N s

b

(Γ
rep

∩ Ak, εn) of boxes of a one-dimensional grid along the stable

(vertial) diretion of order n that are oupied by Γ
rep

in region Ak is given by

(

N s

b

(Γ
rep

∩A1, εn)

N s

b

(Γ
rep

∩A2, εn)

)

= T n#

(

1

1

)

. (10.11)
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Figure 10.2. Oupied boxes (blak) of the repeller Γ
rep

for the partial-barrier Baker map

using a vertial box-ounting grid (green lines) of order (a) n = 1, (b) n = 2, and () n = 3
for retangular boxes of side length εn = 1/3n on both sides of the partial barrier (magenta

line).
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As an be ompared with Fig. 10.2 the expliit number of oupied boxed reads

(

1

1

)

T#7→
(

2

3

)

T#7→
(

5

8

)

T#7→
(

13

21

)

. (10.12)

Squaring these numbers N s

b

(Γ
rep

∩Ak, εn), and thereby taking into aount the fratality along
the previously negleted unstable diretion, gives exatly the number of oupied boxes of the

repeller Γ
rep

in region Ak for the two-dimensional grid of order n, f. Fig. 10.1.

The partial fratal box-ounting dimension δsk along the stable diretion, and thus, indi-

retly also the fratal dimension of the repeller, follows from Eq. (3.26),

δsk = − lim
n→∞

log(N s

b

(Γ
rep

∩Ak, εn))
log(εn)

. (10.13)

In view of Eq. (10.11), it is onvenient to apply a spetral deomposition of (1, 1)T into

eigenvetors of T#. We denote the eigenvalues and eigenvetors aording to T#ϕj = λjϕj,

j ∈ {1, 2}, and normalize the eigenvetors suh that ‖ϕj‖2 = 〈ϕj |ϕj 〉 = 1 with the Eulidean

salar produt. Note that the eigenvetors ϕj are orthogonal sine T# is symmetri. This

gives

(

1

1

)

=

2∑

j=1

〈ϕj | (1, 1)T 〉ϕj =
2∑

j=1

(

ϕ
(1)
j + ϕ

(2)
j

)

ϕj, (10.14)

where ϕ
(1)
j and ϕ

(2)
j denote the two omponents of ϕj . With Eq. (10.11), we therefore �nd

(

N s

b

(Γ
rep

∩ A1, εn)

N s

b

(Γ
rep

∩ A2, εn)

)

= T n#

2∑

j=1

(

ϕ
(1)
j + ϕ

(2)
j

)

ϕj =
2∑

j=1

(

ϕ
(1)
j + ϕ

(2)
j

)

λnjϕj (10.15)

for the number of oupied boxes, suh that the partial fratal dimension, Eq. (10.13), obeys

δsk = − lim
n→∞

log
[
∑2

j=1

(

ϕ
(1)
j + ϕ

(2)
j

)

λnjϕ
(k)
j

]

log(3−n)
(10.16)

=
1

log(3)
log



 lim
n→∞

n

√
√
√
√

2∑

j=1

(

ϕ
(1)
j + ϕ

(2)
j

)

λnjϕ
(k)
j




(10.17)

=
log [max{λ1, λ2}]

log(3)
. (10.18)

The last step is shown in Se. B.5. Using that the maximal eigenvalue of T# = 3T0 is deter-

mined by the natural deay rate, max{λ1, λ2} = 3e−γnat, and that the Lyapunov exponent of
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the partial-barrier Baker map reads Λ = log(3), it is

δsk = 1− γ
nat

Λ
. (10.19)

That is, asymptotially the repeller has the same fratal dimension in regions A1 and A2 in

agreement with the Kantz�Grassberger relation, Eq. (3.30). The visual imbalane of Γ
rep

in A1

and A2 is therefore not re�eted in the fratal saling properties for arbitrary �ne resolution.

This an be also seen in Fig. 10.3(a). Clearly, the physial origin of this asymptoti equivalene

is the oupling aross the partial transport barrier. As we will now demonstrate, the imbalane

is rather re�eted in the way both regions approah the mutual asymptoti behavior.

Reall that, in general, the number N
b

of oupied boxes of length ε asymptotially obeys

a power law, N
b

∼ ε−D, ε ց 0. The fratal dimension D follows from its exponent whih is

the slope in a double-logarithmi plot. On �nite sales ε, however, the number N
b

of oupied

boxes does not have to obey a power law. Still, it is possible to assoiate an e�etive fratal

Γrep ∩A1

Γrep ∩A2

∼ ε−δ s

0.01 0.1 1.0ε
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N s
bc(ε)

(a)

Γrep ∩A1
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0.01 0.1 1.0ε

0.0
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1.0

δsk(ε)

(b)

Figure 10.3. (a) Number N s

b

(Γ
rep

∩ Ak, ε) of boxes of a one-dimensional grid along the

stable diretion at sale ε that are oupied by the repeller Γ
rep

of the partial-barrier Baker

map in region A1 (green) or A2 (orange), aording to Eq. (10.15). (b) E�etive partial

fratal dimension δsk(ε) at sale ε of the repeller Γrep of the partial-barrier Baker map along

its stable diretion in eah region A1 (green) and A2 (orange), aording to Eq. (10.22).
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dimension at sale ε by omputing its loal slope on a double-logarithmi plot [98℄, i.e.,

D(ε) := −d logNb

(ε)

d log ε
= − (log ◦N

b

◦ exp)′ (log ε) = −N
′
b

(ε)

N
b

(ε)
ε. (10.20)

Of ourse, the e�etive fratal dimension D(ε) at sale ε and the fratal dimension D oinide

for ε ց 0 in the spirit of l'H�pital's rule. It is onvenient in the following to interpret ε, and

thus, also N
b

as a funtion of a (ontinuous) parameter n, whih gives

D(εn) = −εn
ε′n

(N
b

◦ ε)′(n)
N

b

(εn)
. (10.21)

Let us apply this e�etive treatment of a fratal dimension to the above ase of the partial

fratal dimension δs of the repeller of the partial-barrier Baker map along the stable diretion.

Here, it is εn = 3−n suh that ε′n = − log 3 · εn, and using Eqs. (10.15) and (10.21) we �nd

δsk(εn) =
1

log 3

∑2
j=1

(

ϕ
(1)
j + ϕ

(2)
j

)

ϕ
(k)
j λnj log(λj)

∑2
j=1

(

ϕ
(1)
j + ϕ

(2)
j

)

ϕ
(k)
j λnj

. (10.22)

The orresponding graphs, shown in Fig. 10.3(b), illustrate that, in fat, the e�etive fratal

dimension in region A2 (orange) is larger than in A1 (green), whih is onsistent with the

previously disussed visual imbalane of the repeller Γ
rep

. We stress that asymptotially,

ε ց 0, the e�etive partial fratal dimension in both regions onverges towards the same

value δs = δs1 = δs2, Eq. (10.19). Furthermore, we emphasize again that the partial fratal

dimensions δsk and δ
u

k along the stable and unstable diretion oinide for eah region Ak due

to time-reversal invariane. In the following we therefore write δk := δsk = δuk . Let us brie�y

omment on the fat that the partial fratal dimension δs2(ε) of the repeller in regionA2 (orange)

exeeds unity for large ε aording to Eq. (10.22) and evident from Fig. 10.3(b). This is an

artifat from hoosing n in Eq. (10.21) ontinuously and amounts to an inappropriate hoie

of box-ounting grids. For values of εn = 3−n, n ∈ N, this e�et is not present. Nevertheless,

this physially irrelevant regime for large ε is shown as a guide to the eye in order to emphasize

the di�erene in the e�etive fratality in both regions. For values ε ≤ 1/3 this di�erene is

still present but, partiularly in Fig. 10.3(a), hardly reognizable.

10.2.2 Quantum-to-Classial Correspondene

So far, we disussed the relevane of e�etive fratal dimensions by their apability of apturing

the visual imbalane of the repeller on both sides of the partial barrier. However, muh

more important for us are the quantum signatures of the di�erent e�etive fratal dimensions.

As we will now demonstrate the saling of the number N
res

of long-lived resonane states
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depending on the e�etive size h of Plank's ell on numerially feasible sales is governed

by the e�etive fratal dimension of the repeller, not by the asymptoti fratal dimension.

Even more remarkable, we will show that there are e�etively individual fratal Weyl laws

assoiated with the two regions A1 and A2.

