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Abstra
t

Classi
al partial transport barriers govern both 
lassi
al and quantum dynami
s of generi


Hamiltonian systems. Chaoti
 eigenstates of quantum systems are known to lo
alize on either

side of a partial barrier if the �ux 
onne
ting the two sides is not resolved by means of

Heisenberg's un
ertainty. Surprisingly, in open systems, in whi
h orbits 
an es
ape, 
haoti


resonan
e states exhibit su
h a lo
alization even if the �ux a
ross the partial barrier is quantum

me
hani
ally resolved. We explain this using the 
on
ept of 
onditionally invariant measures

by introdu
ing a new quantum me
hani
ally relevant 
lass of su
h fra
tal measures. We

numeri
ally �nd quantum-to-
lassi
al 
orresponden
e for lo
alization transitions depending

on the openness of the system and on the de
ay rate of resonan
e states. Moreover, we show

that the number of long-lived 
haoti
 resonan
e states that lo
alize on one parti
ular side

of the partial barrier is des
ribed by an individual fra
tal Weyl law. For a generi
 phase

spa
e, this implies a hierar
hy of fra
tal Weyl laws, one for ea
h region of the hierar
hi
al

de
omposition of phase spa
e.

Zusammenfassung

Klassis
he partielle Transportbarrieren bestimmen sowohl die klassis
he als au
h die quan-

tenme
hanis
he Dynamik generis
her hamiltons
her Systeme. Es ist bekannt, dass 
hao-

tis
he Eigenzustände von Quantensystemen jeweils nur auf einer Seite einer partiellen Barriere

lokalisieren, solange der Fluss, der beide Seiten verbindet, im Sinne der heisenbergs
hen Un-

s
härferelation quantenme
hanis
h ni
ht augelöst wird. Überras
henderweise zeigen 
haotis
he

Resonanzzustände in o�enen Systemen, in denen Trajektorien das System verlassen können,

eine ebensol
he Lokalisierung, selbst wenn der Fluss dur
h die partielle Barriere quanten-

me
hanis
h aufgelöst ist. Wir erklären dies mithilfe von bedingt invariaten klassis
hen Maÿen,

indem wir eine neue, quantenme
hanis
h relevante Klasse sol
her fraktalen Maÿe einführen.

Am Beispiel zweier Lokalisierungsübergänge in Abhängigkeit der Stärke der Ö�nung des Sys-

tems und der Zerfallsrate der Resonanzzustände können wir die Korrespondenz von Klassik

und Quantenme
hanik numeris
h bestätigen. Überdies stellt si
h heraus, dass die Anzahl lang-

lebiger 
haotis
her Resonanzzustände, die auf einer bestimmten Seite der partiellen Barriere

lokalisieren, dur
h ein individuelles fraktales Weylgesetz bes
hrieben wird. In einem gene-

ris
hen gemis
hten Phasenraum ergibt dies eine Hierar
hie fraktaler Weylgesetze, jeweils eines

für jede Region der hierar
his
hen Zerlegung des Phasenraumes.
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Chapter 1

Introdu
tion

The understanding of transport in its various manifestations lies at the heart of physi
s. One

may think of the histori
ally important examples of Ohm's law on the ele
tri
 
urrent through

a 
ondu
tor [1℄, of the �ow of �uids as des
ribed by the Navier�Stokes equation [2℄, or of

the di�usive transfer of heat [2℄. Also in modern physi
s transport phenomena are 
onstantly

subje
t to resear
h, su
h as the quantum Hall e�e
t giving rise to quantized values of the Hall


ondu
tivity [3℄, super
ondu
tivity that implies vanishing ele
tri
al resistan
e [4℄, or quantum

teleportation by entanglement [5℄. Quite often in quantum me
hani
s, the transport behavior

is deeply related to the lo
alization of eigenstates or wave pa
kets, e.g., strong Anderson

lo
alization due to disorder suppresses di�usion and implies a metal�insulator transition [6,7℄,

weak lo
alization due to time-reversal invarian
e yields 
orre
tions to the 
lassi
al Drude


ondu
tivity of a metal [8℄, lo
alization of edge states due to topologi
al prote
tion is related

to the quantized Hall 
ondu
tivity [9℄, and many-body lo
alization in Fo
k spa
e implies a

metal�insulator transition at �nite temperatures for systems of intera
ting parti
les [10℄.

Quantum eigenstates 
an also exhibit lo
alization due to 
lassi
ally restri
tive phase-spa
e

stru
tures [11�34℄: A 
lassi
al Hamiltonian system generi
ally exhibits a mixed phase spa
e

of regular and 
haoti
 motion [35℄. The simplest systems to observe this 
oexisten
e are two-

dimensional time-dis
rete symple
ti
 maps, whi
h originate for instan
e from autonomous

Hamiltonian systems with two degrees of freedom or from time-dependent Hamiltonian sys-

tems with one degree of freedom. In su
h systems an invariant torus of regular motion is

impenetrable under the time evolution, that is, 
lassi
al transport from one side of the torus

to the other is 
ompletely suppressed [23℄. However, quantum me
hani
s allows for a small

transmission of wave pa
kets a
ross the torus under time evolution by dynami
al tunneling [36℄.

Still, the probability for this pro
ess is small and quantum eigenstates are essentially 
on�ned

to one side of the torus. In this way, a regular torus is a total barrier for transport in phase

spa
e. On the other hand, there also exist partial transport barriers whi
h are omnipresent in

the 
haoti
 
omponent of a generi
 mixed phase spa
e and typi
ally o

ur in an in�nite hierar-
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hi
al pattern [16,17,23℄. A partial barrier admits a small 
lassi
al �ux φ from one side to the

other. Interestingly, a quantum wave pa
ket 
an pass the partial barrier if its �ux is quantum

me
hani
ally resolved by means of Heisenberg's un
ertainty (φ ≫ h) but the wave pa
ket

remains on one side if the 
lassi
al �ux is not resolved (φ ≪ h) [17, 19, 20, 24, 31, 32, 37�39℄.

Here h refers to an e�e
tive size of Plan
k's 
ell. We emphasize that quantum me
hani
s


an therefore suppress transport that is 
lassi
ally allowed, in 
ontrast to the tunneling pro-


ess [6, 32, 40, 41℄. In the same spirit, 
haoti
 eigenstates are equipartitioned with respe
t to

the partial barrier if φ≫ h, as if there were no partial barrier and they turn out to lo
alize on

either side of the partial transport barrier for φ≪ h. In fa
t, there is a universal lo
alization

transition from one regime to the other, depending only on the s
aling parameter φ/h [32℄.

So far, we 
onsidered systems isolated from their environment. This is a theoreti
al ideal-

ization that might be experimentally reasonable on problem spe
i�
 time or energy s
ales. The

des
ription of a variety of phenomena, however, expli
itly requires to in
orporate the openness

of the system su
h as depolarization, dephasing, or spontaneous emission [42℄. In this thesis we


onsider a spe
i�
 kind of open systems, namely systems that allow for es
ape [33, 34, 43�61℄.

Classi
ally, one might think of a two-dimensional billiard with hole in the boundary or of more

general types of s
attering systems in whi
h orbits 
an es
ape [55, 56, 62℄. Quantum me
han-

i
ally, this 
orresponds to a subunitary time-evolution operator where the subunitarity refers

to the fa
t that its spe
trum lies inside the unit 
ir
le a

ounting for the de
ay [48, 63�66℄.

Eigenstates of su
h open quantum systems are 
alled resonan
e states. This theoreti
al frame-

work is well suited to des
ribe opti
al mi
ro
avities for instan
e [67℄. Their emission pattern

is determined by the phase-spa
e lo
alization of their resonan
e states [67�75℄. As partial

barriers 
an have a huge in�uen
e on the lo
alization of eigenstates in 
losed systems it is

reasonable to expe
t that they are also relevant for open systems like opti
al mi
ro
avities,


f. [75℄. However, is the above theory on the lo
alization of eigenstates for 
losed systems still

relevant in presen
e of an opening?

In this thesis we demonstrate that 
haoti
 resonan
e states 
an lo
alize on either side of

a partial barrier even in the regime of φ ≫ h, where in the 
losed system typi
al 
haoti


eigenstates are equipartitioned. In parti
ular, we �nd a smooth transition from equipartition

to lo
alization of long-lived resonan
e states on one side of the partial barrier if the system is

opened. In addition, we �nd a transition from lo
alization on one side of the partial barrier

to lo
alization on the other side depending on the de
ay rate of the resonan
e states. This

phenomenology shows that partial barriers are even more important in open systems than

in 
losed systems. We explain both lo
alization transitions using 
lassi
al 
on
epts. Based

on the important work by Keating et al. [49℄ and Nonnenma
her et al. [51℄ the 
lassi
al


ounterpart of a quantum resonan
e state is found to be given by a 
onditionally invariant

measure (
im). These measures are invariant under the 
lassi
al dynami
s up to a global



3

fa
tor 
ompensating the de
ay [43, 50, 56, 76℄. However, for ea
h de
ay rate γ there exist

in�nitely many di�erent 
ims and it is not 
lear whi
h of them is quantum me
hani
ally

relevant. We propose the 
lass of γ-natural 
ims. By analyti
al and numeri
al analysis

of the partial-barrier map, whi
h is a model system with a single partial barrier, and of

the generi
 standard map with a mixed phase spa
e, we demonstrate quantum-to-
lassi
al


orresponden
e between the lo
alization of 
haoti
 resonan
e states and of γ-natural 
ims.

This explains both observed lo
alization transitions of 
haoti
 resonan
e states and gives

a fundamental insight into quantum-to-
lassi
al 
orresponden
e for open systems. Moreover,

using the lo
alization of 
haoti
 resonan
e states due to partial barriers we generalize the fra
tal

Weyl law [47,48,51�53,61,71,77�97℄ on the number of long-lived 
haoti
 resonan
e states from


haoti
 open systems to generi
 open systems with a mixed phase spa
e. To this end, we

use the fa
t that the 
lassi
al fra
tal repeller, that is, the set of points in phase spa
e whi
h

do not es
ape under 
lassi
al time evolution, e�e
tively exhibits individual fra
tal dimensions

asso
iated with the hierar
hi
al de
omposition of phase spa
e by partial barriers [98℄. This

gives rise to a hierar
hy of fra
tal Weyl laws. We give a heuristi
 argument for their presen
e

and support it numeri
ally for the partial-barrier map and the generi
 standard map. The

main results of this thesis have already been published in Refs. [33, 34℄.

The manus
ript is organized as follows: In Chap. 2 we introdu
e resonan
e states and open

quantum maps from a general perspe
tive. The fundamentals on Hamiltonian 
haos relevant

for this thesis are dis
ussed in Chap. 3, putting fo
us on the 
haoti
 transport in presen
e of

partial barriers and the es
ape from 
haoti
 systems. Chapter 4 is dedi
ated to the detailed

introdu
tion of model systems with a single partial barrier that allow for an analyti
al and a

numeri
al investigation over a broad range of parameters without the 
omplexity of an in�nite

hierar
hy of partial barriers. Following a review on the lo
alization transition of 
haoti


eigenstates due to a partial barrier in 
losed systems in Chap. 5, we numeri
ally observe the

two new lo
alization transitions for open systems in Chap. 6. A theoreti
al dis
ussion on the

semi
lassi
al stru
ture of 
haoti
 resonan
e states, reviewing known results and introdu
ing

the new 
lass of γ-natural 
ims, is presented in Chap. 7. In Chaps. 8 and 9 we investigate

quantum-to-
lassi
al 
orresponden
e between 
haoti
 resonan
e states and γ-natural 
ims for

the partial-barrier map and the standard map. Based on these results, we generalize the

fra
tal Weyl law to generi
 systems with a mixed phase spa
e in Chap. 10. We give an

extensive outlook in Chap. 11 where we dis
uss the next steps towards an appli
ation of our

results for opti
al mi
ro
avities. Note that in order to appre
iate the importan
e of some

results we expli
itly show their proofs or derivations in the main text even if they are rather

te
hni
al and not essential for the further understanding. In su
h 
ases, the beginning and

end of the proofs is 
learly visible in the text and they may therefore be skipped if ne
essary.
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Chapter 2

Open Quantum Systems

In this 
hapter we introdu
e resonan
e states of open quantum systems from a general perspe
-

tive and dis
uss the relation to eigenve
tors of subunitary quantum maps whi
h are studied

throughout this thesis. To this end, we brie�y review a 
ommon modeling approa
h for open

quantum systems in Se
. 2.1, whi
h leads to the Lindblad master equation. In Se
. 2.2 we

restri
t our 
onsiderations to a spe
ial kind of open quantum systems, namely s
attering sys-

tems, and dis
uss the phenomenon of resonan
e s
attering. The widely used method to study

resonan
es in terms of analyti
 properties of the s
attering matrix is des
ribed in Se
. 2.3. In

Se
. 2.4 it is outlined how to e�e
tively model a s
attering system by a nonhermitian Hamil-

tonian. Note that in Se
s. 2.1�2.4 the derivation of some relations is presented only very short

or not at all as these se
tions are mainly intended to embed our later results in a broader


ontext. We 
on
lude this 
hapter by introdu
ing open quantum maps in Se
. 2.5, where we

also dis
uss the eigenvalue problem for subunitary matri
es.

2.1 General Theory

Every physi
ally relevant system intera
ts with its environment. This intera
tion 
an be real-

ized in terms of parti
le ex
hange or heat transfer for instan
e. Note that su
h an intera
tion


an be desired or not. Think of a measurement devi
e like a s
anning ele
tron mi
ros
ope

where information about the target obje
t 
an be extra
ted from the s
attered ele
trons [99℄,

or of an opti
al 
avity where losses should be redu
ed in order to improve the spe
tral 
oher-

en
e properties of a laser [67℄. Full isolation of a physi
al system is a theoreti
al idealization

whi
h may be reasonable on 
ertain problem spe
i�
 time or energy s
ales.

Let us brie�y review the typi
al theoreti
al modeling of open quantum systems. An en-

semble of quantum states is des
ribed by a density operator ̺, that is a hermitian, positive

semide�nite operator of unit tra
e a
ting on the system's Hilbert spa
e [100,101℄. A reasonable

model for the time evolution, regardless of the spe
i�
 properties of the system, has to map



6 2.1 General Theory

density operators to density operators. For a 
losed system des
ribed by the Hamiltonian H ,

this is ensured by von Neumann's equation,

˙̺(t) = − i

~
[H, ̺(t)], ̺(0) = ̺0, (2.1)

whi
h is solved by the unitary evolution

̺(t) = U(t)̺0U(t)
∗, U(t) = exp

[

− i

~
Ht

]

(2.2)

in the autonomous 
ase [102, Se
. 20.2℄. Here U(t)∗ denotes the adjoint of U(t). Unitary

time evolution, however, is too restri
tive to des
ribe typi
al phenomena in open systems su
h

as depolarization, dephasing, or spontaneous emission [42, Se
. 6.1.6℄. In order to des
ribe

su
h phenomena, it proves useful to 
onsider the more general 
lass of 
ompletely positive,

tra
e preserving maps. Su
h maps also ensure that density operators are mapped to density

operators. A

ording to Stinespring's dilation theorem [103℄ any 
ompletely positive, tra
e

preserving map Et 
an be represented by

̺(t) = Et(̺0) = tr
env

[U(t)(̺0 ⊗ ̺
env

)U(t)∗] , (2.3)

with an appropriate density operator ̺
env

and a unitary operator U(t) [104, Se
. 3.15℄. Intu-

itively speaking, the initial state ̺0 of the open system is embedded in its 
losed environment

by ̺0 ⊗ ̺
env

, the time evolution of whi
h is unitary. Finally, the environmental degrees of

freedom are tra
ed out, giving the evolved density matrix ̺(t) in the open subsystem. Inter-

estingly, the expli
it time evolution in Eq. (2.3) allows a formulation in terms of a di�erential

equation, so to say the open system's equivalent of the von Neumann equation, Eq. (2.1). As-

suming the Markov property, Es+t = EsEt, one �nds a hermitian operator H , an orthonormal

operator basis {Fk}k, and nonnegative 
oe�
ients {ck}k su
h that

˙̺(t) = − i

~
[H, ̺(t)]

∣
∣
∣
∣
∣

︸ ︷︷ ︸


onservative

+
1

2

∑

k

ck
(
[Fk̺(t), Fk

∗] + [Fk, ̺(t)Fk
∗]
)

︸ ︷︷ ︸

dissipative

, (2.4)

whi
h 
ontains a dissipative 
ontribution in addition to the 
onservative von Neumann term

as indi
ated [105, 106℄. Equation (2.4) is known as the Lindblad master equation in diagonal

form.
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2.2 Resonan
e S
attering

Let us fo
us on a spe
ial 
ategory of open systems, namely s
attering systems. The main

idea of the s
attering pro
ess is as follows [107�110℄: One or more free parti
les approa
h

a bounded region where they intera
t with an external potential, by 
ollisions, or 
hemi
al

rea
tions for example. The produ
ts then es
ape from the intera
tion region again as free

parti
les. Although the general framework outlined above in Se
. 2.1 is in prin
iple able to

des
ribe s
attering pro
esses, 
f. Refs. [111, 112℄, there are more adapted methods.

Consider the stationary S
hrödinger equation,

[

− ~2

2m
△+ V (r)

]

ψ(k, r) =
~2k2

2m
ψ(k, r), (2.5)

for a nonrelativisti
 parti
le of mass m and energy E = ~2k2/(2m) subje
t to a 
entral poten-

tial V with limr→∞ rV (r) = 0. It has solutions of the form ψℓm(k, r) = r−1uℓ(k, r)Yℓm(ϑ, ϕ)

where Yℓm denotes the spheri
al harmoni
s and uℓ solves the radial S
hrödinger equation,

u′′ℓ (k, r)−
(
ℓ(ℓ+ 1)

r2
+

2m

~2
V (r)

)

uℓ(k, r) + k2uℓ(k, r) = 0, (2.6)

where the derivative is taken with respe
t to the variable r [100, �32℄. Depending on the

spe
i�
 shape of V , the solutions of Eq. (2.5) 
orrespond to bound states for dis
rete energy

eigenvalues of E < 0, or to unbound s
attering states for the 
ontinuous spe
trum with

E > 0 [100, �10℄. However, there 
an exist s
attering states whi
h are parti
ularly important.

S
attering states tunneling through a potential barrier for instan
e are asso
iated with an

enhan
ed life time 
ompared to s
attering states with energy above the barrier threshold [100,

�134℄, see illustration in Fig. 2.1. Su
h states are usually 
alled resonan
e states, quasibound

states, quasistationary states, or metastable states. They admit quasidis
rete energies within

the 
ontinuous spe
trum [100, �134℄. Remarkably, resonan
e states give rise to 
hara
teristi


peaks in the experimentally observable s
attering 
ross se
tion [100, �145℄.

