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Abstract

Classical partial transport barriers govern both classical and quantum dynamics of generic
Hamiltonian systems. Chaotic eigenstates of quantum systems are known to localize on either
side of a partial barrier if the flux connecting the two sides is not resolved by means of
Heisenberg’s uncertainty. Surprisingly, in open systems, in which orbits can escape, chaotic
resonance states exhibit such a localization even if the flux across the partial barrier is quantum
mechanically resolved. We explain this using the concept of conditionally invariant measures
by introducing a new quantum mechanically relevant class of such fractal measures. We
numerically find quantum-to-classical correspondence for localization transitions depending
on the openness of the system and on the decay rate of resonance states. Moreover, we show
that the number of long-lived chaotic resonance states that localize on one particular side
of the partial barrier is described by an individual fractal Weyl law. For a generic phase
space, this implies a hierarchy of fractal Weyl laws, one for each region of the hierarchical

decomposition of phase space.

Zusammenfassung

Klassische partielle Transportbarrieren bestimmen sowohl die klassische als auch die quan-
tenmechanische Dynamik generischer hamiltonscher Systeme. Es ist bekannt, dass chao-
tische Eigenzustinde von Quantensystemen jeweils nur auf einer Seite einer partiellen Barriere
lokalisieren, solange der Fluss, der beide Seiten verbindet, im Sinne der heisenbergschen Un-
schirferelation quantenmechanisch nicht augeldst wird. Uberraschenderweise zeigen chaotische
Resonanzzusténde in offenen Systemen, in denen Trajektorien das System verlassen kénnen,
eine ebensolche Lokalisierung, selbst wenn der Fluss durch die partielle Barriere quanten-
mechanisch aufgeldst ist. Wir erkldren dies mithilfe von bedingt invariaten klassischen Mafien,
indem wir eine neue, quantenmechanisch relevante Klasse solcher fraktalen Mafse einfiihren.
Am Beispiel zweier Lokalisierungsiiberginge in Abhingigkeit der Stirke der Offnung des Sys-
tems und der Zerfallsrate der Resonanzzustinde konnen wir die Korrespondenz von Klassik
und Quantenmechanik numerisch bestétigen. Uberdies stellt sich heraus, dass die Anzahl lang-
lebiger chaotischer Resonanzzustéinde, die auf einer bestimmten Seite der partiellen Barriere
lokalisieren, durch ein individuelles fraktales Weylgesetz beschrieben wird. In einem gene-
rischen gemischten Phasenraum ergibt dies eine Hierarchie fraktaler Weylgesetze, jeweils eines

fiir jede Region der hierarchischen Zerlegung des Phasenraumes.
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Chapter 1
Introduction

The understanding of transport in its various manifestations lies at the heart of physics. One
may think of the historically important examples of Ohm’s law on the electric current through
a conductor [1], of the flow of fluids as described by the Navier-Stokes equation [2]|, or of
the diffusive transfer of heat [2]. Also in modern physics transport phenomena are constantly
subject to research, such as the quantum Hall effect giving rise to quantized values of the Hall
conductivity [3|, superconductivity that implies vanishing electrical resistance [4], or quantum
teleportation by entanglement [5]. Quite often in quantum mechanics, the transport behavior
is deeply related to the localization of eigenstates or wave packets, e.g., strong Anderson
localization due to disorder suppresses diffusion and implies a metal-insulator transition [6,7],
weak localization due to time-reversal invariance yields corrections to the classical Drude
conductivity of a metal [8], localization of edge states due to topological protection is related
to the quantized Hall conductivity [9], and many-body localization in Fock space implies a

metal-insulator transition at finite temperatures for systems of interacting particles [10].

Quantum eigenstates can also exhibit localization due to classically restrictive phase-space
structures [11-34]: A classical Hamiltonian system generically exhibits a mixed phase space
of regular and chaotic motion [35]. The simplest systems to observe this coexistence are two-
dimensional time-discrete symplectic maps, which originate for instance from autonomous
Hamiltonian systems with two degrees of freedom or from time-dependent Hamiltonian sys-
tems with one degree of freedom. In such systems an invariant torus of regular motion is
impenetrable under the time evolution, that is, classical transport from one side of the torus
to the other is completely suppressed [23]. However, quantum mechanics allows for a small
transmission of wave packets across the torus under time evolution by dynamical tunneling [36].
Still, the probability for this process is small and quantum eigenstates are essentially confined
to one side of the torus. In this way, a regular torus is a total barrier for transport in phase
space. On the other hand, there also exist partial transport barriers which are omnipresent in

the chaotic component of a generic mixed phase space and typically occur in an infinite hierar-
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chical pattern [16,17,23]. A partial barrier admits a small classical flux ¢ from one side to the
other. Interestingly, a quantum wave packet can pass the partial barrier if its flux is quantum
mechanically resolved by means of Heisenberg’s uncertainty (¢ > h) but the wave packet
remains on one side if the classical flux is not resolved (¢ < h) [17,19,20,24,31,32,37-39].
Here h refers to an effective size of Planck’s cell. We emphasize that quantum mechanics
can therefore suppress transport that is classically allowed, in contrast to the tunneling pro-
cess [6,32,40,41]. In the same spirit, chaotic eigenstates are equipartitioned with respect to
the partial barrier if ¢ > h, as if there were no partial barrier and they turn out to localize on
either side of the partial transport barrier for ¢ < h. In fact, there is a universal localization

transition from one regime to the other, depending only on the scaling parameter ¢/h [32].

So far, we considered systems isolated from their environment. This is a theoretical ideal-
ization that might be experimentally reasonable on problem specific time or energy scales. The
description of a variety of phenomena, however, explicitly requires to incorporate the openness
of the system such as depolarization, dephasing, or spontaneous emission [42|. In this thesis we
consider a specific kind of open systems, namely systems that allow for escape [33,34,43-61].
Classically, one might think of a two-dimensional billiard with hole in the boundary or of more
general types of scattering systems in which orbits can escape [55,56,62]. Quantum mechan-
ically, this corresponds to a subunitary time-evolution operator where the subunitarity refers
to the fact that its spectrum lies inside the unit circle accounting for the decay [48,63-66].
Eigenstates of such open quantum systems are called resonance states. This theoretical frame-
work is well suited to describe optical microcavities for instance [67]. Their emission pattern
is determined by the phase-space localization of their resonance states [67-75]. As partial
barriers can have a huge influence on the localization of eigenstates in closed systems it is
reasonable to expect that they are also relevant for open systems like optical microcavities,
cf. [75]. However, is the above theory on the localization of eigenstates for closed systems still

relevant in presence of an opening?

In this thesis we demonstrate that chaotic resonance states can localize on either side of
a partial barrier even in the regime of ¢ > h, where in the closed system typical chaotic
eigenstates are equipartitioned. In particular, we find a smooth transition from equipartition
to localization of long-lived resonance states on one side of the partial barrier if the system is
opened. In addition, we find a transition from localization on one side of the partial barrier
to localization on the other side depending on the decay rate of the resonance states. This
phenomenology shows that partial barriers are even more important in open systems than
in closed systems. We explain both localization transitions using classical concepts. Based
on the important work by Keating et al. [49] and Nonnenmacher et al. [51] the classical
counterpart of a quantum resonance state is found to be given by a conditionally invariant

measure (CIM). These measures are invariant under the classical dynamics up to a global



factor compensating the decay [43,50, 56, 76]. However, for each decay rate v there exist
infinitely many different ciMs and it is not clear which of them is quantum mechanically
relevant. We propose the class of «-natural ciMs. By analytical and numerical analysis
of the partial-barrier map, which is a model system with a single partial barrier, and of
the generic standard map with a mixed phase space, we demonstrate quantum-to-classical
correspondence between the localization of chaotic resonance states and of y-natural CIMs.
This explains both observed localization transitions of chaotic resonance states and gives
a fundamental insight into quantum-to-classical correspondence for open systems. Moreover,
using the localization of chaotic resonance states due to partial barriers we generalize the fractal
Weyl law [47,48,51-53,61,71,77-97| on the number of long-lived chaotic resonance states from
chaotic open systems to generic open systems with a mixed phase space. To this end, we
use the fact that the classical fractal repeller, that is, the set of points in phase space which
do not escape under classical time evolution, effectively exhibits individual fractal dimensions
associated with the hierarchical decomposition of phase space by partial barriers [98]. This
gives rise to a hierarchy of fractal Weyl laws. We give a heuristic argument for their presence
and support it numerically for the partial-barrier map and the generic standard map. The
main results of this thesis have already been published in Refs. [33,34].

The manuscript is organized as follows: In Chap. 2 we introduce resonance states and open
quantum maps from a general perspective. The fundamentals on Hamiltonian chaos relevant
for this thesis are discussed in Chap. 3, putting focus on the chaotic transport in presence of
partial barriers and the escape from chaotic systems. Chapter 4 is dedicated to the detailed
introduction of model systems with a single partial barrier that allow for an analytical and a
numerical investigation over a broad range of parameters without the complexity of an infinite
hierarchy of partial barriers. Following a review on the localization transition of chaotic
eigenstates due to a partial barrier in closed systems in Chap. 5, we numerically observe the
two new localization transitions for open systems in Chap. 6. A theoretical discussion on the
semiclassical structure of chaotic resonance states, reviewing known results and introducing
the new class of v-natural CiMs, is presented in Chap. 7. In Chaps. 8 and 9 we investigate
quantum-to-classical correspondence between chaotic resonance states and y-natural cims for
the partial-barrier map and the standard map. Based on these results, we generalize the
fractal Weyl law to generic systems with a mixed phase space in Chap. 10. We give an
extensive outlook in Chap. 11 where we discuss the next steps towards an application of our
results for optical microcavities. Note that in order to appreciate the importance of some
results we explicitly show their proofs or derivations in the main text even if they are rather
technical and not essential for the further understanding. In such cases, the beginning and

end of the proofs is clearly visible in the text and they may therefore be skipped if necessary.
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Chapter 2
Open Quantum Systems

In this chapter we introduce resonance states of open quantum systems from a general perspec-
tive and discuss the relation to eigenvectors of subunitary quantum maps which are studied
throughout this thesis. To this end, we briefly review a common modeling approach for open
quantum systems in Sec. 2.1, which leads to the Lindblad master equation. In Sec. 2.2 we
restrict our considerations to a special kind of open quantum systems, namely scattering sys-
tems, and discuss the phenomenon of resonance scattering. The widely used method to study
resonances in terms of analytic properties of the scattering matrix is described in Sec. 2.3. In
Sec. 2.4 it is outlined how to effectively model a scattering system by a nonhermitian Hamil-
tonian. Note that in Secs. 2.1-2.4 the derivation of some relations is presented only very short
or not at all as these sections are mainly intended to embed our later results in a broader
context. We conclude this chapter by introducing open quantum maps in Sec. 2.5, where we

also discuss the eigenvalue problem for subunitary matrices.

2.1 General Theory

Every physically relevant system interacts with its environment. This interaction can be real-
ized in terms of particle exchange or heat transfer for instance. Note that such an interaction
can be desired or not. Think of a measurement device like a scanning electron microscope
where information about the target object can be extracted from the scattered electrons [99],
or of an optical cavity where losses should be reduced in order to improve the spectral coher-
ence properties of a laser [67]. Full isolation of a physical system is a theoretical idealization
which may be reasonable on certain problem specific time or energy scales.

Let us briefly review the typical theoretical modeling of open quantum systems. An en-
semble of quantum states is described by a density operator p, that is a hermitian, positive
semidefinite operator of unit trace acting on the system’s Hilbert space [100,101]. A reasonable

model for the time evolution, regardless of the specific properties of the system, has to map
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density operators to density operators. For a closed system described by the Hamiltonian H,
this is ensured by von Neumann’s equation,
i

o(t) = —[H, ot)],  0(0) = co, (2.1)

which is solved by the unitary evolution
« 7
ot) = UDeU ()", U(t) = exp HPH] 22)

in the autonomous case [102, Sec. 20.2]. Here U(t)* denotes the adjoint of U(t). Unitary
time evolution, however, is too restrictive to describe typical phenomena in open systems such
as depolarization, dephasing, or spontaneous emission [42, Sec. 6.1.6]. In order to describe
such phenomena, it proves useful to consider the more general class of completely positive,
trace preserving maps. Such maps also ensure that density operators are mapped to density
operators. According to Stinespring’s dilation theorem [103] any completely positive, trace

preserving map &; can be represented by

Q(t) = 515(@0) = treny [U(t)(QO ® QenV)U(t)*] ) (23)

with an appropriate density operator ge,, and a unitary operator U(t) [104, Sec. 3.15]. Intu-
itively speaking, the initial state gy of the open system is embedded in its closed environment
by 09 ® Oeny, the time evolution of which is unitary. Finally, the environmental degrees of
freedom are traced out, giving the evolved density matrix o(¢) in the open subsystem. Inter-
estingly, the explicit time evolution in Eq. (2.3) allows a formulation in terms of a differential
equation, so to say the open system’s equivalent of the von Neumann equation, Eq. (2.1). As-
suming the Markov property, £, = £,&;, one finds a hermitian operator H, an orthonormal

operator basis { Fy}x, and nonnegative coefficients {cy}x such that

. i 1 . *
o(t) = —ﬁ[H, o(t)] + 5 ch([FkQ(t), F] + [Fr, o(t) F']), (2.4)
k
conse;‘:ative dissi;)rative

which contains a dissipative contribution in addition to the conservative von Neumann term
as indicated [105,106]. Equation (2.4) is known as the Lindblad master equation in diagonal

form.
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2.2 Resonance Scattering

Let us focus on a special category of open systems, namely scattering systems. The main
idea of the scattering process is as follows [107-110]: One or more free particles approach
a bounded region where they interact with an external potential, by collisions, or chemical
reactions for example. The products then escape from the interaction region again as free
particles. Although the general framework outlined above in Sec. 2.1 is in principle able to

describe scattering processes, cf. Refs. [111,112], there are more adapted methods.

Consider the stationary Schrodinger equation,

h? h?k?
——A k,r)= k 2.
gl V)| (k) = (), (2:5)
for a nonrelativistic particle of mass m and energy E = h?k?/(2m) subject to a central poten-
tial V with lim, ., 7V (r) = 0. It has solutions of the form vy, (k,t) = r~ us(k, 7)Y (9, @)
where Y, denotes the spherical harmonics and wu, solves the radial Schrodinger equation,

uy (k,r) — (@ + QH—TZV(T)) ug(k,7) + k*ug(k,7) = 0, (2.6)

where the derivative is taken with respect to the variable r [100, §32]. Depending on the
specific shape of V, the solutions of Eq. (2.5) correspond to bound states for discrete energy
eigenvalues of £ < 0, or to unbound scattering states for the continuous spectrum with
E > 0[100, §10]. However, there can exist scattering states which are particularly important.
Scattering states tunneling through a potential barrier for instance are associated with an
enhanced life time compared to scattering states with energy above the barrier threshold [100,
§134], see illustration in Fig. 2.1. Such states are usually called resonance states, quasibound
states, quasistationary states, or metastable states. They admit quasidiscrete energies within
the continuous spectrum [100, §134|. Remarkably, resonance states give rise to characteristic

peaks in the experimentally observable scattering cross section [100, §145].

In order to understand the appearance of these characteristic peaks, let us consider the
historically important example of scattering of slow neutrons at a nucleus [113], where we
closely follow the discussion in Sections T.3 and T.4 from Ref. [107]. In this case, it is useful
to assume that the neutron does not interact with the nucleus for r > R, with the radius R
of the nuclear sphere. Dealing with slow neutrons, the scattering process is dominated by the

s-wave contribution, ¢ = 0. Equation (2.6) thus reads

u”(k,7) + K*u(k,7) =0 (2.7)
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V(r)| resonance
state

/

oo

bound
states

Figure 2.1. Sketch of central potential V' with tunneling barrier (thick solid line). Discrete
levels with energy below zero correspond to bound states while quasidiscrete levels with
energy above zero but below the tunneling threshold correspond to long-lived resonance
states.

for r > R, dropping the fixed index ¢. This is solved by
u(k,r) = A(e™™ — S(k)e™") (2.8)

with an appropriate factor A and the scattering matrix element S(k). The scattering matrix
therefore describes how the incident wave is affected by the target depending on the wave
number k. Defining f(k) := Ru/(k, R)/u(k, R) and inserting the solution u from Eq. (2.8),

the scattering matrix element is given by

f(k) +ikR o~ 2kR

Sk) = f(k) — ikR

(2.9)

With this, the experimentally relevant cross section! o = (7/k?) |1 — S(k)|* for elastic scat-

tering reads

T | —2ikR ik ?
- = | ki _ 2.1
g k2 f(k’)—’ik‘R+(6 ) ) ( 0)
Ares Apot

where A, is referred to as potential scattering term and A,es implies a resonance phenomenon.

To demonstrate this, a zero E,. of f is considered, where f is now understood as a function

INote that there is a factor of m missing in Eq. (A37) in Ref. [107]. The correct expression may be found
in Ref. [108, Sec. 2.6] or in Ref. [100, §142].
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of energy, £ = h*k?/(2m). A first order Taylor expansion of f in the vicinity of E.e yields

o

Ares = 2.11
(E — Bres) + 1% (2.11)
with I' := —2kR/ f'(Eres). Close to Eies, Apot is small compared to A,es such that
T r (2.12)
o~ — o )
kQ (E - Eres>2 + %

This is the characteristic Breit-Wigner profile of isolated peaks in the scattering cross sec-
tion. [107]

The intuitive interpretation of this resonance peak is based on Bohr’s compound nucleus
model [114], see also Refs. [107, Sec. T.2| or [100, §145]. At the resonance energy FEye the
incoming neutron together with the target nucleus forms a compound nucleus in an excited
state [107]. The energy of the incoming neutron is then distributed over all constituents such
that a single particle does not have the energy necessary to escape from the compound [100].
Statistically, it takes a relatively long time until the event that sufficient energy is stored in
a single particle of the compound which is then able to escape [100]. The compound nucleus,
thus, represents a long-lived quasibound state, also called resonance state. The correspond-
ing resonance peaks in the scattering cross section are indeed observed in experiment, see
Fig. 2.2 [115, Fig. 6].

O, IN BARNS

0.44 1L.00

1.66 I.:84 I.SII l ) l J

0 02 04 06 08 10 2 14 16 1B 20 22 24 26 28 30 32 34 36
NEUTRON ENERGY IN MEV

Figure 2.2. The experimentally measured total cross section of oxygen depending on
the energy of the incoming neutrons exhibits clear resonance peaks. Reprinted figure with
permission from [C. K. Bockelman, D. W. Miller, R. K. Adair, and H. H. Barschall, Phys.
Rev. 84, 69 (1951)] Copyright (2016) by the American Physical Society.
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2.3 Analytic Properties of the Scattering Matrix

A common approach to investigate both resonance states as well as bound states on the same
footing is the study of the analytic properties of the scattering matrix. To this end, the
scattering matrix S is considered as a function of complex wave number k£ or of complex
energy E, and one seeks for its poles within the complex plane. For the present case of s-wave
scattering, it is useful to introduce Jost functions, see Refs. [110, Sec. 12.1] or [109, Secs. 11.1,
11.2|. It can be shown that physical s-wave scattering solutions of Eq. (2.6) obey the boundary
conditions [100, §33|

u(k,0) = 0, (2.13a)
u(k,r) ~ sin(kr+9), (r — o0) (2.13b)

with the scattering phase shift §. There are also other solutions which obey the less restrictive

regularity condition [109,110]

u(k,0) = 0, (2.14a)
W' (k,0) = 1. (2.14D)

These regular solutions turn out to be useful as they allow for a specific representation of the

scattering matrix. A regular solution can asymptotically be expressed as

u(k,r) ~ ﬁ [F (k)™ — F (k)e ], (r — o0) (2.15)

with the analytic Jost function .% [110]>. Hence, comparing Eqs. (2.8) and (2.15), the scatter-

ing matrix element reads

S(k) = ‘Z(—;), (2.16)

—~

such that the poles of S are determined by the zeros of the analytic function .. Given kg
such that .Z (ko) = 0, the regular solution u from Eq. (2.15) scales as e™*" which is a square-
integrable bound solution for Imky > 0 and unbound for Imky < 0. For bound solutions
which have real negative energy E = h?k?/(2m), it is necessarily Re ko = 0. For unbound
solutions, however, the real part of kg does not have to vanish. Due to a symmetry of %,
the poles for Im ky < 0 appear in pairs on both sides of the imaginary axis [109]. Note that

there are also poles with Reky = 0 and Im k¢ < 0, which correspond to so-called virtual or

2Note that there are different versions of the Jost function .%# used in the literature varying in the sign of
their argument k, cf. Refs. [109,110]. Depending on this sign, its zeros associated with bound states are also
related to Imky < 0 and, vice versa, for the unbound states to Imko > 0 [109]. We follow the notation in
Ref. [110], such that the zeros of # coincide with the position of the poles of S.
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antibound states, but they are of no relevance here, cf. [110, Sec. 12.1.4] or [116, Sec. 3.6.7].
The described typical structure of poles of S(k) is sketched in Fig. 2.3(a). In order to see
the relation of poles in S(k) for Im ky < 0 to resonance peaks in the scattering cross section,
Eq. (2.12), it is useful to represent the scattering matrix in terms of the energy E. To this

end, it is necessary to distinguish between the two different Riemann sheets

ko= \/%exp {z argQ(E)], (2.17a)
e (10, oy

the first of which is related to the bound solutions (also called physical sheet), Im &k > 0, while

the second describes unbound solutions (also called unphysical sheet), Im & < 0. Note that by
convention, the argument arg(FE) of the complex number F is in [0, 27). The position of poles
of the scattering matrix element as a function of E, distinguishing between both Riemann
sheets, is sketched in Fig. 2.3(b).

Let us focus again on the relation of poles in the first sheet to bound states. It is useful
to note, that the scattering matrix is more generally defined by S = Q* Q, with the Mgller
operators Qy = 1+(E+ie—H)™ 'V, (¢ \( 0), in terms of the Hamiltonian H = —h?/(2m)A+V

first sheet second sheet
(a) 1 (b) 1 2
Im k ImF
0 0
-1 -1 0
-1 0 Rek 1 -1 0 Re E 1

Figure 2.3. (a) Sketch of the position of poles in the scattering matrix element S(k) as a
function of complex wave number k. The color in the background represents the argument
of the complex number k, see color code on the right. Poles on the imaginary axis in
the physical sheet, Imk > 0, visualized by circles, correspond to bound states. Poles off
the imaginary axis in the unphysical sheet, Im k < 0, visualized by crosses, correspond to
resonance states. Note that the resonance poles come in pairs of a decaying resonance state
(black) and an increasing resonance state (white). (b) Position of poles in the scattering
matrix element as a function of complex energy, E ~ k2, distinguishing between the first
sheet (left), Eq. (2.17a), and the second sheet (right; same axes as first sheet), Eq. (2.17b).
The color in the background represents the argument of k to demonstrate the relation to

(a).
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in the Lippmann-Schwinger representation [110]. Hence, poles of the scattering matrix are
directly related to poles of the resolvent (E — H)™! [117, Sec. XI.6], which is an analytic
operator-valued function of the energy £ on the complement C\ o(H) of the spectrum o(H) of
H [118, Thm. VIIL.2]. The discrete spectrum for £ < 0 on the real axis, associated with bound
states, therefore admits isolated singularities to the resolvent and, thus, also to the scattering
matrix. Likewise, the continuous spectrum for real values £ > 0 admits a branch cut as can be
seen in Fig. 2.3(b). It is still possible to find an analytical (or meromorphic) continuation from
the upper half plane to the lower half plane across the branch cut by switching to the second
sheet [119, Sec. XII.6], see the color plot in the background of Fig. 2.3(b, ¢). Consider a well
isolated simple pole at E = Es — i['/2 on the second sheet. The representation o = 4 |.A|?
of the elastic scattering cross section ¢ in terms of the partial s-wave scattering amplitude
A = (S —1)/(2ik) [100, §123], suggests to investigate the influence of the second sheet pole
on A. A Laurent expansion of A around E = Es — i['/2 gives

A(E) = ¢ AL (B), (2.18)

E — (Bres —i%)

where ¢ denotes the residue of A at the pole and Ay, is the analytic background in an appropri-
ate neighborhood of the pole [119, Sec. XII.6]. If the background is negligible, this imposes the
Breit—Wigner resonance peak of width T' in the scattering cross section, cf. Eq. (2.12). Hence,
simple poles in the second sheet of the scattering matrix are interpreted as resonances. It can
be seen by time evolution that the norm of a resonance state ¢ at energy F = Eo —i['/2 can

describe decay or capture depending on the sign of T,

le™# 5|2 = e, (2.19)
Such decay behavior is typically also characterized by the decay rate v = I'/h or the life time
7 = 1/7v. As a consequence of Heisenberg’s energy—time uncertainty, AE At ~ h, the finite
life time 7 of a resonance state comes along with the finite width I' of the quasidiscrete energy
level [100, §44]. In this work, we only study decaying resonance states with I' > 0 in the lower
half plane of the second sheet, cf. Fig. 2.3(b).

2.4 Effective Nonhermitian Hamiltonian

Of particular importance for the interpretation of this thesis is the fact that the scattering
problem can be described in terms of an effective nonhermitian Hamiltonian, or equivalently
in terms of an effective subunitary time-evolution operator. There are different ways to obtain
this effective Hamiltonian, a prominent one of which is known as complex scaling [119, Sec.

XII.6]. Here, we review a formally more direct way. One starts with a Caley transform of the
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scattering matrix,
S =(1—-iK)(1+4iK)™", (2.20)

giving the reactance matrix K = —i(1 — S)(1 + S)~! [110]. The crucial idea is then to
decompose the full scattering system into the bounded interaction region, described by an
internal closed-system Hamiltonian H;,, and its coupling to open decay channels, mediated
by the matrix W, which depends on energy in general [63-65|. This allows to express the

reactance matrix in form of
K(E)=nW*(E)(E — Him)*W(E). (2.21)

It is typically assumed that W only depends weakly on energy, which eventually leads to the
Mahaux—Weidenmiiller formula [64, 65,120,

S(E)=1-2mi W*(E — Heg) "W, (2.22)
with the nonhermitian effective Hamiltonian
Heg = Hipy — imtWW™. (2.23)

The derivation of Eq. (2.22) from Eqs. (2.20) and (2.21) can be found for instance in Ref. [121,
Sec. IL.B| or in [64]. Regarding Eq. (2.22), it is evident that the eigenvalues of Heg correspond
to the poles of S. Since the operator WW™ is positive, the spectrum of Hg lies in the lower
half of the complex plane including the real axis and, thus, describes decaying resonance
states and also bound states. Note that this nonhermitian effective Hamiltonian is not to
be interpreted as an observable but rather as an auxiliary quantity to describe the scattering
process. We point out that there is a very similar expression for the scattering matrix in terms

of an effective subunitary time-evolution operator [66].

2.5 Open Quantum Maps

In this thesis we study time discrete open quantum systems. They may be interpreted as scat-
tering processes for which the interaction between the scattering region and the environment
only acts at discrete equidistant times [66, Sec. 3.4.1]. Then the stroboscopic time evolution
is characterized by the iteration of the subunitary operator U,, = UP, where the unitary
operator U describes the closed system’s time evolution between the opening events that are
mediated by the orthogonal projection operator P which projects onto the subspace that re-

mains within the scattering region. Since U, is a partial isometry, its spectrum lies inside the
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unit circle in the complex plane [122], which motivates the notion of subunitarity. Let A € C
be such an eigenvalue of U,, with modulus |A\| < 1, together with a corresponding normalized

eigenvector ¢). Then the time evolution of 1),

1T lI* = AP 9] = e, (2.24)
gives an exponential decay of the norm with decay rate v = —2log|\| in agreement with
Eq. (2.19).

The definition of the subunitary time-evolution operator U,, = UP is a convention as we
could have equally well chosen U,, = PU or U,, = PUP. In fact, all three projection types
are used in the literature [48,49,94]. However, we can show that the set of eigenvalues for UP,
PU, and PUP are equal. Hence, regarding decay in open systems the choice of the type of
projection is not relevant. This result is not even restricted to unitary operators U but holds

for any bijective, bounded linear operator on some separable Hilbert space.

Proposition. Let U be a bijective, bounded linear operator on the Hilbert space H
and let P be a projection, i.e., P> = P. Then the point spectra o(UP), o(PU), and
o(PUP) coincide.

Proof. The following proof is worked out in collaboration with Sascha Trostorff. At first,
we separately answer the question whether zero is an eigenvalue. Recall that for any

bounded linear operator A on H, it is

ANeo(A) &  FYeH, v#0: A=\ (2.25)
< dimker(A — A1) >0, (2.26)

with
ker A:={yp e H : Ay =0}. (2.27)

To decide whether zero is an eigenvalue of UP, PU, and PU P, we consider

ker UP =ker P,  ker PU = U 'ker P, (2.28)
and

ker PUP = ker P +1im PN U ' ker P, (2.29)

using that U is bijective, see Appendix B.1. If zero is an element of one of the three



2.5 Open Quantum Maps 15

considered point spectra, it is necessarily dimker P > 0. Then, however, we find
dimker UP > 0, dimker PU > 0, dimker PUP > 0, (2.30)

which implies that 0 € o(UP) N o(PU) No(PUP).

Now, let A € o(UP) with A\ # 0. Then there exists ¢ € H, 10 # 0 such that UPy =
M. Multiplication from the left by P gives PU(Pv) = APi. Since A\ # 0, it is
¥ € ker UP = ker P such that Py # 0 and \ € o(PU). Furthermore, using P? = P we
find PUP(Pvy) = APy with Py # 0 and, thus, A € o(PUP).

On the other hand, let A € o(PU) with A # 0. Then there exists ¢ € H, 1) # 0 such that
PUy = M. Multiplication from the left by U gives UP(Uv) = AU, where Uy # 0
since U is bijective. Thus, A € o(UP) which is o(UP) = o(PU).

Finally, let A € o(PUP) with A # 0. Then there exists v € H, v # 0 such that
PU P = \ip. Multiplication from the left by P and using P? = P gives PU(P1) = A\P.
Since A\ # 0, it is ¢ & ker PUP D ker P such that Py # 0 and A € o(PU) = o(UP).
To conclude, this gives o(UP) = o(PU) = o(PUP). O

Throughout this thesis we use the projection type UP. However, for numerical purposes it is
more convenient to diagonalize PU P, which allows for truncation, and thus, for a reduction of
the matrix dimension. Any eigenvalue A and associated eigenvector 1) of PUP then provides
the eigenvalue A\ of UP associated with the eigenvector Ut. To see this, it is important to
note that P = 1) because

P = %PUPw = %PQUPQ/; =P (%PUPQ/}) = Py, (2.31)
such that
UP(Uv) = UP(UP) = U(PUP) = AU (2.32)

As the eigenvalue problem of nonhermitian Hamiltonians or subunitary time-evolution oper-
ators is more involved than for hermitian or unitary operators, we will revisit the general
eigenvalue problem for finite-dimensional matrices in the following. In this overview we follow
the discussion in Ref. [123, Sec. 2.2.2].

To this end, let us consider the linear map K : C¥ — CV. A solution of

Ky =\ (2.33)

is given by a pair of an eigenvalue A\ € C and a corresponding eigenvector 1) € CV. Alterna-

tively, one may consider the eigenvalue problem on the dual space (CV)* of CV, that is the
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space of linear functionals on CV. Using the adjoint map K* : (CV)* — (CN)*, f+— fo K,

of K, the dual eigenvalue problem reads

K*(f) = nf, (2:34)

where 1 € C and f € (CV)*. Typically, the dual eigenvalue problem is also formulated in
CY by virtue of the canonical isomorphism between CV and its dual that is provided by the
standard scalar product in CV: For any f € (CV)* there exists a unique vector ¢ € CV with
for(+) == f() = (¢'|-) according to the Riesz representation theorem [118, Sec. I1.2|. Hence,
Eq. (2.34) gives

* def
(K" f) (0) = fulKe)=(J'|Kp)
(2.34) _
=" pfw(p) =p{d' @) = (I ¢) (2.35)
for all o € CV, where i denotes the complex conjugate of j. Identifying the adjoint map K*

with its matrix representation K* = FT, the dual eigenvalue problem formulated in CV reads
K*)' =)’ (2.36)

Due to the representation (¢’ | K(-)) = pu(¢'|-) one distinguishes between the so-called left
eigenvector 1" := ¢/ of K associated with the eigenvalue p and the right eigenvector Y& := )
from Eq. (2.33) of K associated with the eigenvalue A [124, Chap. 6]. As can be seen by

0 = det(K — A1) = det (K — A1) = det(K* — A1) (2.37)

the spectra of K and K* are complex conjugate to each other. Following Ref. [125], we define
the matrices R and L the columns of which contain the right or left eigenvectors of K, and
the diagonal matrix A containing the corresponding eigenvalues. Then Eqs. (2.33) and (2.36)

are in matrix notation given by

KR = RA, (2.38a)

K*L = LA, (2.38D)

Thus, for hermitian matrices, K* = K, with real spectrum, right and left eigenspaces coincide.
The same holds true for unitary matrices, K* = K~', with A = A~!, for that

KL = KLA\ = KK*LA = LA. (2.39)

In general, however, there is no simple relation between right and left eigenvectors. We

emphasize that the eigenvectors of K do not have to form an orthogonal basis unless K is



2.5 Open Quantum Maps 17

hermitian or unitary. For a basis expansion in terms of eigenvectors it is therefore useful to
recognize that right and left eigenvectors form a pair of dual bases as follows [126]. Consider
the adjoint of Eq. (2.38b), i.e., L*K = AL*. Multiplying both sides with R from the right
hand side, and multiplying both sides of Eq. (2.38a) by L* from the left hand side yields

L"KR =AL"R = L"RA, (2.40)
that is
[L*R,A] = 0. (2.41)

Since A is a diagonal matrix, L*R must therefore be a diagonal matrix as well. Thus, from

the off-diagonal elements of L*R one finds

N N
(L'R)a =Y LRy =Y LiRy = (¢r|9f) =0  (i#k) (2.42)
j=1 j=1
This is the essential property of dual bases. By appropriate normalization, it is possible to
choose
gl = llvill, (velvd) =1  (Q1<k<N), (2.43)

as commonly used more in the mathematical literature. From the physics point of view, it is

more convenient to normalize the eigenvectors by
logll =1, [oill=1 (1<k<N), (2.44)

such that (¢ |¥F) is not a fixed value independent of k. This choice allows for the proba-
bilistic quantum-mechanical interpretation of right and left eigenvectors. Assuming that K is
diagonalizable, the expansion of a vector ¢ € CV in terms of right or left eigenvectors thus

reads

N N
{Urle) R = (Ve le) 1 2.45
=2 Tanery T 2 T reny (245)
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Chapter 3
Chaotic Dynamics

In the previous chapter on open quantum system, we mainly focused on how to describe the
interaction of a confined scattering region with its environment. In this chapter we specify the
kind of dynamics that we assume within the scattering region in terms of classical mechanics.
To this end we provide an overview on the classical theory of Hamiltonian dynamical systems
in Sec. 3.1. In particular, we discuss the generic structure of a mixed phase space with regions
of regular and chaotic motion. The difference between chaotic dynamics in globally chaotic
systems and the chaotic dynamics within the chaotic part of a generic mixed phase space
is presented in Sec. 3.2. We particularly consider the influence of the generic hierarchy of
partial transport barriers. The bridge to open systems is built in Sec. 3.3. There we introduce
classical open maps and discuss the structure of sets that are trapped although the system is

open. It turns out that the trapped sets of chaotic systems have fractal properties.

3.1 Generic Hamiltonian Dynamics

A common formulation of the theory of classical mechanics is the Hamiltonian approach as it

nicely paves the way towards the theory of quantum mechanics. The Hamiltonian equations

of motion,
OH OH
(1) = =—(q(t), p(t), 1), w(t) = —=——(q(t), p(t), 1), 3.1
i, (t) 8pk(qr()p() ), Be(t) aqk(q()p() ) (3.1)
determine the evolution of generalized position and momentum coordinates, ¢ = (qi, ..., qy)

and p = (p1, ..., py), by the Hamilton function H : I'x .7 — R. This defines a dynamical sys-
tem with f degrees of freedom on the extended phase space I'x .7 C R* xR, cf. Refs. [127,128].
In general the phase space I' is considered to be a symplectic manifold [129-132]. Darboux’s
theorem, however, allows us to treat I" locally as a flat Euclidean vector space [129,130]. In this

thesis we study two-dimensional, time-discrete, symplectic maps. They originate for instance
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from restricting the time-continuous dynamics of a time-independent Hamilton function with
f = 2 from the energy shell to a Poincaré section, or from stroboscopic solutions of a (period-
ically) time-dependent Hamilton function with f =1 [133]. A diffeomorphism 7': ' — T" on
a two-dimensional symplectic manifold I' with the canonical differential form w = dgq A dp is
called symplectic if w remains invariant under the pullback by virtue of T [129,130]. In charts

of the R?, where w is represented by the skew-symmetric matrix

0 1
(%) o

symplecticity of T" means that
DT|FQDT|, =Q (3.3)

for all x € T'. Here DT|, denotes the Jacobian of T" at the point x. Especially for the

considered two-dimensional case, Eq. (3.3) reduces to [23]
det DT|, = +1 (x el). (3.4)

This admits the intuitive interpretation that a symplectic map is characterized by preserving
the phase-space volume and the orientation. Note that this simple interpretation holds true
only for the two-dimensional case. Remarkably, an equivalent formulation of Eq. (3.4) is that
the two eigenvalues of DT|, multiply to unity. Hence, if X is an eigenvalue of DT, so is A™%.
Moreover, since DT, is real, if A is an eigenvalue then X lies in the spectrum as well. As the
two eigenvalues of DT, characterize the linearized dynamics around any fixed point = € T,
T(z) = x, the spectral restrictions due to symplecticity imply restrictions on the possible types
of fixed points. It turns out that symplectic two-dimensional maps only allow for elliptic (A

imaginary), hyperbolic () real), or parabolic (A equals +1 or —1) fixed points [23].