Reall the ommon heuristi argument for the fratal Weyl law, aording to whih the

number N
res

(h) of long-lived resonane states for a spei� value h is obtained by a box-

ounting algorithm with boxes of area h applied to the repeller Γ
rep

. In view of that, it is

quite expeted that the saling of N
res

around h is desribed by the e�etive fratal dimension

on that spei� sale and not by the asymptoti one. Preisely this behavior is shown in

Fig. 10.4 (blue), whih requires some explanation. In order to inrease the di�erene between

the e�etive and the asymptoti fratality of Γ
rep

, we do not onsider the ordinary partial-

barrier Baker map but adapt its transition probabilities for both regions by hoosing N
B

= 10,

L = 3, and C = 1, using the notation from Se. 8.1. Furthermore, we extrat the trivial

power-law saling h−1
, whih orresponds to a losed system, by plotting N

res

(h) · h, and
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Figure 10.4. Number N
(k)
res

(h) (dots) of long-lived resonane states of the partial-barrier

Baker map (N
B

= 10, L = 3, C = 1) vs h−1
, resaled by the trivial saling h. Di�erent

olors orrespond to the lass L of all long-lived resonane states (blue), or the sublasses

L1 (green) or L2 (orange) of states assoiated with regions A1 or A2, respetively. The

quantum mehanial saling is ompared to the number N
(k)
b

(ε) (solid lines) of retangular

boxes of a grid with vertial (horizontal) side length ε (ε/2) that are oupied by the entire

repeller Γ
rep

(blue) or by the repeller Γ
rep

in region A1 (green) or A2 (orange), plotted

against ε−2
and resaled by the trivial saling ε2. The lassial data are omputed aording

to N
(k)
b

(ε) := ε−2δk(ε)
with δk from Eq. (10.22) as adapted to the map parameters, and

vertially shifted by fators f = 1.06, f1 = 0.47, f2 = 0.49. The asymptoti saling (gray

dashed lines) orresponds to a power law with δk aording to Eq. (10.19).
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thereby visually enhaning the di�erene between the di�erent fratal dimensions lose to

two. Note that a power law N
res

(h) ∼ h−1
would therefore orrespond to a horizontal line

in Fig. 10.4, and a fratal Weyl law like N
res

(h) ∼ h−D(Γ
rep

)/2
would lead to a dereasing

straight line whih is steeper the smaller D(Γ
rep

) (double-logarithmi plot). The quantum

mehanial data (blue dots) are obtained by numerial diagonalization of the time evolution

operator for di�erent values of h and disarding all short-lived resonanes with γ > γ


= 2.

Classially, we ompute the e�etive partial fratal dimension δ(ε) aording to Eq. (10.22),

with straightforward adaptations to the hosen system parameters N
B

= 10, L = 3, and C = 1.

For the number of oupied boxes of the repeller, we thus analytially expet N
b

(ε) ∼ ε−2δ(ε)

(solid blue line). By identifying the lassial box area ε2 and the quantum mehanial size h

of Plank's ell, we are allowed to plot both N
res

as a funtion of h and N
b

as a funtion of ε

in one and the same oordinate system for omparison. The asymptoti saling is estimated

by the Kantz�Grassberger relation, Eq. (10.19) (gray dashed line).

Although the di�erene between the asymptoti and the e�etive saling of N
res

is small,

even in this adapted plot, one learly observes that the quantum data niely follows the e�etive

lassial behavior. We stress that the �utuations in the quantum data are partiularly smaller

than the di�erene to the asymptoti saling. Note that the lassial expetation N
b

is

vertially shifted by a fator of f = 1.06 to better demonstrate the mutual saling with N
res

.

At this point we see quantum-to-lassial orrespondene between the number of all long-

lived resonane states and the e�etive fratality of the entire repeller. However, as shown in

this thesis, resonane states may loalize predominantly on one or the other side of the partial

barrier depending on their deay rate, even for semilassially small values of h. Moreover,

we have seen that the e�etive fratal dimension of the repeller di�ers on both sides of the

partial barrier. This suggests that there may be quantum-to-lassial orrespondene within

both regions individually, giving rise to individual e�etive fratal Weyl laws. To this end, we

de�ne the lass Lk, k ∈ {1, 2}, that ontains a long-lived resonane state ψγ , γ < γ


, if its

relative loal weight ‖Pjψγ‖2/|Aj|, j ∈ {1, 2}, is maximal for region Ak. This lassi�ation is

supported by the distributions of the orresponding deay rates, see Fig. 10.5, whih exhibits

only a small overlap between the two distribution of the two lasses. We therefore de�ne

the number N
(k)
res

of long-lived resonane states assoiated with Ak by the number of linearly

independent elements in Lk. The orresponding numerial data for the partial-barrier Baker

map modi�ed as above are again shown in Fig. 10.4 by green (L1) and orange (L2) dots.

They are ompared to the expeted lassial box-ounting saling N
(k)
b

for Γ
rep

∩Ak with the

individual e�etive fratal dimensions δk, aording to Eq. (10.22) when adapted to the system

parameters (green and orange solid lines). Again, the lassial expetation N
(k)
b

is vertially

shifted by fators of f1 = 0.47 and f2 = 0.49 to better demonstrate the mutual saling with

N
(k)
res

. Note that the fators fk mainly represent the phase-spae fration of the onsidered
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Figure 10.5. Distribution P (γ) of deay rates γ of the partial-barrier Baker map (N
B

= 10,
L = 3, C = 1) for h−1 = 12800. The distribution distinguishes between resonane states of

lass L1 loated in region A1 (green) and resonane states of lass L2 loated in region A2

(orange). Short-lived states γ > γ


are negleted for the fratal Weyl law.

region Ak.

First of all, we observe quantum-to-lassial orrespondene between the number of long-

lived resonane states assoiated with region Ak and the e�etive fratality of the repeller in

region Ak. That is, we e�etively obtain individual fratal Weyl laws for the two di�erent

regions. For region A1, the found saling of the quantum data is learly not aptured by

the expeted asymptoti fratal saling of the repeller. We admit that there are signi�ant

�utuations, almost osillatory, around the box-ounting saling N
b

. They have the same

order of magnitude as the �utuations for the lass L2 (orange), whih are less pronouned

than for L1 in Fig. 10.4 due to the logarithmi representation. Anyway, these deviations

derease for smaller values of h. In partiular, in view of the broad quantum loalization

transition of the partial barrier [32℄, f. Se. 5.1, quantum deviations are expeted at least up

to φ/h ≈ 10, whih orresponds to h−1 ≈ 200 here.

10.3 Generi Maps

In the previous setion we have seen that the repeller of the partial-barrier Baker map exhibits

di�erent e�etive fratal dimensions on eah side of the partial barrier. Long-lived haoti

resonane states assoiated with these regions obey individual e�etive fratal Weyl laws. In

this setion we demonstrate that these results generalize to the generi standard map with a

mixed phase spae. Eventually, for the partial-barrier standard map we an numerially show

that our results also generalize to the ase of two barriers. These individual e�etive fratal
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Weyl laws for the standard map and the partial-barrier standard map have �rst been reported

in Ref. [33℄.

First of all, the repeller of the standard map, see Fig. 10.6(a), qualitatively displays the

same kind of visual imbalane with respet to the partial barrier as previously disussed for

the partial-barrier Baker map in Se. 10.2.1. Furthermore, as explained in Se. 9.3, the haoti

resonane states may loalize with respet to the dominant partial barrier depending on their

deay rate, f. Fig. 10.6(b, ). This already suggests that the standard map also gives rise

to individual e�etive fratal Weyl laws for the haoti resonane states assoiated with eah

side of the partial barrier. Let us now quantitatively analyze this e�etive fratality and the

expeted quantum-to-lassial orrespondene. However, the ommon box-ounting algorithm

is numerially hardly apable of analyzing the fratal sets over the neessary range of ε values.

It is, thus, useful to introdue the unertainty algorithm.

10.3.1 Unertainty Algorithm

Numerially, the major drawbak of the box-ounting algorithm is the appropriate sampling

of the fratal set. In order to ompute the fratal dimension from the box-ounting saling

at small values of ε the fratal set must be available in su�ient resolution. Then the ruial

numerial limitations are memory onstraints. The unertainty algorithm overomes these
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Figure 10.6. (a) Finite-time approximation of the repeller Γ
rep

of the standard map

(κ = 2.9) with |Ω| = 0.1 (gray shaded regions). It is deomposed by the partial barrier

(magenta lines) into the regions A1 (green) and A2 (orange). (b, ) Husimi representation

of typial long-lived haoti resonane states (1/h = 1000) assoiated with (b) A1 and ()

A2.
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onerns in a fasinating manner [98,211℄. A point x ∈ Γ is alled ε-ertain if all points in an

ε-neighborhood of x have the same esape time as x, that is, there exists an n ∈ N0 suh that

Bε(x) ⊆ T−n(Ω) where Bε(x) denotes the ball of radius ε entered around x. Otherwise x is

alled ε-unertain. The ε dependene of the phase-spae fration ξ(ε) of ε-unertain points

ontains the partial fratal dimension δ of the trapped sets [98,211℄. Instead of analyzing the

fration ξ(ε) of ε-unertain points diretly, we ompute the fration 1−ξ(ε) of ε-ertain points.
It is essentially governed by

1− ξ(ε) ≈
Nε−1∑

n=0

|T−n(Ω)|, (10.23)

that is the phase-spae fration of forward esaping sets T−n(Ω) resolved by ε. Intuitively

speaking, any point in T−n(Ω) that is ε away from the boundary of T−n(Ω) is ε-ertain. As

long as ε is small ompared to the length sales of T−n(Ω) basially all points in T−n(Ω) are

ε-ertain. From some Nε ∈ N0 on, however, the smallest length sale (unstable diretion) of

T−Nε(Ω) is below ε suh that basially no point of T−n(Ω) is ε-ertain for n ≥ Nε. It is again

illuminating to onsider the example of the Baker map, see Fig. 10.7. Here, the sets Ω and

T−1(Ω) support balls of radius ε while the sets T−n(Ω) for n ≥ Nε = 2 do not. Note that