In order to understand the appearan
e of these 
hara
teristi
 peaks, let us 
onsider the

histori
ally important example of s
attering of slow neutrons at a nu
leus [113℄, where we


losely follow the dis
ussion in Se
tions T.3 and T.4 from Ref. [107℄. In this 
ase, it is useful

to assume that the neutron does not intera
t with the nu
leus for r > R, with the radius R

of the nu
lear sphere. Dealing with slow neutrons, the s
attering pro
ess is dominated by the

s-wave 
ontribution, ℓ = 0. Equation (2.6) thus reads

u′′(k, r) + k2u(k, r) = 0 (2.7)
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0
r

V (r) resonance
state

bound
states

Figure 2.1. Sket
h of 
entral potential V with tunneling barrier (thi
k solid line). Dis
rete

levels with energy below zero 
orrespond to bound states while quasidis
rete levels with

energy above zero but below the tunneling threshold 
orrespond to long-lived resonan
e

states.

for r > R, dropping the �xed index ℓ. This is solved by

u(k, r) = A
(
e−ikr − S(k)eikr

)
(2.8)

with an appropriate fa
tor A and the s
attering matrix element S(k). The s
attering matrix

therefore des
ribes how the in
ident wave is a�e
ted by the target depending on the wave

number k. De�ning f(k) := Ru′(k, R)/u(k, R) and inserting the solution u from Eq. (2.8),

the s
attering matrix element is given by

S(k) =
f(k) + ikR

f(k)− ikR
e−2ikR. (2.9)

With this, the experimentally relevant 
ross se
tion

1 σ = (π/k2) |1− S(k)|2 for elasti
 s
at-

tering reads

σ =
π

k2

∣
∣
∣
∣

−2ikR

f(k)− ikR
︸ ︷︷ ︸

A
res

+
(
e2ikR − 1

)
∣
∣
∣
∣

︸ ︷︷ ︸

A
pot

∣
∣
∣
∣

2

, (2.10)

where A
pot

is referred to as potential s
attering term and A
res

implies a resonan
e phenomenon.

To demonstrate this, a zero E
res

of f is 
onsidered, where f is now understood as a fun
tion

1

Note that there is a fa
tor of π missing in Eq. (A37) in Ref. [107℄. The 
orre
t expression may be found

in Ref. [108, Se
. 2.6℄ or in Ref. [100, �142℄.
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of energy, E = ~2k2/(2m). A �rst order Taylor expansion of f in the vi
inity of E
res

yields

A
res

=
iΓ

(E − E
res

) + iΓ
2

(2.11)

with Γ := −2kR/f ′(E
res

). Close to E
res

, A
pot

is small 
ompared to A
res

su
h that

σ ≈ π

k2
Γ2

(E −E
res

)2 + Γ2

4

. (2.12)

This is the 
hara
teristi
 Breit�Wigner pro�le of isolated peaks in the s
attering 
ross se
-

tion. [107℄

The intuitive interpretation of this resonan
e peak is based on Bohr's 
ompound nu
leus

model [114℄, see also Refs. [107, Se
. T.2℄ or [100, �145℄. At the resonan
e energy E
res

the

in
oming neutron together with the target nu
leus forms a 
ompound nu
leus in an ex
ited

state [107℄. The energy of the in
oming neutron is then distributed over all 
onstituents su
h

that a single parti
le does not have the energy ne
essary to es
ape from the 
ompound [100℄.

Statisti
ally, it takes a relatively long time until the event that su�
ient energy is stored in

a single parti
le of the 
ompound whi
h is then able to es
ape [100℄. The 
ompound nu
leus,

thus, represents a long-lived quasibound state, also 
alled resonan
e state. The 
orrespond-

ing resonan
e peaks in the s
attering 
ross se
tion are indeed observed in experiment, see

Fig. 2.2 [115, Fig. 6℄.

Figure 2.2. The experimentally measured total 
ross se
tion of oxygen depending on

the energy of the in
oming neutrons exhibits 
lear resonan
e peaks. Reprinted �gure with

permission from [C. K. Bo
kelman, D. W. Miller, R. K. Adair, and H. H. Bars
hall, Phys.

Rev. 84, 69 (1951)℄ Copyright (2016) by the Ameri
an Physi
al So
iety.
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2.3 Analyti
 Properties of the S
attering Matrix

A 
ommon approa
h to investigate both resonan
e states as well as bound states on the same

footing is the study of the analyti
 properties of the s
attering matrix. To this end, the

s
attering matrix S is 
onsidered as a fun
tion of 
omplex wave number k or of 
omplex

energy E, and one seeks for its poles within the 
omplex plane. For the present 
ase of s-wave

s
attering, it is useful to introdu
e Jost fun
tions, see Refs. [110, Se
. 12.1℄ or [109, Se
s. 11.1,

11.2℄. It 
an be shown that physi
al s-wave s
attering solutions of Eq. (2.6) obey the boundary


onditions [100, �33℄

u(k, 0) = 0, (2.13a)

u(k, r) ∼ sin(kr + δ), (r → ∞) (2.13b)

with the s
attering phase shift δ. There are also other solutions whi
h obey the less restri
tive

regularity 
ondition [109, 110℄

u(k, 0) = 0, (2.14a)

u′(k, 0) = 1. (2.14b)

These regular solutions turn out to be useful as they allow for a spe
i�
 representation of the

s
attering matrix. A regular solution 
an asymptoti
ally be expressed as

u(k, r) ∼ 1

2ik

[
F (−k)eikr − F (k)e−ikr

]
, (r → ∞) (2.15)

with the analyti
 Jost fun
tion F [110℄

2

. Hen
e, 
omparing Eqs. (2.8) and (2.15), the s
atter-

ing matrix element reads

S(k) =
F (−k)
F (k)

, (2.16)

su
h that the poles of S are determined by the zeros of the analyti
 fun
tion F . Given k0

su
h that F (k0) = 0, the regular solution u from Eq. (2.15) s
ales as eik0r whi
h is a square-

integrable bound solution for Im k0 > 0 and unbound for Im k0 < 0. For bound solutions

whi
h have real negative energy E = ~2k2/(2m), it is ne
essarily Re k0 = 0. For unbound

solutions, however, the real part of k0 does not have to vanish. Due to a symmetry of F ,

the poles for Im k0 < 0 appear in pairs on both sides of the imaginary axis [109℄. Note that

there are also poles with Re k0 = 0 and Im k0 < 0, whi
h 
orrespond to so-
alled virtual or

2

Note that there are di�erent versions of the Jost fun
tion F used in the literature varying in the sign of

their argument k, 
f. Refs. [109, 110℄. Depending on this sign, its zeros asso
iated with bound states are also

related to Im k0 < 0 and, vi
e versa, for the unbound states to Im k0 > 0 [109℄. We follow the notation in

Ref. [110℄, su
h that the zeros of F 
oin
ide with the position of the poles of S.
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antibound states, but they are of no relevan
e here, 
f. [110, Se
. 12.1.4℄ or [116, Se
. 3.6.7℄.

The des
ribed typi
al stru
ture of poles of S(k) is sket
hed in Fig. 2.3(a). In order to see

the relation of poles in S(k) for Im k0 < 0 to resonan
e peaks in the s
attering 
ross se
tion,

Eq. (2.12), it is useful to represent the s
attering matrix in terms of the energy E. To this

end, it is ne
essary to distinguish between the two di�erent Riemann sheets

k =

√

2m

~2
|E| exp

[

i
arg(E)

2

]

, (2.17a)

k =

√

2m

~2
|E| exp

[

i

(
arg(E)

2
+ π

)]

, (2.17b)

the �rst of whi
h is related to the bound solutions (also 
alled physi
al sheet), Im k > 0, while

the se
ond des
ribes unbound solutions (also 
alled unphysi
al sheet), Im k < 0. Note that by


onvention, the argument arg(E) of the 
omplex number E is in [0, 2π). The position of poles

of the s
attering matrix element as a fun
tion of E, distinguishing between both Riemann

sheets, is sket
hed in Fig. 2.3(b).

Let us fo
us again on the relation of poles in the �rst sheet to bound states. It is useful

to note, that the s
attering matrix is more generally de�ned by S = Ω∗
−Ω+ with the Møller

operators Ω± = 1+(E±iε−H)−1V , (ε ց 0), in terms of the HamiltonianH = −~2/(2m)△+V

−1

0

1

−1 0 1Re k

Im k

(a)

−1

0

1

−1 0 1

first sheet

ReE

ImE

(b)
second sheet

0

2π

Figure 2.3. (a) Sket
h of the position of poles in the s
attering matrix element S(k) as a
fun
tion of 
omplex wave number k. The 
olor in the ba
kground represents the argument

of the 
omplex number k, see 
olor 
ode on the right. Poles on the imaginary axis in

the physi
al sheet, Im k > 0, visualized by 
ir
les, 
orrespond to bound states. Poles o�

the imaginary axis in the unphysi
al sheet, Im k < 0, visualized by 
rosses, 
orrespond to

resonan
e states. Note that the resonan
e poles 
ome in pairs of a de
aying resonan
e state

(bla
k) and an in
reasing resonan
e state (white). (b) Position of poles in the s
attering

matrix element as a fun
tion of 
omplex energy, E ∼ k2, distinguishing between the �rst

sheet (left), Eq. (2.17a), and the se
ond sheet (right; same axes as �rst sheet), Eq. (2.17b).

The 
olor in the ba
kground represents the argument of k to demonstrate the relation to

(a).
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in the Lippmann�S
hwinger representation [110℄. Hen
e, poles of the s
attering matrix are

dire
tly related to poles of the resolvent (E − H)−1
[117, Se
. XI.6℄, whi
h is an analyti


operator-valued fun
tion of the energy E on the 
omplement C\σ(H) of the spe
trum σ(H) of

H [118, Thm. VIII.2℄. The dis
rete spe
trum for E < 0 on the real axis, asso
iated with bound

states, therefore admits isolated singularities to the resolvent and, thus, also to the s
attering

matrix. Likewise, the 
ontinuous spe
trum for real values E > 0 admits a bran
h 
ut as 
an be

seen in Fig. 2.3(b). It is still possible to �nd an analyti
al (or meromorphi
) 
ontinuation from

the upper half plane to the lower half plane a
ross the bran
h 
ut by swit
hing to the se
ond

sheet [119, Se
. XII.6℄, see the 
olor plot in the ba
kground of Fig. 2.3(b, 
). Consider a well

isolated simple pole at E = E
res

− iΓ/2 on the se
ond sheet. The representation σ = 4π|A|2
of the elasti
 s
attering 
ross se
tion σ in terms of the partial s-wave s
attering amplitude

A = (S − 1)/(2ik) [100, �123℄, suggests to investigate the in�uen
e of the se
ond sheet pole

on A. A Laurent expansion of A around E = E
res

− iΓ/2 gives

A(E) =
̺

E − (E
res

− iΓ
2
)
+A

b

(E), (2.18)

where ̺ denotes the residue of A at the pole and A
b

is the analyti
 ba
kground in an appropri-

ate neighborhood of the pole [119, Se
. XII.6℄. If the ba
kground is negligible, this imposes the

Breit�Wigner resonan
e peak of width Γ in the s
attering 
ross se
tion, 
f. Eq. (2.12). Hen
e,

simple poles in the se
ond sheet of the s
attering matrix are interpreted as resonan
es. It 
an

be seen by time evolution that the norm of a resonan
e state ψ at energy E = E
res

− iΓ/2 
an

des
ribe de
ay or 
apture depending on the sign of Γ,

‖e− i
~
Etψ‖2 = e−

Γ
~
t. (2.19)

Su
h de
ay behavior is typi
ally also 
hara
terized by the de
ay rate γ = Γ/~ or the life time

τ = 1/γ. As a 
onsequen
e of Heisenberg's energy�time un
ertainty, ∆E∆t ∼ ~, the �nite

life time τ of a resonan
e state 
omes along with the �nite width Γ of the quasidis
rete energy

level [100, �44℄. In this work, we only study de
aying resonan
e states with Γ > 0 in the lower

half plane of the se
ond sheet, 
f. Fig. 2.3(b).

2.4 E�e
tive Nonhermitian Hamiltonian

Of parti
ular importan
e for the interpretation of this thesis is the fa
t that the s
attering

problem 
an be des
ribed in terms of an e�e
tive nonhermitian Hamiltonian, or equivalently

in terms of an e�e
tive subunitary time-evolution operator. There are di�erent ways to obtain

this e�e
tive Hamiltonian, a prominent one of whi
h is known as 
omplex s
aling [119, Se
.

XII.6℄. Here, we review a formally more dire
t way. One starts with a Caley transform of the
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s
attering matrix,

S = (1− iK)(1+ iK)−1, (2.20)

giving the rea
tan
e matrix K = −i(1 − S)(1 + S)−1
[110℄. The 
ru
ial idea is then to

de
ompose the full s
attering system into the bounded intera
tion region, des
ribed by an

internal 
losed-system Hamiltonian H
int

, and its 
oupling to open de
ay 
hannels, mediated

by the matrix W , whi
h depends on energy in general [63�65℄. This allows to express the

rea
tan
e matrix in form of

K(E) = πW ∗(E)(E −H
int

)−1W (E). (2.21)

It is typi
ally assumed that W only depends weakly on energy, whi
h eventually leads to the

Mahaux�Weidenmüller formula [64, 65, 120℄,

S(E) = 1− 2πiW ∗(E −H
e�

)−1W, (2.22)

with the nonhermitian e�e
tive Hamiltonian

H
e�

= H
int

− iπWW ∗. (2.23)

The derivation of Eq. (2.22) from Eqs. (2.20) and (2.21) 
an be found for instan
e in Ref. [121,

Se
. II.B℄ or in [64℄. Regarding Eq. (2.22), it is evident that the eigenvalues of H
e�


orrespond

to the poles of S. Sin
e the operator WW ∗
is positive, the spe
trum of H

e�

lies in the lower

half of the 
omplex plane in
luding the real axis and, thus, des
ribes de
aying resonan
e

states and also bound states. Note that this nonhermitian e�e
tive Hamiltonian is not to

be interpreted as an observable but rather as an auxiliary quantity to des
ribe the s
attering

pro
ess. We point out that there is a very similar expression for the s
attering matrix in terms

of an e�e
tive subunitary time-evolution operator [66℄.

2.5 Open Quantum Maps

In this thesis we study time dis
rete open quantum systems. They may be interpreted as s
at-

tering pro
esses for whi
h the intera
tion between the s
attering region and the environment

only a
ts at dis
rete equidistant times [66, Se
. 3.4.1℄. Then the strobos
opi
 time evolution

is 
hara
terized by the iteration of the subunitary operator U
op

= UP , where the unitary

operator U des
ribes the 
losed system's time evolution between the opening events that are

mediated by the orthogonal proje
tion operator P whi
h proje
ts onto the subspa
e that re-

mains within the s
attering region. Sin
e U
op

is a partial isometry, its spe
trum lies inside the
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unit 
ir
le in the 
omplex plane [122℄, whi
h motivates the notion of subunitarity. Let λ ∈ C

be su
h an eigenvalue of U
op

with modulus |λ| ≤ 1, together with a 
orresponding normalized

eigenve
tor ψ. Then the time evolution of ψ,

‖Un
op

ψ‖2 = |λ|2n ‖ψ‖2 = e−γn, (2.24)

gives an exponential de
ay of the norm with de
ay rate γ = −2 log |λ| in agreement with

Eq. (2.19).

The de�nition of the subunitary time-evolution operator U
op

= UP is a 
onvention as we


ould have equally well 
hosen U
op

= PU or U
op

= PUP . In fa
t, all three proje
tion types

are used in the literature [48,49,94℄. However, we 
an show that the set of eigenvalues for UP ,

PU , and PUP are equal. Hen
e, regarding de
ay in open systems the 
hoi
e of the type of

proje
tion is not relevant. This result is not even restri
ted to unitary operators U but holds

for any bije
tive, bounded linear operator on some separable Hilbert spa
e.

Proposition. Let U be a bije
tive, bounded linear operator on the Hilbert spa
e H
and let P be a proje
tion, i.e., P 2 = P . Then the point spe
tra σ(UP ), σ(PU), and

σ(PUP ) 
oin
ide.

Proof. The following proof is worked out in 
ollaboration with Sas
ha Trostor�. At �rst,

we separately answer the question whether zero is an eigenvalue. Re
all that for any

bounded linear operator A on H, it is

λ ∈ σ(A) :⇔ ∃ψ ∈ H, ψ 6= 0 : Aψ = λψ (2.25)

⇔ dimker(A− λ1) > 0, (2.26)

with

kerA := {ψ ∈ H : Aψ = 0}. (2.27)

To de
ide whether zero is an eigenvalue of UP , PU , and PUP , we 
onsider

kerUP = kerP, kerPU = U−1 kerP, (2.28)

and

kerPUP = kerP + imP ∩ U−1 kerP, (2.29)

using that U is bije
tive, see Appendix B.1. If zero is an element of one of the three
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onsidered point spe
tra, it is ne
essarily dimkerP > 0. Then, however, we �nd

dimkerUP > 0, dimkerPU > 0, dimkerPUP > 0, (2.30)

whi
h implies that 0 ∈ σ(UP ) ∩ σ(PU) ∩ σ(PUP ).
Now, let λ ∈ σ(UP ) with λ 6= 0. Then there exists ψ ∈ H, ψ 6= 0 su
h that UPψ =

λψ. Multipli
ation from the left by P gives PU(Pψ) = λPψ. Sin
e λψ 6= 0, it is

ψ 6∈ kerUP = kerP su
h that Pψ 6= 0 and λ ∈ σ(PU). Furthermore, using P 2 = P we

�nd PUP (Pψ) = λPψ with Pψ 6= 0 and, thus, λ ∈ σ(PUP ).

On the other hand, let λ ∈ σ(PU) with λ 6= 0. Then there exists ψ ∈ H, ψ 6= 0 su
h that

PUψ = λψ. Multipli
ation from the left by U gives UP (Uψ) = λUψ, where Uψ 6= 0

sin
e U is bije
tive. Thus, λ ∈ σ(UP ) whi
h is σ(UP ) = σ(PU).

Finally, let λ ∈ σ(PUP ) with λ 6= 0. Then there exists ψ ∈ H, ψ 6= 0 su
h that

PUPψ = λψ. Multipli
ation from the left by P and using P 2 = P gives PU(Pψ) = λPψ.

Sin
e λψ 6= 0, it is ψ 6∈ kerPUP ⊇ kerP su
h that Pψ 6= 0 and λ ∈ σ(PU) = σ(UP ).