If there exists a constant of motion, that is an observable G : T' — R for which globally
G oT = G, then the dynamical system is called integrable or regular [132]. In this case,
the Arnold—Liouville theorem says that the motion takes place on one-dimensional tori when
looked at in action—angle variables [130,132]. On the other hand, if there is no such constant
of motion, orbits are not confined to one-dimensional submanifolds of I'. The dynamics is
then referred to as chaotic or irregular. Note that, typically, the absence of regular motion
comes along with a sensitive dependence on initial conditions which motivates the notion
of deterministic chaos. This is usually formulated in terms of the Lyapunov exponent: In
general, the dynamical behavior of points started in a neighborhood of x € T" is not isotropic

but depends on the direction. Characteristic directions are given by the eigenvectors of the
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Jacobian of T" at x. Let Aj(x,n) and Ay(z,n) be the two eigenvalues of

1
n

[DT|zn-1(z) - ... DT |7() - DT|,] ™. (3.5)
The characteristic Lyapunov exponents in z are defined by [133]

AD (z) = nlglgo log |\i(z,n)], (i € {1,2}). (3.6)
Note that for symplectic maps the sum of both Lyapunov exponents is zero. The greater of
the two exponents is denoted by A(x), and if it is essentially independent of x the functional
dependence is also dropped in the notation. The notion of chaotic dynamics is usually reserved
for motion with a nonzero Lyapunov exponent. In general symplectic maps or Hamiltonian
dynamical systems are not globally regular or chaotic. A generic phase space rather exhibits
both regions of regular motion and regions of chaotic motion [35]. The involved structure
of such a mixed phase space is governed by the Kolgomorov—Arnold-Moser theorem and the
Poincaré-Birkhoff theorem [132,133].

In order to illustrate the generic mixed phase space, let us consider the Chirikov standard
map as a popular example for generic two-dimensional symplectic maps [134]. It is defined by

the time-periodically kicked Hamilton function

H(q,p,t)=T(p)+V(g) Y _ 5t —n), (3.7)

nez

where T (p) = p?/2 denotes the kinetic term and V(q) = [r/(47?)] cos(2mq) denotes the poten-
tial term with the kicking strength parameter x. By solving Hamilton’s equations of motion

stroboscopically at times n € Z, one obtains the standard map

q+p+ j=sin(2mrg) mod 1
T((Lp) = & . . * K s 1 1] (38)
{p + = [sm(27rq) + sin (27T(q +p+5 sm(27rq)))} +5 mod 1} -3

Intuitively, the chosen stroboscopic times correspond to looking at the dynamics always after
half a kick, which nicely symmetrizes the phase-space portraits. Since the map intrinsically
exhibits periodicity in phase space, it is convenient to restrict the standard map, Eq. (3.8),
to the torus with unit cell [0,1) x [—%, %) Depending on the kicking strength x, the stan-
dard map exhibits the typical patterns of regular, mixed, and chaotic dynamics, see Fig. 3.1.
We emphasize that the case of mixed dynamics provides a selfsimilar island-around-island

structure according to the Poincaré-Birkhoff theorem [133].



22 3.2 Chaotic Phase-Space Transport
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Figure 3.1. Phase-space portraits of the standard map, Eq. (3.8), with (a) regular dynamics
at k = 0, (b) mixed dynamics at x = 2.9, and (c) chaotic dynamics at k = 10. Regular
orbits are colored in orange and chaotic orbits are colored in blue. All panels share the same
vertical axis.

3.2 Chaotic Phase-Space Transport

The transport properties of chaotic motion in a generic system with mixed phase space are very
different from the transport properties in a globally chaotic system. This is already indicated
by the shown chaotic orbits in Fig. 3.1(b, ¢): While chaotic orbits in the globally chaotic
system (c) explore the phase space rather uniformly, the chaotic orbits in the mixed system
(b) remain longer in the vicinity of the regular regions which leads to an enhanced density of
blue points there. This visual impression can be formulated more rigorously by considering
Poincaré recurrence times: According to the Poincaré recurrence theorem almost all orbits
initialized in a subset M C I' of the bounded phase space I' with positive Lebesgue measure,
|M| > 0, will return to M [132]. The statistical distribution of the corresponding recurrence
times contains information about the transport properties of the system. For globally chaotic
systems, the probability R(t) for an orbit to return to M after ¢ iterations decays exponentially.
The chaotic motion in generic systems, however, gives rise to an algebraic decay, i.e., R scales
as a power law [16,17,23,135]. This is a signature of the fact that phase-space transport is
systematically suppressed in the vicinity of regular regions. This is explained by the concept
of partial transport barriers [23]: Let C be a curve that decomposes the phase space into two

regions A; and A;. Then the transport between both regions is governed by the flux

that is transmitted between A; and A, in one iteration. Due to the symplecticity of the
map T, A; and As may be exchanged in the above definition, and 7" may be replaced by

T, If C is an invariant curve, T(C) = C, like for a regular torus, the corresponding flux ¢¢
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vanishes such that there is no transport between A; and A,, and C may be interpreted as a
transport barrier. In the same spirit, a curve C for which ¢¢ does not vanish is called a partial
transport barrier. The most interesting partial barriers are the ones which suppress transport,
corresponding to a relatively small flux ¢¢ compared to the phase-space volumes |A;| and |As|.
There are two common types of partial barriers [23]: A so-called Cantorus barrier originates
from the remnants of a regular torus of irrational winding number that is broken by a small
perturbation as in the Kolmogorov—Arnold-Moser scenario. Restrictive partial barriers can

also originate from a combination of the stable manifold

We(z) ={¢ €T : lim [|T"*(¢) — x| = 0} (3.10)
and the unstable manifold

Wa(z) ={¢ €T : lim [T"(¢) — || = 0} (3.11)

of a hyperbolic n-periodic point x, that is a hyperbolic fixed point of the n-fold iterate map
T™. Let us point out though that the specific origin of a partial barrier is of minor relevance
in this thesis. We are rather interested in the signatures of a given partial barrier in terms
of classical and quantum mechanical localization and transport. Therefore, instead of going
into the details of the construction of partial barriers we focus on discussing their transport
mechanism. To this end, it is useful to introduce the so-called turnstile of the partial barrier,

sometimes also referred to as revolving door. The turnstile of the partial barrier C is the set
{ANT (A} U{T ' (A) N A}, (3.12)

where A; N T71(Ay) is the subset of A; mapped to Ay under one iteration of the map T,
and vice versa, T-1(A;) N Ay is the subset of A, that is mapped to A;. The turnstile is
also characterized by being the set enclosed by the preimage T-1(C) of the partial barrier C
and C itself. An orbit initialized in A; will remain in A; unless it enters the turnstile region
A;NT71(Ay) and is then mapped to A, in the next step. This so-called turnstile mechanism is
visualized in Fig. 3.2 for a kicked model system with an isolated partial barrier as introduced
in Refs. [32,136]. Its phase space, shown in Fig. 3.2(c), exhibits regular regions at the top
and the bottom and a large chaotic sea in between. Although chaotic orbits explore the entire
chaotic component uniformly in the long run, the orbit started at the red point in Fig. 3.2(a)
remains in the upper half for surprisingly many iterations, Fig. 3.2(a—c). In fact, it turns out
that the stable and unstable manifold of a hyperbolic fixed point in the center of the phase
space form a partial barrier such that the upper (green) and lower region (orange) become

almost invariant, see Fig. 3.2(d, e). In a single iteration of the map, only a small part of the



24 3.2 Chaotic Phase-Space Transport

q

Figure 3.2. Time evolution of a chaotic orbit (gray points) in the kicked model system,
Sec. (4.3), initialized at the red point in (a), for (a) 10 iterations, (b) 500 iterations, and (c)
2500 iterations. One iteration of the green and orange almost invariant sets in (d) gives the
green and orange sets in (e), respectively. They are separated by a partial transport barrier
(solid magenta line in (e)) the preimage of which is shown as a dotted line in (e) and as
a solid line in (d). (f) The chaotic orbit (a—c) crosses the partial barrier through turnstile
during the iterations 672 to 674 (red points). Regular tori are shown as solid gray lines in
all panels.

green region is mapped inside the orange one, just as the other way around. This small region
of exchange is formed by the turnstile of the partial barrier, cf. Fig. 3.2(f). The chaotic orbit
crosses the partial barrier only by entering the corresponding loop of the turnstile. For the

details of the used map, which are not relevant at the moment, we refer to Sec. 4.3.

Let us briefly mention that the notion and usage of partial barriers is ambiguous to some
extent: Due to the symplecticity of the dynamics any iterate or preimage of a partial barrier
is again a partial barrier of the same flux. For instance, it is not mandatory that we refer to
the solid magenta line in Fig. 3.2(e) as partial barrier and not to its preimage in (d). Both
are equally relevant. The question of relevance of a partial barrier depends on the considered
problem: If one wants to investigate the transport from a specific phase-space region A; with
clear inside and outside to its complement Ay = I"\ Ay, then the unique boundary between

them is the relevant partial barrier. One the other hand, if one observes that orbits remain
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in an almost invariant region, the boundary of which is usually not precisely known, it is
tempting to uncover the reason for the low exchange. Then, however, it is sufficient to identify
the Cantorus or the hyperbolic periodic point which in principle generates partial barriers that
enclose the almost invariant region. In this case, it is usually not important to specify the
particular combination of stable and unstable manifolds, the exact preimage or iterate, since
the physical origin of the trapping is found. Note that particularly in the latter case, where
we started with the observation of an almost invariant region, it is typically relevant that
the partial barrier decomposes phase space into regions of simple shape and not into regions
that are wildly spread over phase space. This also reduces the number of interesting partial

barriers.

Restrictive partial transport barriers occur on all scales of a generic mixed phase space.
This is a consequence of the selfsimilar island-around-island pattern [23]. In the vicinity of
regular islands, there are infinitely many partial barriers that are hierarchically organized with
decreasing fluxes towards the regular regions. The first levels of such a hierarchical structure
of partial barriers are shown in Fig. 3.3 for the generic standard map, Eq. (3.8), at k = 2.9.
The outer partial barrier (purple) is generated by the stable and unstable manifolds of a
hyperbolic orbit of period four. One loop of its turnstile is magnified in the second panel.
Around the chain of regular islands of period four, one can already see another partial barrier
(red) generated by the stable and unstable manifolds of a hyperbolic orbit of period 28. The
turnstile of this partial barrier is much smaller than that of the outer partial barrier. Even in
the second magnification, the loop which consists of a small inside-to-outside part on the right
and a small outside-to-inside part on the lower left corner, can easily be overlooked. Note
that a third partial barrier (pink) separates the large central island. Its flux is even smaller
and not visible on the shown scale. By zooming deeper into phase space, further islands and

restrictive partial barriers appear. The transport within such a hierarchical structure can be

0.5
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Figure 3.3. Phase-space portrait of the standard map, Eq. (3.8), at k = 2.9 with regular
orbits (solid gray lines) and chaotic orbits (gray points). Three partial barriers (solid colored
lines) are shown together with their preimage (dashed colored lines).
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modeled by a Markov tree [135,137|: The partial barriers provide a partition of the chaotic
phase-space component. As long as the dwell times within each element of this partition
are much larger than the transition times between them, i.e., for sufficiently small transition
probabilities, the dynamics in each element may be regarded as instantaneously mixing and
can therefore be neglected. Then the transition probabilities become time independent which
implies Markovianity. The notion of tree refers to the topology of the island-around-island
structure of a generic mixed phase space. That is, an orbit can go deeper into the hierarchy
on different paths but can escape from it only on a single path. By assuming a certain scaling
of the areas of the elements of the partition and of the fluxes between them, one can indeed
show the algebraic decay of Poincaré recurrence time statistics mentioned before. It turns
out that also the Markov chain model with a simpler linear topology is capable of producing
this algebraic decay [138]. This model will be used later in Sec. 10.3.3 and will therefore be

introduced in a little more detail now.

For the Markov chain model [138], one assumes that the phase space I" is decomposed by
partial barriers into a sequence (Ayg)ren of subsets Ay C I', where only transitions between
adjacent sets are allowed. In the simplest model, one expects a scaling of areas as |Ay11|/|Ax| =
a and for the flux ¢, connecting Ay and Ay, one uses ¢p11/0r = ¢ [30,138]. To ensure that
the size of the flux never exceeds the area of the corresponding level of the hierarchy, it is
necessarily ¢ < a < 1. The transition probability pj .1 between A, and A;,; is then given
by proski1 = ¢r/|Ax| and obeys the scaling px_1x/Pr_ki1 = «/p. Note that the transition
probability from A, to Aj; is different from that for going from Ay, to A which follows
Pk—k+1/Pk+1—k = . With this the time evolution of a given probability distribution (Py)ren

associated with (Ay)ken reads

Py = Py — (Pksk—1 + Pooiht1) - Po 4 Dr—15k - Poct + Pipr—k - Prgr (3.13)

The different terms allow for a very intuitive interpretation: The probability P is reduced by
the part (pr_k_1+ Prorr1) - Pk that leaves Ay to Ax_q or Agi1, and it gains from the adjacent
regions Ay, the contribution py_1,; - P,_1 and from Ag,; the contribution py i - Pry1.
Note that for A; there is only one direction of transport and Eq. (3.13) needs to be adapted
straightforwardly.

Think of an orbit started in A; which at some point enters A,. Now, one may ask about
the probability R(t) to return to A; after exactly ¢ further iterations, the so-called recurrence

probability. In a globally chaotic system, R would decay exponentially with rate
v = —log(l —|A|). (3.14)

To see this, think of the iteration in the globally chaotic system as a random process where
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the orbit ends up in A; with probability |A;| and in I\ Ay, |I'| = 1, with probability 1 — |A;|.
The probability for the orbit to return to A; after exactly ¢ iterations is then given by

R(t) = [Al] (1= [Au)"™" = [Ag] 7Y, (3.15)

that is the probability to remain in I' \ A; for ¢ — 1 iterations and to be mapped into A;
once. In contrast, for the Markov chain introduced above the same experiment yields a power-
law decay, see Fig. 3.4. More precisely, the recurrence probability in this case is computed
as follows: We apply an auxiliary absorption to Aj, i.e., we set P; to zero in each iteration
according to Eq. (3.13). Then the sum S(t) := Y, . Px(t) as a function of the iteration step ¢
describes the probability to remain in '\ A; for ¢ iterations. The quantity S is also referred
to as survival probability. In Ref. [138] it is shown that S(t) ~ ¢~7 with

1 (3.16)

~ log(e)

see also Fig. 3.4. Note that if the initial probability is chosen deep within the hierarchy, e.g.,
a uniform distribution on the entire phase space, S scales as S(t) ~ t~(~1 [139]. Using
the survival probability S, the probability to return to A; after ¢ iterations reads R(t) =
S(t—1) — S(t). In the continuum limit, this is the negative derivative of S with respect to ¢,

1077 -
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Figure 3.4. Recurrence probability R (orange) and survival probability S (green) for the
time evolution in a Markov chain according to Eq. (3.13) (a = 2/3, ¢ = 1/8, ¢1/A1 = 1/4).
The chain is truncated to 100 hierarchical levels. The region of return or escape, respectively,
is A1, and the initial distribution is taken as P, = 1. The expected power law (dashed lines)
is defined by v from Eq. (3.16).



28 3.3 Chaotic Systems with Escape

such that
R(t) ~t~0FD), (3.17)

Basically, the power-law decay results from a superposition of exponential decays associated
with the different levels of the hierarchy as can also be seen in the figure by the oscillatory
behavior. Due to the specific hierarchical scaling of the transition probabilities the different

exponential decays add up to an overall power-law scaling.

3.3 Chaotic Systems with Escape

So far, we discussed phase-space transport for closed Hamiltonian systems. Even the recur-
rence and survival probability are meant to describe properties of the closed system despite
the fact that an auxiliary absorption was implemented for their numerical computation. In
this thesis, however, the focus is put on open systems as introduced in Chap. 2 in the context
of quantum dynamics. Coming back to the example of the recurrence probability one observes
that for specific questions closed and open systems are closely related: The recurrence prob-
ability to return to region A; is identical to the probability to escape from the same system
if opened by absorption in A;. This is due to the fact the orbits which once returned to A;
are neglected afterwards just like orbits which left the system through A;. From the above
considerations on the decay of the survival probability S(t) for closed systems, we can thus im-
mediately conclude that open systems exhibit the analogous phenomenology: It is S(t) ~ e~
for globally chaotic systems and S(t) ~ ¢t=7 for generic systems with an infinite hierarchical
structure of partial transport barriers. The corresponding decay coefficients v are again given
by Eq. (3.14) and by Eq. (3.16), respectively.

In order to discuss the properties of systems with escape more rigorously, let us introduce
the notion of an open map [56]. To this end, we start with a symplectic map T, : T' — T
describing closed system dynamics and define the opening by the absorbing phase-space region
) C I'. We extend the phase space I' by the auxiliary point oo, I'y, := I' U {c0}, to which the
opening () will be mapped, i.e., co models the environment from where nothing returns to the
bounded part I'. With this the open map T : I'\c — 'y is defined by

T(r) = Ta(z) :xel\Q, (3.18)
00 cx g\ QL

Hence, T acts just like T;; all over phase space except for the opening €2, from which points

are mapped to co. By extending also T to a map on I'y, by setting 7(c0) := oo, the map T
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may be written as T' = T, o O, with

O() = x xel\Q, (3.19)
oo xgl\ Q.

Note that again the order of T,;0 O describes open dynamics equally well as OoTy or OoT100.
We choose this order in agreement with our definition of open quantum maps, Sec. 2.5. In
contrast to closed systems, which are invertible due to symplecticity, for open systems a symbol

like T~! needs some explanation. When applied to a set X € I" then the so-called preimage
T X):={zel : T(x) € X} (3.20)

is the set of all points that are mapped to X under one iteration by 7. We stress that this is
well defined regardless of whether T is invertible or not. Using that 77'(X) = O~ (T; (X))
and that O71(X) = O(X) when restricted to T, it is T7}(X) = O o T;*(X) within T. As O
and T,;' are well defined maps we may define the map 7' := O o T,;! with T-(T(z)) = z

forz € T\ Qand T(T7'(z)) =z for z € T\ Tu(Q).
A specific example of such a map that will be useful for the purpose of illustration through-

out this thesis is the open Baker map. It is based on the ternary Baker map Ty : [0,1)? —
0,1)2, cf. Ref. [140, p. 42],

[ 3q¢—[3q]
Tale,p) = <<p+ quJ>/3> ’ (3.2

the action of which is illustrated in Fig. 3.5. The ternary Baker map is a uniformly hyperbolic
map with Lyapunov exponent A = log3. For the open map, one typically uses the central
third Q = [1/3,2/3) x [0,1) as opening, see Fig. 3.5.

=
=
—1

Figure 3.5. Illustration of the ternary Baker map, Eq. (3.21), which stretches by a factor
3 in the unstable (horizontal) direction and contracts by a factor 1/3 in the stable (vertical)
direction. The initial three stripes (left) are rescaled and discontinuously stacked on top of
each other (right). If used in the open version, T'= T, o O, the central gray stripe in the
left panel escapes and nothing is mapped to the middle gray stripe of the right panel.
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Complementary to the question of escape, one is typically also interested in properties of

the surviving orbits. Particularly relevant are the forward trapped set

lpwa :={z €l : T (z) el (neNy)} (3.22)
and the backward trapped set

Tpwa :={z €l : T"x)el (neNy} (3.23)

of all points that remain in the system for an arbitrary number of forward or backward itera-
tions, respectively, cf. [49]. The trapped sets of the open Baker map are shown in Fig. 3.6(a,
b) by a finite-time approximation, i.e., I'gyq and I'yyq are approximated by the set of points
that survive three (a) forward or (b) backward iterations. Due to the simple structure of the
Baker map, one can intuitively understand the structure of the trapped sets, where we focus

on the example of the forward trapped set I'tq, Fig. 3.6(a): First of all, the opening Q escapes

(a) Pfwa (b) Dbwa (c) Crep
| | E | .
q q q
(d  T7"(Q) (e)  T"(Ta(9)
p p
q q

Figure 3.6. (a) Forward trapped set I'gyq, (b) backward trapped set I'hwq, and (c) repeller
I'vep = I'twd N T'bwa of the open Baker map. The sets in (a—c) are approximated by being
trapped for at least three iterations in the corresponding time direction. (e, f) Set of points
which escape under n + 1 (d) forward and (e) backward iterations (n = 0: light blue, n = 1:
medium blue, n = 2: dark blue).
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from I' already in the first iteration and is therefore excluded from I't,q. This is the central
light blue stripe in Fig. 3.6(d) which gives rise to the large central gap in I'gyq in (a). The
set, that will escape in the second iteration must be contained in the opening 2 after the first
iteration, that is 771(Q) (two medium blue stripes in Fig. 3.6(d)). The set T-1() is therefore
excluded from Tfq just like T72(Q) (four dark blue stripes in Fig. 3.6(d)) which escapes in
the third iteration by the open Baker map 7. Since the finite-time approximation of I'g.q
shown in Fig. 3.6(a) has exactly the first three forward escaping sets T-"(€2), 0 < n < 2, as
gaps, it describes the points which remain in I' for at least three iterations. This construction

illustrates that the forward trapped set can also be represented by [49]

Ta =T\ | T7(9). (3.24)

n€Ng

An analogous construction applies to the backward trapped set T'pyq, Fig. 3.6(b), by excluding
the backward escaping sets shown in Fig. 3.6(e). The first phase-space region that escapes
under the backward iteration 7' = O o T); ' is Ty (2) (middle light blue stripe in Fig. 3.6(e)).
The region that escapes in the second backward iteration is the one that is mapped into 75 (2)
in the first backward iteration, T'(7¢(€2)) (two medium blue stripes in Fig. 3.6(e)). Analogously,
T?(Tw(2)) (four dark blue stripes in Fig. 3.6(e)) escapes in the third backward iteration such
that T"(T4(2)), n € Ny, are the backward escaping sets. This gives another representation of
the backward trapped set [49],

Towa =T\ [ T"(Tu(9)). (3.25)

n€Ng

While I'gq and 'y q are trapped either under forward or backward iteration, respectively, their
intersection ['yep := I'iwa N I'bwa is trapped both under forward and backward iteration. This
trapped set I'yp, is called (hyperbolic) repeller or chaotic saddle [49, 56,62, 76]. The repeller
of the open Baker map is shown in Fig. 3.6(c) and is clearly the intersection of the trapped
sets shown in panels (a) and (b). Remarkably, the forward trapped set I'qyq is invariant
under backward iteration, T’l(Fde) = I'twa, the backward trapped set [',q is invariant under
forward iteration, T'(I'ywa) = I'bwa, and the repeller is I'ye, invariant both under forward and
backward iteration [56, 76].

As can be seen in Fig. 3.6(a), the forward trapped set I'fyq is continuous along the vertical
direction and strongly gapped along the horizontal direction. This intuitively originates from
the fact that a set of points in phase space is exponentially stretched along the unstable
(horizontal) direction and exponentially contracted along the stable (vertical) direction. Due
to the bounded phase space, the iterates of this set wind along the unstable manifold and

overlap with the opening infinitely many times. In contrast, the stable direction leads to
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a contraction of the set and not to a systematic overlap with the opening. Likewise, the
backward trapped set is gapped along the vertical direction which is the unstable direction
for the backward iteration. The filamentary pattern along the gapped direction has fractal

properties.

Fractal sets are characterized by having a noninteger dimension [141]. Certainly, a non-
integer dimension can only be the result of a generalized notion of dimension, called fractal
dimension. A common example is the box-counting dimension, which defines the dimension
of a bounded set M through its scaling behavior. Let N,.(M,e) be the smallest number of
boxes of edge length € that are necessary to cover M, then the box-counting dimension D (M)
is given by [141]

log Nye(M, €)

That means that N,.(M,e) scales as a power law,
Npe(M,e) ~ =P (,0), (3.27)

the exponent of which is governed by the fractal dimension D(M). Equivalently, Ny.(M,¢)
can be defined by the number of boxes of a grid with lattice constant ¢ that have a nonempty
intersection with M [142, p. 43]. This characterization is particularly useful for the numerical
implementation and will be used in this thesis. The box-counting dimension of a set can be
different from an integer number due to a selfsimilar structure. In view of the trapped sets of
the open Baker map, Fig. 3.6(a—c), that means that the gaps appear in a selfsimilar pattern

and obey a certain scaling.

Before coming to the explicit computation of the box-counting dimensions of I'yq, ['bwd,
and I'yep, let us point out that their fractal dimension can be decomposed into the partial
fractal dimensions ¢° and §" along the stable and unstable manifolds [76, Chap. 6.3.2],

D(Twa) = 0°(D'rwa) + 0" (Dewa), (3.28)

and analogously for I'hwq and I'yep,. This is a consequence of their product structure. We
already argued that 0°(TI'twq) = 1 and that 0"(I'hwa) = 1. Moreover, due to time-reversal

symmetry, it is
5U(Ffwd) = 5S<Fbwd) =. 5, (329)

see Ref. [56], and as the repeller is defined by the intersection of I'tyq and I'pya, it is D(Trep) =

26. Hence, by computing the partial fractal dimension 9, one obtains the fractal dimension
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of I'twd, I'bwa, and I'iep at once. A particularly elegant approach is given by the Kantz—

Grassberger relation [44, 76|,

~
o=1—— 3.30

1, (3.30)

relating the fractality of the trapped sets with the decay rate v and the Lyapunov exponent A.

Let us motivate this relation for the open Baker map with A = log(3) and v = —log(2/3)
in terms of the box-counting algorithm. Consider the one-dimensional grid of boxes of edge

length

1 n
—An
e () 3.31
€ e (3) ( )

which defines a testing sequence (&,,),en for the convergence of Eq. (3.26). We stress that this
sequence (g,,)nen is particularly well adapted to the fractal structure of the open Baker map
as €, exactly agrees with the width of stripes of the fine-time approximations of the trapped
sets. Recall that the Lyapunov exponent A describes the stretching and contraction of sets in
phase space under time evolution. The number Ny.(g,) of boxes of this one-dimensional grid

that are occupied by the trapped set along its fractal direction follows from

2 n
Noc(en) e =€ 7" = (g) : (3.32)
which describes the decay of the occupied phase-space fraction between consecutive levels of
approximation. In combination, this gives

Npe(gn) = eAMn = An1=7/8) — o~(=/A) (3.33)

n

in agreement with Eq. (3.30). Accordingly, the partial fractal dimension of the open Baker
map reads § = log(2)/log(3).

The box-counting dimension is a special choice (¢ = 0) from the class of Rényi dimen-
sions [143],

1 1 Nbe(M,e) ()7
D,(M) = lim 080 i pi(e)

VR log = (¢ € Rx0, ¢ # 1), (3.34)

where the sum is taken over all Ny.(M,¢) boxes that are occupied by M and with p;(¢) being
the measure of M within the i-th box. Strictly speaking, the Kantz—Grassberger relation,

Eq. (3.30), is formulated in terms of the information dimension

Dy(M) :=lim D,(M) = — lim Zi&lc(M’E) pi(e) log(pi(e))

q~>1 6\0 ].Og 6_1 Y (335)
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using I’Hopital’s rule, and not in terms of the box-counting dimension Dy as suggested above.
However, for uniform fractals all Rényi dimensions coincide [143]. This is usually the case for
globally chaotic open maps. For other systems with nonuniformly fractal trapped sets, which
are also studied in this thesis, we will specifically explain how to apply the above concepts.
To conclude this short introduction on fractal dimensions, let us point out that the fractal
dimension coincides with the common notion of dimension for sets which reasonably allow the
association with an integer dimension. Moreover, the trapped sets of the open Baker map are
based on the so-called middle third Cantor set. Being Cantor sets, the trapped sets have the
following properties which are usually expected also for other fractal sets, cf. Refs. [144, Sec.
7.1d] and [145, p. 66]: A Cantor set is uncountable but of Lebesgue measure zero; it consists
only of cluster points and contains all its cluster points (perfect set); it has no interior points

(nowhere dense); it contains no connected subsets (totally disconnected).



Chapter 4

Model Systems with a

Single Partial Transport Barrier

The chaotic phase-space transport in generic Hamiltonian systems is governed by the intricate
hierarchical structure of partial transport barriers, as was discussed in the previous chapter.
In fact, partial barriers also have a strong influence on quantum-mechanical properties as will
become clear later. As a first crucial step towards a thorough understanding of the aggregate
behavior of the hierarchical structure of partial barriers, both classically and quantum me-
chanically, we begin with studying systems with a single partial barrier. To this end we design
a simple model system, the partial-barrier map, in Sec. 4.1. The partial-barrier map is the
main dynamical system studied in this thesis. Its quantization is explained in detail in Sec. 4.2.
The partial-barrier map was initially developed in collaboration with Matthias Michler [123].
A random matrix model derived from this map was already presented in Refs. [136, Sec. 4.4]
and [32]. Moreover, in Sec. 4.3 we briefly present a kicked model system with a generic mixed
phase space and an isolated partial barrier as introduced in Refs. [32,136]. This model will be
used in Chap. 5.

4.1 Partial-Barrier Map

Recall that a partial barrier is characterized by decomposing phase space into two regions
Aj and A, that are almost invariant under the map 7. The degree to which A; and A, are
invariant is reflected in the magnitude of the flux ¢ = |T'(A;) N As| between them. The larger
¢ the less invariant are A; and A,, respectively, cf. Sec. 3.2. We mimic this behavior of a

partial barrier in a system with an opening by the partial-barrier map,

T:=MoFEoO, (4.1)
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which is the composition of three maps, see Fig. 4.1 for illustration: The map M describes the

unconnected chaotic dynamics within the two regions 4, := [0,]4;|) x [~%, 1) and A, :=T'\ 4,

T2
for I':= [0,1) x [—3,3). The map F induces a flux ¢ between A; and A, by exchanging the
regions (I)l = [|A1| — (b, |A1|) X [—%, %) - Al and (IDQ = [|A1|, |A1| + (b) X [—%, %) - A2 with

|®1| = |Ps]| = ¢. The map O opens the system by the absorbing region €2, which is contained
in region A;. Note that the order of the maps M, E, and O is mere convention.

Throughout this thesis, we use two different dynamics for M. First, for the numerical
analysis, we use the standard map, Eq. (3.8), acting individually on each of the regions Ay,
k € {1,2}, after appropriate rescaling: The rescaled standard map S4 acting on the torus
A:=a,a+|A|) x [-3, %) is deduced from the kicked Hamiltonian from Eq. (3.7) by using

T@):%;ﬁ, V@)angam(g%%%@>, (4.2)
which gives
{q +T'(p— V' (q)) —a mod |A|} +a )
Sala.p) = |
ala.p) ({p IV V(g + T - V(@)] + 1 mod1} -} (43)

instead of Eq. (3.8). In application to the mixing step M of the partial-barrier map 7', we use

S s x € Ay,
M:T T, g (on@ sred (4.4)
Sa,(r)  x € Ay,

for fixed k = 10, where the standard map displays a fully chaotic phase space. When using the

T M E @)

Figure 4.1. Illustration of the partial-barrier map 7 := M o F o O as a composition of
the unconnected mixing dynamics M within the two regions Ay and As on each side of the
partial barrier (solid magenta line) as depicted symbolically by gray circular arrows, the
map F that exchanges regions ®; and ®5 (bounded by dotted magenta lines), and the map
O that opens the system by the absorbing region Q (gray shaded stripe). The gray orbit
(random numbers) in the left panel visualizes the restrictive effect on transport across the
partial barrier.
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standard map for M, we choose Q = [0, |Q2]) x [—3, 3) and refer to the corresponding map 7T

as partial-barrier standard map.

Second, for analytical considerations below in Chap. 8, we use the uniformly hyperbolic

ternary Baker map, Eq. (3.21), acting individually on each of the regions Ay, k € {1,2}, after

appropriate rescaling: The Baker map B, acting on the region A := [a,a + |A|) x [-1,1) is
defined by
3(¢g—a) mod |A|} +a
m@m=<l{ﬂ ) Al 1>. (4.5)
Lo+ 3+ 13(g - a)/I4]) - }

The application to the mixing step M of the partial-barrier map 7" reads

B Cx € Ay,
M:T =T, zv mlo) o ed (4.6)
Ba,(z) @ x € Ay,

where we choose |A;| = 1/2, ¢ =1/6, and Q = [, 2) X [—3, 1), as illustrated in Fig. 4.2. We
refer to the corresponding map 71" as partial-barrier Baker map.

The explicit form of the exchange map F is given by

Blg.p) ({(q— Ay +20) mod 26} + |4 —¢>> @

p

for g € [|A1] — &, |A1] + @), and otherwise by the identical transformation. The opening O acts
as defined in Eq. (3.19). It can be shown that both, the partial-barrier standard map as well
as the partial-barrier Baker map are symplectic, and thus, describe Hamiltonian dynamics up
to escape through the absorbing region, and both maps are equipped with an anticanonical

symmetry, comparable to the time-reversal invariance [123|.

4 6
13

Figure 4.2. Tlustration of the partial-barrier Baker map T' = M o E o O. Magenta line
indicates partial barrier and gray shaded region marks opening € (first three panels from
left) and image M (E(2)) of opening (right panel).




38 4.2 Quantized Partial-Barrier Map

4.2 Quantized Partial-Barrier Map

In contrast to Hamiltonian flows there exists no canonical quantization procedure for time-
discrete maps. There are rather system specific methods which are restricted by just a few
constraints as reviewed in Ref. [146, Sec. 2.5.1]: A quantization of a symplectic map 7" has to
establish a sequence of unitary operators (Uy)nen, such that Uy is acting on an N-dimensional
Hilbert space CV. The dimension of the Hilbert space is associated with the size of Planck’s cell
by h = 1/N for a phase space of unit area. Most importantly, in order to ensure correspondence

between classical and quantum dynamics it is required that
Uz"op(f)nUs = op(f o T")x + O(N7Y)  (n€Z). (48)

This means that time evolution and quantization commute for all observables in the semiclas-
sical limit, h N\, 0. The quantization op(f) of a classical observable f : T' — R is explained
by the Weyl quantization. Note that for the common canonical quantization procedures for
Hamiltonian flows like the Weyl or the anti-Wick quantization [27], this property, Eq. (4.8),
is guaranteed by Egorov’s theorem. The quantization scheme for symplectic maps as outlined
above can be formulated rigorously in terms of the pseudodifferential operator formalism,
cf. [147, Chap. 2.2.5]. In some paradigmatic cases there are more direct ways to quantization.
The generic standard map allows for a Floquet approach [148] due to the periodic kicking
potential. Another approach based on generating functions, cf. [149], will be useful to quan-
tize the Baker map. For the quantization of the partial-barrier map we take advantage from
the decomposition 7' = M o E' o O which translates into an ordinary matrix product of the
individually quantized maps. The N dependence of Uy will be suppressed in the notation in

the following.

4.2.1 Quantized Standard Map

Recall that the standard map, Eq. (3.8), originates from a periodically kicked Hamilton func-
tion, Eq. (3.7), by a stroboscopic solution scheme. The same holds true for the rescaled version
in Eq. (4.3). These singular kicks give rise to the factorization of the quantum time-evolution

operator,
U=e Ve 1 e Y, (4.9)

We emphasize that this factorization is not an approximation by means of the split operator
method [150, Sec. 2.3.2]. The specific factors correspond to the chosen observation times for
the stroboscopic solution, that is, the potential kick is split into halves and free motion takes

place in between as in the classical case. When applied in position representation, the term
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e~ is an operator-valued function of the multiplication operator g (position), [q¢](z) =

z(x), and e #7 is an operator-valued function of the differential operator p (momentum),

Pyl (z)

= —ih1)'(z), by means of functional calculus [118]. It is useful to transform the kinetic
term e~ %7 into a function of the multiplication operator by Fourier transform .%, using that

[Fpyl(z) = —ib[FY)(x) (4.10)
- %Aeéxy¢/(y) dy (4.11)

= \/;—%/R (—%x) e~ Fp(y) dy (4.12)
= z[FY|(z) = [¢FY](2), (4.13)

with integration by parts and vanishing boundary contribution [151, §12.2.2]. Then the time

evolution of a state v formally reads

) 2

Up = e sV F 1 FeiTe mVep = e nV F e il Fe Ve, (4.14)

where in the last expression, e~#T now acts as a function of the multiplication operator. With

the explicit form of .%, it is

Uz/;(q):%e B // gD e i TWe V) y(q') dg dp, (4.15)

=u(q,q',p)

where neither 7 nor )V are operator-valued functions anymore and ¢, ¢/, and p represent usual
coordinates. Assuming periodicity of e~#7 as a function of p with period Mmom, the integral
over p may be decomposed into an integral over a single period [pmin, Pmin + Mmom) and a sum

over the other intervals,

Uia) = gope #9 [ [Z

keZ

Pmin

pmin+Mmom i ,
/ erfMmoma=d)y (g o p)dp| (¢ dg'.  (4.16)

Poisson’s summation formula [152, p. 153] yields
D eittmnland) = 375 (Mempet) ) = 375 (g -~k ) (417)
keZ keZ keZ

and thus restricts the ¢ values to the lattice

21h

Q. = (k4 Vmom), (k€ Z), (4.18)

mom
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with fixed Bloch phase ¥pom € [0,1). This gives

pmln+Mll]01TJ
emBV@) § " / w(Gn, @i P)Y(qx) dp. (4.19)

keZ Pmin

Uw(Qn) = M

Additionally, we assume periodicity of e~ as a function of q with period M. and gpin =

gk + Mpos. Then one obtains

N-1
Mmom Mmom 79 os — M
k=0

kEZ meZL

analogously to the above discussion by applying Poisson’s summation formula and using the

quasiperiodicity of 1. This restricts also the p values to a lattice defined through

21h
Mpos

Pk = (k + ﬁpos>7 (k € Z) (421)
with the Bloch phase ¥, € [0,1). To ensure compatibility of the position and momentum

lattice, it needs to be required that

Mpos Mimom

N —
21h

eN. (4.22)

Hence, the quantization of the standard map (3.8) on the torus reads

=z
L

Up(gn) = ) Ut (q), (4.23)

i

with

% (@n—ar) o= 5T (Pm) o~ 35 V(a1) (4.24)

Y

MZ

Unk: 6 gﬁv(Qn

m=0

and we set Myos = Mmom = 1. Note that the discretization of position and momentum space
is not an approximation in this context. It rather follows quite naturally from the toroidal
phase-space structure and leads to the finite dimensional Hilbert space CV with Euclidean

scalar product, see also [153].
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4.2.2 Quantized Baker Map

Another common approach for the quantization of symplectic maps is based on the semiclas-

sical Gutzwiller—van Vleck propagator [152, Sec. 10.2],

| det S”(Q, q)|

(QlUq) = 5T

1 T
exp{ﬁS(Quq) _ZEVS(Qaq)} ) (425)
with i = €4, which was first formulated for quantum maps in Ref. [154]. It describes
the transition amplitude for the unitary time evolution from the initial position ¢ to the
final position () within one iteration of the quantum map U. The essential ingredient is the
discrete classical action S as explained shortly below. The Morse index vg(Q, ¢) is the number

of negative eigenvalues of the Hessian S”(Q, q), see [155, Sec. 5.8].