0

1

0 1

ε

q

p

Figure 10.7. Illustration of ε-ertain (white) and ε-unertain points (orange) of the Baker

map. While the opening Ω (gray) and the �rst forward esaping set T−1(Ω) (light blue)

support balls of radius ε, all forward esaping sets T−n(Ω) with n ≥ Nε = 2 do not. For

instane, the ε-neighborhood of the ε-unertain point in T−2(Ω) (medium blue) has overlap

with T−3(Ω) (dark blue).
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taking into aount ε-gaps around the boundaries of the forward esaping sets beyond the

rough approximation in Eq. (10.23) results in higher-order orretions whih are irrelevant for

our purpose. Using |T−n(Ω)| = e−γnatn(1− e−γnat), f. Eq. (7.37), one obtains

1− ξ(ε) ≈ (1− e−γnat)

Nε−1∑

n=0

e−γnatn (10.24)

= (1− e−γnat)
1− e−γnatNε

1− e−γnat
, (10.25)

suh that

ξ(ε) ≈ e−γnatNε. (10.26)

The number Nε of forward esaping sets resolved by ε obeys

|Ω| e−ΛNε = ε, (10.27)

with the Lyapunov exponent Λ, assuming a uniformly hyperboli map for simpliity. For this,

reall that the set Ω is ontrated by e−Λ
in eah step along the unstable diretion. Again,

see Fig. 10.7 for the ase of the Baker map. Here, the relevant length sale of eah stripe of

T−n(Ω) along the unstable diretion is given by

|Ω| e−Λn =
1

3
e− log(3)n =

(
1

3

)n+1

. (10.28)

The estimate for Nε, Eq. (10.27), gives

Nε =
log(|Ω|)− log(ε)

Λ
. (10.29)

Inserting this into Eq. (10.26), one obtains

ξ(ε) ≈ e−
γ
Λ
log(|Ω|) e

γ
Λ
log(ε) ∼ ε

γ
Λ . (10.30)

Finally, the Kantz�Grassberger relation, Eq. (3.30), reveals the relation,

ξ(ε) ∼ ε1−δ, (ε ց 0) (10.31)

between the phase-spae fration ξ(ε) of ε-unertain points and the partial fratal dimension

δ of the trapped sets [98, 211℄.

The main advantage of this so-alled unertainty algorithm is that we an ompute the

fratal dimension of the trapped sets without omputing the fratal sets themselves. In par-
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tiular, it is not neessary to ompute the �nite-time approximation very aurately or to

store a large sample in order to estimate its fratal dimension on �ne sales. Numerially, it is

usually su�ient and very e�ient to hek whether a point x ∈ Γ is ε-ertain by omparing

the oinidene of esape times with only one point y ∈ Γ for whih ‖x− y‖ = ε. Figure 10.8

impressively demonstrates that the range of ε values available for the unertainty algorithm

exeeds the range of the box-ounting algorithm by several orders of magnitude. For this

omparison we ompute the �nite-time approximation of the repeller for the standard map

with 108 initial points where we disard points whih leave the system within 9 iterations

for A1 and 25 iterations for A2. Note that the iteration times are hosen di�erently owing

to the very di�erent esape times from the two regions, see Se. B.6 for their omputation.

The box-ounting algorithm is applied to this sample. For the unertainty algorithm we de-

termine the fration ξk(ε) of ε-unertain points in region Ak by averaging over 104 random

initial points for eah region. As ξk(ε) ∼ ε1−δk , the ratio ξk(ε)
2/ε2 ∼ ε−2δk

is omparable with

the number N
(k)
b

(ε) of boxes of side length ε oupied by the repeller in region Ak. In the

resaled plot in Fig. 10.8 this orresponds to plotting ξk(ε)
2
. Figure 10.8 learly reveals that

e�etively the fratal dimensions of the repeller on eah side of the partial barrier di�er and

approah a mutual asymptoti saling for small ε. Note that in order to reveal this behavior
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Γrep ∩A1

Γrep ∩A2δ
1 (ε) ≈

0.85

δ1 (ε) ≈ 0.88

δ2(ε) ≈ 0.93

δ2(ε) ≈ 0.89

0.01

0.1

1.0

N
(k)
bc (ε) · ε2

ξk(ε)
2 · fk

ε−2

Figure 10.8. Number N
(k)
b

(ε) of boxes of side length ε oupied by the repeller Γ
rep

of

the standard map (κ = 2.9, |Ω| = 0.1) in region A1 (green solid line) or A2 (orange solid

line). The data are resaled by the trivial saling ε2. This is ompared to the fration

ξk(ε) of ε-unertain points in region A1 (green dots) and A2 (orange dots). The e�etive

partial fratal dimensions δk(ε) of the repeller in region Ak at sale ε are indiated by the

orresponding power-law saling (dashed lines). The values of ξk(ε)
2
are vertially shifted

by fators f1 = 0.72, f2 = 0.25 in order to better demonstrate the mutual saling with the

box-ounting data.
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with the box-ounting algorithm numerially, only having a su�iently large sample of the

repeller (∼ 1015 points) in storage would require at least petabytes of memory (32 bits per

point and oordinate).

10.3.2 Quantum-to-Classial Correspondene

In order to investigate quantum-to-lassial orrespondene between the individual e�etive

fratal dimensions on eah side of the repeller and the number of long-lived resonane states, we

again lassify long-lived resonane states by their loalization. Just as for the partial-barrier

Baker map, the lass Lk, k ∈ {1, 2} ontains a long-lived resonane state ψγ , γ < γ


= 1,

if its relative loal weight ‖Pjψγ‖2/|Aj|, j ∈ {1, 2}, is maximal for region Ak. Note that

for the standard map it is |A1| ≈ 0.6664 and |A2| ≈ 0.2061. Resonane states having 50%

of their weight in deeper hierarhial regions or in the regular region are disarded right

away. Figure 10.9 shows that the overlap in the distribution of the deay rates for the two

loalization lasses Lk is rather small. Aording to this lassi�ation, the number N
(k)
res

(h) of

long-lived haoti resonane states assoiated with Ak is shown in Fig. 10.10 in dependene

of the e�etive size h of Plank's ell (dots). In order to redue �utuations in the data we

perform an average over max{1, ⌊5000 h⌋} di�erent realizations of the quantum standard map

by varying the Bloh phase ϑ
mom

, f. Se. 4.2.1. We restrit ourselves to values of φ/h & 10 suh

that transport aross the partial barrier is quantum mehanially not signi�antly suppressed

in view of the losed system's theory [32℄. The h dependene of N
(k)
res

is ompared to the
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Figure 10.9. Distribution P (γ) of deay rates γ of the standard map (κ = 2.9, |Ω| = 0.1)
for h−1 = 12800. The distribution distinguishes between resonane states of lass L1 loated

in region A1 (green) and resonane states of lass L2 loated in region A2 (orange). Short-

lived states γ > γ


are negleted for the fratal Weyl law.
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Figure 10.10. Number N
(k)
res

(h) (dots) of long-lived resonane states of the standard map

(κ = 2.9, |Ω| = 0.1) vs h−1
, resaled by the trivial saling h. Di�erent olors orrespond

to the lass L of all long-lived resonane states (blue), or the sublasses L1 (green) or L2

(orange) of states assoiated with regions A1 or A2, respetively. The data are averaged over

max{1, ⌊5000h⌋} realizations of the quantum map by varying the Bloh phases ϑ
mom

. The

quantum-mehanial saling is ompared to the box-ounting saling N
(k)
b

(ε) (solid lines;

rosses) of boxes of side length ε that are oupied by the entire repeller Γ
rep

(blue) or by

the repeller Γ
rep

in region A1 (green) or A2 (orange), plotted against ε−2
and resaled by

the trivial saling ε2. The lassial data are omputed numerially by the box-ounting al-

gorithm with a �nite-time approximation of Γ
rep

(rosses) and by the unertainty algorithm

(solid lines). In addition they are vertially shifted by fators f = 0.67, f1 = 0.32, f2 = 1.3
(rosses) and f = 0.8, f1 = 0.23, f2 = 0.34 (solid lines).

box-ounting saling N
(k)
b

(ε) of the repeller in region Ak by identifying the ell area h and ε2.

Additionally, we ompare the number N
(k)
res

(h) of long-lived haoti resonane states with the

fratal saling of the repeller omputed from the unertainty algorithm by identifying N
(k)
b

(ε)

and ξk(ε)
2/ε2. We observe nie agreement between the quantum mehanial and the e�etive

lassial saling behavior both for the data omputed by the box-ounting algorithm (rosses)

and by the unertainty algorithm (solid lines). This holds true for the number of all long-

lived haoti resonane states ompared with fratality of the entire haoti repeller (blue),

and partiularly also for the individual regions A1 (green) and A2 (orange). That is, there

are e�etively individual fratal Weyl laws for the haoti resonane states assoiated with

A1 and A2 determined by the e�etive fratal dimension of the repeller in the orresponding

phase-spae region. Note again that the lassial data are vertially shifted by appropriate

fators in Fig. 10.10 to better demonstrate the mutual saling with the quantum data.
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10.3.3 Multiple Partial Transport Barriers

Our last step in order to study the validity of individual fratal Weyl laws for generi systems

is their veri�ation for the ase that the repeller is deomposed by more than one partial

transport barrier. For the standard map the next level of partial barriers is numerially not

aessible. However, the onstrution of the partial-barrier map in Se. 4.1 is easily adapted

to the ase of more than one partial barrier. The possibility to adapt the system parameters

of the partial-barrier map almost arbitrarily eventually allows us to numerially on�rm the

individual fratal Weyl laws for the ase of two partial barriers.