To 
on
lude, this gives σ(UP ) = σ(PU) = σ(PUP ). �

Throughout this thesis we use the proje
tion type UP . However, for numeri
al purposes it is

more 
onvenient to diagonalize PUP , whi
h allows for trun
ation, and thus, for a redu
tion of

the matrix dimension. Any eigenvalue λ and asso
iated eigenve
tor ψ of PUP then provides

the eigenvalue λ of UP asso
iated with the eigenve
tor Uψ. To see this, it is important to

note that Pψ = ψ be
ause

ψ =
1

λ
PUPψ =

1

λ
P 2UPψ = P

(
1

λ
PUPψ

)

= Pψ, (2.31)

su
h that

UP (Uψ) = UP (UPψ) = U(PUPψ) = λUψ. (2.32)

As the eigenvalue problem of nonhermitian Hamiltonians or subunitary time-evolution oper-

ators is more involved than for hermitian or unitary operators, we will revisit the general

eigenvalue problem for �nite-dimensional matri
es in the following. In this overview we follow

the dis
ussion in Ref. [123, Se
. 2.2.2℄.

To this end, let us 
onsider the linear map K : CN → CN
. A solution of

Kψ = λψ (2.33)

is given by a pair of an eigenvalue λ ∈ C and a 
orresponding eigenve
tor ψ ∈ CN
. Alterna-

tively, one may 
onsider the eigenvalue problem on the dual spa
e (CN)∗ of CN
, that is the
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spa
e of linear fun
tionals on CN
. Using the adjoint map K∗ : (CN)∗ → (CN)∗, f 7→ f ◦K,

of K, the dual eigenvalue problem reads

K∗(f) = µf, (2.34)

where µ ∈ C and f ∈ (CN)∗. Typi
ally, the dual eigenvalue problem is also formulated in

C
N
by virtue of the 
anoni
al isomorphism between C

N
and its dual that is provided by the

standard s
alar produ
t in CN
: For any f ∈ (CN)∗ there exists a unique ve
tor ψ′ ∈ CN

with

fψ′(·) := f(·) = 〈ψ′ | · 〉 a

ording to the Riesz representation theorem [118, Se
. II.2℄. Hen
e,

Eq. (2.34) gives

(K∗fψ′) (ϕ)
def

= fψ′(Kϕ) = 〈ψ′ |Kϕ 〉
(2.34)

= µfψ′(ϕ) = µ〈ψ′ |ϕ 〉 = 〈µψ′ |ϕ 〉 (2.35)

for all ϕ ∈ CN
, where µ denotes the 
omplex 
onjugate of µ. Identifying the adjoint map K∗

with its matrix representation K∗ = K
T
, the dual eigenvalue problem formulated in CN

reads

K∗ψ′ = µψ′. (2.36)

Due to the representation 〈ψ′ |K(·) 〉 = µ〈ψ′ | · 〉 one distinguishes between the so-
alled left

eigenve
tor ψL := ψ′
of K asso
iated with the eigenvalue µ and the right eigenve
tor ψR := ψ

from Eq. (2.33) of K asso
iated with the eigenvalue λ [124, Chap. 6℄. As 
an be seen by

0 = det(K − λ1) = det (K − λ1) = det(K∗ − λ1) (2.37)

the spe
tra of K and K∗
are 
omplex 
onjugate to ea
h other. Following Ref. [125℄, we de�ne

the matri
es R and L the 
olumns of whi
h 
ontain the right or left eigenve
tors of K, and

the diagonal matrix Λ 
ontaining the 
orresponding eigenvalues. Then Eqs. (2.33) and (2.36)

are in matrix notation given by

KR = RΛ, (2.38a)

K∗L = LΛ. (2.38b)

Thus, for hermitian matri
es, K∗ = K, with real spe
trum, right and left eigenspa
es 
oin
ide.

The same holds true for unitary matri
es, K∗ = K−1
, with Λ = Λ−1

, for that

KL = KLΛΛ = KK∗LΛ = LΛ. (2.39)

In general, however, there is no simple relation between right and left eigenve
tors. We

emphasize that the eigenve
tors of K do not have to form an orthogonal basis unless K is
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hermitian or unitary. For a basis expansion in terms of eigenve
tors it is therefore useful to

re
ognize that right and left eigenve
tors form a pair of dual bases as follows [126℄. Consider

the adjoint of Eq. (2.38b), i.e., L∗K = ΛL∗
. Multiplying both sides with R from the right

hand side, and multiplying both sides of Eq. (2.38a) by L∗
from the left hand side yields

L∗KR = ΛL∗R = L∗RΛ, (2.40)

that is

[L∗R,Λ] = 0. (2.41)

Sin
e Λ is a diagonal matrix, L∗R must therefore be a diagonal matrix as well. Thus, from

the o�-diagonal elements of L∗R one �nds

(L∗R)ik =

N∑

j=1

L∗
ijRjk =

N∑

j=1

LjiRjk = 〈ψL

i |ψR

k 〉 = 0 (i 6= k) (2.42)

This is the essential property of dual bases. By appropriate normalization, it is possible to


hoose

‖ψL

k ‖ = ‖ψR

k ‖, 〈ψL

k |ψR

k 〉 = 1 (1 ≤ k ≤ N), (2.43)

as 
ommonly used more in the mathemati
al literature. From the physi
s point of view, it is

more 
onvenient to normalize the eigenve
tors by

‖ψL

k ‖ = 1, ‖ψR

k ‖ = 1 (1 ≤ k ≤ N), (2.44)

su
h that 〈ψL

k |ψR

k 〉 is not a �xed value independent of k. This 
hoi
e allows for the proba-

bilisti
 quantum-me
hani
al interpretation of right and left eigenve
tors. Assuming that K is

diagonalizable, the expansion of a ve
tor ϕ ∈ CN
in terms of right or left eigenve
tors thus

reads

ϕ =
N∑

k=1

〈ψL

k |ϕ 〉
〈ψL

k |ψR

k 〉 ψ
R

k =
N∑

k=1

〈ψR

k |ϕ 〉
〈ψR

k |ψL

k 〉
ψL

k . (2.45)
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Chapter 3

Chaoti
 Dynami
s

In the previous 
hapter on open quantum system, we mainly fo
used on how to des
ribe the

intera
tion of a 
on�ned s
attering region with its environment. In this 
hapter we spe
ify the

kind of dynami
s that we assume within the s
attering region in terms of 
lassi
al me
hani
s.

To this end we provide an overview on the 
lassi
al theory of Hamiltonian dynami
al systems

in Se
. 3.1. In parti
ular, we dis
uss the generi
 stru
ture of a mixed phase spa
e with regions

of regular and 
haoti
 motion. The di�eren
e between 
haoti
 dynami
s in globally 
haoti


systems and the 
haoti
 dynami
s within the 
haoti
 part of a generi
 mixed phase spa
e

is presented in Se
. 3.2. We parti
ularly 
onsider the in�uen
e of the generi
 hierar
hy of

partial transport barriers. The bridge to open systems is built in Se
. 3.3. There we introdu
e


lassi
al open maps and dis
uss the stru
ture of sets that are trapped although the system is

open. It turns out that the trapped sets of 
haoti
 systems have fra
tal properties.

3.1 Generi
 Hamiltonian Dynami
s

A 
ommon formulation of the theory of 
lassi
al me
hani
s is the Hamiltonian approa
h as it

ni
ely paves the way towards the theory of quantum me
hani
s. The Hamiltonian equations

of motion,

q̇k(t) =
∂H

∂pk

(
q(t), p(t), t

)
, ṗk(t) = −∂H

∂qk

(
q(t), p(t), t

)
, (3.1)

determine the evolution of generalized position and momentum 
oordinates, q = (q1, . . . , qf )

and p = (p1, . . . , pf), by the Hamilton fun
tion H : Γ×T → R. This de�nes a dynami
al sys-

tem with f degrees of freedom on the extended phase spa
e Γ×T ⊆ R
2f×R, 
f. Refs. [127,128℄.

In general the phase spa
e Γ is 
onsidered to be a symple
ti
 manifold [129�132℄. Darboux's

theorem, however, allows us to treat Γ lo
ally as a �at Eu
lidean ve
tor spa
e [129,130℄. In this

thesis we study two-dimensional, time-dis
rete, symple
ti
 maps. They originate for instan
e
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from restri
ting the time-
ontinuous dynami
s of a time-independent Hamilton fun
tion with

f = 2 from the energy shell to a Poin
aré se
tion, or from strobos
opi
 solutions of a (period-

i
ally) time-dependent Hamilton fun
tion with f = 1 [133℄. A di�eomorphism T : Γ → Γ on

a two-dimensional symple
ti
 manifold Γ with the 
anoni
al di�erential form ω = dq ∧ dp is


alled symple
ti
 if ω remains invariant under the pullba
k by virtue of T [129,130℄. In 
harts

of the R2
, where ω is represented by the skew-symmetri
 matrix

Ω =

(

0 1

−1 0

)

, (3.2)

symple
ti
ity of T means that

DT |Tx ΩDT |x = Ω (3.3)

for all x ∈ Γ. Here DT |x denotes the Ja
obian of T at the point x. Espe
ially for the


onsidered two-dimensional 
ase, Eq. (3.3) redu
es to [23℄

detDT |x = +1 (x ∈ Γ). (3.4)

This admits the intuitive interpretation that a symple
ti
 map is 
hara
terized by preserving

the phase-spa
e volume and the orientation. Note that this simple interpretation holds true

only for the two-dimensional 
ase. Remarkably, an equivalent formulation of Eq. (3.4) is that

the two eigenvalues of DT |x multiply to unity. Hen
e, if λ is an eigenvalue of DT |x so is λ−1
.

Moreover, sin
e DT |x is real, if λ is an eigenvalue then λ lies in the spe
trum as well. As the

two eigenvalues of DT |x 
hara
terize the linearized dynami
s around any �xed point x ∈ Γ,

T (x) = x, the spe
tral restri
tions due to symple
ti
ity imply restri
tions on the possible types

of �xed points. It turns out that symple
ti
 two-dimensional maps only allow for ellipti
 (λ

imaginary), hyperboli
 (λ real), or paraboli
 (λ equals +1 or −1) �xed points [23℄.

If there exists a 
onstant of motion, that is an observable G : Γ → R for whi
h globally

G ◦ T = G, then the dynami
al system is 
alled integrable or regular [132℄. In this 
ase,

the Arnold�Liouville theorem says that the motion takes pla
e on one-dimensional tori when

looked at in a
tion�angle variables [130, 132℄. On the other hand, if there is no su
h 
onstant

of motion, orbits are not 
on�ned to one-dimensional submanifolds of Γ. The dynami
s is

then referred to as 
haoti
 or irregular. Note that, typi
ally, the absen
e of regular motion


omes along with a sensitive dependen
e on initial 
onditions whi
h motivates the notion

of deterministi
 
haos. This is usually formulated in terms of the Lyapunov exponent: In

general, the dynami
al behavior of points started in a neighborhood of x ∈ Γ is not isotropi


but depends on the dire
tion. Chara
teristi
 dire
tions are given by the eigenve
tors of the
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Ja
obian of T at x. Let λ1(x, n) and λ2(x, n) be the two eigenvalues of

[
DT |Tn−1(x) · . . . ·DT |T (x) ·DT |x

] 1
n . (3.5)

The 
hara
teristi
 Lyapunov exponents in x are de�ned by [133℄

Λ(i)(x) := lim
n→∞

log |λi(x, n)|, (i ∈ {1, 2}). (3.6)

Note that for symple
ti
 maps the sum of both Lyapunov exponents is zero. The greater of

the two exponents is denoted by Λ(x), and if it is essentially independent of x the fun
tional

dependen
e is also dropped in the notation. The notion of 
haoti
 dynami
s is usually reserved

for motion with a nonzero Lyapunov exponent. In general symple
ti
 maps or Hamiltonian

dynami
al systems are not globally regular or 
haoti
. A generi
 phase spa
e rather exhibits

both regions of regular motion and regions of 
haoti
 motion [35℄. The involved stru
ture

of su
h a mixed phase spa
e is governed by the Kolgomorov�Arnold�Moser theorem and the

Poin
aré�Birkho� theorem [132,133℄.

In order to illustrate the generi
 mixed phase spa
e, let us 
onsider the Chirikov standard

map as a popular example for generi
 two-dimensional symple
ti
 maps [134℄. It is de�ned by

the time-periodi
ally ki
ked Hamilton fun
tion

H(q, p, t) = T (p) + V(q)
∑

n∈Z

δ(t− n), (3.7)

where T (p) = p2/2 denotes the kineti
 term and V(q) = [κ/(4π2)] cos(2πq) denotes the poten-

tial term with the ki
king strength parameter κ. By solving Hamilton's equations of motion

strobos
opi
ally at times n ∈ Z, one obtains the standard map

T (q, p) =

(

q + p+ κ
4π

sin(2πq) mod 1
{
p+ κ

4π

[
sin(2πq) + sin

(
2π(q + p+ κ

2
sin(2πq))

)]
+ 1

2
mod 1

}
− 1

2

)

. (3.8)

Intuitively, the 
hosen strobos
opi
 times 
orrespond to looking at the dynami
s always after

half a ki
k, whi
h ni
ely symmetrizes the phase-spa
e portraits. Sin
e the map intrinsi
ally

exhibits periodi
ity in phase spa
e, it is 
onvenient to restri
t the standard map, Eq. (3.8),

to the torus with unit 
ell [0, 1) ×
[
−1

2
, 1
2

)
. Depending on the ki
king strength κ, the stan-

dard map exhibits the typi
al patterns of regular, mixed, and 
haoti
 dynami
s, see Fig. 3.1.

We emphasize that the 
ase of mixed dynami
s provides a selfsimilar island-around-island

stru
ture a

ording to the Poin
aré�Birkho� theorem [133℄.
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Figure 3.1. Phase-spa
e portraits of the standard map, Eq. (3.8), with (a) regular dynami
s

at κ = 0, (b) mixed dynami
s at κ = 2.9, and (
) 
haoti
 dynami
s at κ = 10. Regular

orbits are 
olored in orange and 
haoti
 orbits are 
olored in blue. All panels share the same

verti
al axis.

3.2 Chaoti
 Phase-Spa
e Transport

The transport properties of 
haoti
 motion in a generi
 system with mixed phase spa
e are very

di�erent from the transport properties in a globally 
haoti
 system. This is already indi
ated

by the shown 
haoti
 orbits in Fig. 3.1(b, 
): While 
haoti
 orbits in the globally 
haoti


system (
) explore the phase spa
e rather uniformly, the 
haoti
 orbits in the mixed system

(b) remain longer in the vi
inity of the regular regions whi
h leads to an enhan
ed density of

blue points there. This visual impression 
an be formulated more rigorously by 
onsidering

Poin
aré re
urren
e times: A

ording to the Poin
aré re
urren
e theorem almost all orbits

initialized in a subset M ⊂ Γ of the bounded phase spa
e Γ with positive Lebesgue measure,

|M | > 0, will return to M [132℄. The statisti
al distribution of the 
orresponding re
urren
e

times 
ontains information about the transport properties of the system. For globally 
haoti


systems, the probabilityR(t) for an orbit to return toM after t iterations de
ays exponentially.

The 
haoti
 motion in generi
 systems, however, gives rise to an algebrai
 de
ay, i.e., R s
ales

as a power law [16, 17, 23, 135℄. This is a signature of the fa
t that phase-spa
e transport is

systemati
ally suppressed in the vi
inity of regular regions. This is explained by the 
on
ept

of partial transport barriers [23℄: Let C be a 
urve that de
omposes the phase spa
e into two

regions A1 and A2. Then the transport between both regions is governed by the �ux

φC := |T (A1) ∩ A2| (3.9)

that is transmitted between A1 and A2 in one iteration. Due to the symple
ti
ity of the

map T , A1 and A2 may be ex
hanged in the above de�nition, and T may be repla
ed by

T−1
. If C is an invariant 
urve, T (C) = C, like for a regular torus, the 
orresponding �ux φC
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vanishes su
h that there is no transport between A1 and A2, and C may be interpreted as a

transport barrier. In the same spirit, a 
urve C for whi
h φC does not vanish is 
alled a partial

transport barrier. The most interesting partial barriers are the ones whi
h suppress transport,


orresponding to a relatively small �ux φC 
ompared to the phase-spa
e volumes |A1| and |A2|.
There are two 
ommon types of partial barriers [23℄: A so-
alled Cantorus barrier originates

from the remnants of a regular torus of irrational winding number that is broken by a small

perturbation as in the Kolmogorov�Arnold�Moser s
enario. Restri
tive partial barriers 
an

also originate from a 
ombination of the stable manifold

W
s

(x) := {ξ ∈ Γ : lim
k→∞

‖T nk(ξ)− x‖ = 0} (3.10)

and the unstable manifold

W
u

(x) := {ξ ∈ Γ : lim
k→∞

‖T−nk(ξ)− x‖ = 0} (3.11)

of a hyperboli
 n-periodi
 point x, that is a hyperboli
 �xed point of the n-fold iterate map

T n. Let us point out though that the spe
i�
 origin of a partial barrier is of minor relevan
e

in this thesis. We are rather interested in the signatures of a given partial barrier in terms

of 
lassi
al and quantum me
hani
al lo
alization and transport. Therefore, instead of going

into the details of the 
onstru
tion of partial barriers we fo
us on dis
ussing their transport

me
hanism. To this end, it is useful to introdu
e the so-
alled turnstile of the partial barrier,

sometimes also referred to as revolving door. The turnstile of the partial barrier C is the set

{
A1 ∩ T−1(A2)

}
∪
{
T−1(A1) ∩ A2

}
, (3.12)

where A1 ∩ T−1(A2) is the subset of A1 mapped to A2 under one iteration of the map T ,

and vi
e versa, T−1(A1) ∩ A2 is the subset of A2 that is mapped to A1. The turnstile is

also 
hara
terized by being the set en
losed by the preimage T−1(C) of the partial barrier C
and C itself. An orbit initialized in A1 will remain in A1 unless it enters the turnstile region

A1∩T−1(A2) and is then mapped to A2 in the next step. This so-
alled turnstile me
hanism is

visualized in Fig. 3.2 for a ki
ked model system with an isolated partial barrier as introdu
ed

in Refs. [32, 136℄. Its phase spa
e, shown in Fig. 3.2(
), exhibits regular regions at the top

and the bottom and a large 
haoti
 sea in between. Although 
haoti
 orbits explore the entire


haoti
 
omponent uniformly in the long run, the orbit started at the red point in Fig. 3.2(a)

remains in the upper half for surprisingly many iterations, Fig. 3.2(a�
). In fa
t, it turns out

that the stable and unstable manifold of a hyperboli
 �xed point in the 
enter of the phase

spa
e form a partial barrier su
h that the upper (green) and lower region (orange) be
ome

almost invariant, see Fig. 3.2(d, e). In a single iteration of the map, only a small part of the
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(a) (b) (c)
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Figure 3.2. Time evolution of a 
haoti
 orbit (gray points) in the ki
ked model system,

Se
. (4.3), initialized at the red point in (a), for (a) 10 iterations, (b) 500 iterations, and (
)

2500 iterations. One iteration of the green and orange almost invariant sets in (d) gives the

green and orange sets in (e), respe
tively. They are separated by a partial transport barrier

(solid magenta line in (e)) the preimage of whi
h is shown as a dotted line in (e) and as

a solid line in (d). (f) The 
haoti
 orbit (a�
) 
rosses the partial barrier through turnstile

during the iterations 672 to 674 (red points). Regular tori are shown as solid gray lines in

all panels.

green region is mapped inside the orange one, just as the other way around. This small region

of ex
hange is formed by the turnstile of the partial barrier, 
f. Fig. 3.2(f). The 
haoti
 orbit


rosses the partial barrier only by entering the 
orresponding loop of the turnstile. For the

details of the used map, whi
h are not relevant at the moment, we refer to Se
. 4.3.