Consider a sufficiently smooth function S : R? — R2, restricted to some appropriate
domain. Then the map T': ' — I', I' C R2, defined by

(Q.P)=T(q,p) & p=-05Q,q), P=0.5Q,q), (4.26)

is symplectic provided that such a 7' exists, see Sec. B.2. The function S is called generating
function (of first type) for T. Moreover, S(Q, ¢) assumes the role of a discrete action for a path
leading from (g, p) to (@, P) within one iteration of the map T, as discussed in [23, Sec. V.D.|.
Using this generating function S, Eq. (4.25) provides a scheme to obtain a quantization U for
the symplectic map T. Note that if there exists no unique solution 7' by means of Eq. (4.26)
it is necessary to sum over the different solutions in Eq. (4.25), cf. [156, Sec. 5.]. If no such
solution exists, it is useful to make use of a different type of generating function that may be

obtained from S by Legendre transformation. In the following, we only need the particular

type

G(P,q) = S(Q(P,q),q) — PQ(P,q), (4.27)
where the function Q is defined by

Q=Q(Pq) & P=05Q.q) (4.28)
The function G generates a symplectic map 71" by

(@, P)=T(¢,p) & Q=-0G(P.q), p=-0G(Pq), (4.29)

which can be shown analogous to the derivation in Sec. B.2. The quantization U of T" in terms
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of G then reads [157, Sec. 2.4.7]!

(P |Ugn) ~ exp {2miN G(pm, qn)} (4.30)

evaluated on a grid with positions ¢qq, ..., gv_1 and pg, ..., py_1. Note that the Hessian
G" is constant for all examples used in this thesis, such that we may neglect global factors
associated with |det G"(py,, ¢,)| or with the Morse index. In general, it is necessary to verify
the unitarity of U anyway, which fixes the prefactor up to a phase, and global phase factors are
irrelevant for quantum-to-classical correspondence by means of the Egorov property, Eq. (4.8).
Moreover, the A dependence is replaced by the dependence on the Hilbert space dimension
N =1/(2rh) € N.
It is straightforward to show that

Gi(P,q) == =3Pq+ j(P +q) (4.31)

is a generating function for the Baker map, Eq. (3.21), for ¢ € [j/3,(j + 1)/3) and P €
[7/3,(7 +1)/3) with j € {0,1,2}. For the purpose of simplicity in the notation, we restrict
ourselves to the discussion of the usual ternary Baker map. The stretched version, Eq. (4.5),
may be treated analogously. Inserting the above generating function into Eq. (4.30), shows

that the quantized Baker map U obeys

(Pm | Ugn ) ~ exp {2miN [=3pimgn + J(Pm + @n)]} - (4.32)

For the lattice of positions and momenta we use

_n+19m0m _m+19pos

m T 9 4-33

dn

with 7 N/3 <m,n < (j +1) N/3, N € 3N, and arbitrary phases ¥pos, Umom € [0,1). We iden-
tify the element ¢, of the position lattice in position representation with the standard basis
vector (0,...,0,1,0,...,0) € CV, where unity occupies the n-th entry. Owing to Heisenberg’s
uncertainty, or the canonical commutation relation of position and momentum operators, re-
spectively, an element p,, of the momentum lattice is associated with a vector in Hilbert space

by discrete inverse Fourier transformation of the position vectors, that is,

1 2miN gnp
| Pm ) = —= e dnbm 4.34
(@n|Pm) i (4.34)

is the n-th component of the m-th momentum vector in position representation. Note that we

allow for an ambiguity in the notation by using the same symbol for the element ¢, € [0,1) in

!Note that, given the notation used in [157], there is a minus sign missing in the exponential in Eq. (2.4.101).
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the position lattice and the corresponding position vector ¢, € CV in Hilbert space, and vice

versa, for the momenta. It is convenient to rearrange Eq. (4.32) to

<pm ‘ UQn> ~ exXp {—27Ti 3N (pm - ]/3>(Qn - ]/3>} ) (4'35)

again neglecting a global phase factor. Subtracting j/3 from p,, and g, corresponds to an
index shift in m and n by j N/3, such that (p,, |Ug,) gives the same value for each j. In
other words, for 0 < m,n < N/3 it is

(Pm | UGn ) = (Pminys | Udnanys ) = ( Pmtanss | Udnganys ) (4.36)
with
(Pm |Ugy ) ~ exp {—2m' (n ﬁm"}r{,)/(? T pon) } : (4.37)

and all other components are zero. This corresponds to the more intuitive block-matrix nota-

tion

Iz 0 0
((pm | an >)O§m,n§N—1 - 0 y]\//g 0 (438)
0 0 Fns

with the matrix .#y of the discrete Fourier transformation,

1 )
y = _6727rz(n+79m0m)(m+79p05)/N. 4.39
Using
N-—1
(G| Uqn) =Y {qm|pe){pe|Ugn) (4.40)
k=0

to get from the mixed representation (py | Ug, ) to the position representation (g, |Ug, ), one
obtains the quantized Baker map [158-160),

Fns 00
U=Fy| 0 Zys 0 | (4.41)
0 0 Py

It is recommended to choose Vpmom = Upos = 0.5 to ensure expected symmetries [160].
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4.2.3 Decomposition of Quantum Dynamics

Already in the classical context, the simplicity of the partial-barrier map T" = M o E o O,
being a composition of three elementary maps and having only rectangular subdomains of
type I x [—%, %) with some I C [0, 1), is rather convenient. For the quantization of T, however,
this structure turns out to be a real advantage. The composition of classical maps translates
to an ordinary matrix product of the individually quantized maps, and due to the Cartesian
product structure of the subdomains, their quantization in position representation is feasible
on an intuitive level.

We construct the quantum dynamics on the N dimensional Hilbert space s# := CV,
equipped with the Euclidean standard scalar product, that is associated with the phase-space

grid @ x P with

Q = {(k+Umom)/N : k€ {0,...,N—1}} C[0,1), (4.42a)
P o= {(k+ps)/N—3 : k€{0,....N—1}} C [-1,1), (4.42b)

for ¥pos, Umom € [0,1). Starting with the quantization M of the unconnected mixing dynamics

M, we decompose 7 into the subspaces

Jf = span {qk e q,€QNIO, |A1|)}, (4.43a)
J = span {qk €A qr € QNIA, 1)}, (4.43Db)

such that J¢ ~ JA @© s with the direct orthogonal sum @, cf. Ref. [118, Sec II.1]. This
decomposition corresponds to the partition I' = A; U Ay, A; N Ay = (), of phase space. Recall
that M is acting individually in each of the regions A; and A,, where the individual maps
are given by the chaotic standard map, Eq. (4.3), or the ternary Baker map, Eq. (4.5). The
quantization for both of these maps is presented in Secs. 4.2.1 and 4.2.2. For the general
construction of M, however, we do not have to distinguish between the standard and the
Baker map: Let M; denote the quantum map acting on .74 and My be the quantum map
acting on 773, respectively. Then the quantization of the unconnected mixing dynamics M

reads

M; 0
M = ( . M2> , (4.44)

using the block-matrix notation as introduced in Ref. [161, §3] for instance. This is also
illustrated in Fig. 4.3. We emphasize that the simple block structure of M in position repre-
sentation, Eq. (4.44), is a direct consequence of the simple Cartesian phase-space structure of
the designed partial-barrier map. In general, such a block structure in the quantization of a

classical dynamical system that is composed of two invariant phase-space regions requires the
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construction of an appropriate basis in Hilbert space, which is just the position basis in our
case. Note that the Bloch phase ¥,,om of the overall position lattice Q@ can result in different
individual Bloch phases in terms of the quantum maps M; and M,. Specifically, when using
the Baker map with |A;| = 0.5, 9yom = 0.5 must be assured for both sides of the partial bar-
rier [160]. Let us further mention that it is of course possible to use realizations of a random
matrix ensemble for M; and M,, which can be advantageous for specific questions. In this the-
sis, we are interested in systems equipped with a generalized time-reversal symmetry which
corresponds to the circular orthogonal ensemble [152]. By using random matrices, system
specific fractal properties may be switched off.

Although one can very well already guess a valid quantization E of exchange map F
and then verify that it obeys quantum-to-classical correspondence, we attempt to make the
quantization a little more comprehensible and derive it from a more general quantization
scheme. We present the quantization following the generating function approach as is reviewed

in Sec. 4.2.2. The exchange map F, Eq. (4.7), is determined by the generating function

—Pq 1 q € [0,]AL] — ¢) U[|AL] + ¢,1),
G(P,q) == q —P(qg+¢) : qecllA]—¢,]Al), (4.45)
—P(g—¢) : qe Al A+ 9),

as can easily be verified using Eq. (4.29). We apply Eq. (4.30) to each of the cases in Eq. (4.45)
individually. First, the identity mapping for g, € [0,|A1| — ¢) U [|A1| + ¢, 1) gives

<pm|EQn>:\/%e

“2WiNPndn = (p 1, (4.46)

U M E P

Figure 4.3. Illustration of the quantum time-evolution matrix of the partial-barrier map U
in position representation. The full quantum map U = U P with U, = ME is a composition
of three maps: The matrix M is block diagonal (zero on white squares) and, thus, provides
the unconnected mixing dynamics within the two regions A; and A,. The matrix E has
unit entries on the dark diagonal lines and is zeros otherwise, and thus, exchanges the
regions ®; and @4 by a shift within the exchange region (indicated by magenta frame). The
projection P (unity on dark diagonal, zero else) opens the system by the absorbing region
Q.
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which are just the components of the discrete Fourier transformation. Switching from the

mixed position—-momentum representation to a pure position representation by

N-1
(am [Eqn) = (@m|pr) (Pr|En) = (Gm|dn) = Omn, (4.47)
k=0

(P lan)

it turns out that, quite intuitively, the quantization of the identity map is the unit matrix. We

proceed analogously with the shifting part of E for ¢, € [|A;| — ¢,|A;]) and obtain

e~ 2 NPm(ant®) = (p g o), (4.48)

<pm|EQn> = \/1N

where we restrict the shift ¢ to the position lattice, C' := N¢ € Ny, i.e., ¢, + ¢ = ¢osc- In

position representation this reads

N-—1
k;:0

(pm | @nyc)

Thus, again very intuitively, by quantization the shift map translates into an index shift.
Certainly, the same arguments apply for the shifting part of E in opposite direction for g, €
[|A1|7 |A1| + ¢)7 glVng

Altogether, the quantization E of the exchange map E exhibits the form as illustrated in
Fig. 4.3. The quantized partial-barrier map without opening thus reads U, = ME.

In order to obtain the quantized partial-barrier map U = U, P with opening, we associate
an orthogonal projection operator P with the map O. Quantum-to-classical correspondence

is ensured by choosing
ker P:={y € 7 : szo}:span{qkejf : quQF‘IQ}. (4.51)
Again, owing to the simple Cartesian product structure, we explicitly obtain

P =diag(0,...,0,1,...,1) (4.52)
N — N———

L N—-L

in position representation, for the example that = [0,]2|) with L := #(Q N Q). This is
illustrated in Fig. 4.3. To conclude, the subunitary time-evolution operator U = Uy P with

U, = ME provides a quantization of the partial-barrier map T'= M o E o O.
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4.3 Kicked Model System

A different approach to model a dynamical system with a well isolated partial barrier is put
forward in Refs. [32,136] in terms of a kicked model system. We came across this system
already in the discussion of Fig. 3.2. In this section we briefly review the definition of the map
closely following the original references [32,136]. Before coming to that, let us mention that
in contrast to the partial-barrier map the kicked model system allows for studying values of
¢/h ¢ N which is necessary for the considerations in Chap. 5. However, for the main part of
this thesis, we focus on the partial-barrier map as it admits a clean phase-space structure and

as it is easy to vary relevant parameters over a broad range.

The kicked model system T = T, © Tiiex 1S a composition of two maps. The map Ti;ex

originates from a kicked Hamiltonian, Eq. (3.7), with

;

vp+ ¢ D D < Dreg,
VP + bieti, (P — Preg) /2 + 2 ! Preg < P < Phix — Plow;
TP) =1 ap+0b(p—pa)?/2+cs : Phix — Plow < P < Phix + DPup, (4.53)
VP 4 bright (D — Poix — Pup)?/2+ ¢4 = Phix + Pup < P < 1 — Dreg,
VPt 6 Pl = Preg <,
and
V(q) = —# cos(2mq), (4.54)

with parameters a = 20, v = 0.411, preg = 0.125, pax = 0.533, piow = 0.15, pup = 0.015, and
b= 0.6. The parameters bjef;, and byghe follow from

b ow
ey, = ot low ¥ (4.55)

Pfix — Plow — Preg ’
v—a— bpup

bii : 4.56
ght 11— Pfix — Plow — Preg ( )
The constants ¢, ..., ¢ € R may be chosen such that 7 is continuous. A stroboscopic
solution of the corresponding Hamiltonian yields the map
q+T'(p—3V(q
Tiiek(q,p) = Iy . (, ? ,( ) Iy : (4.57)
p—3V' (@) =3V (g+T(p—35V(a))

The phase space of the map Ty basically looks very similar to the one shown in Fig. 3.2.

However, the map Ti;q still has more than one dominating partial barrier. In order to destroy
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additional partial barriers, Ti;c is composed with the map

Toulq.p) = <qc> N (@S(wc) —sin(wc)> (q - qc> | (4.58)
c sin(we)  cos(we) / \p —pe
within a circle of radius r. around (g.,p.). The map T, is applied at two positions with
parameters ¢. = 0.5, p. = 0.33, r. = 0.2, w. = 3.0, and ¢. = 0.2, p. = 0.66, r. = 0.15,
we. = 3.0. The phase space shown in Fig. 3.2 corresponds to the map T" = T,y © Ty With a
single dominating partial transport barrier of flux ¢ ~ 0.00532 ~ 1/200. The partial barrier
decomposes phase space into two chaotic regions of area |A;| ~ 0.422 and |A,| ~ 0.421.

The quantization U = U, Uyiec of the kicked model map T' = T,o; © Tiier is obtained from
the quantizations U,y of Tyo: and Uyiee of Tige. The quantization of Uy is the same as the
quantized standard map, Eq. (4.23), when using the definitions of 7 and V from Eq. (4.53)
and Eq. (4.54), respectively. The quantum map U, is obtained as follows: It is convenient to
use a basis of Ny, harmonic oscillator eigenstates 7y, ...7nn, —1 inside the circle of radius 7,

which provides the projector

Npo—1

Pro = Z AR (4.59)

k=0

that semiclassically corresponds to the region inside the circle. Then

Urot = (1 - Pho) + Uhopho (460)
with
Npo—1
Uno = Z e T2 e (| Yy (4.61)
k=0

is used as quantization of 1.



Chapter 5

Quantum Localization Transition

in Closed Systems

This thesis is concerned with the phase-space localization of chaotic resonance states due to
partial transport barriers. Before coming to the investigation of this central problem, let
us review two relevant results from Ref. [32] on the analogous question addressed for closed
systems. First, in Sec. 5.1, we discuss that eigenstates of the unitary time-evolution operator
can localize on either side of a partial transport barrier or they can be equipartitioned on
both sides depending on a single universal scaling parameter. This gives a smooth transition
between the two regimes of localization and equipartition. In Sec. 5.2 we examine the relation
between the localization of eigenstates of the time-evolution operator and transport properties

of the system.

5.1 Localization Transition

It is well known that partial transport barriers can have a huge impact on quantum mechanical
properties of a dynamical system [19, 20,24, 30-34, 75, 162-166], such as the localization of
eigenstates [19, 20, 30,32, 34, 75| or fractal conductance fluctuations [162,163,165|. Focusing
on the localization of chaotic eigenstates of the time-evolution operator, the influence of a
partial transport barrier is essentially governed by the following question: How strong does
an eigenstate in its phase-space representation deviate from a uniform distribution within the
chaotic sea? This is motivated by the fact that in a fully chaotic system without restrictive
transport barriers, quantum ergodicity ensures that the majority of eigenstates approaches the
uniform distribution in the semiclassical limit [27]. Hence, any characteristic deviation from
a uniform distribution which is not covered by exceptions of the quantum ergodicity theorem,
i.e., any deviation different from ordinary quantum fluctuations or scarring effects [29], may be

attributed to the presence of a restrictive partial transport barrier. We will discuss quantum
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ergodicity in more detail in Sec. 7.1.1.

We first need to clarify what is meant by phase-space representation of a quantum state.
In order to investigate quantum-to-classical correspondence, it is often very useful to consider
the localization of quantum eigenstates in phase space. However, typically quantum mechanics
is formulated either in position or momentum representation. The full phase-space picture is
achieved for instance by the so-called Husimi representation [167,168|. Note that there are also
other prominent phase-space representations introduced by Wigner [169] or by Glauber and
Sudarshan [170,171] with their own advantages and disadvantages. The Husimi representation

Hy of a quantum state v is defined by

Hy(a.9) = 1 Hatgp |91 (1)

for (¢,p) € T', and describes the overlap of the state ¢ with a minimal uncertainty wave packet
Q(qp) centered around (g,p). In more detail, a(,p) is chosen to be a coherent state, i.e., an

eigenstate of the annihilation operator

\/7;72’( +—jo) (5.2)

of the harmonic oscillator

o 1 mw?

= 2m 5 (5.3)

cf. [172, Chap. 12]. Its width is chosen symmetrically and ideally localized by means of Heisen-
berg’s uncertainty principle, Aq = Ap = y/h/2. The center (¢,p) of o) is determined by
the expectation values of the position and momentum operator in this state. In dimensionless

formulation, it is

Q(q,p) () ¢ exp {—% (7(z —q)* - 27ripa:)} ) (5.4)

up to normalization [168, Eq. (2.29)].

Let us now consider the kicked model system with a single partial barrier introduced in
Sec. 4.3. Tts classical phase-space portrait is shown again in Fig. 5.1 compared to the Husimi
distribution of quantum eigenstates for two different values of the effective size h of Planck’s
cell.  While for h = 1/50, Fig. 5.1(c, d), the shown eigenstates localize dominantly (c) in
region Ay below the partial barrier or (d) in region A; above the partial barrier, the eigenstate
shown in Fig. 5.1(b) for h = 1/1000 does not exhibit striking signatures of the partial barrier.
Hence, the eigenstates in Fig. 5.1(c, d) for a rather large value of h are clearly affected by the

partial barrier whereas the eigenstate in Fig. 5.1(b) for a smaller value of h totally ignores the
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presence of the partial barrier.

It seems intuitive to some extent that chaotic eigenstates resemble the semiclassical expec-
tation of uniform distribution for small values of h. Note that the classical chaotic dynamics
explores the chaotic component rather uniformly on sufficiently large time scales. However,
which criterion determines whether A is sufficiently small? And when is the drastic confine-
ment to either side of the partial barrier to be expected? Apart from the evident dependence
on the effective size h of Planck’s cell, one could easily think of a dependence on the flux ¢
across the partial barrier, the size of the regions A; and A, on both sides of the partial barrier,
or the chaoticity in terms of the Lyapunov exponent for instance. Remarkably, as already con-
jectured in Ref. [17], the crucial parameter is the ratio of ¢ and h. Chaotic eigenstates tend
to localization if the transmission region of the partial barrier is quantum mechanically not
resolved, i.e., if the flux across the partial barrier is small compared to Planck’s cell (¢ < h).
On the other hand, if the transmission region is quantum mechanically resolved (h < ¢),
chaotic eigenstates are equipartitioned in the chaotic component as if there were no partial
barrier at all [19,20, 24,31, 32, 37].

The precise behavior of the transition between the two regimes of localization and equipar-

Figure 5.1. (a) Phase space of the kicked model system introduced in Sec. 4.3 with one
dominant partial barrier (solid magenta line) of flux ¢ ~ 1/200 in the chaotic sea. (b—d)
Husimi representation of characteristic chaotic eigenstates for (b) A = 1/1000 and (c, d)
h = 1/50.
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titioned is investigated in Ref. [32]. The authors study the equipartition measure

_ 1P [ P
weq(@bk) T |A1| |A2| ’ (55)

of the chaotic eigenstate v, with respect to the two chaotic regions A; and Ay, which are
separated by the partial barrier. Here, P, and P, denote orthogonal projections onto the
Hilbert spaces associated with A; and A, and we assume without loss of generality that
the chaotic region has unit phase-space volume. Note that numerically it may be useful to
consider the Husimi weight of ¢y in region A, instead of || P,1||*>. The equipartition measure
of 1y, is zero if the state is confined to one of the regions since the projection onto the other
region then yields zero. The equipartition measure reaches unity if || P,¢:||?> = |A,| for both
n € {1,2}. This corresponds to the case that ¢y is distributed like the classical Liouville
measure. We point out that it is convenient to consider the relative weight || P,x||?/|Ax]
instead of the absolute weight || P,v||? for that || P,¢y||* approaches | A, | if there is no partial
barrier. Moreover, the symmetry of A; and A, in the formulation of Eq. (5.5) accounts for
the fact that it is not relevant in this setup to distinguish between the localization on A;
and the localization on A;. This comes at the cost of the ambiguity that a state ¢, with
| Proic||? = |Az| and || Paytdr]|? = | A1 also yields weq(¢x) = 1, a value which should be reserved
for a truly equipartitioned state. We will comment on this issue again later. From numerical
studies and supported by a heuristic 2 X 2 matrix model, the authors conclude that the average

equipartition measure of chaotic eigenstates obeys

N, ch

1
<weq> = Nc

Py || || Potore || ~ o/h
| Ay | As| 1+¢/h’

(5.6)

k=1

where N, denotes the number of chaotic eigenstates [32]. Thus, the average equipartition
measure of eigenstates follows a smooth transition from zero to unity, i.e., from localization
on either side of the partial barrier to equipartition, see Fig. 5.2. It only depends on the single
universal scaling parameter ¢/h. Figure 5.2 shows that the transition curve is symmetric
around the transition point ¢/h =1, (weq) = 0.5 and has a width of two orders of magnitude
in ¢/h. Note that the algebraic structure of Eq. (5.6) can be derived by a Laurent expansion
of the inverse of (weq) in lowest order. It must be assumed that the equipartition measure is

zero for ¢/h = 0, monotonically increases, and linearly approaches unity for ¢/h — oo.

Let us briefly argue that the mentioned ambiguity in the equipartition measure of a single
chaotic eigenstate, Eq. (5.5), is not a serious problem for the averaged quantity in Eq. (5.6).
The question at hand is whether it is possible that the average equipartition measure equals

unity and the states localize as [|[Pyyy||* = |A2| and || Pyt ||* = |A1| on average. To this end,
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Figure 5.2. Theoretical expectation for the average equipartition measure (weq) of chaotic
eigenstates depending on the ratio of the flux ¢ across the partial barrier and the effective size
h of Planck’s cell, according to Eq. (5.6). Upper panels: Husimi representation of eigenstates
as in Fig. 5.1, illustrating the different regimes of localization with ¢/h indicated by arrows.

we compute the average weight of 14 in region A,,, giving

Nen

> (| Pathr), (5.7)

k=1

1 Nch 1
Nen Z ”ink||2 - Nen
k=1

since P, is an orthogonal projection, P* = P, and P2 = P,. We introduce the orthonormal

basis {7}, in the subspace im P, associated with A, and find

1 Nen 1 Nen Np,
DL M D DD ALIL Y (5.8)
M k=1 N k=1 =1
1 Nn NChJ
= th<z<¢k|ﬁj>¢k|m>- (5.9)
=1 k=1

Although {m}ﬁg is not a basis of the full Hilbert space, it is certainly possible to expand n;
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in terms of ¢, as im P, lies within the chaotic component. Thus, we obtain

ch

1 N, 1 Ny,
Ny 2 1Pl =50 2l = 5 = Al (5.10)
k=1 j=1

N,
Nch

The last relation holds true in the semiclassical limit, recalling that we assumed unit phase-
space volume for the chaotic region as mentioned above. Hence, on average chaotic eigenstates
will not localize as || Pii]|> = | Az| and || Py ||* = |A1], and the ambiguity which is possible for
individual states may be considered irrelevant for Eq. (5.6). The issue that single eigenstates
can oddly localize unrecognized by the equipartition measure can for instance be overcome by

studying the weight within only one of the two regions.

5.2 Localization and Transport

In Ref. [32] it is pointed out that there is a fundamental and very intuitive relation between the
localization of eigenstates with respect to two phase-space regions A; and As, and the weight
that is asymptotically transmitted between both regions when initializing a wave packet in
one of them. The basic idea is as follows: Any wave packet may be expanded in the basis of
eigenstates of the time-evolution operator. The more localized these eigenstates are the less
are they coupled to each other. Thus, if the eigenstates predominantly localize in one of the
regions, transport between both regions is suppressed. This is formulated more precisely in

the following theorem.

Theorem. Let U be a unitary operator on the Hilbert space C with nondegenerate
spectrum together with a basis of normalized eigenvectors {¢;}i_,, and let P, denote

an orthogonal projection onto an arbitrary subspace A C CV. Then it is

—

N t—
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for all subspaces A; and Ay of CV.

Proof. It is convenient to define the shorthand notation

t—1

1 .
Woo(Paye) = lim ~ > 1P U™ Pa, e (5.12)
n=0
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for the absolute weight of P4, v that is asymptotically transmitted to the subspace As.

To begin with, we write

t—1

WOO(P-Alwk) = lim — Z(PAQU PAlwk | PA2U PAﬂ/fk >7 (513)
t—oo t e
and insert the expansion
N
Pathe = Y (| Paythn )tr. (5.14)
r=1

Denoting the eigenvalue of U associated with v, by e?#*, this gives

WoolPaytn) = D> (W | Paythi )0 | Paytin)

1
X lim ; <PA2Un1/}T|PA2Un1/JS> (515)

n=0

1 .
x lim = ) ellesern, (5.16)

where lim;_, 1 : Zn Oexp[ i(ps — @r)n] = b, as long as there are no degeneracies in the

spectrum of U. We obtain

=z

o (Paythe) = D 1(te] Paytn )P | Paytel|” (5.17)

(=1

and perform the average over the full basis of eigenstates,

| X | NN
NZWOO(PAH/%) = NZZ| e | Paytoi) [ | Pay e (5.18)
k=1 1 = N
= 5 2 MPawel® Y (P toe [ ) (e | Py (5.19)
1 N K1
= NZHPLWHQHPAW@HQ- (5.20)
=1

Using that P} = Py, for orthogonal projections, this gives Eq. (5.11) and concludes the
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proof. Note that, in fact, we did not use the projection property of P4, or P4, but only

their selfadjointness. O

Equation (5.11) relates the average equipartition measure of eigenstates (right hand side) to the
asymptotic transmission of weight from one side of the partial barrier to the other (left hand
side). In view of the ¢/h dependence of the equipartition measure discussed in Sec. 5.1, this
means that also the asymptotically transmitted weight obeys the same ¢/h dependence [32].
Hence, for small values of ¢/h, such that the transmission region of the partial barrier is quan-
tum mechanically not resolved, a wave packet initialized in one of the regions will remain there
for all times and will essentially not penetrate into the other phase-space region. We stress
that a classical trajectory will explore the entire chaotic phase-space component in the long
run. Hence, one might think of the localization due to a partial transport barrier as exhibiting
the opposite phenomenology compared to the famous tunneling effect [32]: The tunneling pro-
cess allows quantum transport in cases where there is no classical transport [100, §50]. Here,
one observes suppression of quantum transport although classical transport is allowed. We
emphasize that comparable relations between localization and transport have been studied in
other situations before. To mention a few examples: strong Anderson localization due to dis-
order suppresses diffusion and implies a metal-insulator transition [6,7]; weak localization due
to time-reversal invariance yields corrections to the classical Drude conductivity of a metal [8];
localization of edge states due to topological protection is related to the quantized Hall con-
ductance [3,9]; and many-body localization in Fock space implies a metal-insulator transition
at finite temperatures for systems of interacting particles [10].

The original formulation of Eq. (5.11) in Refs. [32] is slightly different. There, the left hand
side of the equality, which is related to transport, contains a sum over an arbitrary basis of
wave packets in region A;. Instead we use the basis of eigenstates of U and project it onto
A;. The advantage of the latter is that it reveals a remarkable relation to ergodicity as we

will now demonstrate. To this end, we first show that Eq. (5.11) semiclassically reads

N t—1 N
1. 1 . 1
N Z tlggo z Hopy, (AQ nu Al) = N Z Hopy, (Al)”lﬂk (AQ)’ (5'21)
k=1 n=0 k=1
where g, (A) := || Patr||* defines a probability measure on subspaces of CV which is invariant

under U. Recall that an orthogonal projection P4 on a subspace A C C¥ can be represented
by

M

Pa= {m|-)m (5.22)

k=1

in terms of an orthonormal basis {n;}+L, of A. Since {Uni}L, denotes an orthonormal basis
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of UA, we obtain

M M
Poa=Y (Un|YUn=UY (| U™ = UPU". (5.23)
k=1 k=1

Semiclassically, the concatenation of two projections P4, Pg associated with phase-space re-
gions A and B projects onto AN B, that is P4 Pg = Psns. We stress that in general, i.e., away
from the semiclassical regime, this relation is only valid if P4 and Pz commute. Having said
this it is

[ Pa,U"Pal|? = |e "2 || Pa,U" Pa, U || (5.24)
= || Pa, Poma, x1? (5.25)
= | Pasrivma, ¥l (5.26)

Inserting this into Eq. (5.11) and using the notation gy, (A) = ||Patx||?, we find Eq. (5.21).
We still have to show that p,, is a probability measure which is invariant under U. This

follows from
fi, (UL A) = || Pye ati|* = U PaU||? = [ || Pat]|? = g1, (A), (5.27)

and

el = 15, (CV) = [[ Pewvpi||® = [l |* = 1. (5.28)

As a rather technical remark, note that in order to define a proper measure on an appropriate
o-algebra, the union of sets needs to be replaced by the span of vector spaces.
As mentioned above, Eq. (5.21) is related to ergodicity in an interesting way. Recall that

a probability measure p that is invariant under the map 7' is ergodic if and only if

t—1
Jim > (40T (A) = (A4 (5.20)
for all measurable sets A; and Ay [173, Prop. 9.1]. Ergodicity it often referred to as »spatial
average equals temporal average« following Birkhoff’s ergodic theorem [118, Thm. I1.12|, and
thus relates localization properties and transport properties. Intuitively speaking, the left hand
side of Eq. (5.29) describes how much the set A; penetrates into region A, under time evolution,
weighted with p (transport property), while the right hand side describes how equipartitioned
the measure p is with respect to A; and Ay (localization property). Comparing Eqgs. (5.29)
and (5.21), the latter may thus be interpreted as describing an averaged ergodicity. Note,

however, that this does not give any indication of chaotic dynamics or mixing behavior for U,
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apart from the assumption of nondegeneracy of the spectrum which could be due to chaotic
level repulsion for instance. Still, also the left hand side of Eq. (5.21) describes transport while
the right hand side describes localization. Consider two subspaces A; and A, such that the
eigenstates ¢, of U are predominantly localized on one of the two subspaces, e.g., due to a
restrictive partial transport barrier. This implies that for each ¢ one of the values p,, (A1)
and ., (Asz) is close to unity while the other one is close to zero. Thus, the right hand side of
Eq. (5.21) is small. On the other hand, this implies that the overlap .4, N U™A; must also be
small, which corresponds to weak coupling or suppressed transport. Vice versa, given that the
eigenstates 1 are equipartitioned with respect to A; and As, the right hand side of Eq. (5.21)
maximizes. Correspondingly, the overlap A; NU" A, is large such that transport between both

regions is enhanced.



Chapter 6

Observation of Localization Transitions

in Open Quantum Systems

In this chapter we present two numerical observations on localization transitions of chaotic
resonance states in open quantum systems. They have originally been reported in Ref. [34].
Their explanation will be the main subject of this thesis. We conclude this chapter by a
discussion of the relation between localization of resonance states and transport for open
systems. It turns out that their relation in open systems is quite different from their intimate

relation in closed systems examined in Sec. 5.2.

6.1 Localization Transitions

To introduce the basic phenomenon, let us again consider the kicked model system with an
isolated partial barrier studied in the previous chapter, see phase-space portrait in Fig. 6.1(a).
Following Ref. [32], we have discussed that chaotic eigenstates of the time-evolution operator
are equipartitioned with respect to the two sides of the partial barrier if the flux ¢ across
the partial barrier is quantum mechanically well resolved, ¢ > h, see Fig. 6.1(b). This is
the case for closed systems. Once the system is opened by an absorbing region this changes
drastically, see Fig. 6.1(c). Although the condition ¢ > h is satisfied for the open system just
as for the closed system, the shown long-lived chaotic resonance state clearly localizes above
the partial barrier. Note that the shown localized state is a typical example and not just an
exception. Moreover, this localization is even present for a much smaller size of Planck’s cell,
see Fig. 6.1(d), where the quantum resolution of the flux across the partial barrier is even
improved. This localization of chaotic resonance states with respect to the partial transport
barrier, in cases where one observes equipartition of eigenstates in the corresponding closed
system, demonstrates that the presence of partial transport barriers in open systems is even

more influential than in closed systems. This phenomenon was first reported in Refs. [33,123].
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Figure 6.1. (a) Phase space of the kicked model system introduced in Sec. 4.3 with
one dominant partial barrier (solid magenta line) of flux ¢ ~ 1/200 in the chaotic sea.
(b) Husimi representation of a characteristic chaotic eigenstate for h = 1/1000. (c, d) Husimi
representation of a characteristic long-lived chaotic resonance state of the opened system
with || = 0.25 (gray region) for (c¢) h =1/1000 and (d) h = 1/10000.

Let us at first numerically investigate the transition from equipartition to localization
when increasing the size of the opening, shown in Fig. 6.2. In order to reveal the parameter
dependence of such a transition, it is useful to have the opportunity to change the relevant
system parameters arbitrarily. This is simple for parameters like the size h of Planck’s cell
or the opening €2 of the system. However, as we also want to change the flux ¢ across the
partial barrier and later also the areas |A;| and |Ay| of the chaotic regions on either side of
the partial barrier, we consider a different model system, namely the partial-barrier standard
map introduced in Chap. 4. Also for this map, we observe the phenomenon that a typical
long-lived resonance state localizes on one side of the partial barrier while a typical eigenstate
of the corresponding closed system is equipartitioned if ¢ > h, see Fig. 6.2 (upper panels).
The transition from equipartition to localization is investigated as follows: For a fixed set of
system parameters (h = 1/6000, |A;| = |As| = 1/2), particularly for a fixed pair of ¢ and €2,
the time-evolution is described by a single subunitary matrix U. This matrix has N = 1/h
different eigenstates with a broad range of decay rates. In the first place, we focus on long-lived

states with a decay rate of 7 & vu,:. The natural decay rate 7,,; describes the asymptotic
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Figure 6.2. Weight || P11,||? of resonance states in region Ay vs ratio of size |Q2| of opening
and flux ¢ across partial barrier for different parameters of the partial-barrier standard map
(10 < ¢/h,|Q|/h < 2048; |A1] = 1/2; h = 1/6000). Weight of state with 7 closest to Ypat
(red points) and averaged over states with decay rates 7 € [ynat/1.1, nat - 1.1] (black crosses).
Inset: Same data shown on double-logarithmic scale. Upper panels: Husimi representation
of typical resonance states with v & na for h = 1/1000, ¢/h = 20, and two values |Q|/¢
indicated by arrows.

decay of an initially uniform distribution under the classical open dynamics. We will discuss
this natural decay in much more detail later. For the moment it is sufficient to think of
it as a characteristic decay rate for long-lived resonance states. We compute the absolute
weight || Py, ||? of all chaotic resonance states ¢, having a decay rate v € [ynat/1.1, Tnas - 1.1]
within a small window around ~,,;. Here P; denotes the projection onto the subspace that
is semiclassically associated with the phase-space region A; (containing the opening 2), such
that ||P1¢,]|* is the weight of the resonance state ¢, within A;. By taking the arithmetic
mean of the different weights [|P1¢,||* quantum fluctuations are reduced. Note that the
factor 1.1 defining the window of decay rates is balanced such that there are sufficiently
many resonance states under consideration in order to reduce the fluctuations significantly
and that all resonance states in the decay-rate window still exhibit approximately the same
magnitude of localization. The weight || Py, ||? averaged over resonance states with decay rate
close to 1mat provides a simple characteristic quantity to describe the localization of long-lived

resonance states in a single open quantum system, shown in Fig. 6.2 as a black cross. It is
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| Prioy]|?2 = |A1] = 1/2 if the states are equipartitioned with respect to the partial barrier,
it is [|[P1),]|> = 0 if the states entirely localize in region As, and it is ||Pi,]|* = 1 if the
states entirely localize in region A;. By variation of both ¢ and |2] we can monitor the whole

transition from equipartition to localization. In Fig. 6.2, we use all combinations of

o/h € {10,22,32,68,84,122,172,238,402, 508, 848, 1032, 1622, 2048}, (6.1a)
1Q|/h € {10,20,34,58,78,124,190, 236, 376,516, 788, 1022, 1804, 2044}, (6.1b)

where pairs of [Q|/h and ¢/h with |Q] + ¢ > |A;| (or ¢ > |As|) are omitted. Note that the
values of ¢/h and |Q|/h are chosen such that we obtain many different values of |Q2|/¢, and
that there is no deeper meaning in their exact values. With this, we find a smooth transition
from equipartition, || Py, ||? = |A;], for |Q] < ¢ to localization on A, for | > ¢, see Fig. 6.2.
The transition, in fact, universally depends only on the ratio of the openness |2 and the
flux ¢. The double-logarithmic visualization in the inset reveals that ||Pi¢),|*> decreases as
(|192]/¢)~! starting roughly at the order of |Q] /¢ = 1. We stress that this localization transition
in the open system occurs even though ¢/h > 10, where in the closed system eigenstates are
equipartitioned [32]. Moreover, we point out that already individual states nicely display this
localization transition. To demonstrate this, we consider the single chaotic resonance state 1.,
with decay rate closest to vnas On a logarithmic scale, i.e., the state for which | log(v) —log(Vnat)|
is minimal. Tts localization is shown in Fig. 6.2 by a red point for each fixed system setting.
Up to fluctuations, which are rather confined in this setup, the individual state exhibits the

transition from equipartition to localization on A, for increasing |2/ ¢.