To this end, we de�ne the partial-barrier map T :=M ◦E◦O that models b partial barriers

at the positions q1 < · · · < qb as straight lines in p diretion, giving a deomposition of phase

spae into b+ 1 regions Ak := [qk−1, qk)× [−1
2
, 1
2
) with q0 := 0 and qb+1 := 1. Again, the map

M desribes the unonneted haoti dynamis within the regions Ak. Here we hoose the

standard map at kiking strength κ = 10 ating individually on eah of the regions Ak after

appropriate resaling. The map E indues a �ux φk between Ak and Ak+1 by exhanging the

regions [qk − φk, qk) × [−1
2
, 1
2
) ⊆ Ak and [qk, qk + φk) × [−1

2
, 1
2
) ⊆ Ak+1. The map O opens

the system by the absorbing region Ω, whih is ontained in region A1. It is onvenient to

use the �xed saling parameters α := |Ak+1|/|Ak| for neighboring areas and ϕ := φk+1/φk for

onseutive �uxes with α ≥ ϕ.

Figure 10.11(a) shows the fratal repeller Γ
rep

of the partial-barrier standard map with

two barriers (magenta lines) de�ned as outlined above. Again, one qualitatively observes an

imbalane of the weights that the repeller ontributes to eah of the three regions Ak. This

suggests di�erent e�etive fratal dimensions as for the standard map and the partial-barrier

Baker map with a single partial barrier. Note that the shown �nite-time approximation of

Γ
rep

is omputed with a di�erent number of iterations for the di�erent regions owing to the

very di�erent esape times, f. Se. B.6. Moreover, also the haoti resonane states of the

orresponding quantum map exhibit loalization within the three regions even though φ1,

φ2 ≪ h, see Fig. 10.11(b�d). Partiularly, there is no resonane state with large weight in

region A1 and A3 and a dip in A2, i.e., the states loalize in one region and fall o� to the next

regions. By lassifying the long-lived resonane states (γ


= 2) aording to their maximal

relative weight per region, we an ompute the number N
(k)
res

(h) of long-lived resonane states

assoiated with Ak. The saling of N
(k)
res

(h) depending on the e�etive size h of the Plank

ell is ompared with the box-ounting saling N
(k)
b

(ε) of the repeller again by identifying h

and ε2 in Fig. 10.12. Here we use the unertainty algorithm for omputing N
(k)
b

(ε), i.e., we

identify N
b

(ε) and ξk(ε)
2/ε2 where ξk(ε) denotes the fration of ε-unertain points in Ak.

Figure 10.12 niely demonstrates quantum-to-lassial orrespondene between the number

of long-lived haoti resonane states and the e�etive fratal saling of the repeller (blue).

Moreover, we �nd individual e�etive fratal Weyl laws for eah of the regions Ak.
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Figure 10.11. (a) Finite-time approximation of the repeller Γ
rep

of the partial-barrier

standard map with two partial barriers (κ = 10, α = 1/2, ϕ = 1/4, |Ω|/|A1| = 1/4,
φ1/|A2| = 1/8); for purpose of visualization approximation times hosen as 7 for A1, 19 for

A2, and 35 for A3. The repeller Γrep is deomposed by the partial barriers (magenta lines)

into the regions A1 (green), A2 (orange), and A3 (purple). (b, , d) Husimi representation

of typial long-lived haoti resonane states (1/h = 1115) assoiated with (b) A1, () A2,

and (d) A3.

Generi Hierarhial Struture

Let us disuss our �ndings in view of a generi system with a mixed phase spae of regular and

haoti regions and an in�nite hierarhy of partial barriers. First, the regular states whih

loalize on the regular region learly obey the usual Weyl law as for losed systems. For

the haoti omponent, we have seen that haoti resonane states are predominantly loated

in one of the hierarhial regions Ak depending on their deay rate. In view of the in�nite

hierarhy we all them hierarhial resonane states of region Ak. Depending on the e�etive

size h of Plank's ell the number N
(k)
res

(h) of long-lived hierarhial resonane states of region

Ak obeys an individual fratal Weyl law,

N (k)
res

(h) ∼ h−δk , (10.32)

with the e�etive partial fratal dimension δk of Γrep

∩Ak. Note that e�etive fratal dimensions

may be almost onstant over several sales of the fratal as the transition probabilities between

hierarhial regions su�iently deep in the hierarhial struture are very small.

In dependene of Plank's onstant h, there are basially four regimes for the saling of
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Figure 10.12. Number N
(k)
res

(h) (dots) of long-lived resonane states of the partial-barrier

standard map (κ = 10, α = 1/2, ϕ = 1/4, |Ω|/|A1| = 1/4, φ1/|A2| = 1/8) vs h−1
, resaled

by the trivial saling h. Di�erent olors orrespond to the lass L of all long-lived resonane

states (blue), or the sublasses L1 (green), L2 (orange), and L3 (purple) of states assoiated

with regions A1, A2, and A3 respetively. The quantum-mehanial saling is ompared to

the box-ounting saling whih is numerially estimated by the unertainty algorithm. The

saling of the number N
(k)
b

(ε) (solid lines) of boxes of side length ε that are oupied by the

entire repeller Γ
rep

(blue) or by the repeller Γ
rep

in region A1 (green), A2 (orange), and A3

(purple), is plotted against ε−2
and resaled by the trivial saling ε2. The lassial data are

vertially shifted by fators f = 1.1, f1 = 0.19, f2 = 0.36, f3 = 0.19.

N
(k)
res

(h) for a spei� region Ak and Eq. (10.32) is partiularly relevant for one of them: (i) As

long as h is too large to resolve region Ak, h > |Ak|, there are no resonane states supported

by Ak. (ii) For h < |Ak| but h larger than the greatest �ux φk aross its surrounding partial

barriers, h > φk, one has resonane states loalized on region Ak with just a small oupling to

other regions, as for losed systems [24, 32℄. Consequently, the number of resonane states in

this regime sales with the usual Weyl law as h−1
. (iii) For h smaller than the �ux, h < φk,

the resonane states still loalize in region Ak and they begin to resolve the fratal struture

of the trapped sets as desribed by γ-natural ims. This is the main regime disussed in

this hapter and desribed by Eq. (10.32) with a fratal dimension δk of the intersetion of

the repeller with region Ak. (iv) Semilassially, h ց 0, the �ne struture of the repeller is

resolved. Here the e�etive fratal dimensions of the repeller within the di�erent regions Ak

all approah a mutual value [98℄. Moreover, the dimension of the repeller approahes two for

an in�nite hierarhial struture of partial barriers [212℄. Hene, we expet an overall Weyl

law for the hierarhial region with the number of resonane states saling as h−1
.

In this hapter we have shown that the hierarhial fratal Weyl laws, Eq. (10.32), desribe



10.3.3 Multiple Partial Transport Barriers 153

the important regime (iii) where hierarhial resonane states predominantly loalize on one

of the regions Ak and resolve the fratal struture of the repeller. Note that Eq. (10.32) also

applies to the other regimes by hoosing the phase-spae regions aording to the predominant

loalization of resonane states.

One may wonder whether the presene of individual e�etive fratal Weyl laws ontradits

the presene of an overall fratal Weyl law. Away from the asymptoti regime, the total number

of long-lived resonane states and all the individual lasses Lk of hierarhial resonane states
annot obey power laws with di�erent exponents at the same time, sine the sum of power

laws is not a power law. Numerially, we annot learly distinguish whih of the lasses gives

rise to a strit power law and whih does not. On the available sales quantum-to-lassial

orrespondene is basially on�rmed for the total number of long-lived resonane states and

for the individual lasses of hierarhial resonane states as well. This results from the fat that

the power-law exponents are very lose to eah other and on the onsidered sales all of them

are slowly varying. Reall that aording to the ommon heuristi argument for the fratal

Weyl one needs to deompose the available phase-spae region by Plank ells and applies a box-

ounting argument. Here, we intuitively apply this argument individually to the hierarhial

resonane states of region Ak and deompose the repeller in that region. However, even if the

repeller in region Ak is approximately homogeneous suh that the box-ounting saling obeys

a lear power law, deviations may arise from the fat that the hierarhial resonane states

are not solely loated in Ak. On the other hand, when applying the argument to the set of all

long-lived resonane states by deomposing the entire repeller, the box-ounting saling will

ertainly not obey a strit power law due to the strong fratal inhomogeneity with respet to

the di�erent regions.

Further Frational Weyl Laws

Referene [94℄ proposes another approah to generalize the fratal Weyl law to the haoti

omponent of open systems with a mixed phase spae. Reall that in this thesis we onentrate

on the topology of the hierarhial struture, expliitly inorporating individual partial barriers.

In ontrast, the approah in Ref. [94℄, already suggested in Ref. [89℄, uses that the survival

probability S of haoti orbits deays as a power law, S(t) ∼ t−γ , γ > 0, in presene of an

in�nite hierarhial struture. Using this quantity, the number N
res

of long-lived resonane

states is determined as follows: The survival probability S(t) of haoti orbits desribes the

area of phase spae whih has not esaped until time t, if we normalize the area of the haoti

phase-spae omponent to unity. It may therefore be interpreted as the area of the available

phase-spae region for resonane states whih live longer than t. For this approah, it is

useful to set the time sale for the seletion of long-lived resonane states by the h-depending

Ehrenfest time τ
Ehr

, i.e., the time sale of quantum-to-lassial orrespondene. In partiular,
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resonane states whih deay faster than τ
Ehr

show ballisti deay whereas resonane states

whih deay slower than τ
Ehr

show quantum-mehanial behavior. With this, the number of

long-lived resonane states is governed by

N
res

(h) ∼ S(τ
Ehr

)

h
. (10.33)

First of all, this approah is apable of reovering the fratal Weyl law for fully haoti

systems. For fully haoti systems, one observes exponential deay, S(t) ∼ e−γt, and the

Ehrenfest time τ
Ehr

obeys

τ
Ehr

≈ logN
open

Λ
, (10.34)

with the number N
open

of open esape hannels and the Lyapunov exponent Λ [48℄. Using

that logN
open

∼ − log h, Eq. (10.33) yields

N
res

(h) ∼ h−1e−γτEhr ∼ h−1e
γ
Λ
log h = h−(1− γ

Λ
). (10.35)

In view of the Kantz�Grassberger relation, Eq. (3.30), this is exatly the fratal Weyl law,

Eq. (10.6).