Let us brie�y mention that the notion and usage of partial barriers is ambiguous to some

extent: Due to the symple
ti
ity of the dynami
s any iterate or preimage of a partial barrier

is again a partial barrier of the same �ux. For instan
e, it is not mandatory that we refer to

the solid magenta line in Fig. 3.2(e) as partial barrier and not to its preimage in (d). Both

are equally relevant. The question of relevan
e of a partial barrier depends on the 
onsidered

problem: If one wants to investigate the transport from a spe
i�
 phase-spa
e region A1 with


lear inside and outside to its 
omplement A2 = Γ \ A1, then the unique boundary between

them is the relevant partial barrier. One the other hand, if one observes that orbits remain
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in an almost invariant region, the boundary of whi
h is usually not pre
isely known, it is

tempting to un
over the reason for the low ex
hange. Then, however, it is su�
ient to identify

the Cantorus or the hyperboli
 periodi
 point whi
h in prin
iple generates partial barriers that

en
lose the almost invariant region. In this 
ase, it is usually not important to spe
ify the

parti
ular 
ombination of stable and unstable manifolds, the exa
t preimage or iterate, sin
e

the physi
al origin of the trapping is found. Note that parti
ularly in the latter 
ase, where

we started with the observation of an almost invariant region, it is typi
ally relevant that

the partial barrier de
omposes phase spa
e into regions of simple shape and not into regions

that are wildly spread over phase spa
e. This also redu
es the number of interesting partial

barriers.

Restri
tive partial transport barriers o

ur on all s
ales of a generi
 mixed phase spa
e.

This is a 
onsequen
e of the selfsimilar island-around-island pattern [23℄. In the vi
inity of

regular islands, there are in�nitely many partial barriers that are hierar
hi
ally organized with

de
reasing �uxes towards the regular regions. The �rst levels of su
h a hierar
hi
al stru
ture

of partial barriers are shown in Fig. 3.3 for the generi
 standard map, Eq. (3.8), at κ = 2.9.

The outer partial barrier (purple) is generated by the stable and unstable manifolds of a

hyperboli
 orbit of period four. One loop of its turnstile is magni�ed in the se
ond panel.

Around the 
hain of regular islands of period four, one 
an already see another partial barrier

(red) generated by the stable and unstable manifolds of a hyperboli
 orbit of period 28. The

turnstile of this partial barrier is mu
h smaller than that of the outer partial barrier. Even in

the se
ond magni�
ation, the loop whi
h 
onsists of a small inside-to-outside part on the right

and a small outside-to-inside part on the lower left 
orner, 
an easily be overlooked. Note

that a third partial barrier (pink) separates the large 
entral island. Its �ux is even smaller

and not visible on the shown s
ale. By zooming deeper into phase spa
e, further islands and

restri
tive partial barriers appear. The transport within su
h a hierar
hi
al stru
ture 
an be

−0.5

0.0

0.5

0 1q

p

Figure 3.3. Phase-spa
e portrait of the standard map, Eq. (3.8), at κ = 2.9 with regular

orbits (solid gray lines) and 
haoti
 orbits (gray points). Three partial barriers (solid 
olored

lines) are shown together with their preimage (dashed 
olored lines).
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modeled by a Markov tree [135, 137℄: The partial barriers provide a partition of the 
haoti


phase-spa
e 
omponent. As long as the dwell times within ea
h element of this partition

are mu
h larger than the transition times between them, i.e., for su�
iently small transition

probabilities, the dynami
s in ea
h element may be regarded as instantaneously mixing and


an therefore be negle
ted. Then the transition probabilities be
ome time independent whi
h

implies Markovianity. The notion of tree refers to the topology of the island-around-island

stru
ture of a generi
 mixed phase spa
e. That is, an orbit 
an go deeper into the hierar
hy

on di�erent paths but 
an es
ape from it only on a single path. By assuming a 
ertain s
aling

of the areas of the elements of the partition and of the �uxes between them, one 
an indeed

show the algebrai
 de
ay of Poin
aré re
urren
e time statisti
s mentioned before. It turns

out that also the Markov 
hain model with a simpler linear topology is 
apable of produ
ing

this algebrai
 de
ay [138℄. This model will be used later in Se
. 10.3.3 and will therefore be

introdu
ed in a little more detail now.

For the Markov 
hain model [138℄, one assumes that the phase spa
e Γ is de
omposed by

partial barriers into a sequen
e (Ak)k∈N of subsets Ak ⊂ Γ, where only transitions between

adja
ent sets are allowed. In the simplest model, one expe
ts a s
aling of areas as |Ak+1|/|Ak| =
α and for the �ux φk 
onne
ting Ak and Ak+1 one uses φk+1/φk = ϕ [30,138℄. To ensure that

the size of the �ux never ex
eeds the area of the 
orresponding level of the hierar
hy, it is

ne
essarily ϕ ≤ α ≤ 1. The transition probability pk→k+1 between Ak and Ak+1 is then given

by pk→k+1 = φk/|Ak| and obeys the s
aling pk−1→k/pk→k+1 = α/ϕ. Note that the transition

probability from Ak to Ak+1 is di�erent from that for going from Ak+1 to Ak whi
h follows

pk→k+1/pk+1→k = α. With this the time evolution of a given probability distribution (Pk)k∈N

asso
iated with (Ak)k∈N reads

Pk 7→ Pk − (pk→k−1 + pk→k+1) · Pk + pk−1→k · Pk−1 + pk+1→k · Pk+1. (3.13)

The di�erent terms allow for a very intuitive interpretation: The probability Pk is redu
ed by

the part (pk→k−1+ pk→k+1) ·Pk that leaves Ak to Ak−1 or Ak+1, and it gains from the adja
ent

regions Ak−1 the 
ontribution pk−1→k · Pk−1 and from Ak+1 the 
ontribution pk+1→k · Pk+1.

Note that for A1 there is only one dire
tion of transport and Eq. (3.13) needs to be adapted

straightforwardly.

Think of an orbit started in A1 whi
h at some point enters A2. Now, one may ask about

the probability R(t) to return to A1 after exa
tly t further iterations, the so-
alled re
urren
e

probability. In a globally 
haoti
 system, R would de
ay exponentially with rate

γ = − log(1− |A1|). (3.14)

To see this, think of the iteration in the globally 
haoti
 system as a random pro
ess where
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the orbit ends up in A1 with probability |A1| and in Γ \A1, |Γ| = 1, with probability 1− |A1|.
The probability for the orbit to return to A1 after exa
tly t iterations is then given by

R(t) = |A1| (1− |A1|)t−1 = |A1| e−γ(t−1), (3.15)

that is the probability to remain in Γ \ A1 for t − 1 iterations and to be mapped into A1

on
e. In 
ontrast, for the Markov 
hain introdu
ed above the same experiment yields a power-

law de
ay, see Fig. 3.4. More pre
isely, the re
urren
e probability in this 
ase is 
omputed

as follows: We apply an auxiliary absorption to A1, i.e., we set P1 to zero in ea
h iteration

a

ording to Eq. (3.13). Then the sum S(t) :=
∑

k∈N Pk(t) as a fun
tion of the iteration step t

des
ribes the probability to remain in Γ \ A1 for t iterations. The quantity S is also referred

to as survival probability. In Ref. [138℄ it is shown that S(t) ∼ t−γ with

γ =
1

1− log(α)
log(ϕ)

, (3.16)

see also Fig. 3.4. Note that if the initial probability is 
hosen deep within the hierar
hy, e.g.,

a uniform distribution on the entire phase spa
e, S s
ales as S(t) ∼ t−(γ−1)
[139℄. Using

the survival probability S, the probability to return to A1 after t iterations reads R(t) =

S(t− 1)− S(t). In the 
ontinuum limit, this is the negative derivative of S with respe
t to t,

10−12
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100
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R(t) ∼ t −(γ+1)

S(t) ∼ t−γ

R(t), S(t)

t

Figure 3.4. Re
urren
e probability R (orange) and survival probability S (green) for the

time evolution in a Markov 
hain a

ording to Eq. (3.13) (α = 2/3, ϕ = 1/8, φ1/A1 = 1/4).
The 
hain is trun
ated to 100 hierar
hi
al levels. The region of return or es
ape, respe
tively,

is A1, and the initial distribution is taken as P2 = 1. The expe
ted power law (dashed lines)

is de�ned by γ from Eq. (3.16).



28 3.3 Chaoti
 Systems with Es
ape

su
h that

R(t) ∼ t−(γ+1). (3.17)

Basi
ally, the power-law de
ay results from a superposition of exponential de
ays asso
iated

with the di�erent levels of the hierar
hy as 
an also be seen in the �gure by the os
illatory

behavior. Due to the spe
i�
 hierar
hi
al s
aling of the transition probabilities the di�erent

exponential de
ays add up to an overall power-law s
aling.

3.3 Chaoti
 Systems with Es
ape

So far, we dis
ussed phase-spa
e transport for 
losed Hamiltonian systems. Even the re
ur-

ren
e and survival probability are meant to des
ribe properties of the 
losed system despite

the fa
t that an auxiliary absorption was implemented for their numeri
al 
omputation. In

this thesis, however, the fo
us is put on open systems as introdu
ed in Chap. 2 in the 
ontext

of quantum dynami
s. Coming ba
k to the example of the re
urren
e probability one observes

that for spe
i�
 questions 
losed and open systems are 
losely related: The re
urren
e prob-

ability to return to region A1 is identi
al to the probability to es
ape from the same system

if opened by absorption in A1. This is due to the fa
t the orbits whi
h on
e returned to A1

are negle
ted afterwards just like orbits whi
h left the system through A1. From the above


onsiderations on the de
ay of the survival probability S(t) for 
losed systems, we 
an thus im-

mediately 
on
lude that open systems exhibit the analogous phenomenology: It is S(t) ∼ e−γt

for globally 
haoti
 systems and S(t) ∼ t−γ for generi
 systems with an in�nite hierar
hi
al

stru
ture of partial transport barriers. The 
orresponding de
ay 
oe�
ients γ are again given

by Eq. (3.14) and by Eq. (3.16), respe
tively.

In order to dis
uss the properties of systems with es
ape more rigorously, let us introdu
e

the notion of an open map [56℄. To this end, we start with a symple
ti
 map T

l

: Γ → Γ

des
ribing 
losed system dynami
s and de�ne the opening by the absorbing phase-spa
e region

Ω ⊂ Γ. We extend the phase spa
e Γ by the auxiliary point ∞, Γ∞ := Γ∪ {∞}, to whi
h the

opening Ω will be mapped, i.e., ∞ models the environment from where nothing returns to the

bounded part Γ. With this the open map T : Γ∞ → Γ∞ is de�ned by

T (x) :=







T

l

(x) : x ∈ Γ \ Ω,
∞ : x 6∈ Γ \ Ω.

(3.18)

Hen
e, T a
ts just like T

l

all over phase spa
e ex
ept for the opening Ω, from whi
h points

are mapped to ∞. By extending also T

l

to a map on Γ∞ by setting T

l

(∞) := ∞, the map T
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may be written as T = T

l

◦O, with

O(x) =







x : x ∈ Γ \ Ω,
∞ : x 6∈ Γ \ Ω.

(3.19)

Note that again the order of T

l

◦O des
ribes open dynami
s equally well as O◦T

l

or O◦T

l

◦O.
We 
hoose this order in agreement with our de�nition of open quantum maps, Se
. 2.5. In


ontrast to 
losed systems, whi
h are invertible due to symple
ti
ity, for open systems a symbol

like T−1
needs some explanation. When applied to a set X ∈ Γ then the so-
alled preimage

T−1(X) := {x ∈ Γ : T (x) ∈ X} (3.20)

is the set of all points that are mapped to X under one iteration by T . We stress that this is

well de�ned regardless of whether T is invertible or not. Using that T−1(X) = O−1
(
T−1

l

(X)
)

and that O−1(X) = O(X) when restri
ted to Γ, it is T−1(X) = O ◦ T−1

l

(X) within Γ. As O

and T−1

l

are well de�ned maps we may de�ne the map T−1 := O ◦ T−1

l

with T−1
(
T (x)

)
= x

for x ∈ Γ \ Ω and T
(
T−1(x)

)
= x for x ∈ Γ \ T


l

(Ω).

A spe
i�
 example of su
h a map that will be useful for the purpose of illustration through-

out this thesis is the open Baker map. It is based on the ternary Baker map T

l

: [0, 1)2 →
[0, 1)2, 
f. Ref. [140, p. 42℄,

T

l

(q, p) =

(

3q − ⌊3q⌋
(p+ ⌊3q⌋)/3

)

, (3.21)

the a
tion of whi
h is illustrated in Fig. 3.5. The ternary Baker map is a uniformly hyperboli


map with Lyapunov exponent Λ = log 3. For the open map, one typi
ally uses the 
entral

third Ω = [1/3, 2/3)× [0, 1) as opening, see Fig. 3.5.

7→

Figure 3.5. Illustration of the ternary Baker map, Eq. (3.21), whi
h stret
hes by a fa
tor

3 in the unstable (horizontal) dire
tion and 
ontra
ts by a fa
tor 1/3 in the stable (verti
al)

dire
tion. The initial three stripes (left) are res
aled and dis
ontinuously sta
ked on top of

ea
h other (right). If used in the open version, T = T

l

◦ O, the 
entral gray stripe in the

left panel es
apes and nothing is mapped to the middle gray stripe of the right panel.
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Complementary to the question of es
ape, one is typi
ally also interested in properties of

the surviving orbits. Parti
ularly relevant are the forward trapped set

Γ
fwd

:= {x ∈ Γ : T n(x) ∈ Γ (n ∈ N0)} (3.22)

and the ba
kward trapped set

Γ
bwd

:= {x ∈ Γ : T−n(x) ∈ Γ (n ∈ N0)} (3.23)

of all points that remain in the system for an arbitrary number of forward or ba
kward itera-

tions, respe
tively, 
f. [49℄. The trapped sets of the open Baker map are shown in Fig. 3.6(a,

b) by a �nite-time approximation, i.e., Γ
fwd

and Γ
bwd

are approximated by the set of points

that survive three (a) forward or (b) ba
kward iterations. Due to the simple stru
ture of the

Baker map, one 
an intuitively understand the stru
ture of the trapped sets, where we fo
us

on the example of the forward trapped set Γ
fwd

, Fig. 3.6(a): First of all, the opening Ω es
apes

q

p

Γfwd(a)

q

p

Γbwd(b)

q

p

Γrep(c)

q

p

T−n(Ω)(d)

q

p

Tn
(

Tcl(Ω)
)

(e)

Figure 3.6. (a) Forward trapped set Γ
fwd

, (b) ba
kward trapped set Γ
bwd

, and (
) repeller

Γ
rep

= Γ
fwd

∩ Γ
bwd

of the open Baker map. The sets in (a�
) are approximated by being

trapped for at least three iterations in the 
orresponding time dire
tion. (e, f) Set of points

whi
h es
ape under n+1 (d) forward and (e) ba
kward iterations (n = 0: light blue, n = 1:
medium blue, n = 2: dark blue).
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from Γ already in the �rst iteration and is therefore ex
luded from Γ
fwd

. This is the 
entral

light blue stripe in Fig. 3.6(d) whi
h gives rise to the large 
entral gap in Γ
fwd

in (a). The

set that will es
ape in the se
ond iteration must be 
ontained in the opening Ω after the �rst

iteration, that is T−1(Ω) (two medium blue stripes in Fig. 3.6(d)). The set T−1(Ω) is therefore

ex
luded from Γ
fwd

just like T−2(Ω) (four dark blue stripes in Fig. 3.6(d)) whi
h es
apes in

the third iteration by the open Baker map T . Sin
e the �nite-time approximation of Γ
fwd

shown in Fig. 3.6(a) has exa
tly the �rst three forward es
aping sets T−n(Ω), 0 ≤ n ≤ 2, as

gaps, it des
ribes the points whi
h remain in Γ for at least three iterations. This 
onstru
tion

illustrates that the forward trapped set 
an also be represented by [49℄

Γ
fwd

= Γ \
⋃

n∈N0

T−n(Ω). (3.24)

An analogous 
onstru
tion applies to the ba
kward trapped set Γ
bwd

, Fig. 3.6(b), by ex
luding

the ba
kward es
aping sets shown in Fig. 3.6(e). The �rst phase-spa
e region that es
apes

under the ba
kward iteration T−1 = O ◦ T−1

l

is T

l

(Ω) (middle light blue stripe in Fig. 3.6(e)).

The region that es
apes in the se
ond ba
kward iteration is the one that is mapped into T

l

(Ω)

in the �rst ba
kward iteration, T (T

l

(Ω)) (two medium blue stripes in Fig. 3.6(e)). Analogously,

T 2(T

l

(Ω)) (four dark blue stripes in Fig. 3.6(e)) es
apes in the third ba
kward iteration su
h

that T n(T

l

(Ω)), n ∈ N0, are the ba
kward es
aping sets. This gives another representation of

the ba
kward trapped set [49℄,

Γ
bwd

= Γ \
⋃

n∈N0

T n
(
T

l

(Ω)
)
. (3.25)

While Γ
fwd

and Γ
bwd

are trapped either under forward or ba
kward iteration, respe
tively, their

interse
tion Γ
rep

:= Γ
fwd

∩ Γ
bwd

is trapped both under forward and ba
kward iteration. This

trapped set Γ
rep

is 
alled (hyperboli
) repeller or 
haoti
 saddle [49, 56, 62, 76℄. The repeller

of the open Baker map is shown in Fig. 3.6(
) and is 
learly the interse
tion of the trapped

sets shown in panels (a) and (b). Remarkably, the forward trapped set Γ
fwd

is invariant

under ba
kward iteration, T−1(Γ
fwd

) = Γ
fwd

, the ba
kward trapped set Γ
bwd

is invariant under

forward iteration, T (Γ
bwd

) = Γ
bwd

, and the repeller is Γ
rep

invariant both under forward and

ba
kward iteration [56, 76℄.