In the above numerical study, we simplified the problem of localization of resonance states
due to a partial barrier by picking one typically relevant decay rate and associating a single
localization value to an entire quantum system. Indeed, even for a single quantum system
there is a broad range of decay rates, cf. [174] for instance. As shown in [49] in the context of
fully chaotic systems, the distribution of weights of a resonance state in phase space depends
on its decay rate. This indicates that also the localization with respect to a partial barrier in
terms of the weight || P14, ||* could change with the decay rate. In Fig. 6.3, we consider the
single quantum system for fixed parameters ¢/h = 100 and |€2|/h = 1000 such that |Q| > ¢,
for which the long-lived resonance states localize on A, cf. Fig. 6.2. We diagonalize the
corresponding time-evolution matrix U and show the y-dependence of the weights || Py1, || for
all resonance states. We find a transition from resonance states which localize on A, for small
~ to resonance states which localize on A; for large 7, including equipartitioned resonance
states in between. Let us emphasize that this transition between the two extreme cases of
localization on both sides of the partial barrier even for a single quantum system is important

for the correct interpretation of Fig. 6.2 where we focused on 7y, only.

To conclude, we observe (i) a transition from equipartition to localization of long-lived
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Figure 6.3. Weight ||P1¢,||> (red points) of resonance states 1., in region A; vs decay
rate v for the partial-barrier standard map (¢/h = 100; |Q2|/h = 1000; |A1] = 1/2; h =
1/6000). Upper panels: Husimi representation of typical long-lived (left) and short-lived
(right) resonance state for h = 1/1000 with ~ values indicated by arrows.

chaotic resonance states on Ay for increasing size || of the opening, see Fig. 6.2, and (ii) a
transition from localization on A, to localization on A; for increasing ~, see Fig. 6.3. Transi-
tion (i) is surprising as localization occurs for ¢ >> h, where in the closed system the eigenstates
are equipartitioned. Transition (ii) shows that in open systems the localization depends on
the decay rate 7. The fact that both transitions (i) and (ii) occur for ¢ > h suggests that
the localization transitions could be of classical origin. Furthermore, from the point of view of
decaying classical phase-space distributions the observed transitions qualitatively seem to be
rather intuitive: In Fig. 6.2, for a larger size of the opening one has less weight in region A;
that contains the opening. In Fig. 6.3, a larger weight in A; corresponds to a larger decay rate.
For a quantitative description, however, one needs suitable classical distributions, that is, one
has to find the classical counterpart of a quantum resonance state. Chapter 7 is dedicated to
this question. Before coming to that, let us discuss the relation between the localization of

resonance states and phase-space transport for open systems.
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6.2 Localization and Transport

For open systems, there is no straightforward generalization of the relation between localization
and transport from closed systems discussed in Sec. 5.2. This basically relies on the fact that
the structural result, Eq. (5.21), uses averaging arguments which hold true for asymptotically
large times. In open systems, the resonance states are subject to decay with an individual
decay rate. Thus, any initial wave packet ¢ will eventually die out under the proper subunitary
time evolution by U. Still, one might wonder what the wave packet looks like under an artificial
renormalized time evolution U compensating the decay. To this end, we consider the nonlinear

but norm-preserving operator

el
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for the n-th iterate. In words, the n-th iterate of the renormalized time-evolution operator U
is simply given by the renormalization of the n-th iterate of the original time evolution U. We

express ¢ in terms of eigenstates {1}, of U, Uthy = A\pi)y, and obtain

N
_ Z A (6.8)
k=1

with coefficients ¢, as in Eq. (2.45). Since U is subunitary, the modulus of \; is below unity
such that asymptotically, i.e., for sufficiently large n, the time evolution of ¢ is governed by
the 1 with largest value |\¢| and ¢x # 0. All other eigenstates with larger decay rate are

exponentially suppressed.
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Hence, in order to understand the asymptotic evolution of wave packets in open systems,
one only has to understand the localization of the longest-lived resonance states. Resonance
states of larger decay rate are relevant only for the initial temporal regime. To demonstrate
this dominance of long-lived resonance states, we consider the example of the standard map
at kK = 2.9 with a mixed phase space opened in the chaotic sea by two stripes of width 0.05, cf.
Sec. 3.1. The longest-lived state is the regular ground state located at the central elliptic fixed
point. It is coupled to the opening only by the rather slow process of dynamical tunneling [36].
Still, a wave packet initialized in the chaotic sea resembles the ground state for sufficiently
large times as can be seen in Fig. 6.4. As a technical remark, we mention that numerically
these large iteration times, ¢ = 2", are achieved by an n-fold loop multiplying U with itself in

each loop cycle.

t=0
<L s
Py L=
q
t=2° t =21 t=2%

Figure 6.4. Husimi representation of the renormalized time evolution of a wave packet
for the standard map, k = 2.9, h = 1/150, for different number ¢ of iterations as indicated
above each panel. The system is opened by absorbing stripes (gray shaded) of total area
|2] = 0.1. The magenta lines show the dominant partial barriers of the system.
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Chapter 7

Semiclassical Structure

of Chaotic Resonance States

The observations on the semiclassical localization of chaotic resonance states due to a partial
transport barrier in Sec. 6.1 led us to the question: What is the classical counterpart of a
quantum resonance state? This is the central topic of this chapter. First, we review basic
results on the semiclassical structure of quantum eigenstates for closed systems in Sec. 7.1.
We particularly discuss the relevance of invariant measures in this context. In Sec. 7.2 we
fathom the structure of chaotic resonance states for open systems based on the work by
Keating et al. [49]. Semiclassically, this leads to the study of conditionally invariant measures.
We introduce the class of v-natural conditionally invariant measures, originally published
in [34], for which quantum-to-classical correspondence with chaotic resonance states will be

demonstrated in Chaps. 8 and 9.

7.1 Quantum—Classical Correspondence in Closed Systems

For closed systems the semiclassical phase-space localization of quantum eigenstates is well
understood. Following the line of arguments as presented in Ref. [146, Sec. 3| we review
fundamental results on the semiclassical localization of regular and chaotic eigenstates in
the following. It turns out that the relevant classical objects are invariant measures which

correspond to uniform phase-space distributions for Hamiltonian systems.

7.1.1 Semiclassical Structure of Quantum Eigenstates

Let us begin with the case of integrable dynamics. Here, the classical dynamics takes place
as periodic or quasi-periodic (ergodic) motion on invariant tori. From the semiclassical eigen-

function hypothesis [11,14,15], one knows that quantum eigenstates are concentrated in their
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Husimi representation on such invariant tori with minimal uncertainty as defined by the size h
of Planck’s cell. For an example of such a regular eigenstate for the standard map, see
Fig. 7.1(a). The quantizing tori C, obey the Bohr—Sommerfeld quantization condition [102,
Sec. 11.3|,

fﬂ p(q) dg = (n + %) h (neN) (7.1)

where p denotes the (multivalued) momentum along the irreducible circuit of the torus C,
as a function of the position ¢, such that 550 p(q) dq is the phase-space area enclosed by C,.
From the approximation scheme by Wentzel, Kramers, and Brillouin, one even has an explicit

representation for a regular eigenstate v that is semiclassically correct, namely

o) =Y e {45 [ oyac}, (72)

with appropriate expansion coefficients cy [175, Sec. VII|. Tt has been shown in [13, Sec. 3|
that this approaches a uniform distribution along the regular torus for A ™\, 0, using the
Wigner—Weyl formalism. We emphasize that, quite intuitively, this uniform distribution on
the torus is tnvariant under the classical time evolution.

For chaotic systems there is in general no explicit semiclassical expression like Eq. (7.2)
for eigenstates [146, Sec. 3.2]. The generic behavior, however, is captured by the quantum
ergodicity theorem [27]: Consider a unitary quantum map Uy : CV¥ — C¥ corresponding
to an ergodic symplectic map on a toric phase space with a basis of normalized eigenstates,
PN € CV,n € {1,...,N}. Then there exists a sequence (Ex)yen of sets Exy C {1,...,N}
satisfying limy o #En/N = 1, such that for every sequence (ny)yen with ny € Ey, the

sequence (erzyN) ~nen of Husimi distributions converges towards the uniform distribution (in

Figure 7.1. Husimi representation of a typical eigenstate of the standard map, h = 1,/1000,
for (a) k = 0.5 and (b) k = 10.0, that is (a) concentrated on a regular torus and (b)
distributed over the chaotic sea, cf. underlying phase-space portrait (black lines and dots).
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the w*-topology). The restriction to sequences (ny)yen is necessary as there exist exceptional
eigenstates that are scarred with enhanced localization in the vicinity of unstable periodic
orbits [29]. Obviously, such states do not correspond to the uniform distribution. An example
of a typical uniformly distributed chaotic eigenstate of the standard map is shown in Fig. 7.1(b).
There are other and more general formulations of the quantum ergodicity theorem available,
see e.g., the fundamental results in [12,18,21], results on quantum ergodic billiards in |25,
26,29|, on ergodic Hamiltonian flows on energy surfaces [22|, on ergodic quantum maps in
general [27,28], and on the quantum Baker map with its discontinuities [176]. Thus, similar to
the integrable case, up to dimensionality, typical chaotic eigenstates approach the classically
invariant uniform phase-space distribution in the semiclassical limit.

Let us discuss such classically invariant distributions in a little more detail. We choose a
rather abstract approach in terms of measures here, which is suitable as it allows to rigorously
include fractal properties for open systems below. For a short overview on measure theory we

refer to Sec. A in the appendix.

7.1.2 Invariant Measures

The forward time evolution of a probability measure g under the map 7": I' — T" is given by

the pushforward measure T u, which is defined by
Tou(X) = p(T7H(X)) (7.3)

for all measurable sets X C I'. Note that the preimage T71(X) of X under T is well-defined
even in the case that T is not invertible, which is relevant for open systems below. Let us give
an intuitive argument, why 7,p may be interpreted as the iterate of pu: Suppose that p has a

density o : T' — [0, 1] with respect to the Lebesgue measure A, that is,

p(X) = /X odA (7.4)

for all measurable X C I'. In Fig. 7.2 this is illustrated by a two-dimensional Gaussian
distribution for o in the left panel. Let ¢ denote the probability distribution after one iteration
by the map 7. In Fig. 7.2 this corresponds to the density distribution in the right panel after
iteration by the Baker map. Numerically, this may be realized by generating a sample of
random points in phase space which are distributed according to the probability distribution o
by an acceptance-rejection algorithm for instance [177,178|, and by iterating these points once
by virtue of T. The distribution of the iterates obeys a new density function g. This function
0 is the density of the measure T.u as defined by Eq. (7.3). With this it becomes clear that
the weight of T, on the set X is, in fact, the weight of u on the set T-'(X) since the
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Figure 7.2. Sketch motivating the definition of the pushforward measure Ty p in terms of
densities: The weight of the Gaussian density defining y within the set 71(X) (colored
region; left panel) is the same as the weight of the iterated density corresponding to Tipu
within the iterated set X (colored region; right panel). The map T is chosen to be the
Baker map; the black lines in the background decomposing the phase space vertically and
horizontally into thirds are a guide to the eye.

overlap of a density with a given set does not change if both the density and the set are
iterated. This is visualized in Fig. 7.2 for X = [0,1/3) x [0,2/3), the preimage of which
is T71(X) = {[0,1/9) x [0,1)} U {[1/3,4/9) x [0,1)}. In the general situation that u does
not provide a proper density o, Eq. (7.3) must be taken as a definition. We stress that T.pu
corresponds to the forward iteration of 1 even though the inverse iteration 7! enters in
Eq. (7.3).

We are now able to define invariance for a measure as motivated by the above discussion on
the classical counterpart of quantum states in closed systems. A measure p is called invariant
under the map T if T, = p. Liouville’s theorem states that for Hamiltonian systems, or
symplectic maps respectively, the uniform Lebesgue measure is invariant [129, Prop. 3.3.4].
In chaotic systems the invariant measure is particularly important for the asymptotic time
evolution as any generic initial measure converges towards it: Since a typical orbit explores
the entire phase space uniformly in the long run, it seems reasonable to expect some kind
of convergence of (T'v),en for suitable initial measures v towards the invariant Lebesgue
measure u. First of all, we focus on measures v that are absolutely continuous with respect to
i, ie., pu(X) = 0 implies v(X) = 0 for all measurable sets X C I'. This particularly excludes
exceptional Dirac measures localized on periodic orbits for instance. Moreover, let us consider
the special case that the considered chaotic system is ergodic. The symplectic map 7" together
with its invariant measure p is called ergodic if for any invariant measurable set X, T'(X) = X,

it is u(X) =0 or u(X) =1[173, Sec. 6.3]. As a consequence of the mean ergodic theorem by
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von Neumann [118, Thm. II.11], ergodicity implies

N-1
i ST = 0 (75)
for all measurable X. In other words, for ergodic Hamiltonian systems the so-called Cesaro
average of any absolutely continuous measure indeed converges towards the invariant Lebesgue
measure as expected. In order to obtain convergence of the sequence (T!'v),en itself, and not
only convergence on average, ergodicity is not sufficient. However, if the map T is (strongly)
mixing, i.e., if for all measurable X, Y it holds that [173, Sec. 9.1]

lim p(T7*(X)NY) = p(X)u(Y), (7.6)

n—oo

it can be shown that

lim 77'v(X) = u(X) (7.7)
n—oo
for all measurable X. Hence, in mixing Hamiltonian systems any absolutely continuous mea-
sure converges towards the invariant Lebesgue measure under time evolution. An idea of the

proofs for Egs. (7.5) and (7.7) is given in Sec. B.3 in the appendix.

7.2 Quantum—Classical Correspondence in Open Systems

Invariant measures also exist for symplectic maps that are opened by an absorbing region.
First, if the dynamical system displays regular motion away from the opening, this phase-space
region supports invariant measures as in closed systems. But invariant measures exist even in
the chaotic component of phase space that contains an opening [58]. They are supported by
the maximal invariant set in the chaotic part of phase space, the fractal repeller, cf. Sec. 3.3.
However, by definition, such invariant measures do not display decay and therefore cannot be

the classical counterpart of quantum resonance states.

In this section we first discuss the structure of chaotic resonance states based on the work
by Keating et al. [49]. It turns out that classical conditionally invariant measures, which in con-
trast to invariant measures exhibit decay, obey localization conditions analogous to quantum
resonance states. Thus, they are ideal candidates for quantum-to-classical correspondence.
Still, it is necessary to identify the conditionally invariant measures that are quantum me-
chanically relevant. To this end, we propose the class of y-natural conditionally invariant

measures [34].
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7.2.1 Semiclassical Structure of Chaotic Resonance States

For open systems, quantum-to-classical correspondence between the structure of quantum
chaotic eigenstates and classical properties is by far not as well explored as for closed systems.
Still, a few fundamental results are presented in Refs. [46,48,49,51| or reviewed in a broader
context in Refs. [56,58]. We will briefly discuss them here. Note that there are other related
works on a short periodic orbit approach to resonances [92,179,180]|, discussing scarring ef-
fects [54,181], and investigations on localization on manifolds [182] for open systems. As we
focus on the generic behavior of quantum resonance states in the spirit of quantum ergodicity,

these issues are not taken into account.

Following the seminal paper by Keating et al. [49] we discuss two fundamental semiclas-
sical properties of the localization of quantum resonance states in their Husimi representa-
tion: (i) Chaotic resonance states are semiclassically supported by the backward trapped set.
(i) Their weight on semiclassically resolved forward escaping sets decays by e~ between con-
secutive levels, determined by the decay rate v of the resonance state. In the following, it
is instructive to illustrate the explanation of both statements using the example of the open
Baker map. Its resonance states exhibit the characteristic features of (i) being supported on
backward trapped set (horizontal stripes), and of (ii) having an additional 7-depending profile

governed by the forward escaping sets (vertical stripes), as shown in Fig. 7.3.

Figure 7.3. Average Husimi distribution of chaotic resonance states of the Baker map
(1/h = 729; Q = [1/3,2/3) x [0,1); Ynar = —log(2/3) ~ 0.405) with (a) v € [ynat/1.1, Ynat -
1.1] (20 states) and (b) short v € [0.8/1.1,0.8 - 1.1] (17 states). Colored regions in the
background show the opening (2, dark gray), the first forward escaping set (T~1(£2), light
blue), and the second forward escaping set (7~2(£2), medium blue)
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(i) The Husimi distribution Hy, of a resonance state 1 is invariant under the quantum time
evolution U P up to normalization, where U denotes the unitary part of the quantum map and
P is the projection onto the complement of the opening 2. More precisely, the time evolution
Y — UP1 reads Hy — Hypy in terms of the Husimi representation. The invariance of Hy
under time evolution up to normalization particularly means that even though a substantial
part of the distribution Hy leaves the system through the opening €2, the entire phase-space
distribution Hy, has to reconstruct itself after one iteration by U P up to decay. This invariance
property of ¢ implies that H, must not have any weight on the iterate 75 (£2) of the opening
) under the classical closed system dynamics T,: Semiclassically speaking, under the open

dynamics T' = T;; o O nothing is mapped to T¢(2) since
T(T) =Tu(O(I)) = Tu(I'\ Q) U{oo} = (I'\ Tu(2)) U {oc} (7.8)

as Ty is bijective. For illustration, see Fig. 7.4 for the Baker map. Here, by iterating the entire

n=3
p
e——
q
1 1
(b) (c)
4 4
0 0
0 q 1 0 q 1

Figure 7.4. (a) Forward iteration of the uniform phase-space distribution under the open
Baker map (iteration number n as indicated above each panel). (b) Forward escaping
sets T7™(QQ) for n = 0 (gray), n = 1 (light blue), n = 2 (medium blue). (c) Disjoint
representation of the iterates T} (Q2) of the opening under the closed Baker map T for
n =1 (light blue), n = 2 (medium blue), and n = 3 (dark blue).
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phase space once under the open map, Fig. 7.4(a), nothing is mapped to the middle horizontal
third which is T, (€?), Fig. 7.4(c). Suppose Hy, does not vanish on 7t (£2). While the weight of
Hy in T, () will redistribute over phase space within one iteration, nothing enters 75 (€2) such
that H, cannot reconstruct. Hence, any invariant Husimi distribution H,; must not have any
weight in 75 (€2). The same line of semiclassical argument applies to all images 77(2) of the
opening up to the Ehrenfest time, n < 7gy,, which is the time scale of quantum-to-classical
correspondence [48]. Therefore, H,, is semiclassically supported by the set of points in phase
space that are trapped in the system at least 7gpn, backward iterations. This is confirmed by
the averaged Husimi distributions of chaotic resonance states in Fig. 7.3 which are zero on the
sets T7(Q2) for n < 3 (horizontal gaps), cf. Fig. 7.4(c). The remaining weight is supported by
the threefold backward trapped set. Note that the finite-time approximation of the backward

trapped set corresponds to its spatially finite approximation on the Planck scale h.

We can also show this localization on the backward trapped set from a more general
perspective: Let 1 be a resonance state of the quantum map UP, i.e., UPY = \ip, X\ # 0.
This implies

(UP)"

Y o_
= Y (7.9)

for n € Ny, such that ¢ € im (UP)™ for each n. Here,
im S :={SyY : Y € D(S)} (7.10)

denotes the image or range of an operator S with domain D(S). Using the general relation
im S C (ker $*)" between the image of S and the orthogonal complement of the kernel of
S*, cf. Eq. (2.27), for a bounded linear operator S on some Hilbert space [151, §21.3.5], we

conclude
¥ € (ker(PUTYM T, (ne€Np). (7.11)

In words, a resonance state 1 is orthogonal to all subspaces that are mapped to zero under
the backward open quantum time evolution PU~!. Semiclassically, that describes precisely
the localization on the classical backward trapped set. As the semiclassical argument is only
valid for n < 7gp,, we recover the above result (i). We emphasize that Eq. (7.11) is the
quantum-mechanical generalization of the semiclassical localization on the backward trapped
set. In the original work [49], the argument for the semiclassical localization on the 7gp,-fold
backward trapped set is slightly more technical, analyzing the backward time evolution of
the coherent state which enters the definition of the Husimi representation of the resonance

state. Note that fractal properties in the localization of quantum resonance states have first
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been observed and attributed to the classical backward trapped set in the pioneering work by
Casati et al. [46].

(ii) We now focus on the weight of resonance states on forward escaping sets T-"(2). For
the Baker map the forward escaping sets are vertical stripes in phase space, see Fig. 7.4(b).
Let us start from the eigenvalue equation U Pt = M) with |A\| = /2 which implies the norm

decay of the resonance state,
[UPY|* = e (7.12)

Denoting the orthogonal projection onto the opening by Fy := 1 — P, this gives

[UPY|? = (1 - Po)yl? (7.13)
= |[0[> = (¢ | Pop) — (Pob [ 4) + || P |? (7.14)
= 1—||Rl?, (7.15)
using that
(V| Po) = (| Bjv) = (P | P ) = || Pop||*. (7.16)

Equations (7.12) and (7.15) establish the simple but important relation
P> =1—e 7. (7.17)

We stress that this result is remarkable as it relates the localization of the resonance state
with its decay rate . Qualitatively, this is very intuitive: The more weight of 1 lies in the
opening the faster its decay. This is also confirmed by the averaged chaotic resonance states in
Fig. 7.3. The resonance state with larger decay rate (b) has more weight on the opening (gray
region) than the resonance state shown in (a) with smaller decay rate. Note that Eq. (7.17)
is important beyond the study of chaotic resonance states, e.g., it can also be used for the
computation of dynamical-tunneling rates from the regular to the chaotic phase-space region

of mixed systems as initially worked out in collaboration with Normann Mertig [183, 184].

Proceeding with the iterated operators P, := (UP)*"Py(UP)", n € Ny, one finds

(| Pup) = ((UP)"Y[R(UP)"Y) (7.18)
= ¢ " ||Pl? (7.19)
= ¢ (1 —e), (7.20)

which generalizes Eq. (7.17). Semiclassically, for n < 7gy,, P, corresponds to the projection
onto the forward escaping set 7T~"(2) such that (v | P,3) describes the weight on that set.
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We point out though that the operators P,, n # 0, are strictly speaking not projections if
not considered semiclassically. This is essentially due to the fact that in general U~'PyUP #
PU~LP,UP, although they are equal semiclassically. To conclude, Eq. (7.20) explicitly relates
the weight of a resonance state in each of the forward escaping sets 7" (€2) up to gy, with its
decay rate y. The ratio of weights (¢ | P,119) /(¢ | P,t) between consecutive levels equals
e 7 for all n € Ny, cf. Eq. (7.20). Qualitatively, this agrees with the localization of chaotic
resonance states shown in Fig. 7.3. A precursor on this kind of semiclassical decomposition of
resonance states can be found already in the work by Schomerus and Tworzydto [48|, where
the authors identify regions of ballistic escape in order to study the number of instantaneous
decay modes.

Let us point out that the Ehrenfest time gy, being the temporal threshold between classical
and quantum-mechanical behavior is not sharp but rather defines a scale, meaning there is a
smooth transition from one regime to the other. In the same spirit, it is not essential in the
following whether there is quantum-to-classical correspondence both in forward and backward
time direction up to 7gy, or in each direction only up to 7gp,/2, which seems more appropriate.
In this regard, the above discussion should be rather seen as a proof of concept.

Given the discussed results from [49], we have now seen some fundamental semiclassical
properties of quantum resonance states. Still, this leaves the question about the correct
classical framework to capture these properties. The work by Nonnenmacher and Rubin [51]
suggests the concept of conditionally invariant measures. Before we discuss a few important

results from [51], let us introduce conditionally invariant measures as developed in Refs. [43,50].

7.2.2 Conditionally Invariant Measures

A probability measure p is called conditionally invariant measure (CIM) with respect to the

classical map T': I' — I, if it obeys the condition

T = | Tonl . (7.21)

with ||Tup|| = Twp(T) and the pushforward measure T.u as defined in Eq. (7.3). In contrast
to an invariant measure, T,/ = p, a CIM is invariant under 7" only up to a global factor ||T.u/|.

In fact, the n-fold iteration
T'p=|Twpl"n=e"p, (7.22)
using T (|| Tepe]] 1) = || Tupe|| Tipe, yields an exponential decay with rate

7 = —log(|[Tupl). (7.23)
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For the special case that the opening O is performed before the closed map iteration T,
T=T400,itis

def _ _ (QCr)
I Tepll = p (T7HT)) = n(O(Z7' (1)) = (TN Q) "= u(D) (), (7.24)
—~—
T =1
such that the decay rate v may be written as
7= —log (1 - (Q)). (7.25)

With this, Eq. (7.21) states that the measure p(7T'(X)) of the set 7-*(X) that will be
mapped to X is smaller than p(X) by the factor e~7.

By definition, CiMs obey the same localization conditions as quantum resonance states do
semiclassically in terms of (i) being supported by the backward trapped set, Eq. (7.11), and
(ii) having decay-rate depending weights in the forward escaping sets according to Eq. (7.20):

(i) By mathematical induction we show u (77(€2)) = 0 for n € N, that is, a CIM p is
supported by the backward trapped set, cf. Eq. (3.25),

Tywa = T\ O (). (7.26)

First, for the base case n = 1, it is

Eq. (7.21)

p(Ta(Q) =" @ Tp(Tu(9)) (7.27)
— (00T o Tu(2)) (7.28)
= e’ n(0(9Q)) (7.29)
= e u@) (7.30)
= 0 (7.31)

For the inductive step, we show that 4 (77 () = 0 impies p(T57(Q)) =0,

p(Ti(Q) = & Tp(Ti(Q)) (7.32)
= (0o Ty o THT(Q)) (7.33)
= & p(THQ)\ Q) (7.34)
< & p(TH() (7.35)
= 0. (7.36)

A more intuitive argument analogous to the discussion for quantum resonance states applies

for civs as well, i.e., a CIM must not have any weight in any iterate 77 (€2) of the opening as
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any contribution on 77} (2) leaves the region under iteration by 7" but no weight enters again.
Figure 7.5 shows the localization of CiMs on the backward trapped set (horizontal stripes) for

the Baker map.

(i) In addition to the localization on the backward trapped set, the weights of CIMs in
the forward escaping sets obey a decay-rate depending relation just like Eq. (7.20) for chaotic
resonance states. Directly from the definition of civs, Eq. (7.21), one finds

n(T7(Q) = TP () = e (@) 2 e (1 — e ), (7.37)
the classical equivalent of Eq. (7.20). Examples for ciMs with decay-rate depending weights

in the forward escaping sets are shown in Fig. 7.5 for the open Baker map.

We have seen that CIMs are invariant up to decay and obey the same two fundamental
localization properties as quantum chaotic resonance states. Hence, they are the ideal can-
didates for quantum-to-classical correspondence. So far, however, we have not addressed the
question how many different CiMs actually exist, i.e., whether there are too few CIiMs to find
a counterpart for each quantum resonance state or, vice versa, whether there are too many
CiMs such that one needs to investigate which of them are quantum mechanically relevant. In
Ref. [51, Thm. 1], it is proved that quantum resonance states necessarily converge towards
CIMs in the semiclassical limit, provided that they converge at all. The authors also develop a
method, originally presented in [50, Thm. 3.1|, to construct uncountably many cIiMs for each
decay rate v [51, Prop. 2]. They emphasize that it is not clear which of these infinitely many
CIMs are quantum mechanically relevant. In other words, if one expects that for each ~ there
exists a single CIM that captures the semiclassical behavior of generic chaotic resonance states
with the same decay rate v then one needs to be able to select this CIM out of the huge variety
of infinitely many different CiMs that exist for this .

Let us begin with the following simpler problem: Which of these infinitely many cims
are classically relevant? An appealing attempt to answer this question is put forward in [50,
Sec. 5.1]. Recall that for closed systems, ergodicity and mixing imply a convergence of almost
arbitrary initial measures towards the invariant uniform Lebesgue measure, cf. Eqs. (7.5) or
(7.7). For open systems, an analogue consideration is based on the nonlinear iteration by

T.v
v Tl (7.38)
where the nonlinearity compensates the decay. Any CIM is a fixed point of this iteration as
follows immediately from the definition, Eq. (7.21). Likewise, if the iteration converges, the
limit measure is conditionally invariant. Note that this relation between CiMs and Eq. (7.38)
actually motivates the notion of conditional invariance as the n-th iterate applied to X C I'is

the conditional probability for being in X after n iterations under the condition of being in I"
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after n iterations [43]. Moreover, note that in order to achieve convergence, it might also be
useful to consider convergence on average in the Cesaro sense as performed in Eq. (7.5). The
relevance of CIMs may now be classified by the stability of the corresponding fixed point of
Eq. (7.38). This means, the more different initial measures v converge towards a CIM p, the
more important p becomes. A first reasonable candidate for which one could expect classical
relevance [55,56] is the so-called natural CIM fin,;, defined by the limit measure according to
Eq. (7.38) when using the Lebesgue measure for v [50]. This yields the uniform distribution
on its support, i.e., the backward trapped set, as visualized in Fig. 7.5(b) for the Baker map,
see also Fig. 7.4(a). Numerically, one observes that not only the Lebesgue measure but rather
any generic initial measure converges towards fi,.; (not shown). This seems reasonable in
view of Egs. (7.5) and (7.7) for closed chaotic systems. Notice, however, that even the mere
existence of fi,, i.€., the convergence of Eq. (7.38) for the Lebesgue measure v, is in general

not guaranteed [50, Sec. 5.1].

Quantum mechanically, the natural ciM describes typical long-lived resonance states in
the semiclassical limit up to system specific scarring effects, as is already pointed out in [46]
without using the notion of a natural ciM though. For instance, compare the natural cim
nat Of the Baker map, Fig. 7.5(b), with the average chaotic resonance state with v & 7yas,
Fig. 7.3(a). In the context of optical microcavities the natural CiM coincides with the steady
probability distribution, for which quantum-to-classical correspondence is observed [70]. Note
that optical microcavities are modeled with partial absorption, i.e., by quantum maps UP
with a unitary part U and a subunitary part P = 1 — aF,, with the absorption coefficient
a € [0,1] and the projection Py onto the opening, cf. [56]. Throughout this thesis we use
«a = 1, which simplifies some arguments. For a generalization of our results to systems with

partial absorption, we refer to a short discussion in the outlook in Chap. 11.

As the natural CciM has a single decay rate only, it cannot be the classical counterpart for
all quantum resonance states with a wide range of decay rates. CiMs with other decay rates
may be constructed as follows [50,51]: Let v be an arbitrary probability measure on € N4,
that is v(I') = (2 N ywq) = 1. Then for each v > 0, the measure defined by

pi=(1—e") Z e Ty (7.39)

n€Np

is conditionally invariant with decay rate . Here, T*v denotes the pullback measure of v,

obeying

T*v(X) = v(T(X)) (7.40)

!Note that, given the different notation used in [51], there is a typo in Eq. (2.14): The authors accidentally
use the pushforward measure instead of the pullback measure.
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Figure 7.5. (a, c) Construction of y-natural cims for the Baker map by truncation of the
series in Eq. (7.49) to n < 2 for (a) v < Ynat and (c) ¥ > Ynat. This is based on the natural
oM shown in (b) for which the weight in Q (gray stripe), T7-1(Q) (light blue stripes), and
T72(22) (medium blue stripes) is adapted. (d, e) Finer resolution of y-natural cims for (d)
¥ < Ynat and (e) v > nat computed by the integration method discussed on page 82.

for measurable X C T" for maps T such that T'(X) is measurable as well. The conditional

invariance of p as defined by Eq. (7.39) can be seen by

T = (1—e ML T, T 7.41
b= (- >{ L3 } a1
=0 n=1 _x(n—1),,
= (I1—e e Z e Ty (7.42)
n=0

= e pu. (7.43)
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The pushforward measure T.v equals zero because for each X C T the preimage T-(X) is in
'\ © and thus has no overlap with the support QN T'pyq of v. The relation T,7*"v = Ty,
also follows from the restriction of v to QNI',,q. Due to the arbitrariness of v, this construction
demonstrates that there exist uncountably many CIMs for each ~. Interestingly, a construction
of chaotic resonance states analogous to Eq. (7.39) can be proved, see Sec. B.4, which further

indicates quantum-to-classical correspondence.

So again, the question arises, which of these infinitely many CiMs is relevant for classical
or quantum mechanical considerations. Classically, CIMs other than p,,; tend to be irrelevant
in terms of the stability for the iteration by Eq. (7.38) as introduced above. An initial mea-
sure v in the notation of Eq. (7.38) must fulfill exceptional selfsimilarity properties in order to
converge towards a specific CIM p as represented by Eq. (7.39). That is, the initial measure v
of sets that will escape through the opening under forward iteration must be chosen according
to the decay rate v such that p is essentially already contained in the fine structure of v up
to localization on the backward trapped set and therefore exceptional. For a detailed study of
appropriate initial measures as worked out in collaboration with Tobias Becker and Konstantin
Claufs we refer to Ref. [185]. Still, the results presented in Refs. [49,51] suggest that CIMs with
v # nay are quantum mechanically relevant even though they may be exceptions classically.
Which cim out of the huge variety of CiMs for a single decay rate v is quantum mechanically
important? We here propose the class of y-natural ciMs and show in Chaps. 8 and 9 that
they are, in fact, quantum mechanically relevant, as they describe the localization of quantum
resonance states on both sides of a partial barrier. We use the construction described by

Eq. (7.39) for the particularly simple case that

_ Nnat(X N Q)

v(X): (@)

(7.44)
which is the normalized restriction of the natural CIM g, to €2. This choice of a measure,
which is constant on its support, is motivated in analogy to quantum ergodicity for closed fully
chaotic systems, where eigenstates in the semiclassical limit approach the constant invariant

measure [29,186]. Then we may write

T"y(X) = v(T"(X)) (7.45)
[inas (Zni?;))ﬂ Q) (7.46)

_ % T s (T7(X) 1 ) (7.47)

_ % o [T (T"(X) 1) . (7.48)

XNT-"(Q)
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Note that in general, T77"(T"(X) N Q) 2 X NT"(Q) as T is not bijective (open system).
However, here it is sufficient for equality to hold that 7" is invertible within all forward escaping
sets T "(Q2). Inserting Eq. (7.48) in Eq. (7.39), we obtain the ciMm

[y (X) = -7 Z emar=n (X N T_"(Q)) (7.49)

] — e mat
neNy
of arbitrary decay rate -, which we refer to as y-natural CiM. This series multiplies i, in
each forward escaping set 7" (Q2) by an appropriate factor which imposes the overall decay
rate v according to Eq. (7.21). The v-natural CIM g, is constant on 77"(£2) N ['yyq for each
n € Ny. With increasing n, this constant is decreasing (increasing) for v > Jnar (7 < Ynat), in
particular short-lived measures (1, have more weight in the opening. This is shown in Fig. 7.5
for the Baker map. Note that for v < vy, the density within the intersection 777" (€2) N ['pum

of forward escaping sets with the coarse-grained backward trapped set I'hwy increases with n,

NW(T_N<Q)) - /“‘W(T_n(Q» _ l—e™ o(nat—7)n
I T-(Q) NThwd | finar (T77()) 1 — e ’

(7.50)

although the weight 1, (T*”(Q)) decreases according to Eq. (7.37). The class of y-natural
ciMs defined by Eq. (7.49) is the central object of our classical studies.
The conditional invariance of p. is already shown above as it satisfies Eq. (7.39). Let us

briefly demonstrate its normalization. By definition, it is

L—e™ —)n -n
ol = = > elmaemin, W (TN T(Q). (7.51)
n€Np
Using
finat (TN T 7)) = T7 finae () = e (1 — e, (7.52)
one finds

Il = A=) 3 e =1, (7.53)

n€Np

such that (i, is indeed a conditionally invariant probability measure with decay rate .

Numerical Computation

Conceptually, the structure of y-natural CiMs is thoroughly described above. A «-natural CiM
ity of decay rate v is constructed by the following steps: Compute the backward trapped set
[pwa, that is, remove all iterates T, (€2) of the opening 2 under the closed map 7. Uniformly
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distribute the weight p., (77"(€2)) = e (1—e~7) on the intersection 7" (€2) NI'yyq of the n-th
forward escaping set 7 "(£2) and the backward trapped set [',q. This gives the y-natural cim
of decay rate =, regardless of the considered map T". However, the numerical implementation
of the above steps is not straightforward. Let us therefore explain an algorithm that is capable

of providing vy-natural ciMs for generic maps as presented in [34].

First, one has to approximate (the chaotic part of) the backward trapped set I'hyq. To
this end, one may define a uniform grid of Ngiq points in phase space of which one has to
discard points which leave the system within N, iterations of the map 7T in backward time
direction. Points within a generically existing regular phase-space region should be omitted
manually. The remaining points provide the finite-time approximation I'fu of ['hwq and need
to be classified by their forward escaping times. Finally, assuming equidistribution for the

points in 77"(Q2) N I'pues, we find
s (X AT Q) & fu(X) e (1= e77), (7.54)

with

# (X NT"(Q) NTH)
# ()N

fa(X) = (7.55)
for each measurable subset X of phase space. Using p\(X) = > 07 1 (X NT7()) we
have a numerical estimate for the y-natural cIM f,. As the sample '} is only finite the
series will terminate and the numerically approximated measure is not perfectly normalized.
This method is not appropriate for exceedingly small v since the weight on forward escaping
sets T7"(§2) N 'pum with large escape times n becomes increasingly important while they are

approximated by a few points only.

7.2.3 Perron—Frobenius Theory

Another approach to compute CIMs is based on the Perron—Frobenius theory on the time
evolution of phase-space densities briefly reviewed in this section. This approach will be
used for the analytical study of CiMs of the partial-barrier Baker map in Chap. 8. To this
end, we restrict ourselves to absolutely continuous measures with densities and focus on their
time evolution. In order to illustrate the general idea, consider the simple case of a closed
autonomous Hamiltonian system with Hamilton function H. In this case the continuous time

evolution of a phase-space density p: I' x R — R is given by the Liouville equation,

Oro(x,t) = Lyo(x,t), (7.56)
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with the Liouville operator Ly := {H, o} in terms of the Poisson bracket, cf. Ref. [187, Sec.