In Ref. [94℄, this approah is applied to a mixed open system. One has to admit though,

that the onsidered system is not generi as it does not exhibit a hierarhial struture but a

sharply divided phase spae of regular and haoti motion. Still, haoti orbits show stikiness

near the regular struture along with algebrai deay, S(t) ∼ t−γ , whih is attributed to a

family of marginal unstable periodi orbits [213℄. The time sale τ
Ehr

to selet long-lived

resonane states is set to τ
Ehr

∼ h−1
[94℄, see also Refs. [89, 214℄ for a disussion of Ehrenfest

time sales in mixed systems. Using Eq. (10.33) this yields

N
res

(h) ∼ h−1τ−γ
Ehr

∼ hγ−1, (10.36)

that is, the number of long-lived resonane states (with an h-depending uto�) sales as a

power law in h with, in general, frational exponent. A relation with the fratality of the

repeller remains unlear.

In order to understand the relation between this frational Weyl law, Eq. (10.36), and

the hierarhial fratal Weyl laws, Eq. (10.32), it is useful to investigate the set of long-lived

resonane states as used in Eq. (10.36) when applied to a hierarhial struture. To this end,

we �rst review yet another frational Weyl law whih is present even in losed systems with a

generi mixed phase spae. In Ref. [30℄ the authors introdue the lass of hierarhial states

for a losed system with mixed phase spae. Hierarhial states are de�ned as eigenstates that

are trapped behind a partial barrier whih is quantum mehanially not resolved. That is, if
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the �ux aross the n∗
-th partial barrier is of the order of Plank's ell, φn∗ ≈ h, hierarhial

states are supported by all levels An of the hierarhy with n > n∗
. Inserting this resolution

ondition into the saling relation φn ∼ ϕn, f. Se. 3.1, one �nds n∗ ∼ log(h)/ log(ϕ). The

available phase-spae region for hierarhial states therefore sales as [30℄

∑

n>n∗

|An| ∼ αn
∗ ∼ hlog(α)/ log(ϕ) = h

γ
γ+1 , (10.37)

using that the area of the regions An sales as |An| ∼ αn, f. Se. 3.1, and that the power-law

exponent γ of the survival probability S aording to Eq. (3.16). Note that di�erent to its

original formulation in Ref. [30℄ the power-law exponent γ of S here refers to the situation

when the initial onditions are started all over the phase spae, i.e., partiularly also deep

within the hierarhial struture, suh that the γ in Eq. (10.37) refers to γ − 1 for γ from

Eq. (3.16), see disussion in Se. 3.1. Dividing the available phase-spae region, Eq. (10.37),

by the size h of Plank ell, one �nds that the number N
hier

of hierarhial states obeys a

power law with frational exponent,

N
hier

(h) ∼ h−
1

γ+1 . (10.38)

We emphasize that this frational exponent ours in a losed system and is obviously not

determined by a fratal repeller. Now, the same line of arguments applies for the frational

Weyl law for the open mixed system, Eq. (10.36), in presene of a hierarhial struture.

Merely the resolution ondition φn∗ ≈ h needs to be replaed by |An∗|/φn∗ ≈ τn∗ ≈ h−1
. That

is, the time sale of esape assoiated with the region An∗
is of the order of the uto� time

sale τ
Ehr

∼ h−1
. Using the saling of |An| and φn within a generi hierarhy, f. Se. 3.1,

the resolution ondition translates into n∗ ∼ log(h)/ log(ϕ
α
), and the frational Weyl law,

Eq. (10.36), is reovered by

∑

n>n∗

|An| ∼ αn
∗ ∼ hlog(α)/ log(ϕ/α) = hγ , (10.39)

whih gives Eq. (10.36) when divided by h. Again Eq. (3.16) for the power-law exponent γ of

the survival probability S is used as above for the ase of initial onditions deep within the

hierarhy. We stress that the ondition φn/|An| < h is more restritive than φn < h, that is,

there are less regions An whih satisfy the former ondition. Hene, the frational Weyl law

Eq. (10.36) a�ets a subset of hierarhial states. In ontrast, the hierarhial fratal Weyl

laws, Eq. (10.32), fous on resonane states whih are not trapped behind the partial barrier

due to Heisenberg's unertainty, like hierarhial states, but due to the loalization of the

semilassially assoiated γ-natural im.
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Chapter 11

Outlook: Optial Miroavities

The results presented in this thesis motivate further researh in several diretions. Let us

fous on the veri�ation and the appliation of our theory within an experimentally relevant

senario. Partiularly lose at hand is the appliation to optial miroavities [67℄. To this

end there are still a ouple of pitfalls that need to be taken into aount:

Experimental Setup

In this thesis we investigate the loalization of haoti resonane states in phase spae. Ex-

perimentally, however, the ommon measurements provide the real-spae piture of resonane

states only. It is therefore desirable to have a physial system for whih the phase-spae loal-

ization due to a partial transport barrier also indues pronouned signatures in the loalization

in real spae. The billiard system shown in Fig. 11.1 seems promising for this purpose. It

ombines two haoti D-shaped billiards that are oupled by a small hannel. One of the two

billiard omponents admits an opening whih allows for esape of trajetories. The repeller

shown in the lower panel indiates that there are e�etively two di�erent fratal dimensions

on the left and the right side. Note that the phase-spae portrait is restrited to a Poinaré

setion at the lower boundary of the billiard. It seems likely that this imbalane of the repeller

is generated by a partial barrier related to the oupling hannel in the billiard. A phase-spae

loalization of haoti resonane states on the right or the left would diretly orrespond to a

loalization of the resonane states in real spae. An experimental realization of this system

seams feasible as in Ref. [196℄. This open billiard system is designed together with Roland

Ketzmerik.

Partial Absorption and True-Time Dynamis

In order to appropriately desribe optial miroavities one needs to generalize the theory

presented in this thesis to systems with partial absorption and time-ontinuous billiard dy-

namis. Regarding the issue of partial absorption we have already suessfully generalized the
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q

p

Figure 11.1. Open billiard system that ouples two haoti D-shaped billiards by a small

hannel (upper panel). The repeller (lower panel) shown in a Poinaré setion orresponding

to the lower billiard boundary indiates a restritive partial barrier assoiated with the

oupling hannel.

onstrution of γ-natural ims to maps with a onstant absorption oe�ient on the opening

in a projet together with Tobias Beker and Konstantin Clauÿ [185℄. To this end, we use

that a measure ν onverges towards a im under the renormalized open system dynamis.

By adapting the initial measure ν suh that in eah step the relative weight e−γ leaves the

system we obtain a im of deay rate γ. The ruial point is to rigorously aount for the

fat that the forward esaping sets are not disjoint sine the opening is only partial. Still,

this approah needs to be generalized from the onstant absorption oe�ient to an absorp-

tion pro�le. Moreover, it is not lear whether the hierarhial fratal Weyl laws also exist

for systems with partial absorption in general. First important results for the generalization

of fratal Weyl laws to partially absorbing systems without relevant partial barriers an be

found in Refs. [52, 61, 71℄. Another issue that needs to be taken into aount is that optial

miroavities are time-ontinuous systems and not maps. However, this an be overome in

a simple fashion for billiard systems as pointed out in Ref. [56℄. Consider a trajetory in a

billiard. Its dynamis between onseutive hits at the boundary is a trivial free motion and

the hits obey the law of re�etion. Hene, there is a one-to-one orrespondene between the

billiard dynamis and its Poinaré setion using Birkho� oordinates. For the esape dynam-

is it is important to note that the time between onseutive hits at the boundary may vary

depending on the distane between the orresponding boundary points. By keeping trak of

these time intervals during the iteration one an alulate the true esape times from the map

dynamis. In Ref. [56℄ this is referred to as true-time dynamis.
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Higher-Dimensional Systems

So far optial miroavities are usually �at and treated as e�etively two-dimensional. This

orresponds to the two-dimensional sympleti maps studied in this thesis. As soon as the

third dimension is not negligible one needs to onsider four-dimensional sympleti maps [215℄.

At �rst sight the generalization of γ-natural ims to higher-dimensional systems seems to be

rather straightforward. However, the role of partial barriers in higher-dimensional systems

is not ompletely understood [216℄. The partial barriers that are typially relevant in two-

dimensional maps have an insu�ient dimension to deompose four-dimensional phase spae

into almost invariant regions. Perhaps, one-parameter families of suh objets may serve as

appropriate partial barriers for four-dimensional maps. Anyway, reall that for the results in

this thesis we do not take are of the origin of the partial barrier. We fous on the transport

aross some hypersurfae in phase spae whih is haraterized by the sympletiity of the

map. We therefore expet that our results an be generalized to higher-dimensional systems

as long as the onept of partial barriers is appropriately adapted.