As 
an be seen in Fig. 3.6(a), the forward trapped set Γ
fwd

is 
ontinuous along the verti
al

dire
tion and strongly gapped along the horizontal dire
tion. This intuitively originates from

the fa
t that a set of points in phase spa
e is exponentially stret
hed along the unstable

(horizontal) dire
tion and exponentially 
ontra
ted along the stable (verti
al) dire
tion. Due

to the bounded phase spa
e, the iterates of this set wind along the unstable manifold and

overlap with the opening in�nitely many times. In 
ontrast, the stable dire
tion leads to
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a 
ontra
tion of the set and not to a systemati
 overlap with the opening. Likewise, the

ba
kward trapped set is gapped along the verti
al dire
tion whi
h is the unstable dire
tion

for the ba
kward iteration. The �lamentary pattern along the gapped dire
tion has fra
tal

properties.

Fra
tal sets are 
hara
terized by having a noninteger dimension [141℄. Certainly, a non-

integer dimension 
an only be the result of a generalized notion of dimension, 
alled fra
tal

dimension. A 
ommon example is the box-
ounting dimension, whi
h de�nes the dimension

of a bounded set M through its s
aling behavior. Let N
b


(M, ε) be the smallest number of

boxes of edge length ε that are ne
essary to 
over M , then the box-
ounting dimension D(M)

is given by [141℄

D(M) := − lim
εց0

logN
b


(M, ε)

log ε
. (3.26)

That means that N
b


(M, ε) s
ales as a power law,

N
b


(M, ε) ∼ ε−D(M), (ε ց 0), (3.27)

the exponent of whi
h is governed by the fra
tal dimension D(M). Equivalently, N
b


(M, ε)


an be de�ned by the number of boxes of a grid with latti
e 
onstant ε that have a nonempty

interse
tion with M [142, p. 43℄. This 
hara
terization is parti
ularly useful for the numeri
al

implementation and will be used in this thesis. The box-
ounting dimension of a set 
an be

di�erent from an integer number due to a selfsimilar stru
ture. In view of the trapped sets of

the open Baker map, Fig. 3.6(a�
), that means that the gaps appear in a selfsimilar pattern

and obey a 
ertain s
aling.

Before 
oming to the expli
it 
omputation of the box-
ounting dimensions of Γ
fwd

, Γ
bwd

,

and Γ
rep

, let us point out that their fra
tal dimension 
an be de
omposed into the partial

fra
tal dimensions δs and δu along the stable and unstable manifolds [76, Chap. 6.3.2℄,

D(Γ
fwd

) = δs(Γ
fwd

) + δu(Γ
fwd

), (3.28)

and analogously for Γ
bwd

and Γ
rep

. This is a 
onsequen
e of their produ
t stru
ture. We

already argued that δs(Γ
fwd

) = 1 and that δu(Γ
bwd

) = 1. Moreover, due to time-reversal

symmetry, it is

δu(Γ
fwd

) = δs(Γ
bwd

) =: δ, (3.29)

see Ref. [56℄, and as the repeller is de�ned by the interse
tion of Γ
fwd

and Γ
bwd

, it is D(Γ
rep

) =

2δ. Hen
e, by 
omputing the partial fra
tal dimension δ, one obtains the fra
tal dimension
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of Γ
fwd

, Γ
bwd

, and Γ
rep

at on
e. A parti
ularly elegant approa
h is given by the Kantz�

Grassberger relation [44, 76℄,

δ = 1− γ

Λ
, (3.30)

relating the fra
tality of the trapped sets with the de
ay rate γ and the Lyapunov exponent Λ.

Let us motivate this relation for the open Baker map with Λ = log(3) and γ = − log(2/3)

in terms of the box-
ounting algorithm. Consider the one-dimensional grid of boxes of edge

length

εn = e−Λn =

(
1

3

)n

, (3.31)

whi
h de�nes a testing sequen
e (εn)n∈N for the 
onvergen
e of Eq. (3.26). We stress that this

sequen
e (εn)n∈N is parti
ularly well adapted to the fra
tal stru
ture of the open Baker map

as εn exa
tly agrees with the width of stripes of the �ne-time approximations of the trapped

sets. Re
all that the Lyapunov exponent Λ des
ribes the stret
hing and 
ontra
tion of sets in

phase spa
e under time evolution. The number N
b


(εn) of boxes of this one-dimensional grid

that are o

upied by the trapped set along its fra
tal dire
tion follows from

N
b


(εn) εn = e−γn =

(
2

3

)n

, (3.32)

whi
h des
ribes the de
ay of the o

upied phase-spa
e fra
tion between 
onse
utive levels of

approximation. In 
ombination, this gives

N
b


(εn) = e(Λ−γ)n = eΛn(1−γ/Λ) = ε−(1−γ/Λ)
n , (3.33)

in agreement with Eq. (3.30). A

ordingly, the partial fra
tal dimension of the open Baker

map reads δ = log(2)/ log(3).

The box-
ounting dimension is a spe
ial 
hoi
e (q = 0) from the 
lass of Rényi dimen-

sions [143℄,

Dq(M) :=
1

q − 1
lim
εց0

log
∑N

b


(M,ε)
i=1 pi(ε)

q

log ε
(q ∈ R≥0, q 6= 1), (3.34)

where the sum is taken over all N
b


(M, ε) boxes that are o

upied by M and with pi(ε) being

the measure of M within the i-th box. Stri
tly speaking, the Kantz�Grassberger relation,

Eq. (3.30), is formulated in terms of the information dimension

D1(M) := lim
q→1

Dq(M) = − lim
εց0

∑N
b


(M,ε)
i=1 pi(ε) log

(
pi(ε)

)

log ε−1
, (3.35)
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using l'H�pital's rule, and not in terms of the box-
ounting dimension D0 as suggested above.

However, for uniform fra
tals all Rényi dimensions 
oin
ide [143℄. This is usually the 
ase for

globally 
haoti
 open maps. For other systems with nonuniformly fra
tal trapped sets, whi
h

are also studied in this thesis, we will spe
i�
ally explain how to apply the above 
on
epts.

To 
on
lude this short introdu
tion on fra
tal dimensions, let us point out that the fra
tal

dimension 
oin
ides with the 
ommon notion of dimension for sets whi
h reasonably allow the

asso
iation with an integer dimension. Moreover, the trapped sets of the open Baker map are

based on the so-
alled middle third Cantor set. Being Cantor sets, the trapped sets have the

following properties whi
h are usually expe
ted also for other fra
tal sets, 
f. Refs. [144, Se
.

7.1d℄ and [145, p. 66℄: A Cantor set is un
ountable but of Lebesgue measure zero; it 
onsists

only of 
luster points and 
ontains all its 
luster points (perfe
t set); it has no interior points

(nowhere dense); it 
ontains no 
onne
ted subsets (totally dis
onne
ted).



Chapter 4

Model Systems with a

Single Partial Transport Barrier

The 
haoti
 phase-spa
e transport in generi
 Hamiltonian systems is governed by the intri
ate

hierar
hi
al stru
ture of partial transport barriers, as was dis
ussed in the previous 
hapter.

In fa
t, partial barriers also have a strong in�uen
e on quantum-me
hani
al properties as will

be
ome 
lear later. As a �rst 
ru
ial step towards a thorough understanding of the aggregate

behavior of the hierar
hi
al stru
ture of partial barriers, both 
lassi
ally and quantum me-


hani
ally, we begin with studying systems with a single partial barrier. To this end we design

a simple model system, the partial-barrier map, in Se
. 4.1. The partial-barrier map is the

main dynami
al system studied in this thesis. Its quantization is explained in detail in Se
. 4.2.

The partial-barrier map was initially developed in 
ollaboration with Matthias Mi
hler [123℄.

A random matrix model derived from this map was already presented in Refs. [136, Se
. 4.4℄

and [32℄. Moreover, in Se
. 4.3 we brie�y present a ki
ked model system with a generi
 mixed

phase spa
e and an isolated partial barrier as introdu
ed in Refs. [32,136℄. This model will be

used in Chap. 5.

4.1 Partial-Barrier Map

Re
all that a partial barrier is 
hara
terized by de
omposing phase spa
e into two regions

A1 and A2 that are almost invariant under the map T . The degree to whi
h A1 and A2 are

invariant is re�e
ted in the magnitude of the �ux φ = |T (A1)∩A2| between them. The larger

φ the less invariant are A1 and A2, respe
tively, 
f. Se
. 3.2. We mimi
 this behavior of a

partial barrier in a system with an opening by the partial-barrier map,

T :=M ◦ E ◦O, (4.1)
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whi
h is the 
omposition of three maps, see Fig. 4.1 for illustration: The mapM des
ribes the

un
onne
ted 
haoti
 dynami
s within the two regions A1 := [0, |A1|)× [−1
2
, 1
2
) and A2 := Γ\A1

for Γ := [0, 1)× [−1
2
, 1
2
). The map E indu
es a �ux φ between A1 and A2 by ex
hanging the

regions Φ1 := [|A1| − φ, |A1|) × [−1
2
, 1
2
) ⊆ A1 and Φ2 := [|A1|, |A1| + φ) × [−1

2
, 1
2
) ⊆ A2 with

|Φ1| = |Φ2| = φ. The map O opens the system by the absorbing region Ω, whi
h is 
ontained

in region A1. Note that the order of the maps M , E, and O is mere 
onvention.

Throughout this thesis, we use two di�erent dynami
s for M . First, for the numeri
al

analysis, we use the standard map, Eq. (3.8), a
ting individually on ea
h of the regions Ak,

k ∈ {1, 2}, after appropriate res
aling: The res
aled standard map SA a
ting on the torus

A := [a, a+ |A|)× [−1
2
, 1
2
) is dedu
ed from the ki
ked Hamiltonian from Eq. (3.7) by using

T (p) =
|A|
2
p2, V(q) = κ

|A|
4π2

cos

(
2π(q − a)

|A|

)

, (4.2)

whi
h gives

SA(q, p) =
( {

q + T ′(p− 1
2
V ′(q))− a mod |A|

}
+ a

{
p− 1

2

[
V ′(q) + V ′

(
q + T ′(p− 1

2
V ′(q))

)]
+ 1

2
mod 1

}
− 1

2

)

(4.3)

instead of Eq. (3.8). In appli
ation to the mixing step M of the partial-barrier map T , we use

M : Γ → Γ, x 7→







SA1(x) : x ∈ A1,

SA2(x) : x ∈ A2,
(4.4)

for �xed κ = 10, where the standard map displays a fully 
haoti
 phase spa
e. When using the

q

p := ◦ ◦

T

A1 A2

M

Φ2Φ1

E

Ω

O

Figure 4.1. Illustration of the partial-barrier map T := M ◦ E ◦ O as a 
omposition of

the un
onne
ted mixing dynami
s M within the two regions A1 and A2 on ea
h side of the

partial barrier (solid magenta line) as depi
ted symboli
ally by gray 
ir
ular arrows, the

map E that ex
hanges regions Φ1 and Φ2 (bounded by dotted magenta lines), and the map

O that opens the system by the absorbing region Ω (gray shaded stripe). The gray orbit

(random numbers) in the left panel visualizes the restri
tive e�e
t on transport a
ross the

partial barrier.
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standard map for M , we 
hoose Ω = [0, |Ω|)× [−1
2
, 1
2
) and refer to the 
orresponding map T

as partial-barrier standard map.

Se
ond, for analyti
al 
onsiderations below in Chap. 8, we use the uniformly hyperboli


ternary Baker map, Eq. (3.21), a
ting individually on ea
h of the regions Ak, k ∈ {1, 2}, after
appropriate res
aling: The Baker map BA a
ting on the region A := [a, a + |A|) × [−1

2
, 1
2
) is

de�ned by

BA(q, p) =
(

{3(q − a) mod |A|}+ a
1
3

(
p+ 1

2
+ ⌊3(q − a)/|A|⌋

)
− 1

2

)

. (4.5)

The appli
ation to the mixing step M of the partial-barrier map T reads

M : Γ → Γ, x 7→







BA1(x) : x ∈ A1,

BA2(x) : x ∈ A2,
(4.6)

where we 
hoose |A1| = 1/2, φ = 1/6, and Ω = [1
6
, 2
6
)× [−1

2
, 1
2
), as illustrated in Fig. 4.2. We

refer to the 
orresponding map T as partial-barrier Baker map.

The expli
it form of the ex
hange map E is given by

E(q, p) =

(

{(q − |A1|+ 2φ) mod 2φ}+ |A1| − φ

p

)

(4.7)

for q ∈ [|A1|−φ, |A1|+φ), and otherwise by the identi
al transformation. The opening O a
ts

as de�ned in Eq. (3.19). It 
an be shown that both, the partial-barrier standard map as well

as the partial-barrier Baker map are symple
ti
, and thus, des
ribe Hamiltonian dynami
s up

to es
ape through the absorbing region, and both maps are equipped with an anti
anoni
al

symmetry, 
omparable to the time-reversal invarian
e [123℄.

7→ 7→ 7→
O E M

Figure 4.2. Illustration of the partial-barrier Baker map T = M ◦ E ◦ O. Magenta line

indi
ates partial barrier and gray shaded region marks opening Ω (�rst three panels from

left) and image M(E(Ω)) of opening (right panel).
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4.2 Quantized Partial-Barrier Map

In 
ontrast to Hamiltonian �ows there exists no 
anoni
al quantization pro
edure for time-

dis
rete maps. There are rather system spe
i�
 methods whi
h are restri
ted by just a few


onstraints as reviewed in Ref. [146, Se
. 2.5.1℄: A quantization of a symple
ti
 map T has to

establish a sequen
e of unitary operators (UN)N∈N, su
h that UN is a
ting on anN-dimensional

Hilbert spa
e CN
. The dimension of the Hilbert spa
e is asso
iated with the size of Plan
k's 
ell

by h = 1/N for a phase spa
e of unit area. Most importantly, in order to ensure 
orresponden
e

between 
lassi
al and quantum dynami
s it is required that

U−n
N op(f)NU

n
N = op(f ◦ T n)N +O(N−1) (n ∈ Z). (4.8)

This means that time evolution and quantization 
ommute for all observables in the semi
las-

si
al limit, h ց 0. The quantization op(f) of a 
lassi
al observable f : Γ → R is explained

by the Weyl quantization. Note that for the 
ommon 
anoni
al quantization pro
edures for

Hamiltonian �ows like the Weyl or the anti-Wi
k quantization [27℄, this property, Eq. (4.8),

is guaranteed by Egorov's theorem. The quantization s
heme for symple
ti
 maps as outlined

above 
an be formulated rigorously in terms of the pseudodi�erential operator formalism,


f. [147, Chap. 2.2.5℄. In some paradigmati
 
ases there are more dire
t ways to quantization.

The generi
 standard map allows for a Floquet approa
h [148℄ due to the periodi
 ki
king

potential. Another approa
h based on generating fun
tions, 
f. [149℄, will be useful to quan-

tize the Baker map. For the quantization of the partial-barrier map we take advantage from

the de
omposition T = M ◦ E ◦ O whi
h translates into an ordinary matrix produ
t of the

individually quantized maps. The N dependen
e of UN will be suppressed in the notation in

the following.

4.2.1 Quantized Standard Map

Re
all that the standard map, Eq. (3.8), originates from a periodi
ally ki
ked Hamilton fun
-

tion, Eq. (3.7), by a strobos
opi
 solution s
heme. The same holds true for the res
aled version

in Eq. (4.3). These singular ki
ks give rise to the fa
torization of the quantum time-evolution

operator,

U = e−
i
2~

Ve−
i
~
T e−

i
2~

V . (4.9)

We emphasize that this fa
torization is not an approximation by means of the split operator

method [150, Se
. 2.3.2℄. The spe
i�
 fa
tors 
orrespond to the 
hosen observation times for

the strobos
opi
 solution, that is, the potential ki
k is split into halves and free motion takes

pla
e in between as in the 
lassi
al 
ase. When applied in position representation, the term
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e−
i
2~

V
is an operator-valued fun
tion of the multipli
ation operator q (position), [qψ](x) =

xψ(x), and e−
i
~
T
is an operator-valued fun
tion of the di�erential operator p (momentum),

[pψ](x) = −i~ψ′(x), by means of fun
tional 
al
ulus [118℄. It is useful to transform the kineti


term e−
i
~
T
into a fun
tion of the multipli
ation operator by Fourier transform F , using that

[Fpψ](x) = −i~[Fψ′](x) (4.10)

=
−i~√
2π~

∫

R

e−
i
~
xyψ′(y) dy (4.11)

=
i~√
2π~

∫

R

(

− i

~
x

)

e−
i
~
xyψ(y) dy (4.12)

= x[Fψ](x) = [qFψ](x), (4.13)

with integration by parts and vanishing boundary 
ontribution [151, �12.2.2℄. Then the time

evolution of a state ψ formally reads

Uψ = e−
i
2~

V
F

−1
F e−

i
~
T e−

i
2~

Vψ = e−
i
2~

V
F

−1e−
i
~
T
F e−

i
2~

Vψ, (4.14)

where in the last expression, e−
i
~
T
now a
ts as a fun
tion of the multipli
ation operator. With

the expli
it form of F , it is

Uψ(q) =
1

2π~
e−

i
2~

V(q)

∫

R

∫

R

e
i
~
p(q−q′)e−

i
~
T (p)e−

i
2~

V(q′)
︸ ︷︷ ︸

=:u(q,q′,p)

ψ(q′) dq′ dp, (4.15)

where neither T nor V are operator-valued fun
tions anymore and q, q′, and p represent usual


oordinates. Assuming periodi
ity of e−
i
~
T
as a fun
tion of p with period M

mom

, the integral

over p may be de
omposed into an integral over a single period [p
min

, p
min

+M
mom

) and a sum

over the other intervals,

Uψ(q) =
1

2π~
e−

i
2~

V(q)

∫

R

[
∑

k∈Z

∫ p
min

+M
mom

p
min

e
i
~
kM

mom

(q−q′)u(q, q′, p) dp

]

ψ(q′) dq′. (4.16)

Poisson's summation formula [152, p. 153℄ yields

∑

k∈Z

e
i
~
kM

mom

(q−q′) =
∑

k∈Z

δ
(
M

mom

(q−q′)
2π~

− k
)

=
∑

k∈Z

2π~
M

mom

δ
(

q − q′ − k 2π~
M

mom

)

, (4.17)

and thus restri
ts the q values to the latti
e

qk =
2π~

M
mom

(k + ϑ
mom

), (k ∈ Z), (4.18)
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with �xed Blo
h phase ϑ
mom

∈ [0, 1). This gives

Uψ(qn) =
1

M
mom

e−
i
2~

V(qn)
∑

k∈Z

∫ p
min

+M
mom

p
min

u(qn, qk, p)ψ(qk) dp. (4.19)

Additionally, we assume periodi
ity of e−
i
2~

V
as a fun
tion of q with period M

pos

and qk+N =

qk +M
pos

. Then one obtains

∑

k∈Z

u(qn, qk, p)ψ(qk) =

N−1∑

k=0

u(qn, qk, p)ψ(qk) ·
M

mom

N

∑

m∈Z

δ

(

p− M
mom

(ϑ
pos

−m)

N

)

, (4.20)

analogously to the above dis
ussion by applying Poisson's summation formula and using the

quasiperiodi
ity of ψ. This restri
ts also the p values to a latti
e de�ned through

pk =
2π~

M
pos

(k + ϑ
pos

), (k ∈ Z) (4.21)

with the Blo
h phase ϑ
pos

∈ [0, 1). To ensure 
ompatibility of the position and momentum

latti
e, it needs to be required that

N =
M

pos

M
mom

2π~
∈ N. (4.22)

Hen
e, the quantization of the standard map (3.8) on the torus reads

Uψ(qn) =

N−1∑

k=0

Unkψ(qk), (4.23)

with

Unk =
1

N
e−

i
2~

V(qn)
N−1∑

m=0

e
i
~
pm(qn−qk)e−

i
~
T (pm)e−

i
2~

V(qk), (4.24)

and we set M
pos

= M
mom

= 1. Note that the dis
retization of position and momentum spa
e

is not an approximation in this 
ontext. It rather follows quite naturally from the toroidal

phase-spa
e stru
ture and leads to the �nite dimensional Hilbert spa
e CN
with Eu
lidean

s
alar produ
t, see also [153℄.
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4.2.2 Quantized Baker Map

Another 
ommon approa
h for the quantization of symple
ti
 maps is based on the semi
las-

si
al Gutzwiller�van Vle
k propagator [152, Se
. 10.2℄,

〈Q |Uq 〉 =
√

| detS ′′(Q, q)|
2πi ~

exp

{
i

~
S(Q, q)− i

π

2
νS(Q, q)

}

, (4.25)

with

√
i = eiπ/4, whi
h was �rst formulated for quantum maps in Ref. [154℄. It des
ribes

the transition amplitude for the unitary time evolution from the initial position q to the

�nal position Q within one iteration of the quantum map U . The essential ingredient is the

dis
rete 
lassi
al a
tion S as explained shortly below. The Morse index νS(Q, q) is the number

of negative eigenvalues of the Hessian S ′′(Q, q), see [155, Se
. 5.8℄.