2.3|. Then the explicit time evolution of g reads

o(x,t) = Fu(t)o(z,0), (7.57)
with the so-called Perron—Frobenius operator

Ful(t) == exp(Lpt). (7.58)

Here, we are interested in maps rather than time-continuous dynamical systems, which are
not necessarily described by a Hamilton function. For closed systems, the most general case of
importance in this thesis is a symplectic map 7" in a two-dimensional phase space I, such that
det DT = 1. Note that this particularly implies the local invertibility of 7. Given an absolutely
continuous measure y with respect to the Lebesgue measure A and the corresponding density
o: I' = Ry, i.e,

M(X):/ngA, (7.59)

the temporal iterate Fro of p is given by the density of T, pu,

T.u(X) = /X FrodA. (7.60)

By the change of variables formula for pushforward measures, cf. Eq. (A.2), it is

Top(X) = /XX dTp = /XX oTdu= /XT—l(X) dp, (7.61)
r r r
with the indicator function y. Using that p has density p, one obtains
T.u(X) = / odA (7.62)
T-H(X)
= / (00T )| det DT | dA. (7.63)
X

Since T' is symplectic the Jacobian determinant is identical to unity (Liouville theorem) and

the Perron—Frobenius operator F simply reads
Fro=goT™, (7.64)

cf. Ref. [187, Sec. 2.2|. If T" is not symplectic but the composition "= T o O of a symplectic
map T, and the opening map O on region €, the above derivation is valid up to Eq. (7.62),
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where T1(X), Eq. (3.20), is the preimage of X as the inverse map 7' does not exist. In
order to apply the transformation law leading to Eq. (7.63), the domain 7! (X) of integration
needs to be decomposed. For X C Ty(€), it is T7-1(X) N T = () such that T,u(X) = 0 and
(Fro)|x = 0. Otherwise, for X NT,(2) = 0, the inverse T! exists and one obtains Eq. (7.64)

again. In total, this gives

Fro(w) ={°" fatle) v g 1al®) (7.65)
0 oz e Ty(Q).

The advantage of using densities instead of measures is that it immediately provides thor-
oughly developed Hilbert space methods for the time-evolution operator Fr like the spectral
theorem [173]. To this end, one needs to restrict the set of allowed density functions on phase
space I to the space L?(T") provided that such densities exist at all. We stress that solving the
eigenvalue problem for Fr, i.e., Fro = Mg, A € C, in principle establishes all absolutely con-
tinuous CIMs. However, there is a crucial drawback: Numerically feasible finite-dimensional
approximations of Fp provide the natural ciMm only, as we will discuss now.

First, let us briefly explain what is meant by finite-dimensional approximations of F7. The
Perron-Frobenius operator Fr acting on the Hilbert space L?(T') is of infinite dimensionality.
In order to treat Fr numerically, an approximation scheme for Fr is desired, which approxi-
mates Fr by a sequence of finite-dimensional matrices and provides some kind of convergence
of the finite-dimensional eigenvectors towards the infinite-dimensional eigenfunctions of Fr. A
common approach is the Ulam method [188, Chap. 4]: One defines a finite partition of phase
space I into disjoint subsets Sy, k € {1,...,n}, |, Sp =T, and associates a transition proba-
bility with each pair of phase-space regions S; and Sj. Usually, this transition probability is
defined by

i [0 T7(5)]

ki = (7.66)

for the transition from S to S;, that is the fraction of Sy which is mapped to S; under T [188,
Chap. 4]. Numerically, this corresponds to iterating a uniform sample of initial conditions in
Sk and to counting how many of these points end up in S; after one iteration. This gives an
n X n matrix approximation (EF¥%); for Fr.

In general, one may also use initial distributions other than the uniform distribution to
compute the transition probability from S; to Si. We will comment on the dependence on
initial distributions below. For systems with a two-dimensional mixed phase space it is useful
to derive the transition probabilities from a single long orbit instead of many orbits that are
iterated only once. This preserves the invariance of phase-space regions [189,190]. Another

important generalization is the Ulam—Galerkin method [188, Chap. 4], where one selects a
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finite number of appropriate basis functions and projects Fr onto their span. The advantage
of this method is that the basis functions may be chosen adapted to a specific system. In
Ref. [191,192] for instance, spherical harmonics are used for the kicked top on a spherical
phase space. The common Ulam method may be interpreted as a special case of the Ulam—
Galerkin method by choosing indicator functions that are supported by the elements of the

used phase-space partitions.

The understanding of the asymptotic dynamics that one can obtain from finite-dimensional
approximations of Fr is limited essentially due to the Perron—Frobenius theorem [193, Sec. 1.1].

For reference it is stated here in full detail followed by an interpretation.

Theorem. Let I’ € RJEVOXN be an irreducible matrix with nonnegative entries, spec-

trum o (F) and spectral radius r := maxycq(r) |A|. Then the following assertions hold:

(i) The spectral radius r is an algebraically simple eigenvalue of F, i.e., dim ker(F —
rl) = 1; moreover it is r > 0 if F' £ 0,

(ii) There exists a normalized eigenvector ¢ corresponding to the eigenvalue r € o(F),

that has only positive components,

(iii) Any eigenvector of F' that has exclusively nonnegative components is a multiple

of o,

(iv) If F has exactly ¢ eigenvalues A with |[A\| = r, then these eigenvalues are given by
re®mik/a for 0 < k < g,

(v) If the components of F are strictly positive, it is |A\| < r for each A\ € o(F') with

AF .

For the proof see Refs. [194, Secs. 15.3, 15.4] and [195, Secs. 8.2, 8.3]. The Perron—Frobenius
theorem basically states that the eigenvalue r € o(F') of maximal modulus lies on the positive
real axis. It is called Perron—Frobenius eigenvalue. The corresponding eigenspace is one-
dimensional and provides the only eigenvector ¢ that has purely nonnegative components,
called Perron—Frobenius eigenvector. In contrast to all other eigenvectors it may therefore be
interpreted as a classical probability density. Since r has maximal modulus, g is the eigenvector
of slowest decay interpreting the Perron—Frobenius theorem as though r < 1 like in our studies.
Note that the irreducibility of F' excludes that there are invariant subregions in phase space.

If there are any, the theorem may be applied to each of them individually.

In application to the Perron—Frobenius operator Fr this theorem implies that any finite-
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dimensional matrix approximation provides an approximation for a single CiM, only. It is
not clear whether the other eigenstates, which have negative entries, carry encoded infor-
mation about other CciMs. They are certainly important for the transient time evolution by
means of spectral decomposition of initial distributions. In principle, for any ciM p a Perron—
Frobenius matrix F, = (Fl’jﬂ)lk which approximates p by its Perron-Frobenius eigenstate
0 := (u(S1),...,u(S,)) can be constructed by a generalized Ulam method, if the transition
probabilities are not chosen according to Eq. (7.66) but with respect to u itself as

/L(Sk N T71<SZ)) .

Fit= 5 (7.67)
This can be verified by explicitly calculating the i-th component of F),p,
(Fuoli = > Fi'u(S) (7.68)
k=1
= > u(SnT(S) (7.69)
k=1
= Y Tu(T(S)NS;) (7.70)
= E;L(S@-) (7.71)
= || Tpll 1(S53), (7.72)

where we use that 7' (T(Sx) N S;)= S, NT~(S;) because T~1(S;) NQ = (), and that the sets
T(Sk), k € {1,...,n}, provide a partition of the support of T .

This construction, however, is based on the CIM p one is eventually interested in. It is
therefore not useful to obtain p. For the natural CIM i, this is not an issue since generic initial
distributions converge towards . as discussed on page 79. Thus, the transition probabilities
of the Perron—Frobenius matrix F,

Hnat

lnat- FOT instance, in view of the definition of uy,,; by the asymptotic behavior of an initial

do not need to be chosen carefully in order to obtain

Lebesgue measure A, Fp,; = F} is an ideal substitute for F, ..

Y # Ynat, however, only exceptional initial distributions converge towards p., as discussed on

For y-natural CIMs p., with

page 81. Hence, one has to find the correct Perron-Frobenius matrix F), without knowing /1.
To the best of our knowledge it is not known how to solve this problem.

As a technical remark, we mention that fractal measures are nonzero even on sets of
Lebesgue measure zero, and thus, cannot be absolutely continuous with respect to the Lebesgue
measure. Hence, they do not have a proper density. Therefore, a naive approach using
Perron—Frobenius operators for open systems, where fractal measures are omnipresent, is not
fruitful. This issue can be overcome for CIMs that are absolutely continuous with respect to

the Lebesgue measure on the backward trapped set [50]. In the physics literature, a rigorous
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discussion of this issue is usually omitted as finite-resolution approximations of densities for

fractal measures are often sufficient.



Chapter 8

Localization 1n the

Partial-Barrier Baker Map

In order to eventually understand the localization phenomena of chaotic resonance states due
to a partial transport barrier presented in Chap. 6, we have introduced the class of y-natural
CIMs in Sec. 7.2.2 for which we expect quantum-to-classical correspondence. In this chapter we
investigate the localization of both classical y-natural CiMs and quantum resonance states for
the partial-barrier Baker map. We show that, indeed, the classical and quantum-mechanical
localization due to a partial barrier semiclassically coincide. We start with an analytical
construction of an Ulam approximation of the Perron-Frobenius operator on arbitrary fine
scales in Sec. 8.1. In Sec. 8.2 we prove that the eigenvalue problem of the Perron—Frobenius
operator of arbitrary resolution can be rigorously reduced to the solution of a 2x 2 matrix. This
allows us to calculate the Perron—Frobenius eigenvector and eigenvalue, which corresponds to
the natural CIM in Sec. 8.3, where we also demonstrate quantum-to-classical correspondence
with resonance states of natural decay rate. In Sec. 8.4 we generalize the natural ciM to
the class of y-natural ciMs and show quantum-to-classical correspondence with resonance
states of arbitrary decay rate. We emphasize that the subsequent study of localization in
generic systems strongly relies on our insights gained in this chapter. The idea to study the
partial-barrier Baker map and a first solution for the localization of the natural ciMm of a
related one-dimensional problem goes back to Roland Ketzmerick. The tensor formulation
established in Sec. 8.1, which is the key to rigorously prove the reduction in Sec. 8.2, is worked

out in collaboration with Marcus Waurick.

8.1 Perron—Frobenius Operator: Ulam Approximations

Let us start with an introductory example. We consider a grid of three cells on each side of

the partial barrier as illustrated in Fig. 8.1, and want to understand the Perron—Frobenius
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operator as applied to this grid. As we neglect anything that happens on finer scales than this
grid, this is a very coarse Ulam approximation of the true dynamics. We will generalize this

approach to arbitrary fine approximations below.

Consider an initial density v = (v, ..., vG)T on this grid, where the enumeration follows
Fig. 8.1. The first component (lower left cell) after one iteration of the map is given by
1 11

vy = §U1 + §vz + §v3 =: (V112 v3), &y

which is the average weight that has been on the left hand side of the partial barrier before
the iteration. This step is visualized by the green shaded regions in Fig. 8.1. We stress that
there is no information contained in the initial distribution v that corresponds to scales which
are finer than the grid. Hence, each cell on the left contributes a third of its total weight to
the lower left cell after one iteration. Proceeding analogously for the other cells of the grid,

the full iteration is described by the map

v=(v1,..., UG)T — Tiv = ((v1 vav3), 0, (V45 Ug), (V1 V2 V3), (Vg U5 Vg), (Vg VS U6>)T, (8.2)

with the Ulam approximation

111000

000000

1looo1 11
o1 8.3
""3l1 1100 0 &3

000T1T1°1

00071171

V3 V6 (vavsv6) | (v4v5v6)

V2 Vs H — <U4 Vs U6>

U1 Uy (v1 va v3) | (v1 V2 v3)

Figure 8.1. Tllustration of Ulam approximation 7} for the partial-barrier Baker map. After
one iteration, the value in each cell is given by the average over the initial values either on
the left hand side or on the right hand side of the partial barrier (magenta line). The weight
in the middle left cell drops to zero due to the opening.
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of the partial-barrier Baker map. For the following generalization it is useful to decompose T}

into the averaging matrix Az := (1,1,1)/3 € R"3 and the sorting matrix

T

1 1

o3 1= 00 00 € R, (8.4)
0010171

which yields
T1 = 03 (029 A3. (85)

The Kronecker product ® of the m x n matrix A = (A ) and the p X ¢ matrix B is given
by the mp X nqg matrix

AllB AlgB Ce AlnB
AnB ApB ... AyB

A@B=|"" - z (8.6)
A B ApeB ... AnB

It represents the tensor product of the two linear maps A and B in a suitable basis.
In order to generalize this Ulam approximation scheme of the Perron—Frobenius operator

to arbitrary fine grids, we define for any given k € N the cells of the partition by

0,3) x [(n—1)/3%n/3%), (1<n<3" (8.7a)
and

[2,1) x [(n—1)/3%,n/3%), (1<n<3h), (8.7b)

having 3% cells on each side of the partial barrier. Note that for the purpose of a convenient
notation, we here consider the partial-barrier Baker map on [0,1) x [0,1) instead of [0,1) X
[—%, %) as was introduced for the general partial-barrier map in Chap. 4. This grid is exactly
that of Fig. 8.1 for k = 1. In order to eventually define a vector v € R23" which describes
a density on this grid, we order the cells corresponding to the above index n on the left and
n + 3% on the right.

The general iteration scheme for any k is depicted in Fig. 8.2, decomposing a single iteration
into two parts: First, the phase-space regions on each side are shrunk by one third in their
height. This is achieved by an average on the highest order of resolution, that is an average

over consecutive triples for a given vector. In matrix notation, this reads

Ej, = 1y @ Ay € R 3", (8.8)
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shrink
(average)

Figure 8.2. Sketch of the action of the Perron—Frobenius operator of the partial-barrier
Baker map as applied to the grid in Eqs. (8.7a) and (8.7b). In a first step, the two regions
on each side of the partial barrier are shrunk to a third of their initial height by averaging
over the highest order of resolution defined by k. In a second step, these regions are copied
and sorted into the corresponding phase-space parts.

For the example of k£ = 2, the matrix Fs is

(111000000
Er=21000111000], (8.9)
00000O0T111

and clearly maps a vector of dimension nine to a vector of a third of this dimension by averaging
over consecutive triples. In a second step, these averaged objects are sorted in just the same
way as in the introductory example before, that is, by virtue of the sorting matrix os. In total,
the Ulam approximation of order k of the Perron—Frobenius operator for the partial-barrier

Baker map is given by

Tk = O'3®Ek. (810)

Finally, we generalize this Ulam approximation scheme to a more general map: Instead
of the partial-barrier Baker map based on the ternary Baker map, we consider the partial-
barrier Ng-Baker map. The action of this map for the example of Ng = 5 is illustrated in
Fig. 8.3. This generalization is an important step in order to investigate different values for
the opening |(2| and the flux ¢. For the partial-barrier Baker map based on the ternary Baker
map the openness and the coupling is always given by |2 = ¢ = 1/6. In contrast, using an
arbitrary integer Ng instead of the specific case Ng = 3 allows us to adapt the coupling across
the partial barrier and the size of the opening by choosing C' coupling stripes and L opening
stripes instead of a single one. To this end, we adapt the grid, Eqs. (8.7a) and (8.7b), to the
new parameter Ng, and obtain the NE cells

[0, 5) x [(n = 1)/N§,n/Ng), (1 <n< Np) (8.11a)
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~ N
L C Ngy

Figure 8.3. [Illustration of the partial-barrier map 7" based on the 5-Baker map with
N =5,C =2, L =2. The action of T" within each stripe is given by horizontal stretching
and vertical compression just as for the usual partial-barrier Baker map, cf. Fig. 4.2.

on the left hand side of the partial barrier, and vice versa the NE cells

[3,1) x [(n = 1)/Ng,n/Ng), (1 <n < Ng) (8.11b)

on the right hand side. This grid is exactly that of Fig. 8.1 for Ng = 3 and k£ = 1. Again,
the cells are ordered corresponding to the above index n on the left and n + N£ on the right.

Now, the averaging matrix is

1
ANB .

= N—B(l’ 1) e RPN (8.12)

Np

with the corresponding operator
E, = ]1N]’§_1 (24 ANB € RNII;_lXN{;, (813)

and the sorting matrix reads

T
1 ...10...00 ... 01 ... 10 ...0
ONg 1= € R*Vex2, (8.14)
0 o0 ...01...120...01...1
—_— Y Y Y Y~
Ng—L-C L c c Ng -C

The iteration in Ulam approximation of order k then obeys

Tk ‘= ONg (%9 Ek (815)



94 8.2 Perron—Frobenius Operator: Selfsimilarity Reduction

8.2 Perron—Frobenius Operator: Selfsimilarity Reduction

Recall that we treat the Perron—Frobenius operator of the partial-barrier Baker map in order
to compute its Perron-Frobenius vector ¢ and eigenvalue A, i.e., the density distribution
and decay rate corresponding to the natural CiM. In this section we will proof that the full
information about the Perron—Frobenius pair (A, ¢x) of T} lies in the combination of a simple
2 x 2 matrix and the sorting operator on,. Actually, this reducibility is already suggested by

the tensor structure of 7}, as developed in the previous section.

Proposition. Let T} for k& € N be defined as in Eq. (8.15). There exist at most two

nontrivial solutions (A, ) of the eigenvalue problem Tp¢r = Arpr. They are given by
>\k = )\0, YV = &NB(/{? — 1) s &NB(O)SOO; (816)

with oy, (n) = oy ® Inn, n € Ny, and where (Ao, ¢g) solves the eigenvalue problem

for

1 (Na—L—-C C
Ty = — . 8.17
0 NB( C NB—C> (8.17)

Proof. First, we show that the eigenstates of Tj give eigenstates of T} as stated in the propo-

sition. To this end, we prove that

Tri10ng (k) = ong (k)T (8.18)
for k € N. By definition, it is

Te10n3 (k) = (ong ® Epp1)(on, © Lyg). (8.19)
Furthermore, we find

Ep= ﬂzvg ® Ang = Iy, ® ]1N§71 ® Ang = Iy, ® Ej. (8.20)

Using that the Kronecker product is associative, A ® (B® C) = (A® B) ® C, and
that (A® B)(C ® D) = (AC) ® (BD) as long as the matrix products AC and BD are
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well-defined, we obtain

Tis10ng (k) = ((ong ® Ing) ® Ei)(ong @ L) (8.21)
= (0% @ Lyy)owa) @ (Bl ) (8.22)
= (o5 ® Tna)owa) @ (11 By (8.23)
- ( (05 ® Lay) ® Lyi ) (on, © E) (8.24)
= (ows @ 1y) (0w, ® E) (8.25)
= Gy (k)T (8.26)

Thus, given Ty, = A\pr, we define g1 := dny (k) which obeys

Tii10k+1 = Thp10ng (k) o = 0ng (k) Thior, = MO ng (B) ok = APt (8.27)

i.e., prr1 = 0ng (k)@x is an eigenvector of Ty associated with the eigenvalue Apyq := A
for k € N.

Moreover, let (Mg, o) be a solution of the eigenvalue problem for 7y. By ordinary
matrix multiplication, it is straightforward to show that Tion, = on, 10, which just as
before yields that oy, (0)po = ong o is an eigenvector of T} = oy, @ Fy = on, @ Ang

corresponding to the eigenvalue Ay, cf. Eq. (8.27).

Hence, from the at most two different solutions of the eigenvalue problem for Tj, we can
deduce two solutions for Ty, k € N, as claimed in the proposition. We still have to show
that these are the only nontrivial solutions. This will be accomplished by demonstrating
that it is possible to reduce an eigenvector of T} to an eigenvector of T} and that this

reduction is injective. To this end, we have to study the left inverse

1 1

0&1:<m R 0 L0 0 0 g L g0 0)
1 1 1 1
» 0 ... 0 S L T S &
Ng—-L-C L C C N —C (828)

of ony, e, a;,;aNB = 15. This immediately provides the left inverse
&NB (n)_l = O'Xé X ]].Ng (829)
of oy (n) because

C}NB(n)_l&NB(n) = (0-]:[;0-]\713) ® (]lNg]lNg) =1y ® Inp = Long (8.30)
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for n € Nj.

We emphasize that crNBcr]_Vll3 # long, that is, the left inverse is not the right inverse.

Nevertheless, for an arbitrary eigenvector ¢y 1 of Ty 1, it is

a-1\/'3(]{;)6-1\73(]{;) Pr+1 = Pr+1 (831)

for k € Ny as we now show. At first
Prt1 € imTjepy = im (on; @ Lyx @ Ay ) = span{cols(on, @ Lyk)}, (8.32)

where cols(X) denotes the set of columns of the matrix X. Note that the Kronecker
product with Ay, does not generate additional linearly independent columns, such that
the dimension of im Ty is 2NE. The columns of oy, ® 1y; may be written as

o ® L3, o @@L, (1<) < Ng), (8.33)

where the two columns of oy, are denoted by crj(vlli and 01(\2, and the j-th column of 1

is denoted by 19 respectively. With this, the eigenvector ¢;,; can be represented as

Nk)
Ng
Pra = (Sgnggvn 2 1(3) +5902 @ 1@)) ’ (8.34)
j=1
with appropriate coefficients s(]) gj). Using
Gy (k)™ (0%33 ® 15@ = (o5l ® ]lNk)< O @ IL(”) (8.35)
= (oniol) @ (1vg15)) (8.36)
- (1“) ® 1“) (8.37)
for ¢ € {1,2}, such that
o (R)ona (k) (4 0150 ) = (ony @ Tyg) (18 @ 14)) (8.38)
= (UNB 19) ® (ngﬂ%é) (8.39)
= (o0 ©19)). (8.40)

we obtain Eq. (8.31) by linearity.

Now, we are able to reduce the eigenvector i1 of T to an eigenvector of 7. By
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multiplication of Ty 16N, (k) = 6y (k)Tk with o, (k)™ from the left and the right, we

in general obtain

N (k) 10w, (K)o (K) ™1 = Towg (k)7 (8.41)
for k € Ny, and after restriction to the eigenspaces of Ty, we further find

ong (k) Ths1 k41 = TuOng (k) ' rsa (8.42)
for k € Ny. Thus, given Ty 19k+1 = Akr1Pk+1, it 18

T30 ng (k) " 01 = Mey10ng (k) rg, (8.43)

such that ¢ := o, (k) "'ore1 an eigenvector of T}, associated with the eigenvalue \; :=

Ae+1. Let us stress that 6, (k)™! is injective on the eigenspaces of Ty 1, following from
Eqgs. (8.34) and (8.37),

Ng
o () o = > (918 @19 + 5910 @ 10)). (8.44)
j=1

Hence, the only pairs of eigenvectors and eigenvalues of T} 1 are the ones lifted from the

eigenvalue problem for 7}, by virtue of o5, (k) for k£ € No. O

This proposition simplifies the analytical computation of the natural cim for the partial-barrier
Baker map tremendously. We only have to solve the eigenvalue problem of the 2 x 2 matrix 7Tj,
Eq. (8.17), and lift its eigenvectors by mere matrix multiplication to the required resolution.
The matrix Ty describes the iteration of weights from one side of the partial barrier to the
other side in the lowest reasonable Ulam approximation, that is, associated with the two cells
[0,1/2)x[0,1) and [1/2,1) x[0,1). As this 2 X 2 matrix is particularly relevant in the following
analysis of the partial-barrier Baker map and also for the generalization to generic maps, we
express it in terms of the variables |A;| = |As] = 1/2, |Q2] = L/Np, and ¢ = C'/Ng, which

gives

TO:<1—<\Q\+¢>/|A1\ o/ As| ) (5.45)

¢/|A] 1—¢/| A,

The diagonal elements describe the probability to remain on one or the other side of the
partial barrier within one iteration of the map, while the off-diagonal elements describe the
probability to get from one side to the other. Note that the main purpose of the generalization

of the partial-barrier Baker map to the partial-barrier Ng-Baker map with variables L and C'
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was to plausibly motivate Eq. (8.45) in terms of more general variables. That this 2 x 2 matrix
is actually important for more generic systems will be shown in Chap. 9. In the following, we
again focus on the example of the partial-barrier Baker map based on the ternary Baker map.

In this special case, T reads

1 (1 1
w3 ) i

8.3 Natural Conditionally Invariant Measure

Let us now study the natural cim of the partial-barrier Baker map. From the reduced Perron—
Frobenius operator Ty, Eq. (8.46), we compute the Perron-Frobenius eigenvector o, i.e., the
one with larger eigenvalue A, and lift g to an eigenvector of Ty by ¢, = d3(k —1)---73(0)po

as explained in Sec. 8.2. For reference, the precise value of ¢y and A is

! <\/§”>, )\:é(3+\/3). (8.47)

9002\/3+1 9

We normalized ¢q such that the sum of the two components equals unity. Note that both com-
ponents can be chosen nonnegative due to the Perron—Frobenius theorem, Sec. 7.2.3. More-
over, note that ¢, computed as above is not yet normalized. The phase-space distribution
corresponding to ¢y is shown in Fig. 8.4(a—e) for different values of k. These distributions
approximate the natural CIM pp,; of the studied map. The two different nonzero heights in
each of the distributions correspond to the two different components of ¢y. The lift by virtue
of 63(n) just copies these two values and rearranges them appropriately. Therefore, precisely
these two values, up to normalization, appear in each ¢y.

In Sec. 7.2.2 we argued that the natural ciMm is provided by the uniform distribution
on the backward trapped set, Fig. 8.4(f). The two different heights in the shown phase-space
distributions seem to contradict this uniformity at first sight. However, the two values originate
from an integration over cells of the phase-space partition used for the Ulam approximation,
cf. Sec. 8.1. Depending on the number and size of gaps in each cell, the integration over these
cells can yield different values for different cells although the distribution may be uniform on
the asymptotic object, i.e., the proper fractal. This is illustrated in Fig. 8.5. It is clear that
an integration over the uniform distribution on the backward trapped set in [0,1/2) x [0,1/9)
gives a different value than an integration over [0,1/2) x [2/9,3/9).

In principle, there are at least two reasonable ways to approximate fin,;. One could either
use a uniform distribution on a finite-time approximation of the proper backward trapped
set, or an integration of the proper u,,; over cells of a phase-space partition. The latter

approach corresponds to the ¢y distributions associated with the Ulam approximation T}
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shown in Fig. 8.4. We stress that both alternatives produce different but valid approximations
of finat, i.e., both ways converge towards pi,,; on asymptotically fine scales. Still, one of the
two schemes could be more useful than the other, meaning that it could be more suitable to

address specific questions. In the present study, the relevance of classical measures and its

(a) k=0 (b) k=1
p p

q q
(¢) k=2 (d) k=3

Figure 8.4. (a—e) Perron—Frobenius eigenvector ¢y of the Ulam approximation T} of the
partial-barrier Baker map, computed according to Egs. (8.16) and (8.17). The resolution
parameter k is indicated above each panel. Each ¢y is an approximation of the natural cim
when integrated over cells of the partition according to Sec. 7.2.2. (f) Approximation of the
backward trapped set I'hwq for & = 5 backward iterations.
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1
9

0 0

Figure 8.5. (a) Perron—Frobenius eigenvector ¢o of the Ulam approximation T5 of the
partial-barrier Baker map. The two different nonzero heights originate from integration of
the uniform distribution on the nonuniformly fractal backward trapped set over cells. This
can be seen in (b) the finite-time approximation I'hyq for k& = 3 backward iterations, which
clearly has two different weights in the sets [0,1/2) x [0,1/9) and [0,1/2) x [2/9,3/9).

approximations is determined by quantum-to-classical correspondence. A classical measure is
helpful if it provides a good estimate for certain properties of quantum resonance states. The

property which is of most interest to us is the localization with respect to the partial barrier.

Regarding this issue, let us focus on the localization of the ¢, obtained by the Ulam
approximation T. For the first approximation ¢, see Fig. 8.4(a), the total weight is split as
4,0((]1) to the left and 9082) to the right, where goég) denotes the ¢-th component of g, ¢ € {1,2}.

The next level of approximation is given by

1 2 T 1 2 1 2 2 T
901:03(908),908)> 2(308),0,908)1308),908),908) , (8.48)
1;?5 rigit

up to normalization, cf. Fig. 8.4(b). Thus, the vector of new weights on the left and right of

the partial barrier is given by

o6’ +on \ _ [t 1) (%0 840
(1) @ | = @ | (8.49)
0o+ 2p0 I 2 ®o

again up to normalization. The matrix relating the weights from one level of approximation
to the next is just Ty up to a factor such that ¢, is an eigenvector of the iteration of weights.
This holds true for all approximations . Hence, the weights of ji,,; on the left and right of

the partial barrier are exactly the components of the coarsest approximation .

The situation is different for the other approximation scheme, using a uniform distribution

on the finite-time approximation F](Dlzgd =TI\ Uﬁzl T7(2) of the backward trapped set I'pyq.

k)

The weight of a uniform distribution on I’](Dwd on the left and right of the partial barrier is
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given by

T nA 1
| e AP Tk : (8.50)
|Fbwd N A2| 1

up to normalization. Although this converges towards , in agreement with the previously
discussed Ulam approximation, now the weight on each side depends on the level of approxi-

mation.

In order to judge which of the two approximation schemes is more appropriate to describe
the localization of quantum resonance states, the most convenient way would be to directly
compare the approximate phase-space distribution of i, with the Husimi representation of
resonance states. This is done in Fig. 8.6. One might suspect that there are indeed lower
weights on the horizontal stripes indicated by the arrows, just like in the classical phase-space
distribution corresponding to ¢ from the Ulam approximation 7j. However, there are two
drawbacks. First, the quantum fluctuations are relatively large compared to the difference
of the two heights in the approximate classical measure. A second problem is that it is not
clear how to distinguish between two possible reasons for different weights in the Husimi
distribution: Either the different weights are due to integration on the Planck cell level like in
the classical case or the different weights originate from an already resolved next level of gaps

that is only smeared out. Thus, this comparison is not convincing and inconclusive.

This problem can be overcome by looking at how the weights of quantum resonance states

on the left and right of the partial barrier depend on the effective size h of Planck’s cell.

Figure 8.6. Average Husimi representation of resonance states of the partial-barrier Baker
map with 1/h = 2-3% = 54. The average is performed over the Husimi distributions of
all twelve resonance states with v € [ynat/1.25, Tnat - 1.25]. The arrows indicate horizontal
stripes of lower weight possibly related to the different heights in Fig. 8.5(a).
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Figure 8.7 demonstrates that they essentially remain constant under variation of h = 1/N up
to fluctuations. In particular, the quantum data is not described by the resolution depending
weights computed from the uniform distribution on a finite-time approximation nggd of the
backward trapped set. Instead, the quantum data is well described by the weights of ¢, which
are independent of the level of approximation. In order to amplify the imbalance in the two
nonzero heights of the phase-space distribution corresponding to ¢, and thus, to emphasize
the difference between the two approximation schemes, we use Ng = 10, L = 5, and C =1

instead of the partial-barrier map based on the ternary Baker map.

Hence, we conclude that the localization of quantum resonance states with v & v,,; should
be approximated by the Perron—Frobenius vector of an appropriate Ulam approximation of
the classical Perron—Frobenius operator if feasible. We point out that it is not clear whether
this also holds for generic maps or whether this might be related to specific properties of the

Baker map, such as its strongly discontinuous behavior.

0-4 T T LN AL | T T LA | T T LA |
(| Pyrop|?
0.3 F .
0.2 + .
X X X
XX XX XX
w X

0.1 F .

0.0 Y Y R
10" 102 103 10% 10°

N

Figure 8.7. Weight || P11||? (black crosses) of resonance states 9 in region A on the left
side of the partial barrier for the partial-barrier Baker map (Ng = 10, L = 5, C = 1)
vs matrix dimension N = 1/h of the quantum time-evolution operator. The weights are
averaged over all states 1) with v € [Ynat/1.05, Jnat - 1.05]. This is compared with the classical
predictions from the Perron-Frobenius vector ¢, of an Ulam approximation T} (green solid
line; Eq. (8.47)), and from a uniform distribution on a finite-time approximation of backward
trapped set (orange points; Eq. (8.50)). They are semiclassically related to the quantum
data by choosing the cell size as h.
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8.4 ~-Natural Conditionally Invariant Measures

The generalization of the natural CIM p,,; with the single decay rate ~vn,: to the class of -
natural CIMs f, of arbitrary decay rate v is discussed in detail in Sec. 7.2.2. Considering again
their definition in Eq. (7.49),

fiy (X)) = - Z emar=n (X NT"(Q)), (8.51)

- — p—Tna
1 € ‘ n€eNp
the measure ji, results from p,,, by adapting its weight within each forward escaping set
T-"(Q) in order to achieve the overall decay rate . This construction is illustrated for the
partial-barrier Baker map in Fig. 8.8(a—c). Since the partial-barrier Baker map exhibits a
simple decomposition in the stable (vertical) and unstable (horizontal) direction, the forward

escaping sets are vertical stripes splitting the phase space in horizontal direction, see blue

Y > Tnat

Figure 8.8. (a, c¢) Construction of ~-natural ciMs for the partial-barrier Baker map by
truncation of the series in Eq. (7.49) to n < 2 for (a) 7 < 7nat and (c) v > ~at. This
is based on the natural cimM shown in (b) for which the weight in Q (gray stripe), T-1(£2)
(light blue stripes), and 7-2(Q) (medium blue stripes) is adapted. The level T—3(Q2) (dark
blue stripes) is not yet resolved. (d, e) Finer resolution i, for (d) v < ynat and (e) v > Vnat
computed by the integration method discussed in Sec. 7.2.2.
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regions in the background of Fig. 8.8. Starting with the approximation of the natural CIM fip,s
shown in Fig. 8.8(b), we first adapt the weight on the opening to ,(2) = 1—e~7. As this only
requires an appropriately chosen factor the structure of ., within 2 is not affected by this, see
Figs. 8.8(a) and (c). Depending on whether the new decay rate 7 is larger or smaller than the
original vy,¢, the weight in €2 is increased or decreased, respectively. We proceed analogously
with the weight in 771(Q) (two light blue stripes) and T-2(Q2) (five blue stripes) using that
pA(T7(Q)) = e (). This gives the phase-space distributions shown in Figs. 8.8(a) and
(¢), which corresponds to a truncation of the series in Eq. (7.49) to n < 2. We see that for the
generalization of fin,: to g, in case of the partial-barrier Baker map, an additional profile in
horizontal direction is imposed on u,,; but the structure along the vertical axis is not affected.
For a finer resolution the outcome of this construction is again shown in Figs. 8.8(d) and (e)
for v < Ynat and v > Ynat, respectively. This resolution highlights the complex fractal nature
of the measures. Note that in Figs. 8.8(d) and (e), the measures are computed according to
Sec. 7.2.2: We compute the escape time for each point of a phase-space grid and associate an
intensity to it according to the weight s, (777"(£2)) and the number of grid points in 77 "(€2).
Afterwards, this intensity is integrated over the cells of an appropriate phase-space partition.
It is demonstrated in Fig. 8.9 that the proposed construction of y-natural CiMs qualitatively
clearly exhibits quantum-to-classical correspondence. The quantum resonance state is well

resembled by the classical measure even on fine scales up to quantum fluctuations.

In order to quantitatively study quantum-to-classical correspondence, we now analytically

(a) quantum:

(b) classics:

Figure 8.9. (a) Average Husimi distribution of resonance states for the partial-barrier
Baker map (1/h = 480) with 7 € [4ynat/1.25,4Vnat - 1.25] (24 states). (b) Approximate
~y-natural CIM for v = 4ypat.
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compute the classical weights 1,(Ax) on either side of the partial barrier. A concise version
of the following derivation is presented in Ref. [34]. In virtue of Eq. (7.49), we only have to
analyze the natural CIM fina(Ax N7T7™(2)) in more detail to compute p.,(Ay) for all decay
rates v instantaneously. As a first essential step, we find that the natural cim of A, NT~"(Q)

is proportional to the relative area inside Ay,

[Ax N T(Q)]

Hnat (Ak N Tﬁn(Q)) = Mnat(Ak) ’ |Ak|

(8.52)

This follows from the fact that the forward escaping sets T"(2) (vertical stripes) decompose
the backward trapped set I'q in the unstable (horizontal) direction, on which gin, is uniformly
distributed within A; and As individually, see Fig. 8.10.