Multiple Partial Barriers

Generi systems do not have just a single partial barrier but an entire hierarhy of them. The

main part of this thesis fouses on the in�uene of a single partial barrier. The situation

of more than one partial barrier is brie�y touhed in Chap. 10. Still, for desribing generi

optial miroavities it is neessary to investigate the aggregate behavior of multiple partial

barriers more expliitly. In fat, their aggregate behavior an have fasinating e�ets as brie�y

desribed in the following. Think of the partial-barrier map with for instane two hierarhially

ordered partial barriers as introdued in Se. 10.3.3. The longest-lived resonane states then

loalize on the last phase-spae region, i.e., A3 using the previous notation. As preliminary

results worked out in ollaboration with Jan Wiersig and Julius Kullig suggest, the loalization

of these longest-lived resonane states is enhaned when destroying the �rst barrier. At �rst

sight, this seems surprising as usually the presene of a partial barrier is expeted to enhane

loalization. Here it is the opposite. Intuitively speaking this results from the fat that the

transition probability to enter A3 is lowered due to a larger haoti region adjaent to A3, while

the transition probability to esape from A3 remains the same. Although the weight of the

longest-lived states in A3 is enhaned, their deay rates inrease whih is again in agreement

with the restritive behavior assoiated with partial barriers.

Quantum Deviations

We have seen in Se. 9.2 that the loalization of haoti resonane states and γ-natural ims

with respet to a partial barrier does not neessarily agree if the e�etive size h of Plank's ell
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is not su�iently small. Experimentally relevant energy sales are not neessarily su�iently

semilassial. Already from this point of view it is therefore desirable to understand quantum

deviations in more detail. We have seen two di�erent kinds of deviations: First, if the opening

Ω or the �ux φ aross the partial barrier are not su�iently resolved by h, i.e., |Ω| ≫ h

and φ ≫ h, we observe a loalization enhanement. Numerially, we �nd that in the deeply

quantum-mehanial regime the weight of haoti resonane states on either side of the partial

barrier is determined by Eq. (9.5). The general validity and the derivation of this relation is

not explained so far. For a omplete understanding it seems to be neessary to ombine the

universal quantum loalization transition of losed systems, Se. 5.1, with the lassial results

on the loalization of γ-natural ims. One might suspet that this behavior ould also be

aptured by an appropriate random matrix model negleting fratal properties, suh as the

partial-barrier map with random matries instead of standard or Baker map bloks. Seondly,

we have seen that there may arise deviations when omparing haoti resonane states and

γ-natural ims on �ner sales. Quantum resonane states tend to have pronouned peaks

whih are not aptured in the phase-spae struture of γ-natural ims. From our studies

where we fous on the loalization with respet to a partial barrier, we annot onlude that

suh deviations vanish in the semilassial limit. The underlying question of how quantum

mehanis resolves fratal phase-spae strutures is urrently studied in ollaboration with

Konstantin Clauÿ, Arnd Bäker, and Roland Ketzmerik, f. [217℄. Note that motivated

by studies on the Walsh quantized Baker map, the authors in Ref. [51℄ doubt that there

atually exists a unique im for eah deay rate γ desribing the semilassial limit of quantum

resonane states deaying with γ. Similar observations are made in [85℄. Anyway, in the

onluding remarks in Ref. [51℄, the authors aknowledge that the Walsh quantized Baker

map is a very speial model system that is known for its high degeneraies, and that it is not

lear whether these results are generi. Still, this onern is quite valid and ertainly needs

further investigation.

Symmetries

Symmetries play an important role for optial miroavities. In this thesis, however, we have

not expliitly studied their in�uene. We only took are of preserving generalized time-reversal

invariane, sine the quantum loalization transition for partial barriers in losed systems,

Chap. 5, needs to be adapted otherwise. For future studies regarding optial miroavities,

it might therefore be neessary to investigate to dependene of the loalization of haoti

resonane states on symmetries. Let us spei�ally outline two examples whih demonstrate

the lose relation between symmetries and the loalization transitions studied in this thesis.

First, there is a known phenomenon that seems to perfetly orrespond to the situation

studied here [218�220℄. Its urrent explanation, however, is totally di�erent. Consider a disk-
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like miroavity with a deformation that destroys mirror symmetry. Due to a small oupling

of lokwise and ounterlokwise propagating modes one �nds pairs of resonane states whih

have enhaned weight in either of the subspaes. Given the results from this thesis, one might

suspet that the explanation is as follows: The lokwise and ounterlokwise propagating

subspae orrespond the phase-spae regions of p < 0 and p > 0 where p denotes the angular

momentum. Their small oupling is moderated by a restritive partial barrier at p ≈ 0. Due

to the broken mirror symmetry the absorption on eah side of the partial barrier might di�er

suh that we expet the loalization of haoti resonane states due to the partial barrier. In

ontrast, the explanation in Ref. [219℄ is based on the existene of a so-alled exeptional point

at whih a pair of eigenvalues and the orresponding eigenstates oalese. It will be interesting

to see how both approahes �t together. In partiular, one might learn more about the regime

whih we termed deeply quantum mehanial if the role of the exeptional point is restrited

to quantum mehanis. On the other hand, if the imbalane of lokwise and ounterlokwise

ontributions is observable in the semilassial regime, this might indiate that exeptional

points are relevant also for lassial mehanis in terms of Perron�Frobenius theory.

The seond example shows that our theory on loalization transitions might even apply

to situations where the notion of partial barrier is unusual. The struture of the quantized

partial-barrier map, Se. 4.2, is surprisingly similar to the quantum Andreev map [221℄, whih

desribes partile�hole symmetri Andreev re�etion at the interfae of a normal metal and

a superondutor. There the partial barrier of the partial-barrier map may be interpreted as

oupling the partile and the hole subspae. This suggests that one might apply the theory of

loalization of haoti resonane states due to a partial barrier also to systems with symmetry

related subspaes.
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Chapter 12

Summary

Partial transport barriers in phase spae are known to have a huge in�uene on lassial and

quantum dynamis. They are omnipresent in generi Hamiltonian systems, whih exhibit a

mixed phase spae with both regular and haoti motion. So far the in�uene of partial barriers

has been studied mainly for losed systems. Remarkably a quantum loalization transition for

haoti eigenstates has been found. As long as the �ux φ aross a partial barrier is quantum

mehanially not su�iently resolved by means of Heisenberg's unertainty, φ ≪ h, haoti

eigenstates loalize on either side of the partial barrier. However, if the �ux is resolved, φ≫ h,

haoti eigenstates are equipartitioned as if there were no partial barrier.

In this thesis we observe loalization of haoti resonane states of open systems with

respet to a partial barrier even in the regime of φ ≫ h. We explain this loalization by

introduing the lass of lassial γ-natural onditionally invariant measures. We demonstrate

quantum-to-lassial orrespondene for the transition from equipartition to loalization when

opening the system, and for a transition from loalization on one side of the partial barrier

to loalization on the other side when varying the deay rate γ of the haoti resonane

states. Moreover, we show that the loalization of haoti resonane states on either side of

a partial barrier gives rise to a hierarhy of individual fratal Weyl laws for generi systems

with a hierarhial struture of partial barriers. These results have already been published in

Refs. [33, 34℄.

To this end, we design a dynamial model system, the partial-barrier map, whih mimis

the turnstile mehanism of a partial barrier by deomposing dynamis into the unoupled

mixing dynamis on eah side of the partial barrier and an exhange between both regions.

The partial-barriermap enables us to investigate the in�uene of a single partial barrier without

the omplexity of a generi hierarhial struture. We an adapt the dynamis within eah

subregion whih yields the analytially useful partial-barrier Baker map and the more generi

partial-barrier standard map. For both systems we observe that long-lived haoti resonane

states exhibit a smooth transition from equipartition to loalization on one side of the partial
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barrier for inreasing openness, and that for a single system with �xed opening there is a

transition from loalization on one side of the partial barrier to loalization on the other

side for haoti resonane states with varying deay rate. The fat that both loalization

transitions our in the semilassial regime suggests a lassial origin. Semilassially, haoti

resonane states orrespond to onditionally invariant measures (ims). However, for eah

deay rate γ there exist in�nitely many di�erent ims and it is not lear whih of them is

quantum mehanially relevant. To overome this issue we propose the lass of γ-natural ims.

We numerially on�rm quantum-to-lassial orrespondene between haoti resonane states

and γ-natural ims in terms of their loalization with respet to the partial barrier for the

partial-barrier Baker map, the partial-barrier standard map, and the generi standard map

with one dominant partial barrier. For the partial-barrier Baker map we analytially derive

a predition for the weight of γ-natural ims on either side of the partial barrier. We �nd

exellent agreement with the numerially omputed weight also for the partial-barrier standard

map and reasonably well agreement for the generi standard map. We improve the quality of

the predition in the generi ase by ombining it with numerial estimates.

There are two kinds of harateristi di�erenes between the loalization of haoti res-

onane states and γ-natural ims: If the �ux φ aross the partial barrier is not su�iently

resolved on the sale h of Plank's ell, we obtain a loalization enhanement for resonane

states due to the suppression of transport aross the partial barrier. We numerially �nd a

bound for this loalization enhanement whih we all the deeply quantum-mehanial regime.