Consider a su�
iently smooth fun
tion S : R2 → R2
, restri
ted to some appropriate

domain. Then the map T : Γ → Γ, Γ ⊆ R2
, de�ned by

(Q,P ) = T (q, p) ⇔ p = −∂2S(Q, q), P = ∂1S(Q, q), (4.26)

is symple
ti
 provided that su
h a T exists, see Se
. B.2. The fun
tion S is 
alled generating

fun
tion (of �rst type) for T . Moreover, S(Q, q) assumes the role of a dis
rete a
tion for a path

leading from (q, p) to (Q,P ) within one iteration of the map T , as dis
ussed in [23, Se
. V.D.℄.

Using this generating fun
tion S, Eq. (4.25) provides a s
heme to obtain a quantization U for

the symple
ti
 map T . Note that if there exists no unique solution T by means of Eq. (4.26)

it is ne
essary to sum over the di�erent solutions in Eq. (4.25), 
f. [156, Se
. 5.℄. If no su
h

solution exists, it is useful to make use of a di�erent type of generating fun
tion that may be

obtained from S by Legendre transformation. In the following, we only need the parti
ular

type

G(P, q) := S(Q̃(P, q), q)− P Q̃(P, q), (4.27)

where the fun
tion Q̃ is de�ned by

Q = Q̃(P, q) ⇔ P = ∂1S(Q, q). (4.28)

The fun
tion G generates a symple
ti
 map T by

(Q,P ) = T (q, p) ⇔ Q = −∂1G(P, q), p = −∂2G(P, q), (4.29)

whi
h 
an be shown analogous to the derivation in Se
. B.2. The quantization U of T in terms
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of G then reads [157, Se
. 2.4.7℄

1

〈 pm |Uqn 〉 ∼ exp {2πiN G(pm, qn)} , (4.30)

evaluated on a grid with positions q0, . . . , qN−1 and p0, . . . , pN−1. Note that the Hessian

G′′
is 
onstant for all examples used in this thesis, su
h that we may negle
t global fa
tors

asso
iated with | detG′′(pm, qn)| or with the Morse index. In general, it is ne
essary to verify

the unitarity of U anyway, whi
h �xes the prefa
tor up to a phase, and global phase fa
tors are

irrelevant for quantum-to-
lassi
al 
orresponden
e by means of the Egorov property, Eq. (4.8).

Moreover, the ~ dependen
e is repla
ed by the dependen
e on the Hilbert spa
e dimension

N = 1/(2π~) ∈ N.

It is straightforward to show that

Gj(P, q) := −3Pq + j(P + q) (4.31)

is a generating fun
tion for the Baker map, Eq. (3.21), for q ∈ [j/3, (j + 1)/3) and P ∈
[j/3, (j + 1)/3) with j ∈ {0, 1, 2}. For the purpose of simpli
ity in the notation, we restri
t

ourselves to the dis
ussion of the usual ternary Baker map. The stret
hed version, Eq. (4.5),

may be treated analogously. Inserting the above generating fun
tion into Eq. (4.30), shows

that the quantized Baker map U obeys

〈 pm |Uqn 〉 ∼ exp {2πiN [−3pmqn + j(pm + qn)]} . (4.32)

For the latti
e of positions and momenta we use

qn =
n+ ϑ

mom

N
, pm =

m+ ϑ
pos

N
, (4.33)

with j N/3 ≤ m,n < (j + 1)N/3, N ∈ 3N, and arbitrary phases ϑ
pos

, ϑ
mom

∈ [0, 1). We iden-

tify the element qn of the position latti
e in position representation with the standard basis

ve
tor (0, . . . , 0, 1, 0, . . . , 0) ∈ CN
, where unity o

upies the n-th entry. Owing to Heisenberg's

un
ertainty, or the 
anoni
al 
ommutation relation of position and momentum operators, re-

spe
tively, an element pm of the momentum latti
e is asso
iated with a ve
tor in Hilbert spa
e

by dis
rete inverse Fourier transformation of the position ve
tors, that is,

〈 qn | pm 〉 = 1√
N
e2πiN qnpm

(4.34)

is the n-th 
omponent of the m-th momentum ve
tor in position representation. Note that we

allow for an ambiguity in the notation by using the same symbol for the element qn ∈ [0, 1) in

1

Note that, given the notation used in [157℄, there is a minus sign missing in the exponential in Eq. (2.4.101).
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the position latti
e and the 
orresponding position ve
tor qn ∈ CN
in Hilbert spa
e, and vi
e

versa, for the momenta. It is 
onvenient to rearrange Eq. (4.32) to

〈 pm |Uqn 〉 ∼ exp {−2πi 3N (pm − j/3)(qn − j/3)} , (4.35)

again negle
ting a global phase fa
tor. Subtra
ting j/3 from pm and qn 
orresponds to an

index shift in m and n by j N/3, su
h that 〈 pm |Uqn 〉 gives the same value for ea
h j. In

other words, for 0 ≤ m,n < N/3 it is

〈 pm |Uqn 〉 = 〈 pm+N/3 |Uqn+N/3 〉 = 〈 pm+2N/3 |Uqn+2N/3 〉 (4.36)

with

〈 pm |Uqn 〉 ∼ exp

{

−2πi
(n+ ϑ

mom

)(m+ ϑ
pos

)

N/3

}

, (4.37)

and all other 
omponents are zero. This 
orresponds to the more intuitive blo
k-matrix nota-

tion

(〈 pm |Uqn 〉)0≤m,n≤N−1 =






FN/3 0 0

0 FN/3 0

0 0 FN/3




 (4.38)

with the matrix FN of the dis
rete Fourier transformation,

[FN ]mn :=
1√
N
e−2πi(n+ϑ

mom

)(m+ϑ
pos

)/N . (4.39)

Using

〈 qm |Uqn 〉 =
N−1∑

k=0

〈 qm | pk 〉〈 pk |Uqn 〉 (4.40)

to get from the mixed representation 〈 pk |Uqn 〉 to the position representation 〈 qm |Uqn 〉, one
obtains the quantized Baker map [158�160℄,

U = F
−1
N






FN/3 0 0

0 FN/3 0

0 0 FN/3




 . (4.41)

It is re
ommended to 
hoose ϑ
mom

= ϑ
pos

= 0.5 to ensure expe
ted symmetries [160℄.
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4.2.3 De
omposition of Quantum Dynami
s

Already in the 
lassi
al 
ontext, the simpli
ity of the partial-barrier map T = M ◦ E ◦ O,
being a 
omposition of three elementary maps and having only re
tangular subdomains of

type I× [−1
2
, 1
2
) with some I ⊆ [0, 1), is rather 
onvenient. For the quantization of T , however,

this stru
ture turns out to be a real advantage. The 
omposition of 
lassi
al maps translates

to an ordinary matrix produ
t of the individually quantized maps, and due to the Cartesian

produ
t stru
ture of the subdomains, their quantization in position representation is feasible

on an intuitive level.

We 
onstru
t the quantum dynami
s on the N dimensional Hilbert spa
e H := CN
,

equipped with the Eu
lidean standard s
alar produ
t, that is asso
iated with the phase-spa
e

grid Q× P with

Q := {(k + ϑ
mom

)/N : k ∈ {0, . . . , N − 1}} ⊂ [0, 1), (4.42a)

P := {(k + ϑ
pos

)/N − 1
2
: k ∈ {0, . . . , N − 1}} ⊂ [−1

2
, 1
2
), (4.42b)

for ϑ
pos

, ϑ
mom

∈ [0, 1). Starting with the quantization M of the un
onne
ted mixing dynami
s

M , we de
ompose H into the subspa
es

H1 := span

{
qk ∈ H : qk ∈ Q ∩ [0, |A1|)

}
, (4.43a)

H2 := span

{
qk ∈ H : qk ∈ Q ∩ [|A1|, 1)

}
, (4.43b)

su
h that H ≃ H1 ⊕ H2 with the dire
t orthogonal sum ⊕, 
f. Ref. [118, Se
 II.1℄. This

de
omposition 
orresponds to the partition Γ = A1 ∪A2, A1 ∩A2 = ∅, of phase spa
e. Re
all
that M is a
ting individually in ea
h of the regions A1 and A2, where the individual maps

are given by the 
haoti
 standard map, Eq. (4.3), or the ternary Baker map, Eq. (4.5). The

quantization for both of these maps is presented in Se
s. 4.2.1 and 4.2.2. For the general


onstru
tion of M, however, we do not have to distinguish between the standard and the

Baker map: Let M1 denote the quantum map a
ting on H1 and M2 be the quantum map

a
ting on H2, respe
tively. Then the quantization of the un
onne
ted mixing dynami
s M

reads

M =

(

M1 0

0 M2

)

, (4.44)

using the blo
k-matrix notation as introdu
ed in Ref. [161, �3℄ for instan
e. This is also

illustrated in Fig. 4.3. We emphasize that the simple blo
k stru
ture of M in position repre-

sentation, Eq. (4.44), is a dire
t 
onsequen
e of the simple Cartesian phase-spa
e stru
ture of

the designed partial-barrier map. In general, su
h a blo
k stru
ture in the quantization of a


lassi
al dynami
al system that is 
omposed of two invariant phase-spa
e regions requires the
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onstru
tion of an appropriate basis in Hilbert spa
e, whi
h is just the position basis in our


ase. Note that the Blo
h phase ϑ
mom

of the overall position latti
e Q 
an result in di�erent

individual Blo
h phases in terms of the quantum maps M1 and M2. Spe
i�
ally, when using

the Baker map with |A1| = 0.5, ϑ
mom

= 0.5 must be assured for both sides of the partial bar-

rier [160℄. Let us further mention that it is of 
ourse possible to use realizations of a random

matrix ensemble for M1 and M2, whi
h 
an be advantageous for spe
i�
 questions. In this the-

sis, we are interested in systems equipped with a generalized time-reversal symmetry whi
h


orresponds to the 
ir
ular orthogonal ensemble [152℄. By using random matri
es, system

spe
i�
 fra
tal properties may be swit
hed o�.

Although one 
an very well already guess a valid quantization E of ex
hange map E

and then verify that it obeys quantum-to-
lassi
al 
orresponden
e, we attempt to make the

quantization a little more 
omprehensible and derive it from a more general quantization

s
heme. We present the quantization following the generating fun
tion approa
h as is reviewed

in Se
. 4.2.2. The ex
hange map E, Eq. (4.7), is determined by the generating fun
tion

G(P, q) :=







−Pq : q ∈ [0, |A1| − φ) ∪ [|A1|+ φ, 1),

−P (q + φ) : q ∈ [|A1| − φ, |A1|),
−P (q − φ) : q ∈ [|A1|, |A1|+ φ),

(4.45)

as 
an easily be veri�ed using Eq. (4.29). We apply Eq. (4.30) to ea
h of the 
ases in Eq. (4.45)

individually. First, the identity mapping for qn ∈ [0, |A1| − φ) ∪ [|A1|+ φ, 1) gives

〈 pm | Eqn 〉 =
1√
N
e−2πiN pmqn = 〈 pm | qn 〉, (4.46)

=

U M E P

Figure 4.3. Illustration of the quantum time-evolution matrix of the partial-barrier map U
in position representation. The full quantum map U = U


l

P with U

l

= ME is a 
omposition

of three maps: The matrix M is blo
k diagonal (zero on white squares) and, thus, provides

the un
onne
ted mixing dynami
s within the two regions A1 and A2. The matrix E has

unit entries on the dark diagonal lines and is zeros otherwise, and thus, ex
hanges the

regions Φ1 and Φ2 by a shift within the ex
hange region (indi
ated by magenta frame). The

proje
tion P (unity on dark diagonal, zero else) opens the system by the absorbing region

Ω.
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whi
h are just the 
omponents of the dis
rete Fourier transformation. Swit
hing from the

mixed position�momentum representation to a pure position representation by

〈 qm | Eqn 〉 =
N−1∑

k=0

〈 qm | pk 〉 〈 pk | Eqn 〉
︸ ︷︷ ︸

〈 pk | qn 〉

= 〈 qm | qn 〉 = δm,n, (4.47)

it turns out that, quite intuitively, the quantization of the identity map is the unit matrix. We

pro
eed analogously with the shifting part of E for qn ∈ [|A1| − φ, |A1|) and obtain

〈 pm | Eqn 〉 =
1√
N
e−2πiN pm(qn+φ) = 〈 pm | qn+C 〉, (4.48)

where we restri
t the shift φ to the position latti
e, C := Nφ ∈ N0, i.e., qn + φ = qn+C . In

position representation this reads

〈 qm | Eqn 〉 =
N−1∑

k=0

〈 qm | pk 〉 〈 pk | Eqn 〉
︸ ︷︷ ︸

〈 pm | qn+C 〉

= 〈 qm | qn+C 〉 = δm,n+C . (4.49)

Thus, again very intuitively, by quantization the shift map translates into an index shift.

Certainly, the same arguments apply for the shifting part of E in opposite dire
tion for qn ∈
[|A1|, |A1|+ φ), giving

〈 qm | Eqn 〉 = δm,n−C . (4.50)

Altogether, the quantization E of the ex
hange map E exhibits the form as illustrated in

Fig. 4.3. The quantized partial-barrier map without opening thus reads U

l

= ME.

In order to obtain the quantized partial-barrier map U = U

l

P with opening, we asso
iate

an orthogonal proje
tion operator P with the map O. Quantum-to-
lassi
al 
orresponden
e

is ensured by 
hoosing

kerP := {ψ ∈ H : Pψ = 0} = span

{
qk ∈ H : qk ∈ Q ∩ Ω

}
. (4.51)

Again, owing to the simple Cartesian produ
t stru
ture, we expli
itly obtain

P = diag (0, . . . , 0,
︸ ︷︷ ︸

L

1, . . . , 1
︸ ︷︷ ︸

N−L

) (4.52)

in position representation, for the example that Ω = [0, |Ω|) with L := #(Q ∩ Ω). This is

illustrated in Fig. 4.3. To 
on
lude, the subunitary time-evolution operator U = U

l

P with

U

l

= ME provides a quantization of the partial-barrier map T =M ◦ E ◦O.
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4.3 Ki
ked Model System

A di�erent approa
h to model a dynami
al system with a well isolated partial barrier is put

forward in Refs. [32, 136℄ in terms of a ki
ked model system. We 
ame a
ross this system

already in the dis
ussion of Fig. 3.2. In this se
tion we brie�y review the de�nition of the map


losely following the original referen
es [32, 136℄. Before 
oming to that, let us mention that

in 
ontrast to the partial-barrier map the ki
ked model system allows for studying values of

φ/h 6∈ N whi
h is ne
essary for the 
onsiderations in Chap. 5. However, for the main part of

this thesis, we fo
us on the partial-barrier map as it admits a 
lean phase-spa
e stru
ture and

as it is easy to vary relevant parameters over a broad range.

The ki
ked model system T = T
rot

◦ T
ki
k

is a 
omposition of two maps. The map T
ki
k

originates from a ki
ked Hamiltonian, Eq. (3.7), with

T (p) =







νp+ c1 : p < p
reg

,

νp+ b
left

(p− p
reg

)2/2 + c2 : p
reg

≤ p < p
�x

− p
low

,

ap+ b (p− p
�x

)2/2 + c3 : p
�x

− p
low

≤ p < p
�x

+ p
up

,

νp+ b
right

(p− p
�x

− p
up

)2/2 + c4 : p
�x

+ p
up

≤ p < 1− p
reg

,

νp+ c5 : 1− p
reg

≤ p,

(4.53)

and

V(q) = − 1

8π2
cos(2πq), (4.54)

with parameters a = 20, ν = 0.411, p
reg

= 0.125, p
�x

= 0.533, p
low

= 0.15, p
up

= 0.015, and

b = 0.6. The parameters b
left

and b
right

follow from

b
left

=
a+ bp

low

− ν

p
�x

− p
low

− p
reg

, (4.55)

b
right

=
ν − a− bp

up

1− p
�x

− p
low

− p
reg

. (4.56)

The 
onstants c1, . . . , c5 ∈ R may be 
hosen su
h that T is 
ontinuous. A strobos
opi


solution of the 
orresponding Hamiltonian yields the map

T
ki
k

(q, p) =

(

q + T ′(p− 1
2
V ′(q))

p− 1
2
V ′(q)− 1

2
V ′(q + T ′(p− 1

2
V ′(q)))

)

. (4.57)

The phase spa
e of the map T
ki
k

basi
ally looks very similar to the one shown in Fig. 3.2.