The distribution of the opening €2 over phase space under backward time evolution, which
enters Eq. (8.52) in terms of |Ay NT~"(Q2)|, follows from

A NT(Q2 Q
| Ay NT ()] 0
with T}, given by Eq. (8.46). Note that the transition matrix for the backward time evolution

of Q is given by Tj itself. We illustrate this relation by examining the first steps explicitly.
Consider Fig. 8.10: In the beginning, Q (gray vertical stripe) is supported on A;. In the

q

Figure 8.10. Finite-time approximation of the backward trapped set I'hwq of the partial-
barrier Baker map (black). Blue vertical stripes in the background are forward escaping
sets (light blue: 7~1(Q); medium blue: T—2(Q); dark blue: T~3(Q)).
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next step, T-1(Q) (light blue) splits into equal parts of size |Q|/3 on A; and Ay. Afterwards,
T72(Q2) (medium blue) contributes two stripes of size |Q2| /3% to A; and three to A, and region
T73(Q) (dark blue) splits into pieces of size |Q|/3% five stripes of which are in A; while eight
are in A,. This is precisely described by the iteration with Tj,

A()ea)e20)25(0)

Inserting the relations (8.52) and (8.53) in Eq. (7.49), we obtain

Ynat =71 )" €2
> (e ) <O>L (8.55)

n€Ng

1—e™ Hnat (Ak)
1 — emat |Ak|

N'y(Ak) =

and using Neumann’s series, this is

1—e™ Hnat (Ak)
1 — @ Tnat |Ak;|

Nv(Ak) =

(1 —emTy) ™ <|g|>] . (8.56)

This expression already contains all physically relevant ideas and could be interpreted as
the final result on the localization of ., due to a partial barrier for the partial-barrier Baker
map. By spectral decomposition of the vector (|€2|,0), however, it can still be simplified

considerably. This leads to one of the main results of this thesis:

Theorem. The localization of the y-natural CIM p, of the partial-barrier Ng-Baker

map due to the partial transport barrier is given by

na, A)—c
o) = A 26 ) 21 (ay) (3.57)
Y
with
cy = (1 —e?7me) (1 — e mt) —||’?21|| —Vf. (8.58)

Here, A denotes the region on each side of the partial barrier, €2 denotes the opening,

and ¢ the flux across the partial barrier. Moreover, for the natural decay it is

A
fnas (A1) = % (1—e M=), (8.59)

and e~ 7= is the Perron-Frobenius eigenvalue of the 2 x 2 matrix T, Eq. (8.45).
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Proof. The simplification of Eq. (8.56) to Eq. (8.57) as presented in the following is to a large

extent based on a calculation by Roland Ketzmerick. Consider the eigenvalue problem

of
Q4o _ o
J=1-Ty=[ M G (8.60)
S Al A

Jrp = My, with Ay € C and x3, € C? for k € {1,2}. The eigenspaces are spanned by

A — 2
2 = ( ' ¢"‘2'>, (8.61)
A

using that ¢/|A;| # 0. The essential step to treat Eq. (8.56) is the decomposition of

(1€2[,0) in terms of eigenvectors of J,

<|§02|> oy — ) (8.62)

with @ = |Q|/(A; — A2), and to use that J and (1 — ™ 7T;)~! share the same

eigenspaces,

(1- e“/““_VTO)flxk =(1—er= 71— )\k))qu. (8.63)

Using this spectral decomposition, we obtain

_ ¢ ¢
o (Ay) = ¢t ) |9 MO M|
K 1 — e=nat |A1| )\1 — )\2 1-— e’Ynat—’Y(l — )\1) 1-— e’Ynat—’Y(l — )\2)
(8.64)
We apply Eq. (8.52) for k =1, n = 0 with Q C A; and find
fnat (2) |9
= . 8.65
:unat(Al) |A1| ( )
Having fina;(©2) = 1 — e 7=t Eq. (8.64) reads
_ ¢ ¢
1 — e AL — a5 Ay — Al
iy (A1) = — = (8.66)

- )\1 — )\2 1-— e’Ynat—’Y(l — )\1) - 1-— e’Ynat—’Y(l — )\2) ’
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In view of
nat (A nat (A
T, [# (A _ s (#na () , (8.67)
Hnat <A2) Hnat (A2)
we already know one of the eigenvalues A\, of J. Without loss of generality, let

A =1—e ™t = 1.0 (Q). (8.68)

This implies

CdetJ Q6 1 é

Ay = = — =, 8.69
’ A1 |A1||A2| A |A2|Mnat(z41) ( )
such that
¢ _
— = )\2 ,unat<A1). (870)
| Ay

Inserting Eq. (8.70) in Eq. (8.66) and using e = (1 — \;)~}, cf. Eq. (8.68), we obtain

M,Y(Al) - )\1 — )\2 1—e™ 1— 6_7% (871)

1—e™ [)\1 — A2 finat (A1) M fnat (A1)

After some straightforward algebraic manipulations, where we only show the essential

intermediate steps for reference, we get

finat (A1) | Ao (1 =€) 1 Ao (1—e7)
o - S22l )l g
/i'y( 1) A — A\ 1_677% 2 +)\1—>\2 ! 1_677}:12 ( )

N 1

Ape™? Arte -1
" B 8.73
o A1) T S T T TS S e (1) &)
1 A tel — 1]
S S P P S 8.74
L%lﬂ ) = &
and define
)\1 +e 7 -1

C’y .: W. (8-75)

Inserting Eqgs. (8.68) and (8.69) gives Eqgs. (8.58) and (8.57). Equation (8.59) follows
from Eq. (8.65). O

With this, we are able to quantitatively investigate quantum-to-classical correspondence for

the localization due to the partial barrier. To this end, we diagonalize the quantum time-
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evolution operator for the matrix dimension 1/h = 2100 and compute the weight of each
resonance state in A;. This is shown in Fig. 8.11 in dependence of the decay rate  (red dots).
We observe a transition from predominant localization in A, to localization in A; for increasing
~v. The quantum mechanical behavior is very well described by the classical localization of
the class of y-natural cims, Eq. (8.57) (green line). Small deviations apart from fluctuations
in the quantum data are discussed in detail in Sec. 9.2 in the context of generic systems. To
demonstrate both the validity of our analytical classical prediction as well as the accuracy of
our approximation schemes for /1, we also integrate the numerically determined approximation
of ., cf. Sec. 7.2.2, over A; for different values of v (black crosses). The analytical classical
result and the numerically determined classical data are in perfect agreement. Note that we
will comment on the quantitative study of quantum-to-classical correspondence on finer scales
in the outlook, Chap. 11.

| Prpy ||
fy (A1)
0.5
ﬁYnat
0.0 . 'l . e
1072 107! 10° 10!

gl

Figure 8.11. Weight ||P11,]|? (red points) of resonance states 1, in region A; vs decay
rate 7 for the partial-barrier Baker map (h = 1/2100). This is compared to the y-natural
CIM p (A1) computed according to Eq. (8.57) (solid green line), and by integration over
numerical approximations (black crosses). Upper panels: Husimi representation of typi-
cal long-lived (left) and short-lived (right) resonance state for h = 1/1080 with ~ values
indicated by arrows.
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Chapter 9
Localization in Generic Maps

Chaotic resonance states display localization transitions with respect to a partial barrier for
varying ratio of openness |2 and flux ¢, and for varying decay rates . This is observed for the
partial-barrier standard map in Chap. 6 and explained for the partial-barrier Baker map using
~v-natural CIMs in Chap. 8. The goal of this chapter is to demonstrate this quantum-to-classical
correspondence between chaotic resonance states and vy-natural CiMs also for generic maps.
To this end, we numerically examine the partial-barrier standard map for which we initially
observed the studied localization transitions in Sec. 9.1. We will see that the localization of
chaotic resonance states is indeed very well described by the localization of y-natural CiMs
in the semiclassical regime. Characteristic deviations away from the semiclassical regime are
presented in Sec. 9.2. Finally, we verify quantum-to-classical correspondence for the generic
standard map with a mixed phase space of regular and chaotic motion in Sec. 9.3. The
limitations for the applicability of the analytical prediction, Eq. (8.57), for the weights of
~v-natural CIMs on each side of a partial barrier for generic systems and its generalization are

discussed in detail. The main results of this chapter were originally reported in Ref. [34].

9.1 Partial-Barrier Standard Map

First of all, let us qualitatively demonstrate the correspondence between quantum resonance
states and classical y-natural ciMms for the partial-barrier standard map by merely looking
at the corresponding phase-space distributions. Figure 9.1 shows that for a single but typ-
ical example (|Q2] = 0.2, ¢ = 0.1, |A;] = |A2| = 0.5) we indeed find very good agreement
between the quantum and classical localization. Owing to the complex fractal structure of
the partial-barrier standard map, we additionally show the quantum and classical phase-space
distributions in top view and in a mutual color scale. This reveals that quantum-to-classical
correspondence is evident even on fine scales up to the quantum resolution limit.

In order to investigate this agreement between classical and quantum mechanics quantita-
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(a) quantum: (b) classics:

Figure 9.1. (a) Average Husimi distribution of resonance states for the partial-barrier
standard map (|| = 0.2; ¢ = 0.1; |A1| = 1/2; h = 1/1000) with v € [4ynat/1.4, 4Vnat - 1.4]
(88 states). (b) Approximate y-natural CIM for v = 49y,¢. Lower panels: Same data on
mutual gray scale, top view. Black dashed line illustrates opening; magenta line shows
partial barrier.

tively, we restrict ourselves to the localization with respect to the partial barrier, that is, we
compute the classical measure f1,(A;) and compare it with the quantum mechanical weight
| P11, ]|? in region A;. This is certainly a comparison on a rather coarse scale. However, recall
that our major goal is to understand the localization transitions introduced in Sec. 6.1. In
particular, this is (i) a transition from equipartition to localization of long-lived chaotic reso-
nance states on A, for increasing size || of the opening, Fig. 6.2, and (ii) a transition from
localization on A, to localization on A; for increasing v, Fig. 6.3. In order to see whether
both transitions semiclassically correspond to localization transitions of y-natural CiMs, we

basically need to compute /,(A;) for different parameter setups. To this end, we have two
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possibilities: First we can numerically approximate p., as described in Sec. 7.2.2 and integrate
over A;. The second opportunity is given by the analytical result for the partial-barrier Baker
map, Eq. (8.57). One should be cautious when applying Eq. (8.57) here as we derived this
relation specifically for the partial-barrier Baker map. However, as we shall see below it turns

out that Eq. (8.57) is perfectly applicable also for the partial-barrier standard map.

For the investigation of quantum-to-classical correspondence for transition (i) from equipar-
tition to localization when opening the system, we focus on long-lived resonance states with
Y R Ynat- We compute the classical measure fina(A;) directly from Eq. (8.57) for v = ~nas
(¢, = 0 in this case). The results are shown in Fig. 9.2, which is analogous to Fig. 6.2, now
including the classical localization (green line). The localization of p,, perfectly describes
the localization transition (i) of quantum resonance states of the partial-barrier standard map
over the whole range of parameters. We point out that at first sight, the parameters || and

¢ enter individually in the classical localization according to Eq. (8.57) when using Eq. (8.45)

| Puy 2 : :
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Figure 9.2. Weight || P9,||? (symbols) of resonance states on region A; vs ratio of size |
of opening and flux ¢ across partial barrier for different parameters of the partial-barrier
standard map (10 < ¢/h,|Q|/h < 2048; |A1| = 1/2; h = 1/6000). Weight of state with
closest t0 ynat (red points) and averaged over states with decay rates v € [Ynat/1.1, Ynat - 1.1]
(black crosses). This is compared to the natural CIM pinat (A1) (Eq. (8.57), solid green line).
Inset: Same data shown on double-logarithmic scale. Upper panels: Husimi representation
of typical resonance states with v & na for h = 1/1000, ¢/h = 20, and two values |Q|/¢
indicated by arrows.
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for the fundamental 2 x 2 transition matrix 7;. That this transition, in fact, only depends on
the single parameter [€2|/¢ can be easily seen the following way. We rephrase the transition
matrix Ty, which approximates the Perron—Frobenius operator with respect to the two sides

of the partial barrier, according to

_— (1—<|Q|+¢>>/|A1| b/ Al ) 01)
ol 1-0/|4d
1_<<|Q|+¢>/|A1| —¢/|A2|) 02)
g/l /14l
9 [19l/o+1 —|Ai]/|As
]l |A1|< . |A1|/|A2|>' .

Note that for the natural decay, the weights pinas(A1) and pinas(Az) are simply given by the
components of the long-lived Perron—Frobenius eigenvector of Ty. However, following Eq. (9.3),

Ty admits the same eigenvectors as the matrix

[Adf o 19/ +1 —|Ai]/]As]
5 (1-Tp) = ( . A1y ) (9.4)

which only depends on the two ratios of |2|/¢ and |A;|/|As|. In Fig. 9.2 we fix |A;], and thus,
of course, also |As| such that transition (i) from equipartition to localization for resonance

states with v & v,a; indeed depends exactly on the single parameter |2|/¢, only.

For completeness, we show that Eq. (8.57) accurately describes the localization transition (i)
not only in the symmetric case |A;| = |As| but also for |A;| # |As|, see Fig. 9.3. The figure is
analogous to Fig. 9.2 using (a) |A;| = 2/3 and (b) |A;]| = 1/3. Again, the classical localization
of the natural CIM pu,,; perfectly describes the transition of quantum resonance states from
equipartition, pna(A;) = |A1], for |2 < ¢ to localization in As, pinas (A1) =~ 0, for || > ¢.

For a single quantum system, we found the localization transition (ii) from localization on
region A, for long-lived resonance states (small ) to localization on region A; for short-lived
resonance states (large 7), Fig. 6.3. We again compute the localization of the corresponding
~v-natural CiMs and compare the classical and quantum data in Fig. 9.4. In addition to deter-
mining /i, (A;) from the analytical prediction, Eq. (8.57) (green line), we also plot the values
for 1,(A;) obtained by integration over the numerically determined measure y., as described
in Sec. 7.2.2 (black crosses). For the numerically determined measure, we use a uniform grid
of Ngiiq = 105 points and approximate the backward trapped set I'ywg by Nier = 50 steps.
The two ways of computing p.(A;) perfectly match. Even more important, the classical local-
ization of p., displays precisely the same transition depending on < as the quantum resonance

states. Both localization transitions for chaotic resonance states introduced in Chap. 6 are
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Figure 9.3. Weight | P11,]|? (symbols) of resonance states on region A; vs ratio of size ||
of opening and flux ¢ across partial barrier for different parameters of the partial-barrier
standard map (10 < ¢/h,|Q|/h < 2048; h = 1/6000; (a) |A1] = 2/3 and (b) |4;| = 1/3).
Weight of state with ~ closest to vnat (red points) and averaged over states with decay
rates v € [Ynat/1.1, Ynat - 1.1] (black crosses). This is compared to the natural CIM finag (A7)
(Eq. (8.57), solid green line). Inset: Same data shown on double-logarithmic scale. Upper
panels: Husimi representation of typical resonance states with v & s for A = 1/1000,
¢/h = 20, and two values |€2|/¢ indicated by arrows.
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Figure 9.4. Weight || P11,/ (red points) of resonance states 1., in region A; vs decay rate
for the partial-barrier standard map (¢/h = 100; |Q2|/h = 1000; |A;| = 1/2; h = 1/6000).
This is compared to the y-natural cim p (A1) computed according to Eq. (8.57) (solid
green line), and by integration over numerical approximations (black crosses). Upper panels:
Husimi representation of typical long-lived (left) and short-lived (right) resonance state for
h =1/1000 with v values indicated by arrows.

thus of classical origin and the new class of v-natural CIMs provides the appropriate classical
counterpart. The case of asymmetric regions, |A;| # |A2| is shown in Fig. 9.5 and nicely
exhibits quantum-to-classical correspondence again. Nevertheless, Fig. 9.5(a) for |A;| = 2/3
is the first example where the classical quantity 1, (A;) deviates systematically from the mean
behavior of || P14, ||*. Although the deviations are small, it seems as if the slope in the quan-
tum data is a little larger than in the classical case. We emphasize that even though the
quantum and classical data do not perfectly agree, it is still irrelevant whether the classical
measures [i(A;) are computed by integration over numerical approximations (black crosses)

or by the analytical prediction, Eq. (8.57), which is derived for the partial-barrier Baker map.

9.2 Deviations due to Quantum Suppression of Transport

In order to understand the origin of the small deviations between the classical and the quantum-
mechanical localization values as observed in Fig. 9.5(a), we now consider the partial-barrier

standard map for rather extreme parameter values. Recall that the study of classical CiMs
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Figure 9.5. Weight || P9,/ (red points) of resonance states 1., in region A; vs decay rate y
for the partial-barrier standard map (¢/h = 134; |Q|/h = 1334; h = 1/6000; (a) |A;| = 2/3
and (b) |A;| = 1/3). This is compared to the y-natural cIM (A1) computed according
to Eq. (8.57) (solid green line), and by integration over numerical approximations (black
crosses). Upper panels: Husimi representation of typical long-lived (left) and short-lived
(right) resonance state for h = 1/1000 with « values indicated by arrows.



118 9.2 Deviations due to Quantum Suppression of Transport

is motivated by the fact that the localization transitions of quantum resonance states have
been observed for values of |2| > h and ¢ > h, where quantum effects should be negligible,
cf. Chap. 6. Still, for sufficiently large values of h quantum deviations should be observable.
Particularly the known quantum localization transition for a partial transport barrier in a
closed system depending on ¢/h, see Sec. 5.1, is expected to have a strong influence. More-
over, for sufficiently large h, it is quite reasonable to expect that the phase-space structure
of quantum resonance states might differ from the structure of y-natural CiMs on finer scales,
even in systems without partial barriers. In such parameter regimes, we do not expect agree-
ment between classical y-natural ciMs and quantum resonance states. In fact, we will see
below that the phenomenology of such quantum deviations is very characteristic. Moreover,
it turns out that the regime where one might observe remnants of such quantum deviations
can be surprisingly large, i.e., for parameters for which one could expect quantum-to-classical
correspondence at first glance. For instance, we will attribute the deviations in Fig. 9.5(a) to
not being sufficiently semiclassical although A = 6000 and ¢/h = 134, |Q2|/h = 1334.

In Fig. 9.6, we again show the localization transition of a single quantum system depending
on the decay rate 7 of resonance states. We emphasize that the flux ¢ across the partial barrier
is chosen very small, ¢/h = 2, such that we expect a strong impact of the quantum-mechanical
suppression of transport across the partial barrier in view of the quantum localization tran-
sition known from closed system, Sec. 5.1. Indeed, the quantum data clearly differ from the
corresponding classical localization. In particular, we observe that the quantum data nicely
obeys the linear behavior

1Py |2 = Faat(AD) (9.5)

nat

This can be seen on a linear, Fig. 9.6(a), and on a logarithmic scale of the ordinate, Fig. 9.6(b),
over several orders of v up to ||[P1¢,]|* &~ 1. We point out that the quantum localization
according to Eq. (9.5) coincides with the classical localization for 7 = 7. In agreement
with the fact that quantum transport across the partial barrier is suppressed for ¢ ~ h, the
localization of resonance states is enhanced compared to the classical localization. That means,
a quantum resonance state for which the corresponding classical y-natural ciMm localizes in A;
has quantum mechanically enhanced weight in A; and vice versa for A;. The transition
takes place at the natural decay rate, which corresponds to a CIM with constant measure
on its support. Note that Eq. (9.5) is merely a numerical observation the verification and

explanation of which remains for future studies.

The enhancement of localization due the quantum suppression of transport is also sup-
ported by the quantum and classical phase-space distribution shown in Fig. 9.7. For the
partial-barrier standard map with ¢/h = 2 and |Q2|/h = 16 the deviations between quantum
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Figure 9.6. Weight | Pi%,||> (red points) of resonance states 1), in region A; vs decay
rate v for the partial-barrier standard map (¢/h = 2; |Q|/h = 512; |Ai| = 1/2; h =
1/6000) for linear ordinate (a) and for logarithmic ordinate (b). This is compared to the -
natural CIM g (A1) [according to Eq. (8.57) (solid green line); by integration over numerical
approximations (Ngiq = 10% Nier = 3000; black crosses)| and compared to the linear
scaling according to Eq. (9.5) (dashed gray line).

and classical localization are comparable with the deviations in Fig. 9.6. We choose the decay
rate ¥ = Ynat/finat (A1) = 10 Ynag corresponding to the decay rate where || Py, ||* reaches its
maximum according to Eq. (9.5). For this example the numerically determined weights in
Ay are [Py, ||* &~ 0.807 and p(A;) & 0.537. The weight of the quantum resonance state,
Fig. 9.7(a), is enhanced or lowered over the entire region A; or A,, respectively, compared
to the classical v-natural cim, Fig. 9.7(b). In particular, the larger quantum-mechanical
weight || P14, ||* does not arise from new types of localization on characteristic subsets of the
fractal trapped sets or from pronounced peaks. Instead, the localization enhancement acts on

the entire region on each side of the partial barrier.

Coming back to Fig. 9.6 for the example of a system with extremely small flux ¢ = 1/3000,
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Figure 9.7. (a) Average Husimi distribution of resonance states for the partial-

barrier standard map (¢/h = 2; |Q]/h = 16; |A1] = 1/2; h = 1/1000) with v €
[(Ynat/tnat (A1) /1.2, (nat /tinat (A1) - 1.2] (77 states). (b) Approximate y-natural ciM for
Y = Ynat/tnat (A1). The phase-space distributions in (a) and (b) are plotted with a mutual
color scale; the dashed black line indicates the boundary of the opening 2.

we also observe slightly different classical expectations around v = 1.0 (green line vs black
crosses). However, it is not clear whether this results from a failure of Eq. (8.57) or whether
the numerical approximation of y., is not sufficiently accurate (Ngiq = 10%, Niger = 3000). The
very different escape probabilities from regions A; and A, indicate that, in fact, the numerical
approximation of 1, with the algorithm presented in Sec. 7.2.2 is not sufficiently accurate
here. Still, since both classical estimates are close to each other and clearly off the quantum
data, the deviations between the classical and the quantum localization certainly cannot be

attributed to an insufficient approximation of the classical y-natural Cims.

Let us consider another example of the same kind of localization transition. In Fig. 9.8 we
choose a value of ¢/h = 16. Although from the closed system’s point of view, the quantum-
mechanical influence of the partial barrier should be negligible, ¢ > h, cf. Fig. 5.2, we observe
a similar localization for quantum resonance states as in Fig. 9.6. Even though the quantum
data do not follow the linear behavior from Eq. (9.5) as in the previous case, the tendency is
evident. Roughly speaking, the quantum data are somewhere in between the deeply quantum-
mechanical regime (dashed gray line), Eq. (9.5), and the semiclassical behavior (solid green
line) in terms of the localization of y-natural ciMs. Moreover, it seems as though there are
two different ways of approaching the semiclassical expectation distinguishing between decay
rates 7 2 Ynat and v < ynae. While one observes a systematic intermediate behavior for

Y 2 Ynat, Fig. 9.8(a), the resonances for v < 7y, simply disappear, Fig. 9.8(b). In particular,
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Figure 9.8. Weight | Pi%,||> (red points) of resonance states 1), in region A; vs decay
rate v for the partial-barrier standard map (¢/h = 16; |Q|/h = 128; |A1] = 1/2; h =
1/6000) for linear ordinate (a) and for logarithmic ordinate (b). This is compared to the -
natural CIM g (A1) [according to Eq. (8.57) (solid green line); by integration over numerical
approximations (Ngriq = 10%, Nijter = 100; black crosses)] and compared to the linear scaling
according to Eq. (9.5) (dashed gray line).

the quantum data for v < y,a¢ always seem to follow the deeply quantum-mechanical behavior
and never obey the classical expectation (green line) but the smaller h the less resonances

exist in this regime.

Let us investigate this transition from the deeply quantum-mechanical behavior to the
semiclassical behavior in a little more detail. To this end, we investigate yet another example
in Fig. 9.9, which allows to observe this transition directly in a single system by varying the
size h of Planck’s cell on numerically feasible scales. First, for h = 1/375 the transition region
of the partial barrier is quantum mechanically not well resolved, ¢/h = 2. Accordingly, the
localization of quantum resonance states basically follows the linear behavior from Eq. (9.5),

see Fig. 9.9(a) for v > ~na and Fig. 9.9(c) for v < 4na. However, by decreasing the size h of
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Figure 9.9. Weight || P11, || (red points) of resonance states 1., in region A; vs decay rate
for the partial-barrier standard map (¢ = 2/375; |Q| = 64/375; |A1| = 1/2) for two different
values of h as specified. The data are shown with linear ordinate (a, b; shared axes) and
with logarithmic ordinate (c, d; shared axes). This is compared to the y-natural CIM 11 (A1)
[according to Eq. (8.57) (solid green line); by integration over numerical approximations
(Ngria = 10%, Niter = 100; black crosses)| and compared to the linear scaling according to
Eq. (9.5) (dashed gray line).

Planck’s cell by a factor of 24 to h = 1/9000, such that ¢/h = 48 the quantum-mechanical
influence of the partial barrier is particularly reduced and the localization approaches the
semiclassical expectation, see Fig. 9.9(b, d). The shown transition confirms our previous
observation, Fig. 9.8, of two different regimes: For 7 2 ~,,; the quantum data systematically
pass the gray shaded region between the deeply quantum-mechanical regime, Eq. (9.5), and
the localization of y-natural ciMs, Eq. (8.57). For v < 7yat, the resonances seem to vanish in

the semiclassical limit.

The statement that the localization of quantum resonance states due to the partial barrier
semiclassically follows the localization of corresponding ~-natural CiMs is further supported by
Fig. 9.10. Here, we compare the localization transition of two systems with the same values of
12]/¢ and |A;| . However, in Fig. 9.10(a), ¢ and || are both in the regime where we expect

quantum suppression of transport in view of the closed system’s theory, ¢/h = 2, |Q|/h = 8,
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Figure 9.10. Weight ||Py¢,]|? (red points) of resonance states ¢, in region A4; vs decay
rate v for the partial-barrier standard map for (a) ¢/h = 2, |Q|/h = 8, and (b) ¢/h = 512,
|2|/h = 2048 with |A;| = 1/2 and h = 1/6000 in both cases. This is compared to the -
natural CIM g, (A1) [according to Eq. (8.57) (solid green line); by integration over numerical

approximations (Ngiq = 109, (a) Nier = 3000 and (b) Njer = 10; black crosses)] and
compared to the linear scaling according to Eq. (9.5) (dashed gray line).

cf. Sec. 5.1. Accordingly, the weight of quantum resonance states || Pyt ||* basically follows the
linear behavior, Eq. (9.5), which we interpret as the deeply quantum-mechanical regime. We
attribute the pronounced width of the quantum data around their mean behavior to the small
ratio of |2|/h which has been observed in other examples as well (not shown). In Fig. 9.10(b)
where the quantum resolution of the flux ¢ and the opening €2 is improved by a factor of 256,
i.e., ¢/h = 512 and |Q/h = 2048, we actually observe perfect correspondence between the
localization of quantum resonance states and the localization of y-natural CiMs in dependence
of their decay rates 7. Note that the weight pin.:(A;) of the natural CIM is the same for (a)
and (b) according to Eq. (8.57), as we choose the same values for |Q|/¢ and |A;], but the
natural decay rate vy, differs.
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Even though this study indicates that the localization of chaotic resonance states with
respect to a partial barrier, indeed, approaches the classical localization of y-natural ciMs for
sufficiently small values of h, it also demonstrates that the convergence is rather slow. While
for closed systems one finds quantum-mechanical influence for the localization due to partial
barrier roughly up to ¢/h ~ 10, the quantum influence for open systems seems to extend to
even larger ratios of ¢/h. A more careful analysis should take into account results on the

spectral gap [196] and on super sharp resonances [197].

9.3 Standard Map

So far, we have seen that our classical theory for the localization of chaotic resonance states
proves correct for the partial-barrier Baker map and the partial-barrier standard map in the
semiclassical regime. Even the analytical result for the localization of y-natural ciMs with
respect to a partial barrier, Eq. (8.57), which was rigorously derived for the partial-barrier
Baker map, turns out to perfectly describe the localization of ~-natural CiMs also for the
example of the partial-barrier standard map. Still, in order to validate our approach more
generally we now examine whether the localization of chaotic resonance states semiclassically
follows the localization of y-natural ciMs also for the paradigmatic standard map (k = 2.9)
with a generic mixed phase space, cf. Sec. 3.1.

Let us consider the standard map with fixed opening Q = ([0,[[/2) U [1 — |©/2,1)) x
=33
width 0.05 each. As a first qualitative verification of quantum-to-classical correspondence, we

), |©2] = 0.1, i.e., two vertical stripes on the left and right edge of the phase-space cell of

compare the average Husimi distribution of resonance states with decay rate v ~ 0.12 with the
numerically determined phase-space density of the corresponding y-natural cim in Fig. 9.11.
We observe that the quantum and classical distributions are supported by the same sets, i.e.,
the chaotic part of the backward trapped set, and thus, are zero on the forward escaping
sets and the regular regions. Moreover, the location of high and low density regions match.
Owing to the involved fractal structure of the trapped sets we show the same quantum and
classical phase-space distributions from Fig. 9.11 again in Fig. 9.12(c, d) in top view to better
demonstrate their agreement even on finer scales of the fractal sets. Indeed, the dark and
bright regions of large or low intensity nicely match up the quantum resolution limit. This
correspondence is essentially also confirmed for chaotic resonance states and y-natural ciMs of
other decay rate in Fig. 9.12(a, b) for v = 0.05 and in Fig. 9.12(e, f) for v = 0.2. However, when
examining these two examples very closely they already indicate the limitations of quantum-
to-classical correspondence: In Fig. 9.12(a, b) for v = 0.05 the quantum resonance states (a)
exhibit an overall enhanced localization behind the outer partial barrier. This phenomenon

agrees with the deviations already observed in Sec. 9.2. The flux across this dominant partial
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Figure 9.11. (a) Average Husimi distribution of resonance states for the standard map
(k =2.9; Q2] =0.1; h = 1/1000) with v € [0.12/1.25,0.12-1.25] (93 states). (b) Approximate
~v-natural ciMm for v = 0.12.

barrier is quantum mechanically not sufficiently resolved, ¢/h &~ 12. Thus, the enhancement
of localization is due to the quantum-mechanical suppression of transport across the partial
barrier. In Fig. 9.12(e, f) for v = 0.2, we observe a new kind of deviation. The quantum
resonance states show pronounced peaks on certain lobes of the backward trapped set. This
quantum effect is not directly related to the partial barrier. It is rather related to the question:
How does quantum mechanics resolve fractal sets? This issue is beyond the scope of this thesis
and left for future studies. We will comment on this again in the outlook in Chap. 11. Note
that this quantum localization on fine scales of the fractal turns out to be irrelevant when
considering only the weights on each side of the partial barrier for the examples studied in
this work.

Let us now focus on the localization with respect to the main partial barrier (¢ ~ 0.0126;
Fig. 9.13 inset: magenta line) in order to quantitatively study quantum-to-classical corre-
spondence. The dominant partial barrier decomposes phase space into the outer region A;
(Fig. 9.13 inset: medium gray shaded) of area |A;| &~ 0.6664, and the inner region A, (Fig. 9.13
inset: light gray shaded) of area |As| ~ 0.2061. The next hierarchical level is well separated
on the numerical scales considered. The flux across the partial barrier around the island chain
of period four (Fig. 9.13 inset: red lines) is smaller by a factor of about 474; the flux across
the next partial barrier towards the central regular island (Fig. 9.13 inset: pink line) is even
smaller. For the standard map with opening €, we compute the Husimi weight || Py, |* of
each chaotic resonance state within A;. Regular and deeper hierarchical states having less

than 50% of their weight within A; and A, are discarded. As some of the remaining chaotic
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Figure 9.12. (a, c, e) Average Husimi distribution of resonance states for the standard
map (k = 2.9; || = 0.1; A = 1/1000) with (a) v € [0.05/1.25,0.05 - 1.25] (88 states), (c)
v €[0.12/1.25,0.12 - 1.25] (93 states), and (e) v € [0.2/1.25,0.2 - 1.25] (77 states). (b, d, f)
Approximate y-natural cim for (b) v = 0.05, (d) v = 0.12, and (f) v = 0.2. Mutual gray
color scale for corresponding quantum and classical phase-space distributions used.
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Figure 9.13. Weight ||Py¢,||? (red points) of chaotic resonance states 1. in region A;
vs decay rate v for the standard map at x = 2.9, with |A;| ~ 0.6664, |A3| ~ 0.2061,
¢ ~ 0.0126, || = 0.1, and h = 1/10000. This is compared to the v-natural CIM (A1)
determined by integration over numerical approximations (Ngriq = 10, Niter = 50; solid
green line), according to Eq. (8.57) (dotted blue line), and by semianalytical generalizations
of Eq. (8.57) by computing Tphat numerically (dashed blue line) and by computing |A; N
T-"(92)| numerically (solid blue line). In addition, the localization is compared to the linear
scaling according to Eq. (9.5) (dashed gray line). Inset: Phase space of the standard map
with regular and chaotic regions, illustrating regions A; (medium gray shaded), Ay (light
gray shaded) on either side of the main partial barrier (thick solid magenta line), and opening
Q) (dark gray shaded). Upper panels: Husimi representation of typical long-lived (left) and
short-lived (right) resonance state for A = 1/1000 with - values indicated by arrows.

resonance states still have significant contribution outside of A; U Ay, we renormalize them
such that [Py, |2 + || Py, |2 = 1. Qualitatively, we again find the localization transition
from resonance states which localize on A, for small v to resonance states localizing on A; for
large v, see Fig. 9.13. Quantitatively, the transition is well described by the weight 1., (A;)
of corresponding y-natural ciMs which are computed by integration over numerically approxi-
mated measures as described in Sec. 7.2.2 (solid green line). The classical estimate according
to Eq. (8.57) (dotted blue line) also captures the basic behavior of the localization transition
although the agreement with the numerically determined measures (solid green line) is not as
good as for the partial-barrier standard map for instance. Before discussing this discrepancy
between analytically and numerically determined weights /., (A;) in more detail, we point out

that also the linear behavior related to the deeply quantum-mechanical regime (dashed gray
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line), Eq. (9.5), seems to be relevant for the localization transition. This can be seen for
resonance states with v < ~,,; which scale different than the states with v 2 ;.

For the partial-barrier Baker map, Eq. (8.57) together with Eq. (8.45) for Tj exactly de-
scribes the localization of y-natural CIMs in terms of the weight 11,(A;). For other systems
like the standard map, however, Eq. (8.57) is in general not valid. This is due to following
three steps in its derivation, Sec. 8.4:

(i) For the partial-barrier Baker map the measure ji,, (A7) is precisely given by the com-
ponents of the Perron-Frobenius eigenvector of the 2 x 2 matrix Ty, Eq. (8.45). The matrix
Ty contains the transition probabilities to get from one side of the partial barrier to the other
side or to escape from the system within one iteration for an initially uniform phase-space
distribution. However, to ensure that the components of the Perron-Frobenius eigenvector of
To provide the weights pinat (A1) (and pnas(As)) for generic maps these transition probabilities
must correspond to using the true natural CIM py,; as initial phase-space distribution instead
of the uniform one. We call this adapted 2 x 2 transition matrix T},;. It can be achieved
numerically, for instance, by the one-step iteration of a numerically approximated backward
trapped set. In view of the localization transition of the standard map, Fig. 9.13, the improve-
ment when using T}, instead of T can be seen by comparing the dashed and the dotted blue
line.

(ii) For the partial-barrier Baker map, the weight i, (Ak N T*”(Q)) of finay Within the

forward escaping sets T~"(£2) associated with A; or A, follows from the exact relation

pnat (A NT7"(Q) _ |ANT ()]
Hnat (Ak) |Ak“ ’

(9.6)

cf. Eq. (8.52). This proportionality is a direct consequence of the Cartesian product structure
of stable and unstable manifolds within each region Aj. It seems reasonable to expect that
this relation can be generalized to generic systems for which stable and unstable manifolds
also display a product structure. To this end, the argument needs to be revised in the natural
coordinates of the invariant manifolds.

(iii) For the partial-barrier Baker map the Lebesgue measure |A; NT~"(Q)| of the forward
escaping set T"(2) within Ay is given by Eq. (8.53),

A NT™(Q Q

|As N T™(Q)| 0
Even when replacing Ty by T, cf. step (i), this relation is not necessarily correct for generic
systems. For large n the iteration of €2 will lead to a phase-space distribution given by the

natural CIM of the inverse dynamics. For this, recall that any generic phase-space distribution

converges towards the natural CIM under time evolution which in this case is the backward
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iteration, see Sec. 7.2.2. Hence, asymptotically the transition of weights from one side of the
partial barrier to the other when iterating €2 is indeed given by the single matrix corresponding
the natural measure which may be related to T.,; by time-reversal invariance. However,
initially the iteration of €2 is not necessarily described by one and the same matrix for different
iteration steps n. In contrast, the transition probabilities to go from one side of the partial
barrier to the other when iterating €2 need to be investigated individually for each time step
up to the asymptotic regime where these transition probabilities remain constant. In view
of the localization transition of the standard map, Fig. 9.13, the improvement when using
this adapted approach and not T,; for all steps n can be seen by comparing the solid and
the dashed blue line. At least for the standard map, using the precise iteration of {2 seems
not to be specifically relevant. This impression is also supported by the explicit values of
the transition probabilities: The absolute difference in the initial and asymptotic transition
probabilities is below 0.05 already in the first iteration, and at most about 0.01 in the fourth
iteration.

Since the steps (i-iii) are the only approximations made when applying Eq. (8.57) to the
generic standard map, and as we numerically took care of steps (i) and (iii), the difference
between the full numerical result, solid green line in Fig. 9.13, and the semianalytical result

(solid blue line) is attributed to the approximation in step (ii).

Summary of Central Results

This chapter concludes the central part of this thesis, i.e., Chaps. 6-9. Let us therefore briefly
summarize the crucial points. We observe two transitions for the localization of chaotic reso-
nance states due to a partial barrier: (i) A transition from equipartition to localization when
opening the system, and (ii) a transition from localization on one side of the partial barrier
to the other for increasing decay rates of the resonance states. Both transitions take place
also in the semiclassical regime, meaning that the exchange region of the partial barrier is
quantum mechanically well resolved. This has two implications: First, partial barriers are
more influential in open quantum systems than in closed ones, as in the latter case, eigen-
states are semiclassically equipartitioned with respect to the partial barrier as if there were
no partial barrier at all. Secondly, a classical origin of the observed localization transitions
is suspected. We introduce the new class of y-natural ciMs and demonstrate quantum-to-
classical correspondence with chaotic resonance states for the partial-barrier Baker map, the
partial-barrier standard map, and the generic standard map with a mixed phase space. In
particular, the observed localization transitions are nicely described by the localization of the
corresponding classical measures, which thus shows that the transitions are indeed of classical
origin. A useful analytical prediction, Eq. (8.57), for the weights of y-natural ciMs on each side

of a partial barrier is rigorously derived for the partial-barrier Baker map. It turns out that
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Eq. (8.57) provides excellent results even when applied to the partial-barrier standard map
and works reasonably well also for the standard map. If the flux across the partial barrier is
not sufficiently well resolved by Planck cells, we observe a quantum-mechanical enhancement

of localization compared to the classical expectation.



Chapter 10
Hierarchical Fractal Weyl Laws

In this chapter we present an important application of the localization of chaotic resonance
states due to a partial barrier. We show that the number of resonance states that are pre-
dominantly located on either side of the partial barrier obeys an individual effective fractal
Weyl law. To this end, we first review the Weyl law for closed systems and the fractal Weyl
law for globally chaotic systems in Sec. 10.1. In Sec. 10.2 we generalize the fractal Weyl law
to the partial-barrier Baker map and particularly focus on the influence of the partial barrier.
It turns out that the repeller effectively exhibits different fractal dimensions on each side of
the partial barrier. Quantum mechanically, this implies effectively different fractal Weyl laws
for the number of resonance states associated with each side. In Sec. 10.3 we demonstrate
that these individual fractal Weyl laws can also be found for the generic standard map. For
the partial-barrier standard map with two partial barriers we can show numerically that the
individual fractal Weyl laws are even present in systems with multiple partial barriers. We
then discuss the presence of a hierarchy of fractal Weyl laws for generic systems with an infin-
ity hierarchy of partial barriers. We conclude by discussing the relation of these hierarchical
fractal Weyl laws with other fractional Weyl laws. The main results of this chapter have first
been reported in Ref. [33].