Extensive studies of the partial-barrier standard map in extreme parameter regimes support

that this loalization enhanement vanishes for su�iently small values of h. Moreover, we

see that haoti resonane states an exhibit pronouned peaks whih are not aptured by the

�ne struture of γ-natural ims. It is not lear whether these peaks survive in the semilas-

sial limit. Still, these deviations are irrelevant as long as we only distinguish between the

loalization on di�erent sides of the partial barrier.

Our explanation of the semilassial loalization of haoti resonane states due to a partial

barrier enables us to generalize the fratal Weyl law from globally haoti open systems to open

systems with a mixed phase spae. To this end, we assoiate eah haoti resonane state with

a single region of the hierarhial struture depending on its predominant loalization. As the

fratal dimension of the lassial repeller e�etively varies between these regions, we obtain

e�etively an individual fratal Weyl law for eah region. This is numerially on�rmed for the

partial-barrier Baker map, for the partial-barrier standard map with two partial barriers, and

for the generi standard map with a mixed phase spae and one dominating partial barrier.

We argue that there exists a whole hierarhy of individual e�etive fratal Weyl laws in generi

systems assoiated with the hierarhy of partial barriers.
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Appendix A

Abstrat Measure and Integration Theory

This setion is a onise review of abstrat measure theory and integration, based on Refs. [118,

151℄. The olletion of basi de�nitions and results is foused on the onepts used in this

thesis. As the notion of Lebesgue measure and integral naturally appears along with Hilbert

spaes in general ourses on quantum mehanis, we expet the reader to be familiar with

them and refer to the literature otherwise.

De�nition (σ-Algebra) A family Σ of subsets of a nonempty set Γ is alled a σ-algebra (on Γ)

if and only if (i) Γ ∈ Σ, (ii) X ∈ Σ ⇒ Γ\X ∈ Σ, and (iii) Xi ∈ Σ, i ∈ N ⇒ ⋃

i∈NXi ∈ Σ.

Throughout this thesis, we only onsider the Borel σ-algebra (of Rn
) whih is the smallest

σ-algebra ontaining the open sets in Rn
. Note that the Borel σ-algebra also ontains

the fratal Cantor sets. [151, �19℄

De�nition (Measure) A measure µ on a σ-algebra Σ on Γ is a mapping µ : Σ → R≥0 ∪ {∞}
for whih (i) µ(∅) = 0 and whih is (ii) σ-additive, i.e., µ

(⋃

i∈NXi

)
=
∑

i∈N µ(Xi) for

mutually disjoint Xi ∈ Σ. The elements of Σ are alled µ-measurable. In this thesis, we

fous on probability measures having µ(Γ) = 1. [151, �19℄

De�ntion (Integral) The onnetion between measure and integral is provided by de�ning

∫

X
dµ :=

∫
χX dµ := µ(X), where χX denotes the harateristi funtion of X . The

integral for elementary step funtions follows from the linearity of the integral. One has

to deompose ameasurable funtion f : Γ → R, i.e., f−1(X) ∈ Σ for any Borel setX ⊆ R

(e.g., if Σ is the Borel σ-algebra, ontinuous funtions are measurable), into its positive

and negative parts f+ and f−, f = f+ − f−, f± ≥ 0. For the nonnegative funtions f+

and f−, there exists a (pointwise) monotonially inreasing sequene of nonnegative µ-

integrable step funtions ψn, onverging pointwise towards f±. The integral of f± is then

de�ned by

∫

Γ
f± dµ := limn→∞

∫

Γ
ψn dµ if the limit exists (otherwise

∫

Γ
f± dµ := ∞). The

integral f is then de�ned by

∫

Γ
f dµ :=

∫

Γ
f+ dµ −

∫

Γ
f− dµ and f is alled µ-integrable.

The set of µ-integrable funtions is denoted by L1(Γ, µ); the set of equivalene lasses
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in L1(Γ, µ) of funtions that are equal almost everywhere, i.e., up to a set of µ-measure

zero, is denoted by L1(Γ, µ). [151, �20℄

Theorem (Radon�Nikodým Theorem) Let µ, ν be two measures on (Γ,Σ). It is ν absolutely

ontinuous with respet to µ, i.e., µ(X) = 0 ⇒ ν(X) = 0, if and only if there is a

measurable funtion ̺ : Γ → R≥0 so that

ν(X) =

∫

X

̺ dµ (A.1)

for any X ∈ Σ. The funtion ̺, alled the density of ν with respet to µ, is uniquely

determined almost everywhere with respet to µ. For the proof, see Ref. [118, p. 344℄.

De�nition (Pushforward Measure) Let µ be a measure on (Γ1,Σ1) and let Σ2 be a σ-algebra

on Γ2. Moreover, let T : Γ1 → Γ2 be measurable, i.e., T−1(X) ∈ Σ1 if X ∈ Σ2. Then

T∗µ(X) := µ(T−1(X)) for X ∈ Σ2 de�nes a measure on (Γ2,Σ2), alled pushforward

measure. [151, �20.6.4℄

Theorem (Change of Variables Formula) Let µ be a measure on (Γ1,Σ1) and let Σ2 be a

σ-algebra on Γ2. Moreover, let T : Γ1 → Γ2 and f : Γ2 → R be measurable. Then

∫

Γ2

f dT∗µ =

∫

Γ1

f ◦ T dµ, (A.2)

provided that one of the integrals exists. For the speial ase that Γ1 and Γ2 are domains

from Rn
, that T is a C1

-di�eomorphism, i.e., bijetive and together with its inverse on-

tinuously di�erentiable, and that µ(X) :=
∫

X
| det T ′| dΛ, where Λ denotes the Lebesgue

measure, then T∗µ = Λ. For the proof, see Ref. [151, �20.6.4℄.



Appendix B

Misellaneous Proofs and Calulations

B.1 Kernel of Composition

The following proof of Eq. (B.3) is mainly by Marus Waurik.

Lemma. Let X be a vetor spae, P : X → X a linear projetion, and V ⊆ X a

subspae. Then it is

P−1(V ) = kerP + imP ∩ V. (B.1)

Proof. Let x ∈ P−1(V ). Then there exists v ∈ V with Px = v ∈ V ∩ imP . Sine P is a

projetion, it is (1− P )x ∈ kerP . Thus, it is

x = Px+ (1− P )x ∈ (V ∩ imP ) + kerP. (B.2)

On the other hand, let p ∈ kerP . Then it is p ∈ P−1({0}) ⊆ P−1(V ) as V is a vetor

spae. Moreover, for v ∈ imP ∩ V there exists x ∈ X suh that Px = v. Furthermore,

P is a projetion suh that Pv = P 2x = Px = v. Thus, v ∈ P−1(V ). Sine V is a

subspae, it is kerP + imP ∩ V ⊆ P−1(V ). �

Proposition. Let X be a vetor spae, P1 : X → X and P2 : X → X linear

projetions, and let U : X → X be linear. Then it is

kerP1UP2 = kerP2 + imP2 ∩ U−1(kerP1). (B.3)
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Proof. It is

kerP1UP2 = (P1UP2)
−1({0}) = P−1

2

[
U−1

[
P−1
1 ({0})

]]
. (B.4)

The assertion follows immediately from the above lemma. �

B.2 Generating Funtions for Sympleti Maps

Consider a su�iently smooth funtion S : R
2 → R

2
, restrited to some appropriate domain.

Then the map T : Γ → Γ, Γ ⊆ R2
, de�ned by

(Q,P ) = T (q, p) ⇔ p = −∂2S(Q, q), P = ∂1S(Q, q), (B.5)

is sympleti provided that suh a T exists. To this end, we denote T (q, p) =
(
T1(q, p), T2(q, p)

)

suh that

p = −∂2S(T1(q, p), q), (B.6)

T2(q, p) = ∂1S(T1(q, p), q). (B.7)

The map T is sympleti if

detDT (q, p) = ∂1T1(q, p) ∂2T2(q, p)− ∂2T1(q, p) ∂1T2(q, p) = {T1, T2}(q, p) = 1. (B.8)

Di�erentiating Eq. (B.6), we obtain

∂1π2(q, p) = 0 = −∂12S(T1(q, p), q) ∂1T1(q, p)− ∂22S(T1(q, p), q), (B.9)

where the funtion π2 denotes the projetion onto the seond omponent, π2(q, p) := p. This

gives

∂1T1(q, p) = −∂22S(T1(q, p), q)
∂12S(T1(q, p), q)

. (B.10)

Analogously, it is

∂2π2(q, p) = 1 = −∂12S(T1(q, p), q) ∂2T1(q, p), (B.11)

whih yields

∂2T1(q, p) = − 1

∂12S(T1(q, p), q)
. (B.12)
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On the other hand, di�erentiating Eq. (B.7), we �nd

∂1T2(q, p) = ∂11S(T1(q, p), q) ∂1T1(q, p) + ∂21S(T1(q, p), q) (B.13)

= −∂11S(T1(q, p), q)
∂22S(T1(q, p), q)

∂12S(T1(q, p), q)
+ ∂21S(T1(q, p), q), (B.14)

and

∂2T2(q, p) = ∂11S(T1(q, p), q) ∂2T1(q, p) (B.15)

= −∂11S(T1(q, p), q)
∂12S(T1(q, p), q)

. (B.16)

Inserting this into Eq. (B.8) proves the sympletiity of T ,

detDT (q, p) =

[
∂11S · ∂22S
[∂12S]2

+
1

∂12S

(

−∂11S · ∂22S
∂12S

+ ∂21S

)]

(T1(q,p),q)

(B.17)

=
∂21S(T1(q, p), q)

∂12S(T1(q, p), q)
(B.18)

= 1, (B.19)

using Shwarz's theorem.