However, the map T
ki
k

still has more than one dominating partial barrier. In order to destroy
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additional partial barriers, T
ki
k

is 
omposed with the map

T
rot

(q, p) =

(

q



p



)

+

(

cos(ω



) − sin(ω



)

sin(ω



) cos(ω



)

)(

q − q



p− p



)

, (4.58)

within a 
ir
le of radius r



around (q



, p



). The map T
rot

is applied at two positions with

parameters q



= 0.5, p



= 0.33, r



= 0.2, ω



= 3.0, and q



= 0.2, p



= 0.66, r



= 0.15,

ω



= 3.0. The phase spa
e shown in Fig. 3.2 
orresponds to the map T = T
rot

◦ T
ki
k

with a

single dominating partial transport barrier of �ux φ ≈ 0.00532 ≈ 1/200. The partial barrier

de
omposes phase spa
e into two 
haoti
 regions of area |A1| ≈ 0.422 and |A2| ≈ 0.421.

The quantization U = U
rot

U
ki
k

of the ki
ked model map T = T
rot

◦ T
ki
k

is obtained from

the quantizations U
rot

of T
rot

and U
ki
k

of T
ki
k

. The quantization of U
ki
k

is the same as the

quantized standard map, Eq. (4.23), when using the de�nitions of T and V from Eq. (4.53)

and Eq. (4.54), respe
tively. The quantum map U
rot

is obtained as follows: It is 
onvenient to

use a basis of N
ho

harmoni
 os
illator eigenstates η0, . . . ηN
ho

−1 inside the 
ir
le of radius r



,

whi
h provides the proje
tor

P
ho

=

N
ho

−1∑

k=0

〈 ηk | · 〉ηk (4.59)

that semi
lassi
ally 
orresponds to the region inside the 
ir
le. Then

U
rot

= (1− P
ho

) + U
ho

P
ho

(4.60)

with

U
ho

=

N
ho

−1∑

k=0

ei(k+1/2)ω

〈 ηk | · 〉ηk (4.61)

is used as quantization of T
rot

.



Chapter 5

Quantum Lo
alization Transition

in Closed Systems

This thesis is 
on
erned with the phase-spa
e lo
alization of 
haoti
 resonan
e states due to

partial transport barriers. Before 
oming to the investigation of this 
entral problem, let

us review two relevant results from Ref. [32℄ on the analogous question addressed for 
losed

systems. First, in Se
. 5.1, we dis
uss that eigenstates of the unitary time-evolution operator


an lo
alize on either side of a partial transport barrier or they 
an be equipartitioned on

both sides depending on a single universal s
aling parameter. This gives a smooth transition

between the two regimes of lo
alization and equipartition. In Se
. 5.2 we examine the relation

between the lo
alization of eigenstates of the time-evolution operator and transport properties

of the system.

5.1 Lo
alization Transition

It is well known that partial transport barriers 
an have a huge impa
t on quantum me
hani
al

properties of a dynami
al system [19, 20, 24, 30�34, 75, 162�166℄, su
h as the lo
alization of

eigenstates [19, 20, 30, 32, 34, 75℄ or fra
tal 
ondu
tan
e �u
tuations [162, 163, 165℄. Fo
using

on the lo
alization of 
haoti
 eigenstates of the time-evolution operator, the in�uen
e of a

partial transport barrier is essentially governed by the following question: How strong does

an eigenstate in its phase-spa
e representation deviate from a uniform distribution within the


haoti
 sea? This is motivated by the fa
t that in a fully 
haoti
 system without restri
tive

transport barriers, quantum ergodi
ity ensures that the majority of eigenstates approa
hes the

uniform distribution in the semi
lassi
al limit [27℄. Hen
e, any 
hara
teristi
 deviation from

a uniform distribution whi
h is not 
overed by ex
eptions of the quantum ergodi
ity theorem,

i.e., any deviation di�erent from ordinary quantum �u
tuations or s
arring e�e
ts [29℄, may be

attributed to the presen
e of a restri
tive partial transport barrier. We will dis
uss quantum
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ergodi
ity in more detail in Se
. 7.1.1.

We �rst need to 
larify what is meant by phase-spa
e representation of a quantum state.

In order to investigate quantum-to-
lassi
al 
orresponden
e, it is often very useful to 
onsider

the lo
alization of quantum eigenstates in phase spa
e. However, typi
ally quantum me
hani
s

is formulated either in position or momentum representation. The full phase-spa
e pi
ture is

a
hieved for instan
e by the so-
alled Husimi representation [167,168℄. Note that there are also

other prominent phase-spa
e representations introdu
ed by Wigner [169℄ or by Glauber and

Sudarshan [170,171℄ with their own advantages and disadvantages. The Husimi representation

Hψ of a quantum state ψ is de�ned by

Hψ(q, p) :=
1

h
|〈α(q,p) |ψ 〉|2 (5.1)

for (q, p) ∈ Γ, and des
ribes the overlap of the state ψ with a minimal un
ertainty wave pa
ket

α(q,p) 
entered around (q, p). In more detail, α(q,p) is 
hosen to be a 
oherent state, i.e., an

eigenstate of the annihilation operator

√
mω

2~

(

q +
i

mω
p

)

(5.2)

of the harmoni
 os
illator

H =
1

2m
p2 +

mω2

2
q2, (5.3)


f. [172, Chap. 12℄. Its width is 
hosen symmetri
ally and ideally lo
alized by means of Heisen-

berg's un
ertainty prin
iple, ∆q = ∆p =
√

~/2. The 
enter (q, p) of α(q,p) is determined by

the expe
tation values of the position and momentum operator in this state. In dimensionless

formulation, it is

α(q,p)(x) ∝ exp

{

−1

h

(
π(x− q)2 − 2πi px

)
}

, (5.4)

up to normalization [168, Eq. (2.29)℄.

Let us now 
onsider the ki
ked model system with a single partial barrier introdu
ed in

Se
. 4.3. Its 
lassi
al phase-spa
e portrait is shown again in Fig. 5.1 
ompared to the Husimi

distribution of quantum eigenstates for two di�erent values of the e�e
tive size h of Plan
k's


ell. While for h = 1/50, Fig. 5.1(
, d), the shown eigenstates lo
alize dominantly (
) in

region A2 below the partial barrier or (d) in region A1 above the partial barrier, the eigenstate

shown in Fig. 5.1(b) for h = 1/1000 does not exhibit striking signatures of the partial barrier.

Hen
e, the eigenstates in Fig. 5.1(
, d) for a rather large value of h are 
learly a�e
ted by the

partial barrier whereas the eigenstate in Fig. 5.1(b) for a smaller value of h totally ignores the
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presen
e of the partial barrier.

It seems intuitive to some extent that 
haoti
 eigenstates resemble the semi
lassi
al expe
-

tation of uniform distribution for small values of h. Note that the 
lassi
al 
haoti
 dynami
s

explores the 
haoti
 
omponent rather uniformly on su�
iently large time s
ales. However,

whi
h 
riterion determines whether h is su�
iently small? And when is the drasti
 
on�ne-

ment to either side of the partial barrier to be expe
ted? Apart from the evident dependen
e

on the e�e
tive size h of Plan
k's 
ell, one 
ould easily think of a dependen
e on the �ux φ

a
ross the partial barrier, the size of the regions A1 and A2 on both sides of the partial barrier,

or the 
haoti
ity in terms of the Lyapunov exponent for instan
e. Remarkably, as already 
on-

je
tured in Ref. [17℄, the 
ru
ial parameter is the ratio of φ and h. Chaoti
 eigenstates tend

to lo
alization if the transmission region of the partial barrier is quantum me
hani
ally not

resolved, i.e., if the �ux a
ross the partial barrier is small 
ompared to Plan
k's 
ell (φ ≪ h).

On the other hand, if the transmission region is quantum me
hani
ally resolved (h ≪ φ),


haoti
 eigenstates are equipartitioned in the 
haoti
 
omponent as if there were no partial

barrier at all [19, 20, 24, 31, 32, 37℄.

The pre
ise behavior of the transition between the two regimes of lo
alization and equipar-

A1

A2

q

p

(a)

q

p

(c)

q

p

(d)

q

p

(b)

Figure 5.1. (a) Phase spa
e of the ki
ked model system introdu
ed in Se
. 4.3 with one

dominant partial barrier (solid magenta line) of �ux φ ≈ 1/200 in the 
haoti
 sea. (b�d)

Husimi representation of 
hara
teristi
 
haoti
 eigenstates for (b) h = 1/1000 and (
, d)

h = 1/50.



52 5.1 Lo
alization Transition

titioned is investigated in Ref. [32℄. The authors study the equipartition measure

w
eq

(ψk) :=
‖P1ψk‖2
|A1|

‖P2ψk‖2
|A2|

, (5.5)

of the 
haoti
 eigenstate ψk with respe
t to the two 
haoti
 regions A1 and A2, whi
h are

separated by the partial barrier. Here, P1 and P2 denote orthogonal proje
tions onto the

Hilbert spa
es asso
iated with A1 and A2, and we assume without loss of generality that

the 
haoti
 region has unit phase-spa
e volume. Note that numeri
ally it may be useful to


onsider the Husimi weight of ψk in region An instead of ‖Pnψk‖2. The equipartition measure

of ψk is zero if the state is 
on�ned to one of the regions sin
e the proje
tion onto the other

region then yields zero. The equipartition measure rea
hes unity if ‖Pnψk‖2 = |An| for both
n ∈ {1, 2}. This 
orresponds to the 
ase that ψk is distributed like the 
lassi
al Liouville

measure. We point out that it is 
onvenient to 
onsider the relative weight ‖Pnψk‖2/|An|
instead of the absolute weight ‖Pnψk‖2 for that ‖Pnψk‖2 approa
hes |An| if there is no partial
barrier. Moreover, the symmetry of A1 and A2 in the formulation of Eq. (5.5) a

ounts for

the fa
t that it is not relevant in this setup to distinguish between the lo
alization on A1

and the lo
alization on A2. This 
omes at the 
ost of the ambiguity that a state ψk with

‖P1ψk‖2 = |A2| and ‖P2ψk‖2 = |A1| also yields weq

(ψk) = 1, a value whi
h should be reserved

for a truly equipartitioned state. We will 
omment on this issue again later. From numeri
al

studies and supported by a heuristi
 2×2 matrix model, the authors 
on
lude that the average

equipartition measure of 
haoti
 eigenstates obeys

〈w
eq

〉 := 1

N

h

N

h∑

k=1

‖P1ψk‖2
|A1|

‖P2ψk‖2
|A2|

≈ φ/h

1 + φ/h
, (5.6)

where N

h

denotes the number of 
haoti
 eigenstates [32℄. Thus, the average equipartition

measure of eigenstates follows a smooth transition from zero to unity, i.e., from lo
alization

on either side of the partial barrier to equipartition, see Fig. 5.2. It only depends on the single

universal s
aling parameter φ/h. Figure 5.2 shows that the transition 
urve is symmetri


around the transition point φ/h = 1, 〈w
eq

〉 = 0.5 and has a width of two orders of magnitude

in φ/h. Note that the algebrai
 stru
ture of Eq. (5.6) 
an be derived by a Laurent expansion

of the inverse of 〈w
eq

〉 in lowest order. It must be assumed that the equipartition measure is

zero for φ/h = 0, monotoni
ally in
reases, and linearly approa
hes unity for φ/h→ ∞.

Let us brie�y argue that the mentioned ambiguity in the equipartition measure of a single


haoti
 eigenstate, Eq. (5.5), is not a serious problem for the averaged quantity in Eq. (5.6).

The question at hand is whether it is possible that the average equipartition measure equals

unity and the states lo
alize as ‖P1ψk‖2 = |A2| and ‖P2ψk‖2 = |A1| on average. To this end,
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q

p

q

p

φ/h

〈weq〉

10−3 10−2 10−1 100 101 103
0

1
2

1

Figure 5.2. Theoreti
al expe
tation for the average equipartition measure 〈w
eq

〉 of 
haoti

eigenstates depending on the ratio of the �ux φ a
ross the partial barrier and the e�e
tive size

h of Plan
k's 
ell, a

ording to Eq. (5.6). Upper panels: Husimi representation of eigenstates

as in Fig. 5.1, illustrating the di�erent regimes of lo
alization with φ/h indi
ated by arrows.

we 
ompute the average weight of ψk in region An, giving

1

N

h

N

h∑

k=1

‖Pnψk‖2 =
1

N

h

N

h∑

k=1

〈ψk |Pnψk 〉, (5.7)

sin
e Pn is an orthogonal proje
tion, P ∗
n = Pn and P 2

n = Pn. We introdu
e the orthonormal

basis {ηk}Nn

k=1 in the subspa
e imPn asso
iated with An and �nd

1

N

h

N

h∑

k=1

‖Pnψk‖2 =
1

N

h

N

h∑

k=1

〈ψk |
Nn∑

j=1

〈 ηj |ψk 〉ηj 〉 (5.8)

=
1

N

h

Nn∑

j=1

〈
N

h∑

k=1

〈ψk | ηj 〉ψk | ηj 〉. (5.9)

Although {ψk}N
h

k=1 is not a basis of the full Hilbert spa
e, it is 
ertainly possible to expand ηj



54 5.2 Lo
alization and Transport

in terms of ψk as imPn lies within the 
haoti
 
omponent. Thus, we obtain

1

N

h

N

h∑

k=1

‖Pnψk‖2 =
1

N

h

Nn∑

j=1

‖ηj‖2 =
Nn

N

h

≈ |An|. (5.10)

The last relation holds true in the semi
lassi
al limit, re
alling that we assumed unit phase-

spa
e volume for the 
haoti
 region as mentioned above. Hen
e, on average 
haoti
 eigenstates

will not lo
alize as ‖P1ψk‖2 = |A2| and ‖P2ψk‖2 = |A1|, and the ambiguity whi
h is possible for
individual states may be 
onsidered irrelevant for Eq. (5.6). The issue that single eigenstates


an oddly lo
alize unre
ognized by the equipartition measure 
an for instan
e be over
ome by

studying the weight within only one of the two regions.

5.2 Lo
alization and Transport

In Ref. [32℄ it is pointed out that there is a fundamental and very intuitive relation between the

lo
alization of eigenstates with respe
t to two phase-spa
e regions A1 and A2, and the weight

that is asymptoti
ally transmitted between both regions when initializing a wave pa
ket in

one of them. The basi
 idea is as follows: Any wave pa
ket may be expanded in the basis of

eigenstates of the time-evolution operator. The more lo
alized these eigenstates are the less

are they 
oupled to ea
h other. Thus, if the eigenstates predominantly lo
alize in one of the

regions, transport between both regions is suppressed. This is formulated more pre
isely in

the following theorem.

Theorem. Let U be a unitary operator on the Hilbert spa
e CN
with nondegenerate

spe
trum together with a basis of normalized eigenve
tors {ψk}Nk=1, and let PA denote

an orthogonal proje
tion onto an arbitrary subspa
e A ⊆ CN
. Then it is

1

N

N∑

k=1

lim
t→∞

1

t

t−1∑

n=0

‖PA2U
nPA1ψk‖2 =

1

N

N∑

k=1

‖PA1ψk‖2‖PA2ψk‖2, (5.11)

for all subspa
es A1 and A2 of C
N
.

Proof. It is 
onvenient to de�ne the shorthand notation

W∞(PA1ψk) := lim
t→∞

1

t

t−1∑

n=0

‖PA2U
nPA1ψk‖2 (5.12)
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for the absolute weight of PA1ψk that is asymptoti
ally transmitted to the subspa
e A2.

To begin with, we write

W∞(PA1ψk) = lim
t→∞

1

t

t−1∑

n=0

〈PA2U
nPA1ψk |PA2U

nPA1ψk 〉, (5.13)

and insert the expansion

PA1ψk =

N∑

r=1

〈ψr |PA1ψk 〉ψr. (5.14)

Denoting the eigenvalue of U asso
iated with ψk by e
iϕk

, this gives

W∞(PA1ψk) =

N∑

r=1

N∑

s=1

〈ψr |PA1ψk 〉〈ψs |PA1ψk 〉 ×

× lim
t→∞

1

t

t−1∑

n=0

〈PA2U
nψr |PA2U

nψs 〉 (5.15)

=
N∑

r=1

N∑

s=1

〈ψr |PA1ψk 〉〈ψs |PA1ψk 〉〈PA2ψr |PA2ψs 〉 ×

× lim
t→∞

1

t

t−1∑

n=0

ei(ϕs−ϕr)n, (5.16)

where limt→∞
1
t

∑t−1
n=0 exp[i(ϕs − ϕr)n] = δrs as long as there are no degenera
ies in the

spe
trum of U . We obtain

W∞(PA1ψk) =

N∑

ℓ=1

|〈ψℓ |PA1ψk 〉|2 ‖PA2ψℓ‖2 (5.17)

and perform the average over the full basis of eigenstates,

1

N

N∑

k=1

W∞(PA1ψk) =
1

N

N∑

k=1

N∑

ℓ=1

|〈ψℓ |PA1ψk 〉|2 ‖PA2ψℓ‖2 (5.18)

=
1

N

N∑

ℓ=1

‖PA2ψℓ‖2
N∑

k=1

〈P ∗
A1
ψℓ |ψk 〉〈ψk |P ∗

A1
ψℓ 〉 (5.19)

=
1

N

N∑

ℓ=1

‖P ∗
A1
ψℓ‖2 ‖PA2ψℓ‖2. (5.20)

Using that P ∗
A1

= PA1 for orthogonal proje
tions, this gives Eq. (5.11) and 
on
ludes the
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proof. Note that, in fa
t, we did not use the proje
tion property of PA1 or PA2 but only

their selfadjointness. �

Equation (5.11) relates the average equipartition measure of eigenstates (right hand side) to the

asymptoti
 transmission of weight from one side of the partial barrier to the other (left hand

side). In view of the φ/h dependen
e of the equipartition measure dis
ussed in Se
. 5.1, this

means that also the asymptoti
ally transmitted weight obeys the same φ/h dependen
e [32℄.