10.1 Weyl Law and Fractal Weyl Law

Consider the free stationary Schrodinger equation,
(A + Ky =0, (10.1)

for the Hamiltonian H = —(h%/2m)A on a bounded domain G' C R/ with Dirichlet boundary
condition 1|sc = 0 for the piecewise smooth boundary OG and k? = 2mE/h*. Weyl’s law [77,
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78] describes the asymptotic distribution of the eigenvalues E,, of H. It states that the number
N(E)=4#{E,c€0(H) : E, < E} (10.2)

of eigenvalues of H below energy F scales as

f
. N(E)_ 2m\ 2 Vf
2R (F) @7 191 (10.3)

where V; = 7//2/T(1 + f/2) is the volume of the f-dimensional unit ball, cf. [198, Eq. 7.3.9].
Note that the common but sloppy notation of the counting function, Eq. (10.2), is meant
to count eigenvalues including their multiplicity. Equation (10.3) contains two remarkable
insights. First, the number N(FE) of eigenvalues below E asymptotically scales as a power
law in the variable E the exponent of which is related to the dimensionality f of the problem.
For an example where this is relevant, think of an ideal quantum gas of n free identical
particles in a d-dimensional box, which is included in the above setting (f = d - n). Then
Weyl’s law yields that the density of states for the quantum gas confined to two spatial
dimensions is very different from that in three-dimensional space. This is central to the
Mermin—-Wagner-Hohenberg theorem [199,200] that forbids Bose-Einstein condensation and
(anti)ferromagnetism for nonzero temperature in the two-dimensional case although they are
allowed in three dimensions, see Refs. [201, Sec. 8.1.1] and [202, Chap. 9]. Note that in order to
compute the density of states, one needs to modify Eq. (10.3) by taking into account additional
factors due to spin degeneracy as well as the indistinguishability of particles. Secondly, the
asymptotic scaling of the number N(E) of eigenvalues below E does not depend on the shape
of G but only on its volume |G|. The shape of G determines lower-order corrections in terms
of the curvature of the boundary for instance, see e.g. Refs. [203,204]. This motivates the
question whether there exist regions G of different shape that share identical spectrum [205],
which is indeed possible [206]. Note that Weyl’s law is, of course, not restricted to the quantum
mechanical context but applies to all problems described by the Helmholtz equation, Eq. (10.1).
For instance it is widely studied in the context of acoustics, optical cavities, and quantum
billiards [198,203, 205|.

The Weyl law for the free Hamiltonian, Eq. (10.3), can be generalized to Hamiltonians

with nonvanishing potential. This more general Weyl law reads

N(E) ! /H d'qd’p+ O, (R \,0) (10.4)

h! (¢,p)<E

where H denotes the classical Hamilton function here [207, Sec. 6.4]. Equation (10.4) allows for

the intuitive interpretation that an eigenstate occupies the phase-space volume h/ of a Planck
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cell, consistent with Heisenberg’s uncertainty principle. The total number of eigenvalues up to
energy F is thus given by partitioning the total available phase-space region enclosed by the
energy shell for £/ by Planck cells. This principle belongs to the foundations of statistical me-
chanics. We stress that this decomposition argument relies on the orthogonality of eigenstates.
For a quantum map U € CV*V semiclassically corresponding to time-discrete dynamics on a
d-dimensional phase space I', the Weyl law relates the number N7 of eigenstates associated
with an invariant phase space region Z C I' and the effective size h%? of Planck’s cell by
Nz = |Z|/h%?. For the number of all eigenstates this boils down to the quantization condition
N = h~%2 for a phase space of unit volume. Note that for quantum maps the focus is put on

the power-law dependence of h since there is no energy parameter.

In order to generalize the Weyl law to open systems, the nonorthogonality of resonance
states turns out to be the major challenge [48]. As a consequence of nonorthogonality, it is no
longer reasonable to decompose the available phase-space region disjointly by Planck cells in
order to compute the number of resonance states. This issue can be overcome by restricting
to long-lived resonance states which are mutually almost orthogonal, that is, (¥, | ¥n ) = dmn
if v, 7 < 1. To begin with, let us consider a fully chaotic quantum map with a totally
absorbing region and subunitary time-evolution operator U. In this case, the set of long-lived

resonance states may be defined as
L:={Nco(U) :|\>e/?}, (10.5)

with a constant cutoff decay rate -, in order to distinguish between short-lived and long-lived
states. This is a common way of discarding short-lived states [47]. Since resonance states
are not arbitrarily localized in phase space but supported by the trapped set, the available
phase-space region turns out to be the fractal repeller I'.,;, smeared out on the scale of Planck’s
cell [47]. Asymptotically for h N\, 0, decomposing the h-resolved repeller by Planck cells is
nothing but counting the minimal number of boxes of side length v/h necessary to cover [rep-
This, however, turns out to be equivalent to counting the number of boxes of an appropriate
phase-space partition occupied by I'ye, [142, p. 43]. We have already seen in Sec. 3.3 that
such a box-counting algorithm gives a power law depending on the box size when applied to
a uniformly fractal set. Its exponent is determined by the fractal dimension of the set. By
means of quantum-to-classical correspondence, it is

 Nus(h)
i e — 20 (10.6)

where Nyes(h) := #L denotes the number of long-lived chaotic resonance states, D(I',ep) is the
fractal box-counting dimension of the repeller, and s(7.) is the so-called shape function [208|.

Note that the cutoff rate v., when chosen in a reasonable range, enters in the counting function
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N,es only through this proportionality factor s. In particular, 7. does not contribute to the
power-law exponent. In open chaotic systems, the number N, of long-lived resonance states
therefore scales as a power law depending on the effective size h of Planck’s cell similar to the
Weyl law. In contrast to closed systems, however, the power-law exponent is not determined
by the ordinary integer dimension of phase space but by the fractal dimension of the trapped
set T'ep. Equation (10.6) is therefore referred to as fractal Weyl law. Fractal Weyl laws
for chaotic open systems have been numerously verified numerically [47,48,51,52,61,71, 81,
82, 86-88,90-92, 96|, analytically [53, 79,80, 83-85,95,97], and even experimentally [93]. In
particular, fractal Weyl laws are also studied for chaotic scattering systems [47,90,93| and
for chaotic systems with partial absorption such as microcavities [52,61,71]. They have been
investigated even in the context of classical Perron-Frobenius operators [209] and for the
Google matrix [210].

The above heuristic box-counting argument for determining the number of long-lived reso-
nance states, which was put forward in Ref. [47], sometimes creates a little confusion. Chaotic
resonance states, no matter whether they are short-lived or long-lived, are semiclassically sup-
ported by the backward trapped set I'hywq and not by I'yep [49]. One might argue that therefore
the h-resolved backward trapped set should be decomposed by Planck cells, such that the
fractal dimension of I'yyq should enter the counting argument rather than the fractal dimen-
sion of I'iep. Note that ['hwg is much larger than I'y,, and should support more resonances.
Roughly speaking, the problem with this argument is that the localization of resonance states
in the subregions I'hwg N T7"(2) (forward escaping sets) is related by time evolution and,
therefore, these regions do not contribute independently. In fact, it is shown for instance in
Ref. [53, Sec. 6] that it is possible to reduce the dynamics onto the h-resolved repeller without
losing the relevant information about the spectrum. More precisely, the Hamiltonian, sub-
ject to complex scaling in order to uncover the resonance poles, is conjugate to an auxiliary
Hamiltonian which suppresses contributions outside of the h-resolved repeller by an exponen-
tial weight. This conjugacy assures that the set of resonance poles remains unchanged under
this transformation. Thus, indeed, the h-resolved repeller needs to be partitioned by Planck
cells in order to compute the number of long-lived resonances. In other words, decomposing
the h-resolved backward trapped set by Planck cells overestimates the number of long-lived
resonances. Still this counting argument using Planck cells is not rigorous to some extent for
that the resonance states are nonorthogonal. In order to address this issue, it is suggested in
Ref. [48] to investigate the Hilbert subspace associated with instantaneous decay modes. By
partial Schur decomposition of the subunitary time-evolution operator the authors determine
the dimension of this space and thereby find the number of instantaneous decay modes taking
into account their mutual nonorthogonality. Since this task is complementary to the study of

long-lived resonance states, the fractal Weyl law is recovered where the exponent is given by
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the fractal dimension of the repeller.

So far, we considered open systems that are fully chaotic. This has the advantage that the
repeller is typically a rather homogeneous fractal. In this case, it is irrelevant whether one
considers the box-counting dimension, the Hausdorff dimension, or any other Rényi dimension
as they all coincide [143]. The Kantz—Grassberger relation, Eq. (3.30),

5 (Tyep) = 1 — 112 (10.7)

A
even yields an analytic estimate for the partial fractal dimension along the unstable direction
in terms of the Lyapunov exponent A and the natural decay rate y,,;. For time-reversal invari-
ant systems, the partial fractal dimensions along the stable and unstable direction coincide,
¥ (Trep) = 0" (Trep) =: 0(I'rep) [56], such that the fractal dimension D(I'yp) of the repeller reads

D(Tep) =2 (1 - %“> . (10.8)
A

As mentioned, this relation serves as a prediction for any Rényi dimension as long as the

studied fractal is homogeneous. It then also provides a useful estimate for the exponent in the

fractal Weyl law.

However, if the repeller is an inhomogeneous fractal the different notions of fractal dimen-
sion are not equivalent and it is still under debate, which of the dimensions enters the fractal
Weyl law. There are two situations where such an inhomogeneous fractal repeller appears
very naturally: In systems with a mixed phase space partial transport barriers may induce
effectively an inhomogeneity in the chaotic repeller. This is the subject of the next section.
Furthermore, for systems with partial absorption there is no orbit which fully escapes, such
that the repeller is strictly speaking the entire phase space. In such cases, the fractal Weyl
law seems to be determined by the multifractality of the natural CIM pin, [52,61, 71].

10.2 Partial-Barrier Baker Map

In this section we show that already a single partial transport barrier can have a strong
influence on the homogeneity of the fractal repeller for the example of the partial-barrier
Baker map. It turns out that the repeller exhibits effectively two different fractal dimensions
on each side of the partial barrier. Moreover, we demonstrate that this gives rise to individual
fractal Weyl laws for the number of long-lived chaotic resonance states associated with the

two regions.
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10.2.1 Effective Fractal Dimensions

Just by looking at Fig. 10.1, one tends to think that the repeller I'\, of the partial-barrier
Baker map contributes more » weight« to region A, on the right hand side of the partial barrier
than to A;. Of course, the repeller is a fractal set of Lebesgue measure zero such that the
notion of weight is ambiguous here. Still, this visual imbalance could be reflected in different
fractal dimensions of I'iep M Ay and I'yep N Ay, In order to analyze the fractal dimension
individually in each region, we define a phase-space partition of rectangular boxes of side
length &, = 1/3" in vertical direction and ¢, /2 in horizontal direction, where n € N denotes
the order of approximation, see Fig. 10.1. As can be seen, the number of boxes occupied by

['ep is larger in Ay than in Ay for all n:

(a) n=1: 4 out of 9 boxes in A; and 9 out of 9 boxes in Ay,

(b) n = 2: 25 out of 81 boxes in A; and 64 out of 81 boxes in A,,

(c) n=3: 169 out of 729 boxes in A; and 441 out of 729 boxes in A,.

This is consistent with our previous visual perception of different weights.
Again the Cartesian product structure of I',, N A; and I'yep, N Ay allows us to decompose
the fractal box-counting dimension of I'y, into its stable and unstable direction individually

within each region Ay,
Dy, = &, + 6}, (10.9)

where we introduced the short-hand notation Dy := D(I'wep N Ag), 83 := 0°(Irep N Ag), and

P = 0" N Ag). Due to time-reversal invariance, the partial fractal dimension along both
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Figure 10.1. Repeller Iy, of the partial-barrier Baker map (black set) in combination with
a box-counting grid (green lines) of order (a) n = 1, (b) n = 2, and (¢) n = 3 for rectangular
boxes of side length £, = 1/3" in vertical direction and ,,/2 in horizontal direction.
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directions coincides, 05 = Jp [56]. Let us focus on the partial fractal dimension 67 associated
with the vertical stable direction. This is the direction of fractality of the backward trapped
set [',wa which supports CiMs and semiclassically also resonance states, cf. Fig. 10.2. Choosing
a one-dimensional box-counting grid with boxes of side length &, = 1/3" in each region,
consistent with the two-dimensional grid used above for I',s,, the number of occupied boxes
can be calculated from the reduced 2 x 2 Perron—Frobenius operator Ty, Eq. (8.45). Recall
that 77(1,1)" describes the weight of the uniform distribution after n forward iterations in
each of the regions Aj. This initial uniform distribution converges towards I'yq. For finite
n, the iterated distribution is exactly I'ywq When resolved on the box-counting grid of order
n. Taking into account that we want to calculate the number of occupied boxes and not the

weight in each region, we have rescale Tj by the stretching factor Ny = 3, giving

11

Thus, the number N§ (Iyep N Ag,e,) of boxes of a one-dimensional grid along the stable

(vertical) direction of order n that are occupied by I'y, in region Ay is given by

N (Toep N Ay, £ 1
be(lrep MV A1, €0) —7p (). (10.11)
Nﬁc(rrep n AQ, En) 1
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Figure 10.2. Occupied boxes (black) of the repeller I'ye, for the partial-barrier Baker map
using a vertical box-counting grid (green lines) of order (a) n =1, (b) n =2, and (c) n =3
for rectangular boxes of side length &,, = 1/3™ on both sides of the partial barrier (magenta
line).
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As can be compared with Fig. 10.2 the explicit number of occupied boxed reads

0%6)+0+()

Squaring these numbers Ny, (Iyep N Ay, €,,), and thereby taking into account the fractality along
the previously neglected unstable direction, gives exactly the number of occupied boxes of the

repeller I'ye, in region Ay for the two-dimensional grid of order n, cf. Fig. 10.1.

The partial fractal box-counting dimension 43 along the stable direction, and thus, indi-

rectly also the fractal dimension of the repeller, follows from Eq. (3.26),

10g( N2 (Trep N Ap, €0))
n—o00 log(ey) '

5 =— (10.13)

In view of Eq. (10.11), it is convenient to apply a spectral decomposition of (1, 1)T into
eigenvectors of T%. We denote the eigenvalues and eigenvectors according to Twp; = Aj¢;,
J € {1,2}, and normalize the eigenvectors such that ||p;]|? = (¢; | ¢,; ) = 1 with the Euclidean
scalar product. Note that the eigenvectors ¢; are orthogonal since T% is symmetric. This

gives

1 2
<1> =2 (el =X (% + ¢} ) ©is (10.14)
Jj=1 j=1
where 905.1) and 905.2) denote the two components of ;. With Eq. (10.11), we therefore find
NIS (Frep N Ala 5n) 2 (1) 2
(Ngc(rrep NAye)) F ; i ; @) (10.15)

for the number of occupied boxes, such that the partial fractal dimension, Eq. (10.13), obeys

5 Lo o8 S (7 +0) el 10.16

FTOT log(3~) 019
) [ 2

_ 1 lim » ( (1) ) )\n 10.17

o2(3) og | lim ; ©; +<P] ( )

_ log [max{As, Ao} (10.18)

log(3)

The last step is shown in Sec. B.5. Using that the maximal eigenvalue of Ty = 3T is deter-

mined by the natural decay rate, max{\;, \a} = 3¢~ and that the Lyapunov exponent of
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the partial-barrier Baker map reads A = log(3), it is

Tnat
A .

o =1-— (10.19)
That is, asymptotically the repeller has the same fractal dimension in regions A; and A, in
agreement with the Kantz—Grassberger relation, Eq. (3.30). The visual imbalance of Ty, in A4
and A, is therefore not reflected in the fractal scaling properties for arbitrary fine resolution.
This can be also seen in Fig. 10.3(a). Clearly, the physical origin of this asymptotic equivalence
is the coupling across the partial transport barrier. As we will now demonstrate, the imbalance

is rather reflected in the way both regions approach the mutual asymptotic behavior.

Recall that, in general, the number Ny, of occupied boxes of length € asymptotically obeys
a power law, Ny ~ ¢, ¢ (0. The fractal dimension D follows from its exponent which is
the slope in a double-logarithmic plot. On finite scales £, however, the number Ny, of occupied

boxes does not have to obey a power law. Still, it is possible to associate an effective fractal
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Figure 10.3. (a) Number NJ (Iyep N Ay, €) of boxes of a one-dimensional grid along the
stable direction at scale ¢ that are occupied by the repeller I'yep, of the partial-barrier Baker
map in region A; (green) or Ay (orange), according to Eq. (10.15). (b) Effective partial
fractal dimension 67 (¢) at scale € of the repeller I'ye, of the partial-barrier Baker map along
its stable direction in each region A; (green) and Ay (orange), according to Eq. (10.22).
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dimension at scale £ by computing its local slope on a double-logarithmic plot [98], i.e.,

dlongc(e) . / _ Nﬁc(g)
g (logoNye o exp) (loge) = — €. (10.20)

D(e) := Noe (2)

Of course, the effective fractal dimension D(e) at scale € and the fractal dimension D coincide
for € ™\, 0 in the spirit of 'Hopital’s rule. It is convenient in the following to interpret e, and
thus, also Ny, as a function of a (continuous) parameter n, which gives
n (Wi '
D(e,) = ——2 W 0€)(n) (10.21)
el Npel(en)
Let us apply this effective treatment of a fractal dimension to the above case of the partial
fractal dimension 0° of the repeller of the partial-barrier Baker map along the stable direction.
Here, it is €, = 37" such that ¢/, = —log 3 - ¢, and using Eqgs. (10.15) and (10.21) we find

1 2 k) \n
1 i <90§)+90§)) P Arlog(N))

~ log3 2 ey @\, (k) (10.22)
08 Zj:l (903‘ +90j )903’ )‘?

The corresponding graphs, shown in Fig. 10.3(b), illustrate that, in fact, the effective fractal
dimension in region A, (orange) is larger than in A; (green), which is consistent with the
previously discussed visual imbalance of the repeller I',,. We stress that asymptotically,
e \¢ 0, the effective partial fractal dimension in both regions converges towards the same
value 0° = 6§ = 05, Eq. (10.19). Furthermore, we emphasize again that the partial fractal
dimensions ¢}, and ¢}} along the stable and unstable direction coincide for each region A; due
to time-reversal invariance. In the following we therefore write d; := 0} = d;. Let us briefly
comment on the fact that the partial fractal dimension §3(¢) of the repeller in region A, (orange)
exceeds unity for large € according to Eq. (10.22) and evident from Fig. 10.3(b). This is an
artifact from choosing n in Eq. (10.21) continuously and amounts to an inappropriate choice
of box-counting grids. For values of €, = 37", n € N, this effect is not present. Nevertheless,
this physically irrelevant regime for large ¢ is shown as a guide to the eye in order to emphasize
the difference in the effective fractality in both regions. For values ¢ < 1/3 this difference is

still present but, particularly in Fig. 10.3(a), hardly recognizable.

10.2.2 Quantum-to-Classical Correspondence

So far, we discussed the relevance of effective fractal dimensions by their capability of capturing
the visual imbalance of the repeller on both sides of the partial barrier. However, much
more important for us are the quantum signatures of the different effective fractal dimensions.

As we will now demonstrate the scaling of the number N, of long-lived resonance states
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depending on the effective size h of Planck’s cell on numerically feasible scales is governed
by the effective fractal dimension of the repeller, not by the asymptotic fractal dimension.
Even more remarkable, we will show that there are effectively individual fractal Weyl laws

associated with the two regions A; and A,.

Recall the common heuristic argument for the fractal Weyl law, according to which the
number N,(h) of long-lived resonance states for a specific value h is obtained by a box-
counting algorithm with boxes of area h applied to the repeller I'y,. In view of that, it is
quite expected that the scaling of N, around h is described by the effective fractal dimension
on that specific scale and not by the asymptotic one. Precisely this behavior is shown in
Fig. 10.4 (blue), which requires some explanation. In order to increase the difference between
the effective and the asymptotic fractality of I'\,, we do not consider the ordinary partial-
barrier Baker map but adapt its transition probabilities for both regions by choosing Ng = 10,
L = 3, and C' = 1, using the notation from Sec. 8.1. Furthermore, we extract the trivial

power-law scaling h~!, which corresponds to a closed system, by plotting Nes(h) - h, and
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Figure 10.4. Number Nr(eks)(h) (dots) of long-lived resonance states of the partial-barrier
Baker map (Ng = 10, L = 3, C = 1) vs h™!, rescaled by the trivial scaling h. Different
colors correspond to the class £ of all long-lived resonance states (blue), or the subclasses
L1 (green) or Ly (orange) of states associated with regions A; or As, respectively. The

quantum mechanical scaling is compared to the number Nélz) (¢) (solid lines) of rectangular
boxes of a grid with vertical (horizontal) side length ¢ (¢/2) that are occupied by the entire
repeller I'ye, (blue) or by the repeller I'yep in region A; (green) or Ay (orange), plotted
against €2 and rescaled by the trivial scaling 2. The classical data are computed according
to Néls) () := e %) with §j, from Eq. (10.22) as adapted to the map parameters, and
vertically shifted by factors f = 1.06, f1 = 0.47, fo = 0.49. The asymptotic scaling (gray
dashed lines) corresponds to a power law with d; according to Eq. (10.19).
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thereby visually enhancing the difference between the different fractal dimensions close to
two. Note that a power law Nye(h) ~ h™1 would therefore correspond to a horizontal line
in Fig. 10.4, and a fractal Weyl law like Ny(h) ~ h™PTer)/2 would lead to a decreasing
straight line which is steeper the smaller D(I',,) (double-logarithmic plot). The quantum
mechanical data (blue dots) are obtained by numerical diagonalization of the time evolution
operator for different values of h and discarding all short-lived resonances with v > ~. = 2.
Classically, we compute the effective partial fractal dimension §(¢) according to Eq. (10.22),
with straightforward adaptations to the chosen system parameters Ng = 10, L = 3, and C' = 1.
For the number of occupied boxes of the repeller, we thus analytically expect Ny (¢) ~ e=20()
(solid blue line). By identifying the classical box area £* and the quantum mechanical size h
of Planck’s cell, we are allowed to plot both N, as a function of h and Ny, as a function of
in one and the same coordinate system for comparison. The asymptotic scaling is estimated
by the Kantz-Grassberger relation, Eq. (10.19) (gray dashed line).

Although the difference between the asymptotic and the effective scaling of N, is small,
even in this adapted plot, one clearly observes that the quantum data nicely follows the effective
classical behavior. We stress that the fluctuations in the quantum data are particularly smaller
than the difference to the asymptotic scaling. Note that the classical expectation Ny is

vertically shifted by a factor of f = 1.06 to better demonstrate the mutual scaling with Nyeg.

At this point we see quantum-to-classical correspondence between the number of all long-
lived resonance states and the effective fractality of the entire repeller. However, as shown in
this thesis, resonance states may localize predominantly on one or the other side of the partial
barrier depending on their decay rate, even for semiclassically small values of h. Moreover,
we have seen that the effective fractal dimension of the repeller differs on both sides of the
partial barrier. This suggests that there may be quantum-to-classical correspondence within
both regions individually, giving rise to individual effective fractal Weyl laws. To this end, we
define the class Ly, k € {1,2}, that contains a long-lived resonance state 1, v < 7, if its
relative local weight || P, ||?/|4;l, 7 € {1,2}, is maximal for region A;. This classification is
supported by the distributions of the corresponding decay rates, see Fig. 10.5, which exhibits
only a small overlap between the two distribution of the two classes. We therefore define
the number N{& of long-lived resonance states associated with A, by the number of linearly
independent elements in £;. The corresponding numerical data for the partial-barrier Baker
map modified as above are again shown in Fig. 10.4 by green (£;) and orange (L) dots.
They are compared to the expected classical box-counting scaling Néf) for T'wep M Ay, with the
individual effective fractal dimensions d;, according to Eq. (10.22) when adapted to the system
parameters (green and orange solid lines). Again, the classical expectation Nélz)
shifted by factors of f; = 0.47 and fy = 0.49 to better demonstrate the mutual scaling with

N¥. Note that the factors fr mainly represent the phase-space fraction of the considered

is vertically
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Figure 10.5. Distribution P(7) of decay rates 7 of the partial-barrier Baker map (Ng = 10,
L =3,C =1) for h~! =12800. The distribution distinguishes between resonance states of
class £ located in region Ay (green) and resonance states of class Lo located in region Ag
(orange). Short-lived states v > ~. are neglected for the fractal Weyl law.

region Ay.

First of all, we observe quantum-to-classical correspondence between the number of long-
lived resonance states associated with region Ay and the effective fractality of the repeller in
region Aj. That is, we effectively obtain individual fractal Weyl laws for the two different
regions. For region A;, the found scaling of the quantum data is clearly not captured by
the expected asymptotic fractal scaling of the repeller. We admit that there are significant
fluctuations, almost oscillatory, around the box-counting scaling Np.. They have the same
order of magnitude as the fluctuations for the class £, (orange), which are less pronounced
than for £; in Fig. 10.4 due to the logarithmic representation. Anyway, these deviations
decrease for smaller values of h. In particular, in view of the broad quantum localization
transition of the partial barrier [32], cf. Sec. 5.1, quantum deviations are expected at least up
to ¢/h ~ 10, which corresponds to h™! = 200 here.

10.3 Generic Maps

In the previous section we have seen that the repeller of the partial-barrier Baker map exhibits
different effective fractal dimensions on each side of the partial barrier. Long-lived chaotic
resonance states associated with these regions obey individual effective fractal Weyl laws. In
this section we demonstrate that these results generalize to the generic standard map with a
mixed phase space. Eventually, for the partial-barrier standard map we can numerically show

that our results also generalize to the case of two barriers. These individual effective fractal
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Weyl laws for the standard map and the partial-barrier standard map have first been reported
in Ref. [33].

First of all, the repeller of the standard map, see Fig. 10.6(a), qualitatively displays the
same kind of visual imbalance with respect to the partial barrier as previously discussed for
the partial-barrier Baker map in Sec. 10.2.1. Furthermore, as explained in Sec. 9.3, the chaotic
resonance states may localize with respect to the dominant partial barrier depending on their
decay rate, cf. Fig. 10.6(b, ¢). This already suggests that the standard map also gives rise
to individual effective fractal Weyl laws for the chaotic resonance states associated with each
side of the partial barrier. Let us now quantitatively analyze this effective fractality and the
expected quantum-to-classical correspondence. However, the common box-counting algorithm
is numerically hardly capable of analyzing the fractal sets over the necessary range of ¢ values.

It is, thus, useful to introduce the uncertainty algorithm.

10.3.1 Uncertainty Algorithm

Numerically, the major drawback of the box-counting algorithm is the appropriate sampling
of the fractal set. In order to compute the fractal dimension from the box-counting scaling
at small values of ¢ the fractal set must be available in sufficient resolution. Then the crucial

numerical limitations are memory constraints. The uncertainty algorithm overcomes these
0.5 .
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p
-0.5
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Figure 10.6. (a) Finite-time approximation of the repeller I'ie, of the standard map
(k = 2.9) with |Q] = 0.1 (gray shaded regions). It is decomposed by the partial barrier
(magenta lines) into the regions A; (green) and As (orange). (b, ¢) Husimi representation
of typical long-lived chaotic resonance states (1/h = 1000) associated with (b) A; and (c)
As.
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concerns in a fascinating manner [98,211]. A point x € I is called e-certain if all points in an
e-neighborhood of z have the same escape time as z, that is, there exists an n € Ny such that
B.(x) € T7"(Q2) where B.(z) denotes the ball of radius ¢ centered around z. Otherwise z is
called e-uncertain. The ¢ dependence of the phase-space fraction £(¢) of e-uncertain points
contains the partial fractal dimension ¢ of the trapped sets [98,211]. Instead of analyzing the
fraction £(¢) of e-uncertain points directly, we compute the fraction 1 —¢(e) of e-certain points.

It is essentially governed by

Ne—1

L—&e) = ) IT(Q), (10.23)

that is the phase-space fraction of forward escaping sets T"(Q2) resolved by e. Intuitively
speaking, any point in 7-"(Q2) that is € away from the boundary of 77"(f2) is e-certain. As
long as ¢ is small compared to the length scales of 77"(£2) basically all points in 7-"(2) are
e-certain. From some N, € Ny on, however, the smallest length scale (unstable direction) of
T-N=(Q) is below ¢ such that basically no point of 7-"(1) is e-certain for n > N.. Tt is again
illuminating to consider the example of the Baker map, see Fig. 10.7. Here, the sets {2 and
T71(2) support balls of radius € while the sets 7-"(2) for n > N. = 2 do not. Note that

1 ]
p
H
o | |
0 q 1

Figure 10.7. Illustration of e-certain (white) and e-uncertain points (orange) of the Baker
map. While the opening Q (gray) and the first forward escaping set T-1(Q2) (light blue)
support balls of radius ¢, all forward escaping sets T~"(2) with n > N = 2 do not. For
instance, the e-neighborhood of the e-uncertain point in 7-2(£2) (medium blue) has overlap
with 773(Q) (dark blue).
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taking into account e-gaps around the boundaries of the forward escaping sets beyond the
rough approximation in Eq. (10.23) results in higher-order corrections which are irrelevant for
our purpose. Using |T7"(Q)| = e” ™" (1 — e~ ™t), cf. Eq. (7.37), one obtains

Ne—1
L—&e) m (L—emt) Y eman (10.24)
n=0
_ e—’Yna.tNe
= (L—e) ———— (10.25)
— e nat
such that
£(e) rz e matNe, (10.26)
The number N, of forward escaping sets resolved by e obeys
Qe — ¢, (10.27)

with the Lyapunov exponent A, assuming a uniformly hyperbolic map for simplicity. For this,
recall that the set ) is contracted by e~ in each step along the unstable direction. Again,
see Fig. 10.7 for the case of the Baker map. Here, the relevant length scale of each stripe of
T-™(Q2) along the unstable direction is given by

A 1 log(3) 1 o
Qe = — e losl®n — ( Z . 10.28
Qe =1 (3) (10.25)

The estimate for V., Eq. (10.27), gives

N, = 10890 log(e) 1029)

Inserting this into Eq. (10.26), one obtains
£(e) ~v e 082D R lox(e) | 7 (10.30)
Finally, the Kantz—Grassberger relation, Eq. (3.30), reveals the relation,

&)~ e (e N\0) (10.31)

between the phase-space fraction £(¢) of e-uncertain points and the partial fractal dimension
§ of the trapped sets [98,211].

The main advantage of this so-called uncertainty algorithm is that we can compute the

fractal dimension of the trapped sets without computing the fractal sets themselves. In par-
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ticular, it is not necessary to compute the finite-time approximation very accurately or to
store a large sample in order to estimate its fractal dimension on fine scales. Numerically, it is
usually sufficient and very efficient to check whether a point € I' is e-certain by comparing
the coincidence of escape times with only one point y € I' for which ||z — y|| = . Figure 10.8
impressively demonstrates that the range of ¢ values available for the uncertainty algorithm
exceeds the range of the box-counting algorithm by several orders of magnitude. For this
comparison we compute the finite-time approximation of the repeller for the standard map
with 10® initial points where we discard points which leave the system within 9 iterations
for A; and 25 iterations for A;. Note that the iteration times are chosen differently owing
to the very different escape times from the two regions, see Sec. B.6 for their computation.
The box-counting algorithm is applied to this sample. For the uncertainty algorithm we de-
termine the fraction & (g) of e-uncertain points in region A by averaging over 10? random

2% is comparable with

initial points for each region. As £(¢) ~ e'7%, the ratio &,(¢)?/e? ~ &~
the number Néi) (¢) of boxes of side length € occupied by the repeller in region Aj. In the
rescaled plot in Fig. 10.8 this corresponds to plotting & (¢)?. Figure 10.8 clearly reveals that
effectively the fractal dimensions of the repeller on each side of the partial barrier differ and

approach a mutual asymptotic scaling for small . Note that in order to reveal this behavior

].O C T T T
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Figure 10.8. Number Nélz) (¢) of boxes of side length ¢ occupied by the repeller I'ye, of
the standard map (k = 2.9, || = 0.1) in region A; (green solid line) or A (orange solid
line). The data are rescaled by the trivial scaling ¢2. This is compared to the fraction
€k(e) of e-uncertain points in region A; (green dots) and As (orange dots). The effective
partial fractal dimensions 0x(¢) of the repeller in region Ay at scale e are indicated by the
corresponding power-law scaling (dashed lines). The values of & (g)? are vertically shifted
by factors f1 = 0.72, fo = 0.25 in order to better demonstrate the mutual scaling with the
box-counting data.
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with the box-counting algorithm numerically, only having a sufficiently large sample of the
repeller (~ 10' points) in storage would require at least petabytes of memory (32 bits per

point and coordinate).

10.3.2 Quantum-to-Classical Correspondence

In order to investigate quantum-to-classical correspondence between the individual effective
fractal dimensions on each side of the repeller and the number of long-lived resonance states, we
again classify long-lived resonance states by their localization. Just as for the partial-barrier
Baker map, the class L£i, k € {1,2} contains a long-lived resonance state ¢, v < 7. = 1,
if its relative local weight [Py, |%/|4;], 7 € {1,2}, is maximal for region A;. Note that
for the standard map it is |A;| &~ 0.6664 and |As| ~ 0.2061. Resonance states having 50%
of their weight in deeper hierarchical regions or in the regular region are discarded right
away. Figure 10.9 shows that the overlap in the distribution of the decay rates for the two
localization classes Ly, is rather small. According to this classification, the number Nr(fs)(h) of
long-lived chaotic resonance states associated with Ay is shown in Fig. 10.10 in dependence
of the effective size h of Planck’s cell (dots). In order to reduce fluctuations in the data we
perform an average over max{1, |5000 & |} different realizations of the quantum standard map
by varying the Bloch phase Uynom, cf. Sec. 4.2.1. We restrict ourselves to values of ¢/h = 10 such
that transport across the partial barrier is quantum mechanically not significantly suppressed

in view of the closed system’s theory [32]. The h dependence of Nr(fs) is compared to the
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Figure 10.9. Distribution P(v) of decay rates v of the standard map (k = 2.9, |Q2] = 0.1)
for h~! = 12800. The distribution distinguishes between resonance states of class £; located
in region A; (green) and resonance states of class £ located in region Ay (orange). Short-
lived states v > 7, are neglected for the fractal Weyl law.
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Figure 10.10. Number Nr(e]?(h) (dots) of long-lived resonance states of the standard map

(k = 2.9, | = 0.1) vs h™!, rescaled by the trivial scaling h. Different colors correspond
to the class £ of all long-lived resonance states (blue), or the subclasses £; (green) or Lo
(orange) of states associated with regions A; or As, respectively. The data are averaged over
max{1, |5000 h]} realizations of the quantum map by varying the Bloch phases ¥yom. The

quantum-mechanical scaling is compared to the box-counting scaling Nél(f) (€) (solid lines;
crosses) of boxes of side length ¢ that are occupied by the entire repeller I'ye, (blue) or by
the repeller I'yep in region A; (green) or Ay (orange), plotted against e~ and rescaled by
the trivial scaling 2. The classical data are computed numerically by the box-counting al-
gorithm with a finite-time approximation of I'yep, (crosses) and by the uncertainty algorithm
(solid lines). In addition they are vertically shifted by factors f = 0.67, f1 = 0.32, fo = 1.3
(crosses) and f = 0.8, f1 = 0.23, fo = 0.34 (solid lines).

box-counting scaling Nélg)(e) of the repeller in region A;, by identifying the cell area h and £2.
Additionally, we compare the number Nr(fs)(h) of long-lived chaotic resonance states with the
fractal scaling of the repeller computed from the uncertainty algorithm by identifying Nélz) ()
and & (g)?/e%. We observe nice agreement between the quantum mechanical and the effective
classical scaling behavior both for the data computed by the box-counting algorithm (crosses)
and by the uncertainty algorithm (solid lines). This holds true for the number of all long-
lived chaotic resonance states compared with fractality of the entire chaotic repeller (blue),
and particularly also for the individual regions A; (green) and A, (orange). That is, there
are effectively individual fractal Weyl laws for the chaotic resonance states associated with
Aj and A, determined by the effective fractal dimension of the repeller in the corresponding
phase-space region. Note again that the classical data are vertically shifted by appropriate

factors in Fig. 10.10 to better demonstrate the mutual scaling with the quantum data.
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10.3.3 Multiple Partial Transport Barriers

Our last step in order to study the validity of individual fractal Weyl laws for generic systems
is their verification for the case that the repeller is decomposed by more than one partial
transport barrier. For the standard map the next level of partial barriers is numerically not
accessible. However, the construction of the partial-barrier map in Sec. 4.1 is easily adapted
to the case of more than one partial barrier. The possibility to adapt the system parameters
of the partial-barrier map almost arbitrarily eventually allows us to numerically confirm the

individual fractal Weyl laws for the case of two partial barriers.

To this end, we define the partial-barrier map T := M o EoO that models b partial barriers

at the positions ¢; < --- < ¢, as straight lines in p direction, giving a decomposition of phase

_%’ %) With qo = 0 and Qb—i-l = 1 Again, the map

M describes the unconnected chaotic dynamics within the regions A;. Here we choose the

space into b+ 1 regions Ay := [qx_1, qx) X [

standard map at kicking strength x = 10 acting individually on each of the regions A, after
appropriate rescaling. The map FE induces a flux ¢, between A, and Ay, by exchanging the
regions (g — &k, qx) X [—3,3) C Ay, and [gy, gk + &%) X [—3,3) € Agr1. The map O opens
the system by the absorbing region €2, which is contained in region A;. It is convenient to
use the fixed scaling parameters o := |Agy1|/|Ax| for neighboring areas and ¢ := ¢y 1 /¢y for

consecutive fluxes with a > .

Figure 10.11(a) shows the fractal repeller I, of the partial-barrier standard map with
two barriers (magenta lines) defined as outlined above. Again, one qualitatively observes an
imbalance of the weights that the repeller contributes to each of the three regions Aj. This
suggests different effective fractal dimensions as for the standard map and the partial-barrier
Baker map with a single partial barrier. Note that the shown finite-time approximation of
I'\ep is computed with a different number of iterations for the different regions owing to the
very different escape times, cf. Sec. B.6. Moreover, also the chaotic resonance states of the
corresponding quantum map exhibit localization within the three regions even though ¢1,
¢o < h, see Fig. 10.11(b—d). Particularly, there is no resonance state with large weight in
region A; and Az and a dip in A, i.e., the states localize in one region and fall off to the next
regions. By classifying the long-lived resonance states (7. = 2) according to their maximal
relative weight per region, we can compute the number Nr(e]?(h) of long-lived resonance states
associated with A;. The scaling of Nr(fs)(h) depending on the effective size h of the Planck
cell is compared with the box-counting scaling Nélz) (¢) of the repeller again by identifying h
and €2 in Fig. 10.12. Here we use the uncertainty algorithm for computing Nélz) (€), i.e., we
identify Np.(g) and &(£)?/e® where & (¢) denotes the fraction of e-uncertain points in Ay.
Figure 10.12 nicely demonstrates quantum-to-classical correspondence between the number
of long-lived chaotic resonance states and the effective fractal scaling of the repeller (blue).