B.3 Proofs of Convergene towards Invariant Measure

In this setion, we present the main ideas for the proofs of Eqs. (7.5) and (7.7). To this end, it

is useful to introdue the indued operator [173, Chap. 4℄: For a map T : Γ → Γ, the indued

operator KT (also alled omposition or Koopman operator) is de�ned by

KTf := f ◦ T, (B.20)

for funtions f : Γ → R. The operator KT is linear, and if T is invertible and both T and T−1

are measurable, KT is even unitary on L2
. As this immediately provides thoroughly developed

Hilbert spae methods, quite often in mathematis, this onept is favored over the abstrat

measure theory. We onsider sympleti maps T suh that T is invertible (sine det T ′ 6= 0)

and both T and T−1
are measurable. Thus, we are equally allowed to use the same Hilbert

spae methods for the transfer operator FT (also alled Perron�Frobenius operator), de�ned

by

FTf := f ◦ T−1. (B.21)
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Ergodi Systems

Consider a orollary of the mean ergodi theorem by von Neumann [173, Thm. 8.10℄: Let

T : Γ → Γ together with the invariant measure µ be ergodi. Then it is

lim
N→∞

1

N

N−1∑

n=0

F n
T f =

(∫

Γ

f dµ

)

χΓ (B.22)

for eah f ∈ L2(Ω, µ).

This orollary an now be used to derive Eq. (7.5). Given a measure ν that is absolutely

ontinuous with respet to µ with density ̺, it is

1

N

N−1∑

n=0

T n∗ ν(X) =
1

N

N−1∑

n=0

∫

T−n(X)

̺ dµ (B.23)

=
1

N

N−1∑

n=0

∫

X

̺ ◦ T−n

︸ ︷︷ ︸

Fn
T
̺

dµ (B.24)

for all measurable X ⊆ Γ. From Eq. (B.22), we onlude

1

N

N−1∑

n=0

T n∗ ν(X) =

∫

Γ

̺ dµ

︸ ︷︷ ︸

ν(Γ)=1

·
∫

X

dµ

︸ ︷︷ ︸

µ(X)

. (B.25)

Mixing Systems

Consider the following proposition [173, Thm. 9.4℄: Let T : Γ → Γ together with the invariant

measure µ be mixing as de�ned in Eq. (7.6). Then it is

〈F n
T f | g 〉 → 〈 f |χΓ 〉 〈χΓ | g 〉 =

∫

Γ

f dµ ·
∫

Γ

g dµ (B.26)

for all f , g ∈ L2(Ω, µ).

This proposition an now be used to derive Eq. (7.7). Given a measure ν that is absolutely

ontinuous with respet to µ with density ̺, it is

T n∗ ν(X) =

∫

T−n(X)

̺ dµ (B.27)

=

∫

X

̺ ◦ T−n dµ (B.28)

= 〈F n
T ̺ |χX 〉 (B.29)
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for all measurable X ⊆ Γ. From Eq. (B.26), we onlude

T n∗ ν(X) → 〈 ̺ |χΓ 〉 〈χΓ |χX 〉 =
∫

Γ

̺ dµ

︸ ︷︷ ︸

ν(Γ)=1

·
∫

X

dµ

︸ ︷︷ ︸

µ(X)

. (B.30)

B.4 Constrution of Chaoti Resonane States

The following onstrution of haoti resonane states is intended to underline quantum-to-

lassial orrespondene with ims in view of Eq. (7.39).

Proposition. Let U be unitary and P be an orthogonal projetion, P 2 = P , P ∗ = P ;

P0 := 1 − P . Moreover, let ψ0 ∈ imP0 ∩
⋂

n∈N U
nimP and λ ∈ C with |λ| < 1. Then

for ψ :=
∑

n∈N0
λn(UP )∗nψ0 it is

UPψ = λψ. (B.31)

Proof. First of all, we split the sum into

UPψ = UPψ0 +

∞∑

n=1

λnUP (UP )∗nψ0. (B.32)

The �rst term UPψ0 vanishes as

Pψ0 = (1− P0)ψ0 = ψ0 − P0ψ0 = 0, (B.33)

beause ψ0 ∈ imP0, i.e., P0ψ0 = ψ0. We will now show that UP (UP )∗nψ0 = (UP )∗(n−1)ψ0

for n ≥ 1. Note that if we have shown this, Eq. (B.31) follows diretly by an index shift,

UPψ =
∞∑

n=1

λn(UP )∗(n−1)ψ0 = λ
∞∑

n=0

λn(UP )∗nψ0. (B.34)

To this end, we expliitly onsider

UP (UP )∗nψ0 = U PU−1 · · ·PU−1
︸ ︷︷ ︸

n times

ψ0. (B.35)

Using that ψ0 ∈ U imP , whih is equivalent to U−1ψ0 ∈ imP sine U is bijetive, we
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�nd PU−1ψ0 = U−1ψ0 suh that

UP (UP )∗nψ0 = U PU−1 · · ·PU−1
︸ ︷︷ ︸

(n−1) times

U−1ψ0. (B.36)

Analogously, as ψ0 ∈ U2imP we obtain PU−2ψ0 = U−2ψ0 and in just the same way

PU−nψ0 = U−nψ0 for all n ≥ 1. This gives

UP (UP )∗nψ0 = UU−nψ0 = U−(n−1)ψ0. (B.37)

Now the other way around, we �nd

U−(n−1)ψ0 = PU−1 · · ·PU−1
︸ ︷︷ ︸

(n−1) times

ψ0 = (UP )∗(n−1)ψ0, (B.38)

and thus, UP (UP )∗nψ0 = (UP )∗(n−1)ψ0. The onvergene of

∑

n∈N0
λn(UP )∗nψ0 is

assured by the Neumann series sine ‖UP‖ ≤ 1 and |λ| < 1. �

For the interpretation of this result note that we have not disussed whether the set imP0 ∩
⋂

n∈N U
nimP ontains more than just the zero or whether for ψ0 6= 0 one obtains ψ 6= 0. Thus,

the above result should be interpreted �rst of all as an algebrai analogy to ims.

B.5 Proof of Equation (10.18)

Consider the sequene (sn)n∈N of elements

sn := n
√

c1λ
n
1 + c2λ

n
2 , (B.39)

with c1, c2 ∈ R and λ1 > λ2 ≥ 0. We further require that c1λ
n
1 + c2λ

n
2 ≥ 0 whih implies that

c1 > 0. De�ning c
max

= max{|c1|, |c2|}, it is

sn ≤ n
√

c
max

λn1 + c
max

λn2 ≤ n
√

2c
max

λn1 = n
√
2c

max

λ1 → λ1. (B.40)

In order to �nd a lower bound for sn, we use that

c1λ
n
1 + c2λ

n
2 ≥ c1

2
λn1 (B.41)
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for n > log(−2c2/c1)/ log(λ1/λ2) if c2 < 0. If c2 ≥ 0, the above inequality holds true for all

n ∈ N. For su�iently large n, this gives

sn ≥ n

√
c1
2
λn1 = n

√
c1
2
λ1 → λ1. (B.42)

The sandwih theorem thus implies

lim
n→∞

n
√

c1λn1 + c2λn2 = λ1. (B.43)

B.6 Average Esape Times from Markov Chain

The following derivation of average esape times from a Markov hain is based on a alulation

presented in Ref. [123, Se. 4.2℄. Let us onsider a simple Markov hain model with N regions,

A1, . . . , AN , de�ned by the matrix T ∈ RN×N
that ontains the transition probabilities

between neighboring regions. We partiularly allow for esape from the hain. The iteration

of an initial vetor p(0), the i-th omponent of whih desribes the probability to be region

Ai, is then given by

p(n) = T np(0), (n ∈ N0). (B.44)

With this the probability P
s

(n) to survive n iterations when starting in region Ai, 1 ≤ k ≤ N ,

reads

P
s

(n) =

N∑

k=1

〈 ek | T nei 〉, (B.45)

where ek, 1 ≤ k ≤ N , denotes the standard basis in RN
. The probability P

es

(n) to esape

from the system in step n (and not before) when starting in Ai an be obtained from

P
s

(n) = P
s

(n− 1) · x, (B.46)

P
es

(n) = P
s

(n− 1) · (1− x), (B.47)

where x denotes the probability to survive the n-th iteration provided survival under the

previous n− 1 iterations. This gives

P
es

(n) = P
s

(n− 1)− P
s

(n). (B.48)
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Hene, the average time τ
(i)
es

to esape from the system when starting in Ai follows from

τ (i)
es

=

∞∑

n=1

n · P
es

(n) (B.49)

=
∞∑

n=1

n ·
{

N∑

k=1

〈 ek | T n−1ei 〉 −
N∑

k=1

〈 ek | T nei 〉
}

(B.50)

=

N∑

k=1

{

〈 ek |
∞∑

n=1

n · T n−1ei 〉 − 〈 ek |
∞∑

n=1

n · T nei 〉
}

(B.51)

=
N∑

k=1

{

〈 ek |
∞∑

n=0

(n+ 1) · T nei 〉 − 〈 ek |
∞∑

n=0

n · T nei 〉
}

(B.52)

=

N∑

k=1

〈 ek |
∞∑

n=0

T nei 〉 (B.53)

=

N∑

k=1

〈 ek | (1− T )−1ei 〉. (B.54)
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