Moreover, we find individual effective fractal Weyl laws for each of the regions A.
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0.5
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Figure 10.11. (a) Finite-time approximation of the repeller I'\e, of the partial-barrier
standard map with two partial barriers (x = 10, o = 1/2, ¢ = 1/4, |Q|/|A1| = 1/4,
¢1/|Aa| = 1/8); for purpose of visualization approximation times chosen as 7 for A;, 19 for
Aj, and 35 for As. The repeller I'ye, is decomposed by the partial barriers (magenta lines)
into the regions Ay (green), Ay (orange), and Az (purple). (b, ¢, d) Husimi representation
of typical long-lived chaotic resonance states (1/h = 1115) associated with (b) A1, (c) Aa,
and (d) As.

Generic Hierarchical Structure

Let us discuss our findings in view of a generic system with a mixed phase space of regular and
chaotic regions and an infinite hierarchy of partial barriers. First, the regular states which
localize on the regular region clearly obey the usual Weyl law as for closed systems. For
the chaotic component, we have seen that chaotic resonance states are predominantly located
in one of the hierarchical regions A, depending on their decay rate. In view of the infinite
hierarchy we call them hierarchical resonance states of region A;. Depending on the effective
size h of Planck’s cell the number Nr(el?(h) of long-lived hierarchical resonance states of region

Ay, obeys an individual fractal Weyl law,

res

N®(R) ~ b=, (10.32)

with the effective partial fractal dimension ¢y of I's,MAy. Note that effective fractal dimensions
may be almost constant over several scales of the fractal as the transition probabilities between
hierarchical regions sufficiently deep in the hierarchical structure are very small.

In dependence of Planck’s constant h, there are basically four regimes for the scaling of
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Figure 10.12. Number Nr(fs)(h) (dots) of long-lived resonance states of the partial-barrier
standard map (k = 10, a = 1/2, p = 1/4, |Q|/|A1| = 1/4, ¢1/|Aa| = 1/8) vs h™1, rescaled
by the trivial scaling h. Different colors correspond to the class £ of all long-lived resonance
states (blue), or the subclasses £1 (green), Lo (orange), and L3 (purple) of states associated
with regions Ai, Az, and As respectively. The quantum-mechanical scaling is compared to
the box-counting scaling which is numerically estimated by the uncertainty algorithm. The
scaling of the number Nélz) (€) (solid lines) of boxes of side length e that are occupied by the
entire repeller I'te, (blue) or by the repeller I'ye, in region A; (green), Ay (orange), and Az
(purple), is plotted against =2 and rescaled by the trivial scaling 2. The classical data are
vertically shifted by factors f = 1.1, f; = 0.19, fo = 0.36, f3 = 0.19.

N (h) for a specific region Ay, and Eq. (10.32) is particularly relevant for one of them: (i) As
long as h is too large to resolve region Ay, h > |Ag|, there are no resonance states supported
by Ag. (ii) For h < |Ag| but h larger than the greatest flux ¢ across its surrounding partial
barriers, h > ¢y, one has resonance states localized on region A; with just a small coupling to
other regions, as for closed systems [24,32|. Consequently, the number of resonance states in
this regime scales with the usual Weyl law as h~!. (iii) For h smaller than the flux, h < ¢y,
the resonance states still localize in region A, and they begin to resolve the fractal structure
of the trapped sets as described by 7-natural ciMms. This is the main regime discussed in
this chapter and described by Eq. (10.32) with a fractal dimension J; of the intersection of
the repeller with region Aj. (iv) Semiclassically, h \, 0, the fine structure of the repeller is
resolved. Here the effective fractal dimensions of the repeller within the different regions Ay
all approach a mutual value [98]. Moreover, the dimension of the repeller approaches two for
an infinite hierarchical structure of partial barriers [212|. Hence, we expect an overall Weyl

law for the hierarchical region with the number of resonance states scaling as h~!.

In this chapter we have shown that the hierarchical fractal Weyl laws, Eq. (10.32), describe
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the important regime (iii) where hierarchical resonance states predominantly localize on one
of the regions Ay and resolve the fractal structure of the repeller. Note that Eq. (10.32) also
applies to the other regimes by choosing the phase-space regions according to the predominant
localization of resonance states.

One may wonder whether the presence of individual effective fractal Weyl laws contradicts
the presence of an overall fractal Weyl law. Away from the asymptotic regime, the total number
of long-lived resonance states and all the individual classes £ of hierarchical resonance states
cannot obey power laws with different exponents at the same time, since the sum of power
laws is not a power law. Numerically, we cannot clearly distinguish which of the classes gives
rise to a strict power law and which does not. On the available scales quantum-to-classical
correspondence is basically confirmed for the total number of long-lived resonance states and
for the individual classes of hierarchical resonance states as well. This results from the fact that
the power-law exponents are very close to each other and on the considered scales all of them
are slowly varying. Recall that according to the common heuristic argument for the fractal
Weyl one needs to decompose the available phase-space region by Planck cells and applies a box-
counting argument. Here, we intuitively apply this argument individually to the hierarchical
resonance states of region A, and decompose the repeller in that region. However, even if the
repeller in region A is approximately homogeneous such that the box-counting scaling obeys
a clear power law, deviations may arise from the fact that the hierarchical resonance states
are not solely located in A;. On the other hand, when applying the argument to the set of all
long-lived resonance states by decomposing the entire repeller, the box-counting scaling will
certainly not obey a strict power law due to the strong fractal inhomogeneity with respect to

the different regions.

Further Fractional Weyl Laws

Reference [94] proposes another approach to generalize the fractal Weyl law to the chaotic
component of open systems with a mixed phase space. Recall that in this thesis we concentrate
on the topology of the hierarchical structure, explicitly incorporating individual partial barriers.
In contrast, the approach in Ref. [94], already suggested in Ref. [89], uses that the survival
probability S of chaotic orbits decays as a power law, S(¢) ~ ¢t=7, v > 0, in presence of an
infinite hierarchical structure. Using this quantity, the number N, of long-lived resonance
states is determined as follows: The survival probability S(t) of chaotic orbits describes the
area of phase space which has not escaped until time ¢, if we normalize the area of the chaotic
phase-space component to unity. It may therefore be interpreted as the area of the available
phase-space region for resonance states which live longer than ¢. For this approach, it is
useful to set the time scale for the selection of long-lived resonance states by the h-depending

Ehrenfest time 7y, i.e., the time scale of quantum-to-classical correspondence. In particular,
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resonance states which decay faster than 7g,, show ballistic decay whereas resonance states
which decay slower than 7gp, show quantum-mechanical behavior. With this, the number of

long-lived resonance states is governed by

S(TEhr) .

Nres<h) ~ 3

(10.33)
First of all, this approach is capable of recovering the fractal Weyl law for fully chaotic
systems. For fully chaotic systems, one observes exponential decay, S(t) ~ e, and the

Ehrenfest time gy, obeys

log N, open

10.34
o (10.31)

TEhr ~

with the number Ny,en of open escape channels and the Lyapunov exponent A [48]. Using
that log Nopen ~ —log h, Eq. (10.33) yields

Nyes(h) ~ h™te 1 ~ plerlosh — p=(-3) (10.35)

In view of the Kantz—Grassberger relation, Eq. (3.30), this is exactly the fractal Weyl law,
Eq. (10.6).

In Ref. [94], this approach is applied to a mixed open system. One has to admit though,
that the considered system is not generic as it does not exhibit a hierarchical structure but a
sharply divided phase space of regular and chaotic motion. Still, chaotic orbits show stickiness
near the regular structure along with algebraic decay, S(¢) ~ ¢, which is attributed to a
family of marginal unstable periodic orbits [213|. The time scale 7gy, to select long-lived
resonance states is set to Ten, ~ h~! [94], see also Refs. [89,214] for a discussion of Ehrenfest

time scales in mixed systems. Using Eq. (10.33) this yields
Nres(h) ~ h™ gl ~ B (10.36)

that is, the number of long-lived resonance states (with an h-depending cutoff) scales as a
power law in h with, in general, fractional exponent. A relation with the fractality of the
repeller remains unclear.

In order to understand the relation between this fractional Weyl law, Eq. (10.36), and
the hierarchical fractal Weyl laws, Eq. (10.32), it is useful to investigate the set of long-lived
resonance states as used in Eq. (10.36) when applied to a hierarchical structure. To this end,
we first review yet another fractional Weyl law which is present even in closed systems with a
generic mixed phase space. In Ref. [30] the authors introduce the class of hierarchical states
for a closed system with mixed phase space. Hierarchical states are defined as eigenstates that

are trapped behind a partial barrier which is quantum mechanically not resolved. That is, if
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the flux across the n*-th partial barrier is of the order of Planck’s cell, ¢, ~ h, hierarchical
states are supported by all levels A,, of the hierarchy with n > n*. Inserting this resolution
condition into the scaling relation ¢, ~ ¢", cf. Sec. 3.1, one finds n* ~ log(h)/log(¢). The

available phase-space region for hierarchical states therefore scales as [30]

37 Ay ~ @~ plos@/1o8(e) = (10.37)

n>n*

using that the area of the regions A, scales as |A,| ~ o, cf. Sec. 3.1, and that the power-law
exponent 7 of the survival probability S according to Eq. (3.16). Note that different to its
original formulation in Ref. [30] the power-law exponent v of S here refers to the situation
when the initial conditions are started all over the phase space, i.e., particularly also deep
within the hierarchical structure, such that the « in Eq. (10.37) refers to v — 1 for v from
Eq. (3.16), see discussion in Sec. 3.1. Dividing the available phase-space region, Eq. (10.37),
by the size h of Planck cell, one finds that the number Ny, of hierarchical states obeys a

power law with fractional exponent,
Nijor(h) ~ B~ (10.38)

We emphasize that this fractional exponent occurs in a closed system and is obviously not
determined by a fractal repeller. Now, the same line of arguments applies for the fractional
Weyl law for the open mixed system, Eq. (10.36), in presence of a hierarchical structure.
[Gn+ = Ty = h~L. That

is, the time scale of escape associated with the region A, is of the order of the cutoff time

Merely the resolution condition ¢,+ ~ h needs to be replaced by | A,

scale Tgp, ~ h~l. Using the scaling of |A,| and ¢, within a generic hierarchy, cf. Sec. 3.1,
the resolution condition translates into n* ~ log(h)/log(£), and the fractional Weyl law,
Eq. (10.36), is recovered by

Z |A,| ~ o~ plosl@)/log(p/a) hY, (10.39)

n>n*

which gives Eq. (10.36) when divided by h. Again Eq. (3.16) for the power-law exponent 7 of
the survival probability S is used as above for the case of initial conditions deep within the
hierarchy. We stress that the condition ¢, /|A,| < h is more restrictive than ¢,, < h, that is,
there are less regions A, which satisfy the former condition. Hence, the fractional Weyl law
Eq. (10.36) affects a subset of hierarchical states. In contrast, the hierarchical fractal Weyl
laws, Eq. (10.32), focus on resonance states which are not trapped behind the partial barrier
due to Heisenberg’s uncertainty, like hierarchical states, but due to the localization of the

semiclassically associated y-natural CIM.
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Chapter 11
Outlook: Optical Microcavities

The results presented in this thesis motivate further research in several directions. Let us
focus on the verification and the application of our theory within an experimentally relevant
scenario. Particularly close at hand is the application to optical microcavities [67]. To this

end there are still a couple of pitfalls that need to be taken into account:

Experimental Setup

In this thesis we investigate the localization of chaotic resonance states in phase space. Ex-
perimentally, however, the common measurements provide the real-space picture of resonance
states only. It is therefore desirable to have a physical system for which the phase-space local-
ization due to a partial transport barrier also induces pronounced signatures in the localization
in real space. The billiard system shown in Fig. 11.1 seems promising for this purpose. It
combines two chaotic D-shaped billiards that are coupled by a small channel. One of the two
billiard components admits an opening which allows for escape of trajectories. The repeller
shown in the lower panel indicates that there are effectively two different fractal dimensions
on the left and the right side. Note that the phase-space portrait is restricted to a Poincaré
section at the lower boundary of the billiard. It seems likely that this imbalance of the repeller
is generated by a partial barrier related to the coupling channel in the billiard. A phase-space
localization of chaotic resonance states on the right or the left would directly correspond to a
localization of the resonance states in real space. An experimental realization of this system
seams feasible as in Ref. [196]. This open billiard system is designed together with Roland

Ketzmerick.

Partial Absorption and True-Time Dynamics

In order to appropriately describe optical microcavities one needs to generalize the theory
presented in this thesis to systems with partial absorption and time-continuous billiard dy-

namics. Regarding the issue of partial absorption we have already successfully generalized the
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q

Figure 11.1. Open billiard system that couples two chaotic D-shaped billiards by a small
channel (upper panel). The repeller (lower panel) shown in a Poincaré section corresponding
to the lower billiard boundary indicates a restrictive partial barrier associated with the
coupling channel.

construction of v-natural CIMs to maps with a constant absorption coefficient on the opening
in a project together with Tobias Becker and Konstantin Claufs [185]. To this end, we use
that a measure v converges towards a CIM under the renormalized open system dynamics.
By adapting the initial measure v such that in each step the relative weight e~ leaves the
system we obtain a CIM of decay rate +. The crucial point is to rigorously account for the
fact that the forward escaping sets are not disjoint since the opening is only partial. Still,
this approach needs to be generalized from the constant absorption coefficient to an absorp-
tion profile. Moreover, it is not clear whether the hierarchical fractal Weyl laws also exist
for systems with partial absorption in general. First important results for the generalization
of fractal Weyl laws to partially absorbing systems without relevant partial barriers can be
found in Refs. [52,61,71]. Another issue that needs to be taken into account is that optical
microcavities are time-continuous systems and not maps. However, this can be overcome in
a simple fashion for billiard systems as pointed out in Ref. [56]. Consider a trajectory in a
billiard. Tts dynamics between consecutive hits at the boundary is a trivial free motion and
the hits obey the law of reflection. Hence, there is a one-to-one correspondence between the
billiard dynamics and its Poincaré section using Birkhoff coordinates. For the escape dynam-
ics it is important to note that the time between consecutive hits at the boundary may vary
depending on the distance between the corresponding boundary points. By keeping track of
these time intervals during the iteration one can calculate the true escape times from the map

dynamics. In Ref. [56] this is referred to as true-time dynamics.
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Higher-Dimensional Systems

So far optical microcavities are usually flat and treated as effectively two-dimensional. This
corresponds to the two-dimensional symplectic maps studied in this thesis. As soon as the
third dimension is not negligible one needs to consider four-dimensional symplectic maps [215].
At first sight the generalization of «-natural CIMs to higher-dimensional systems seems to be
rather straightforward. However, the role of partial barriers in higher-dimensional systems
is not completely understood [216]. The partial barriers that are typically relevant in two-
dimensional maps have an insufficient dimension to decompose four-dimensional phase space
into almost invariant regions. Perhaps, one-parameter families of such objects may serve as
appropriate partial barriers for four-dimensional maps. Anyway, recall that for the results in
this thesis we do not take care of the origin of the partial barrier. We focus on the transport
across some hypersurface in phase space which is characterized by the symplecticity of the
map. We therefore expect that our results can be generalized to higher-dimensional systems

as long as the concept of partial barriers is appropriately adapted.

Multiple Partial Barriers

Generic systems do not have just a single partial barrier but an entire hierarchy of them. The
main part of this thesis focuses on the influence of a single partial barrier. The situation
of more than one partial barrier is briefly touched in Chap. 10. Still, for describing generic
optical microcavities it is necessary to investigate the aggregate behavior of multiple partial
barriers more explicitly. In fact, their aggregate behavior can have fascinating effects as briefly
described in the following. Think of the partial-barrier map with for instance two hierarchically
ordered partial barriers as introduced in Sec. 10.3.3. The longest-lived resonance states then
localize on the last phase-space region, i.e., A3 using the previous notation. As preliminary
results worked out in collaboration with Jan Wiersig and Julius Kullig suggest, the localization
of these longest-lived resonance states is enhanced when destroying the first barrier. At first
sight, this seems surprising as usually the presence of a partial barrier is expected to enhance
localization. Here it is the opposite. Intuitively speaking this results from the fact that the
transition probability to enter As is lowered due to a larger chaotic region adjacent to Az, while
the transition probability to escape from As remains the same. Although the weight of the
longest-lived states in Aj is enhanced, their decay rates increase which is again in agreement

with the restrictive behavior associated with partial barriers.

Quantum Deviations

We have seen in Sec. 9.2 that the localization of chaotic resonance states and ~v-natural CiMs

with respect to a partial barrier does not necessarily agree if the effective size h of Planck’s cell
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is not sufficiently small. Experimentally relevant energy scales are not necessarily sufficiently
semiclassical. Already from this point of view it is therefore desirable to understand quantum
deviations in more detail. We have seen two different kinds of deviations: First, if the opening
Q) or the flux ¢ across the partial barrier are not sufficiently resolved by h, i.e., || > h
and ¢ > h, we observe a localization enhancement. Numerically, we find that in the deeply
quantum-mechanical regime the weight of chaotic resonance states on either side of the partial
barrier is determined by Eq. (9.5). The general validity and the derivation of this relation is
not explained so far. For a complete understanding it seems to be necessary to combine the
universal quantum localization transition of closed systems, Sec. 5.1, with the classical results
on the localization of y-natural ciMs. One might suspect that this behavior could also be
captured by an appropriate random matrix model neglecting fractal properties, such as the
partial-barrier map with random matrices instead of standard or Baker map blocks. Secondly,
we have seen that there may arise deviations when comparing chaotic resonance states and
~v-natural CIMs on finer scales. Quantum resonance states tend to have pronounced peaks
which are not captured in the phase-space structure of ~-natural ciMs. From our studies
where we focus on the localization with respect to a partial barrier, we cannot conclude that
such deviations vanish in the semiclassical limit. The underlying question of how quantum
mechanics resolves fractal phase-space structures is currently studied in collaboration with
Konstantin Clauf, Arnd Bécker, and Roland Ketzmerick, cf. [217]. Note that motivated
by studies on the Walsh quantized Baker map, the authors in Ref. [51] doubt that there
actually exists a unique CIM for each decay rate v describing the semiclassical limit of quantum
resonance states decaying with . Similar observations are made in [85]. Anyway, in the
concluding remarks in Ref. [51], the authors acknowledge that the Walsh quantized Baker
map is a very special model system that is known for its high degeneracies, and that it is not
clear whether these results are generic. Still, this concern is quite valid and certainly needs

further investigation.

Symmetries

Symmetries play an important role for optical microcavities. In this thesis, however, we have
not explicitly studied their influence. We only took care of preserving generalized time-reversal
invariance, since the quantum localization transition for partial barriers in closed systems,
Chap. 5, needs to be adapted otherwise. For future studies regarding optical microcavities,
it might therefore be necessary to investigate to dependence of the localization of chaotic
resonance states on symmetries. Let us specifically outline two examples which demonstrate
the close relation between symmetries and the localization transitions studied in this thesis.
First, there is a known phenomenon that seems to perfectly correspond to the situation

studied here [218-220|. Tts current explanation, however, is totally different. Consider a disk-
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like microcavity with a deformation that destroys mirror symmetry. Due to a small coupling
of clockwise and counterclockwise propagating modes one finds pairs of resonance states which
have enhanced weight in either of the subspaces. Given the results from this thesis, one might
suspect that the explanation is as follows: The clockwise and counterclockwise propagating
subspace correspond the phase-space regions of p < 0 and p > 0 where p denotes the angular
momentum. Their small coupling is moderated by a restrictive partial barrier at p ~ 0. Due
to the broken mirror symmetry the absorption on each side of the partial barrier might differ
such that we expect the localization of chaotic resonance states due to the partial barrier. In
contrast, the explanation in Ref. [219] is based on the existence of a so-called exceptional point
at which a pair of eigenvalues and the corresponding eigenstates coalesce. It will be interesting
to see how both approaches fit together. In particular, one might learn more about the regime
which we termed deeply quantum mechanical if the role of the exceptional point is restricted
to quantum mechanics. On the other hand, if the imbalance of clockwise and counterclockwise
contributions is observable in the semiclassical regime, this might indicate that exceptional
points are relevant also for classical mechanics in terms of Perron—Frobenius theory.

The second example shows that our theory on localization transitions might even apply
to situations where the notion of partial barrier is unusual. The structure of the quantized
partial-barrier map, Sec. 4.2, is surprisingly similar to the quantum Andreev map [221|, which
describes particle-hole symmetric Andreev reflection at the interface of a normal metal and
a superconductor. There the partial barrier of the partial-barrier map may be interpreted as
coupling the particle and the hole subspace. This suggests that one might apply the theory of
localization of chaotic resonance states due to a partial barrier also to systems with symmetry

related subspaces.
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Chapter 12
Summary

Partial transport barriers in phase space are known to have a huge influence on classical and
quantum dynamics. They are omnipresent in generic Hamiltonian systems, which exhibit a
mixed phase space with both regular and chaotic motion. So far the influence of partial barriers
has been studied mainly for closed systems. Remarkably a quantum localization transition for
chaotic eigenstates has been found. As long as the flux ¢ across a partial barrier is quantum
mechanically not sufficiently resolved by means of Heisenberg’s uncertainty, ¢ < h, chaotic
eigenstates localize on either side of the partial barrier. However, if the flux is resolved, ¢ > h,

chaotic eigenstates are equipartitioned as if there were no partial barrier.

In this thesis we observe localization of chaotic resonance states of open systems with
respect to a partial barrier even in the regime of ¢ > h. We explain this localization by
introducing the class of classical y-natural conditionally invariant measures. We demonstrate
quantum-to-classical correspondence for the transition from equipartition to localization when
opening the system, and for a transition from localization on one side of the partial barrier
to localization on the other side when varying the decay rate v of the chaotic resonance
states. Moreover, we show that the localization of chaotic resonance states on either side of
a partial barrier gives rise to a hierarchy of individual fractal Weyl laws for generic systems
with a hierarchical structure of partial barriers. These results have already been published in
Refs. [33,34].

To this end, we design a dynamical model system, the partial-barrier map, which mimics
the turnstile mechanism of a partial barrier by decomposing dynamics into the uncoupled
mixing dynamics on each side of the partial barrier and an exchange between both regions.
The partial-barrier map enables us to investigate the influence of a single partial barrier without
the complexity of a generic hierarchical structure. We can adapt the dynamics within each
subregion which yields the analytically useful partial-barrier Baker map and the more generic
partial-barrier standard map. For both systems we observe that long-lived chaotic resonance

states exhibit a smooth transition from equipartition to localization on one side of the partial
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barrier for increasing openness, and that for a single system with fixed opening there is a
transition from localization on one side of the partial barrier to localization on the other
side for chaotic resonance states with varying decay rate. The fact that both localization
transitions occur in the semiclassical regime suggests a classical origin. Semiclassically, chaotic
resonance states correspond to conditionally invariant measures (CiMms). However, for each
decay rate v there exist infinitely many different CciMs and it is not clear which of them is
quantum mechanically relevant. To overcome this issue we propose the class of y-natural CiMs.
We numerically confirm quantum-to-classical correspondence between chaotic resonance states
and v-natural CIMs in terms of their localization with respect to the partial barrier for the
partial-barrier Baker map, the partial-barrier standard map, and the generic standard map
with one dominant partial barrier. For the partial-barrier Baker map we analytically derive
a prediction for the weight of ~-natural CciMs on either side of the partial barrier. We find
excellent agreement with the numerically computed weight also for the partial-barrier standard
map and reasonably well agreement for the generic standard map. We improve the quality of
the prediction in the generic case by combining it with numerical estimates.

There are two kinds of characteristic differences between the localization of chaotic res-
onance states and v-natural ciMs: If the flux ¢ across the partial barrier is not sufficiently
resolved on the scale h of Planck’s cell, we obtain a localization enhancement for resonance
states due to the suppression of transport across the partial barrier. We numerically find a
bound for this localization enhancement which we call the deeply quantum-mechanical regime.
Extensive studies of the partial-barrier standard map in extreme parameter regimes support
that this localization enhancement vanishes for sufficiently small values of h. Moreover, we
see that chaotic resonance states can exhibit pronounced peaks which are not captured by the
fine structure of y-natural ciMs. It is not clear whether these peaks survive in the semiclas-
sical limit. Still, these deviations are irrelevant as long as we only distinguish between the
localization on different sides of the partial barrier.

Our explanation of the semiclassical localization of chaotic resonance states due to a partial
barrier enables us to generalize the fractal Weyl law from globally chaotic open systems to open
systems with a mixed phase space. To this end, we associate each chaotic resonance state with
a single region of the hierarchical structure depending on its predominant localization. As the
fractal dimension of the classical repeller effectively varies between these regions, we obtain
effectively an individual fractal Weyl law for each region. This is numerically confirmed for the
partial-barrier Baker map, for the partial-barrier standard map with two partial barriers, and
for the generic standard map with a mixed phase space and one dominating partial barrier.
We argue that there exists a whole hierarchy of individual effective fractal Weyl laws in generic

systems associated with the hierarchy of partial barriers.
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Appendix A

Abstract Measure and Integration Theory

This section is a concise review of abstract measure theory and integration, based on Refs. [118,
151]. The collection of basic definitions and results is focused on the concepts used in this
thesis. As the notion of Lebesgue measure and integral naturally appears along with Hilbert
spaces in general courses on quantum mechanics, we expect the reader to be familiar with

them and refer to the literature otherwise.

Definition (o-Algebra) A family 3 of subsets of a nonempty set I is called a o-algebra (on T')
if and only if (i) [ € 3, (ii)) X € ¥ =T\ X € ¥, and (iii) X; € X,i € N = [,y Xi € Z.
Throughout this thesis, we only consider the Borel o-algebra (of R™) which is the smallest
o-algebra containing the open sets in R™. Note that the Borel o-algebra also contains
the fractal Cantor sets. [151, §19]

Definition (Measure) A measure p on a o-algebra ¥ on I' is a mapping p: ¥ — RsoU {oo}
for which (i) p(0) = 0 and which is (i) o-additive, i.e., u (U;eny Xi) = 2o #(X;) for
mutually disjoint X; € 3. The elements of ¥ are called p-measurable. In this thesis, we

focus on probability measures having p(T') = 1. [151, §19|

Defintion (Integral) The connection between measure and integral is provided by defining
fX dp = [ xxdp := p(X), where xx denotes the characteristic function of X. The
integral for elementary step functions follows from the linearity of the integral. One has
to decompose a measurable function f : T — R, i.e., f~1(X) € X for any Borel set X C R
(e.g., if ¥ is the Borel o-algebra, continuous functions are measurable), into its positive
and negative parts f, and f_, f = f,. — f_, f+ > 0. For the nonnegative functions f,
and f_, there exists a (pointwise) monotonically increasing sequence of nonnegative p-
integrable step functions v, converging pointwise towards f.. The integral of f is then
defined by [, f+ dp := lim,, o [, ¥y, dp if the limit exists (otherwise [, f+ dp := c0). The
integral f is then defined by [, fdu = [, fydu— [, f-dp and f is called p-integrable.
The set of p-integrable functions is denoted by £(T, u); the set of equivalence classes
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in £1(T, p) of functions that are equal almost everywhere, i.e., up to a set of y-measure
zero, is denoted by L'(T', u). [151, §20]

Theorem (Radon-Nikodym Theorem) Let p, v be two measures on (I', X). It is v absolutely
continuous with respect to p, ie., u(X) = 0 = v(X) = 0, if and only if there is a

measurable function o : I' = R~ so that

V(X):/ng,u (A1)

for any X € Y. The function p, called the density of v with respect to p, is uniquely
determined almost everywhere with respect to p. For the proof, see Ref. [118, p. 344].

Definition (Pushforward Measure) Let u be a measure on (I'1, %) and let 3, be a o-algebra
on I'y. Moreover, let T : T; — 'y be measurable, i.e., T"}(X) € ¥ if X € 3. Then
To(X) == u(T7HX)) for X € 3y defines a measure on (T, Xy), called pushforward
measure. [151, §20.6.4]

Theorem (Change of Variables Formula) Let © be a measure on (I';,%;) and let ¥y be a
o-algebra on I's. Moreover, let T': I'y — I's and f: 'y — R be measurable. Then

/fdm: foTdy, (A.2)
FQ F1

provided that one of the integrals exists. For the special case that I'y and I'; are domains
from R", that T is a C'-diffeomorphism, i.e., bijective and together with its inverse con-
tinuously differentiable, and that p(X) := [, | det 7’| dA, where A denotes the Lebesgue
measure, then T, = A. For the proof, see Ref. [151, §20.6.4].
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Miscellaneous Proofs and Calculations

B.1 Kernel of Composition

The following proof of Eq. (B.3) is mainly by Marcus Waurick.

Lemma. Let X be a vector space, P : X — X a linear projection, and V' C X a

subspace. Then it is

Pil(V) =kerP+imPnNYV. (B.1)

Proof. Let x € P~(V). Then there exists v € V with Pz = v € V Nim P. Since P is a
projection, it is (1 — P)x € ker P. Thus, it is

x=Pr+(1—P)ze (VNimP) + ker P. (B.2)

On the other hand, let p € ker P. Then it is p € P7'({0}) C P~}(V) as V is a vector
space. Moreover, for v € im P NV there exists x € X such that Pz = v. Furthermore,
P is a projection such that Pv = P?x = Px = v. Thus, v € P~YV). Since V is a
subspace, it is ker P +im PNV C P~Y(V). O

Proposition. Let X be a vector space, P, : X — X and P, : X — X linear
projections, and let U : X — X be linear. Then it is

ker PLUP; = ker P, +im P, N U™ (ker P,). (B.3)



170 B.2 Generating Functions for Symplectic Maps

Proof. It is
ker PLUP, = (PUP) ' ({0}) = P [UT [P ({0})]] - (B.4)
The assertion follows immediately from the above lemma. O

B.2 Generating Functions for Symplectic Maps

Consider a sufficiently smooth function S : R? — R2, restricted to some appropriate domain.
Then the map 7': I' — T", I' C R?, defined by

(Q.P)=T(q,p) & p=-05Q,q), P=0.5Q,q), (B.5)

is symplectic provided that such a T" exists. To this end, we denote T'(q, p) = (Tl(q, p), Ts(q, p))
such that

p = —%S(Ti(g,p),q), (B.6)
To(q,p) = 01S(Ti(q,p), q). (B.7)

The map T is symplectic if
det DT'(q,p) = 01 T1(q,p) 02Ta(q, p) — 02T (q, p) O Ta(q,p) = {T1, T2} (q,p) = 1. (B.8)
Differentiating Eq. (B.6), we obtain

oima(q,p) = 0= —=0125(T1(q,p), q) ITi(q,p) — 0225(T1(q,p), q), (B.9)

where the function my denotes the projection onto the second component, m3(q, p) := p. This

gives
022S(T1(q,p), q)
T (q,p) = — . B.10
1Ti(g:p) 9125(Th(¢,p), q) (B.10)

Analogously, it is

Doma(q,p) =1 = —0125(T1(q,p), q) &T1(q,p), (B.11)
which yields

1
&Ti(q,p) = (B.12)

 025(Tu(g,p),9)
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On the other hand, differentiating Eq. (B.7), we find

Ty(q,p) = 0uS(Ti(qp),q) ATi(q,p)+ 025(T1(q, p), q) (B.13)
6225(T1(q,p),q)

= —0uS(Ti(¢,p),q) 9125(T1(¢, ), q) + 015(T1(q,p), q), (B.14)

and
®Ts(q,p) = 0uS(Ti(g,p),q) 0:Ti(q,p) (B.15)
o1 S(Th(g:p): q) (B.16)

_5125(T1(qap)>Q).

Inserting this into Eq. (B.8) proves the symplecticity of T,

8115 . 8225 1 8115 . 8225
DT - — B.1
det <q’p) [8125]2 + 8125 ( 8125 + 8215’):| (T1(q,p),q) ( 7)
215(T1(q,p), q)
B.18
0125(T1(q,p), q) (B.18)
= 1, (B.19)

using Schwarz’s theorem.

B.3 Proofs of Convergence towards Invariant Measure

In this section, we present the main ideas for the proofs of Egs. (7.5) and (7.7). To this end, it
is useful to introduce the induced operator [173, Chap. 4]: For amap T : T' — T, the induced

operator Kp (also called composition or Koopman operator) is defined by
Krf:=foT, (B.20)

for functions f : I' = R. The operator Kr is linear, and if T is invertible and both 7" and 7"—*
are measurable, K is even unitary on L?. As this immediately provides thoroughly developed
Hilbert space methods, quite often in mathematics, this concept is favored over the abstract
measure theory. We consider symplectic maps T" such that T is invertible (since det 7" # 0)
and both 7" and T~! are measurable. Thus, we are equally allowed to use the same Hilbert

space methods for the transfer operator Fr (also called Perron—Frobenius operator), defined
by

Frf:=foT™ (B.21)
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Ergodic Systems

Consider a corollary of the mean ergodic theorem by von Neumann [173, Thm. 8.10]: Let

T :1I'— I together with the invariant measure p be ergodic. Then it is

1 N—-1
iy 3 = ( / fdu) r (B.22)

for each f € L*(Q, u).

This corollary can now be used to derive Eq. (7.5). Given a measure v that is absolutely

continuous with respect to p with density p, it is

i
=

-1

1 1
— ) Tv(X) = — / odpu (B.23)
N Zo N = I
1 N-1
= — oT ™" d B.24
I O/X@H/_/ u (B.24)

for all measurable X C I'. From Eq. (B.22), we conclude

/Qdu /du (B.25)

V(F) 1

MZ

1
N
n=0
Mixing Systems

Consider the following proposition [173, Thm. 9.4]: Let T : T' — T together with the invariant
measure 4 be mixing as defined in Eq. (7.6). Then it is

(Fﬁf\g>—><f|><r>(><r\g>=/rfdu-/rgdu (B.26)

for all f, g € L*(Q, p).

This proposition can now be used to derive Eq. (7.7). Given a measure v that is absolutely

continuous with respect to p with density p, it is
Th(X) = / odp (B.27)
"(X)

= /QOT_nd[L (B.28)
= (Frolxx) (B.29)
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for all measurable X C I'. From Eq. (B.26), we conclude

TfV(X)—><@|Xr><Xr\Xx>Z/@du-/du- (B.30)
T X
y(I)=1 (X)

B.4 Construction of Chaotic Resonance States

The following construction of chaotic resonance states is intended to underline quantum-to-

classical correspondence with CIMs in view of Eq. (7.39).

Proposition. Let U be unitary and P be an orthogonal projection, P? = P, P* = P;
Py := 1 — P. Moreover, let ¢y € im P, N (),cyU™im P and A € C with [A| < 1. Then

for ¢ 1= >y, AU P) ™y it is

UPt = A (B.31)

Proof. First of all, we split the sum into

UPy =UPyy+ Y X"UP(UP)™y. (B.32)

n=1

The first term U P vanishes as
Pipg = (1 = Po)po = tho — Potho = 0, (B.33)

because ¥ € im Py, i.e., Pytbg = 1o. We will now show that U P(UP)*"y = (UP)*™ Ny,
for n > 1. Note that if we have shown this, Eq. (B.31) follows directly by an index shift,

UPY = X"(UP)" ™ Vajg = XD~ X (UP) 1) (B.34)
n=1 n=0

To this end, we explicitly consider

UP(UP)*™py = U PU " - .. PU ' ). (B.35)
n times

Using that 1)y € Uim P, which is equivalent to U1ty € im P since U is bijective, we
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find PU %)y = U~ 11} such that

UP(UP)*™py =UPU " -.. PU LU 4)y. (B.36)
(n—1) times

Analogously, as 1y € Uim P we obtain PU %y = U %)y and in just the same way
PU ™)y = U ™)y for all n > 1. This gives

UP(UP)*™py = UU "pg = U~ Dy (B.37)
Now the other way around, we find

Uy = PU- - PU Ly = (UP)* " Dy, (B.38)
(n—1) times

and thus, UP(UP)™)y = (UP)*™ V4. The convergence of > A (UP)™y is
assured by the Neumann series since |[UP|| < 1 and |A\| < 1. O

n€Ng

For the interpretation of this result note that we have not discussed whether the set im Py N
ey UTim P contains more than just the zero or whether for 45 # 0 one obtains ¢ # 0. Thus,

the above result should be interpreted first of all as an algebraic analogy to CIMs.

B.5 Proof of Equation (10.18)

Consider the sequence (s,)nen of elements

Sp 1= VAT + 2\, (B.39)

with c1, co € R and A\; > Ay > 0. We further require that c; A} + AL > 0 which implies that

¢1 > 0. Defining cpmax = max{|ci], |c2|}, it is

5, < {L/cmax)\’f + Cnax A} < Y/ 20max AT = V/2Cmax A1 — A1 (B.40)

In order to find a lower bound for s,,, we use that

AT 4 e AD > %)\? (B.41)
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for n > log(—2cz/c1)/log(A1/A2) if ¢a < 0. If ¢3 > 0, the above inequality holds true for all
n € N. For sufficiently large n, this gives

S > ,n/%w - ,"/62—1 A= AL (B.42)

The sandwich theorem thus implies

lim \n/ Cl>\111 + 02)\3 = )\1. (B43)
n—00

B.6 Average Escape Times from Markov Chain

The following derivation of average escape times from a Markov chain is based on a calculation
presented in Ref. [123, Sec. 4.2]. Let us consider a simple Markov chain model with N regions,
Ay, ..., Ay, defined by the matrix 7 € RV*V that contains the transition probabilities
between neighboring regions. We particularly allow for escape from the chain. The iteration
of an initial vector p(0), the i-th component of which describes the probability to be region

A;, is then given by
p(n) =T"p(0),  (n €Ny). (B.44)

With this the probability Ps(n) to survive n iterations when starting in region A;, 1 <k < N,

reads
N
Py(n) = (ex|T"e;), (B.45)
k=1

where e, 1 < k < N, denotes the standard basis in RY. The probability P (n) to escape

from the system in step n (and not before) when starting in A; can be obtained from

20
z
I

Pin—1) -z, (B.46)
Pi(n—1)-(1—ux), (B.47)

50

2

=
I

where x denotes the probability to survive the n-th iteration provided survival under the

previous n — 1 iterations. This gives

Pesc(n) = Ps(n - 1) - Ps(n) (B48)
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Hence, the average time 7@ to escape from the system when starting in A; follows from

7_e(;(): = Zn'Pesc(n) (B49)
n=1
o] N N
— Zn.{Z(ek|T" tei) = (ex| T } (B.50)
n=1 k=1 k=1

WE

T
I

WE

{(ek|2n-T"_1e,~)—<ek|Zn-T"ei>} (B.51)
{(eHZ(nJrl)-T"ei)—<ek|Zn-T"ei>} (B.52)

(en| > T"e;) (B.53)

B
Il
—_

M) =

T
I

(eel (1—T)e;). (B.54)

WE

T
I
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