Hen
e, for small values of φ/h, su
h that the transmission region of the partial barrier is quan-

tum me
hani
ally not resolved, a wave pa
ket initialized in one of the regions will remain there

for all times and will essentially not penetrate into the other phase-spa
e region. We stress

that a 
lassi
al traje
tory will explore the entire 
haoti
 phase-spa
e 
omponent in the long

run. Hen
e, one might think of the lo
alization due to a partial transport barrier as exhibiting

the opposite phenomenology 
ompared to the famous tunneling e�e
t [32℄: The tunneling pro-


ess allows quantum transport in 
ases where there is no 
lassi
al transport [100, �50℄. Here,

one observes suppression of quantum transport although 
lassi
al transport is allowed. We

emphasize that 
omparable relations between lo
alization and transport have been studied in

other situations before. To mention a few examples: strong Anderson lo
alization due to dis-

order suppresses di�usion and implies a metal�insulator transition [6,7℄; weak lo
alization due

to time-reversal invarian
e yields 
orre
tions to the 
lassi
al Drude 
ondu
tivity of a metal [8℄;

lo
alization of edge states due to topologi
al prote
tion is related to the quantized Hall 
on-

du
tan
e [3,9℄; and many-body lo
alization in Fo
k spa
e implies a metal�insulator transition

at �nite temperatures for systems of intera
ting parti
les [10℄.

The original formulation of Eq. (5.11) in Refs. [32℄ is slightly di�erent. There, the left hand

side of the equality, whi
h is related to transport, 
ontains a sum over an arbitrary basis of

wave pa
kets in region A1. Instead we use the basis of eigenstates of U and proje
t it onto

A1. The advantage of the latter is that it reveals a remarkable relation to ergodi
ity as we

will now demonstrate. To this end, we �rst show that Eq. (5.11) semi
lassi
ally reads

1

N

N∑

k=1

lim
t→∞

1

t

t−1∑

n=0

µψk
(A2 ∩ UnA1) =

1

N

N∑

k=1

µψk
(A1)µψk

(A2), (5.21)

where µψk
(A) := ‖PAψk‖2 de�nes a probability measure on subspa
es of CN

whi
h is invariant

under U . Re
all that an orthogonal proje
tion PA on a subspa
e A ⊆ CN

an be represented

by

PA =

M∑

k=1

〈 ηk | · 〉ηk (5.22)

in terms of an orthonormal basis {ηk}Mk=1 of A. Sin
e {Uηk}Mk=1 denotes an orthonormal basis
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of UA, we obtain

PUA =

M∑

k=1

〈Uηk | · 〉Uηk = U

M∑

k=1

〈 ηk |U∗· 〉ηk = UPAU
∗. (5.23)

Semi
lassi
ally, the 
on
atenation of two proje
tions PA, PB asso
iated with phase-spa
e re-

gions A and B proje
ts onto A∩B, that is PAPB = PA∩B. We stress that in general, i.e., away

from the semi
lassi
al regime, this relation is only valid if PA and PB 
ommute. Having said

this it is

‖PA2U
nPA1ψk‖2 = |e−iϕkn|2 ‖PA2U

nPA1U
−nψk‖2 (5.24)

= ‖PA2PUnA1ψk‖2 (5.25)

= ‖PA2∩UnA1ψk‖2. (5.26)

Inserting this into Eq. (5.11) and using the notation µψk
(A) = ‖PAψk‖2, we �nd Eq. (5.21).

We still have to show that µψk
is a probability measure whi
h is invariant under U . This

follows from

µψk
(U−1A) = ‖PU∗Aψk‖2 = ‖U∗PAUψk‖2 = |eiϕk |2 ‖PAψk‖2 = µψk

(A), (5.27)

and

‖µψk
‖ = µψk

(CN) = ‖PCNψk‖2 = ‖ψk‖2 = 1. (5.28)

As a rather te
hni
al remark, note that in order to de�ne a proper measure on an appropriate

σ-algebra, the union of sets needs to be repla
ed by the span of ve
tor spa
es.

As mentioned above, Eq. (5.21) is related to ergodi
ity in an interesting way. Re
all that

a probability measure µ that is invariant under the map T is ergodi
 if and only if

lim
t→∞

1

t

t−1∑

n=0

µ(A2 ∩ T−n(A1)) = µ(A1)µ(A2) (5.29)

for all measurable sets A1 and A2 [173, Prop. 9.1℄. Ergodi
ity it often referred to as �spatial

average equals temporal average� following Birkho�'s ergodi
 theorem [118, Thm. II.12℄, and

thus relates lo
alization properties and transport properties. Intuitively speaking, the left hand

side of Eq. (5.29) des
ribes how mu
h the set A1 penetrates into region A2 under time evolution,

weighted with µ (transport property), while the right hand side des
ribes how equipartitioned

the measure µ is with respe
t to A1 and A2 (lo
alization property). Comparing Eqs. (5.29)

and (5.21), the latter may thus be interpreted as des
ribing an averaged ergodi
ity. Note,

however, that this does not give any indi
ation of 
haoti
 dynami
s or mixing behavior for U ,
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apart from the assumption of nondegenera
y of the spe
trum whi
h 
ould be due to 
haoti


level repulsion for instan
e. Still, also the left hand side of Eq. (5.21) des
ribes transport while

the right hand side des
ribes lo
alization. Consider two subspa
es A1 and A2 su
h that the

eigenstates ψk of U are predominantly lo
alized on one of the two subspa
es, e.g., due to a

restri
tive partial transport barrier. This implies that for ea
h ψk one of the values µψk
(A1)

and µψk
(A2) is 
lose to unity while the other one is 
lose to zero. Thus, the right hand side of

Eq. (5.21) is small. On the other hand, this implies that the overlap A2 ∩UnA1 must also be

small, whi
h 
orresponds to weak 
oupling or suppressed transport. Vi
e versa, given that the

eigenstates ψk are equipartitioned with respe
t to A1 and A2, the right hand side of Eq. (5.21)

maximizes. Correspondingly, the overlap A2∩UnA1 is large su
h that transport between both

regions is enhan
ed.



Chapter 6

Observation of Lo
alization Transitions

in Open Quantum Systems

In this 
hapter we present two numeri
al observations on lo
alization transitions of 
haoti


resonan
e states in open quantum systems. They have originally been reported in Ref. [34℄.

Their explanation will be the main subje
t of this thesis. We 
on
lude this 
hapter by a

dis
ussion of the relation between lo
alization of resonan
e states and transport for open

systems. It turns out that their relation in open systems is quite di�erent from their intimate

relation in 
losed systems examined in Se
. 5.2.

6.1 Lo
alization Transitions

To introdu
e the basi
 phenomenon, let us again 
onsider the ki
ked model system with an

isolated partial barrier studied in the previous 
hapter, see phase-spa
e portrait in Fig. 6.1(a).

Following Ref. [32℄, we have dis
ussed that 
haoti
 eigenstates of the time-evolution operator

are equipartitioned with respe
t to the two sides of the partial barrier if the �ux φ a
ross

the partial barrier is quantum me
hani
ally well resolved, φ ≫ h, see Fig. 6.1(b). This is

the 
ase for 
losed systems. On
e the system is opened by an absorbing region this 
hanges

drasti
ally, see Fig. 6.1(
). Although the 
ondition φ≫ h is satis�ed for the open system just

as for the 
losed system, the shown long-lived 
haoti
 resonan
e state 
learly lo
alizes above

the partial barrier. Note that the shown lo
alized state is a typi
al example and not just an

ex
eption. Moreover, this lo
alization is even present for a mu
h smaller size of Plan
k's 
ell,

see Fig. 6.1(d), where the quantum resolution of the �ux a
ross the partial barrier is even

improved. This lo
alization of 
haoti
 resonan
e states with respe
t to the partial transport

barrier, in 
ases where one observes equipartition of eigenstates in the 
orresponding 
losed

system, demonstrates that the presen
e of partial transport barriers in open systems is even

more in�uential than in 
losed systems. This phenomenon was �rst reported in Refs. [33,123℄.
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Figure 6.1. (a) Phase spa
e of the ki
ked model system introdu
ed in Se
. 4.3 with

one dominant partial barrier (solid magenta line) of �ux φ ≈ 1/200 in the 
haoti
 sea.

(b) Husimi representation of a 
hara
teristi
 
haoti
 eigenstate for h = 1/1000. (
, d) Husimi

representation of a 
hara
teristi
 long-lived 
haoti
 resonan
e state of the opened system

with |Ω| = 0.25 (gray region) for (
) h = 1/1000 and (d) h = 1/10000.

Let us at �rst numeri
ally investigate the transition from equipartition to lo
alization

when in
reasing the size of the opening, shown in Fig. 6.2. In order to reveal the parameter

dependen
e of su
h a transition, it is useful to have the opportunity to 
hange the relevant

system parameters arbitrarily. This is simple for parameters like the size h of Plan
k's 
ell

or the opening Ω of the system. However, as we also want to 
hange the �ux φ a
ross the

partial barrier and later also the areas |A1| and |A2| of the 
haoti
 regions on either side of

the partial barrier, we 
onsider a di�erent model system, namely the partial-barrier standard

map introdu
ed in Chap. 4. Also for this map, we observe the phenomenon that a typi
al

long-lived resonan
e state lo
alizes on one side of the partial barrier while a typi
al eigenstate

of the 
orresponding 
losed system is equipartitioned if φ ≫ h, see Fig. 6.2 (upper panels).

The transition from equipartition to lo
alization is investigated as follows: For a �xed set of

system parameters (h = 1/6000, |A1| = |A2| = 1/2), parti
ularly for a �xed pair of φ and Ω,

the time-evolution is des
ribed by a single subunitary matrix U . This matrix has N = 1/h

di�erent eigenstates with a broad range of de
ay rates. In the �rst pla
e, we fo
us on long-lived

states with a de
ay rate of γ ≈ γ
nat

. The natural de
ay rate γ
nat

des
ribes the asymptoti
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Figure 6.2. Weight ‖P1ψγ‖2 of resonan
e states in region A1 vs ratio of size |Ω| of opening
and �ux φ a
ross partial barrier for di�erent parameters of the partial-barrier standard map

(10 ≤ φ/h, |Ω|/h ≤ 2048; |A1| = 1/2; h = 1/6000). Weight of state with γ 
losest to γ
nat

(red points) and averaged over states with de
ay rates γ ∈ [γ
nat

/1.1, γ
nat

·1.1] (bla
k 
rosses).

Inset: Same data shown on double-logarithmi
 s
ale. Upper panels: Husimi representation

of typi
al resonan
e states with γ ≈ γ
nat

for h = 1/1000, φ/h = 20, and two values |Ω|/φ
indi
ated by arrows.

de
ay of an initially uniform distribution under the 
lassi
al open dynami
s. We will dis
uss

this natural de
ay in mu
h more detail later. For the moment it is su�
ient to think of

it as a 
hara
teristi
 de
ay rate for long-lived resonan
e states. We 
ompute the absolute

weight ‖P1ψγ‖2 of all 
haoti
 resonan
e states ψγ having a de
ay rate γ ∈ [γ
nat

/1.1, γ
nat

· 1.1]
within a small window around γ

nat

. Here P1 denotes the proje
tion onto the subspa
e that

is semi
lassi
ally asso
iated with the phase-spa
e region A1 (
ontaining the opening Ω), su
h

that ‖P1ψγ‖2 is the weight of the resonan
e state ψγ within A1. By taking the arithmeti


mean of the di�erent weights ‖P1ψγ‖2 quantum �u
tuations are redu
ed. Note that the

fa
tor 1.1 de�ning the window of de
ay rates is balan
ed su
h that there are su�
iently

many resonan
e states under 
onsideration in order to redu
e the �u
tuations signi�
antly

and that all resonan
e states in the de
ay-rate window still exhibit approximately the same

magnitude of lo
alization. The weight ‖P1ψγ‖2 averaged over resonan
e states with de
ay rate


lose to γ
nat

provides a simple 
hara
teristi
 quantity to des
ribe the lo
alization of long-lived

resonan
e states in a single open quantum system, shown in Fig. 6.2 as a bla
k 
ross. It is
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‖P1ψγ‖2 = |A1| = 1/2 if the states are equipartitioned with respe
t to the partial barrier,

it is ‖P1ψγ‖2 = 0 if the states entirely lo
alize in region A2, and it is ‖P1ψγ‖2 = 1 if the

states entirely lo
alize in region A1. By variation of both φ and |Ω| we 
an monitor the whole

transition from equipartition to lo
alization. In Fig. 6.2, we use all 
ombinations of

φ/h ∈ {10, 22, 32, 68, 84, 122, 172, 238, 402, 508, 848, 1032, 1622, 2048}, (6.1a)

|Ω|/h ∈ {10, 20, 34, 58, 78, 124, 190, 236, 376, 516, 788, 1022, 1804, 2044}, (6.1b)

where pairs of |Ω|/h and φ/h with |Ω| + φ ≥ |A1| (or φ ≥ |A2|) are omitted. Note that the

values of φ/h and |Ω|/h are 
hosen su
h that we obtain many di�erent values of |Ω|/φ, and
that there is no deeper meaning in their exa
t values. With this, we �nd a smooth transition

from equipartition, ‖P1ψγ‖2 = |A1|, for |Ω| ≪ φ to lo
alization on A2 for |Ω| ≫ φ, see Fig. 6.2.

The transition, in fa
t, universally depends only on the ratio of the openness |Ω| and the

�ux φ. The double-logarithmi
 visualization in the inset reveals that ‖P1ψγ‖2 de
reases as

(|Ω|/φ)−1
starting roughly at the order of |Ω|/φ ≈ 1. We stress that this lo
alization transition

in the open system o

urs even though φ/h ≥ 10, where in the 
losed system eigenstates are

equipartitioned [32℄. Moreover, we point out that already individual states ni
ely display this

lo
alization transition. To demonstrate this, we 
onsider the single 
haoti
 resonan
e state ψγ

with de
ay rate 
losest to γ
nat

on a logarithmi
 s
ale, i.e., the state for whi
h | log(γ)−log(γ
nat

)|
is minimal. Its lo
alization is shown in Fig. 6.2 by a red point for ea
h �xed system setting.

Up to �u
tuations, whi
h are rather 
on�ned in this setup, the individual state exhibits the

transition from equipartition to lo
alization on A2 for in
reasing |Ω|/φ.
In the above numeri
al study, we simpli�ed the problem of lo
alization of resonan
e states

due to a partial barrier by pi
king one typi
ally relevant de
ay rate and asso
iating a single

lo
alization value to an entire quantum system. Indeed, even for a single quantum system

there is a broad range of de
ay rates, 
f. [174℄ for instan
e. As shown in [49℄ in the 
ontext of

fully 
haoti
 systems, the distribution of weights of a resonan
e state in phase spa
e depends

on its de
ay rate. This indi
ates that also the lo
alization with respe
t to a partial barrier in

terms of the weight ‖P1ψγ‖2 
ould 
hange with the de
ay rate. In Fig. 6.3, we 
onsider the

single quantum system for �xed parameters φ/h = 100 and |Ω|/h = 1000 su
h that |Ω| ≫ φ,

for whi
h the long-lived resonan
e states lo
alize on A2, 
f. Fig. 6.2. We diagonalize the


orresponding time-evolution matrix U and show the γ-dependen
e of the weights ‖P1ψγ‖2 for
all resonan
e states. We �nd a transition from resonan
e states whi
h lo
alize on A2 for small

γ to resonan
e states whi
h lo
alize on A1 for large γ, in
luding equipartitioned resonan
e

states in between. Let us emphasize that this transition between the two extreme 
ases of

lo
alization on both sides of the partial barrier even for a single quantum system is important

for the 
orre
t interpretation of Fig. 6.2 where we fo
used on γ
nat

, only.

To 
on
lude, we observe (i) a transition from equipartition to lo
alization of long-lived
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Figure 6.3. Weight ‖P1ψγ‖2 (red points) of resonan
e states ψγ in region A1 vs de
ay

rate γ for the partial-barrier standard map (φ/h = 100; |Ω|/h = 1000; |A1| = 1/2; h =
1/6000). Upper panels: Husimi representation of typi
al long-lived (left) and short-lived

(right) resonan
e state for h = 1/1000 with γ values indi
ated by arrows.


haoti
 resonan
e states on A2 for in
reasing size |Ω| of the opening, see Fig. 6.2, and (ii) a

transition from lo
alization on A2 to lo
alization on A1 for in
reasing γ, see Fig. 6.3. Transi-

tion (i) is surprising as lo
alization o

urs for φ ≫ h, where in the 
losed system the eigenstates

are equipartitioned. Transition (ii) shows that in open systems the lo
alization depends on

the de
ay rate γ. The fa
t that both transitions (i) and (ii) o

ur for φ ≫ h suggests that

the lo
alization transitions 
ould be of 
lassi
al origin. Furthermore, from the point of view of

de
aying 
lassi
al phase-spa
e distributions the observed transitions qualitatively seem to be

rather intuitive: In Fig. 6.2, for a larger size of the opening one has less weight in region A1

that 
ontains the opening. In Fig. 6.3, a larger weight in A1 
orresponds to a larger de
ay rate.

For a quantitative des
ription, however, one needs suitable 
lassi
al distributions, that is, one

has to �nd the 
lassi
al 
ounterpart of a quantum resonan
e state. Chapter 7 is dedi
ated to

this question. Before 
oming to that, let us dis
uss the relation between the lo
alization of

resonan
e states and phase-spa
e transport for open systems.
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6.2 Lo
alization and Transport

For open systems, there is no straightforward generalization of the relation between lo
alization

and transport from 
losed systems dis
ussed in Se
. 5.2. This basi
ally relies on the fa
t that

the stru
tural result, Eq. (5.21), uses averaging arguments whi
h hold true for asymptoti
ally

large times. In open systems, the resonan
e states are subje
t to de
ay with an individual

de
ay rate. Thus, any initial wave pa
ket ϕ will eventually die out under the proper subunitary

time evolution by U . Still, one might wonder what the wave pa
ket looks like under an arti�
ial

renormalized time evolution Ũ 
ompensating the de
ay. To this end, we 
onsider the nonlinear

but norm-preserving operator

Ũϕ :=
‖ϕ‖
‖Uϕ‖Uϕ. (6.2)

The iteration of Ũ reads

Ũ2ϕ = Ũ

( ‖ϕ‖
‖Uϕ‖Uϕ

)

(6.3)

=

∥
∥
∥

‖ϕ‖
‖Uϕ‖

Uϕ
∥
∥
∥

∥
∥
∥U
(

‖ϕ‖
‖Uϕ‖Uϕ

)∥
∥
∥

U

( ‖ϕ‖
‖Uϕ‖Uϕ

)

(6.4)

=

‖ϕ‖
‖Uϕ‖‖Uϕ‖
‖ϕ‖
‖Uϕ‖‖U2ϕ‖

‖ϕ‖
‖Uϕ‖U

2ϕ (6.5)

=
‖ϕ‖

‖U2ϕ‖U
2ϕ, (6.6)

giving

Ũnϕ =
‖ϕ‖

‖Unϕ‖U
nϕ (6.7)

for the n-th iterate. In words, the n-th iterate of the renormalized time-evolution operator Ũ

is simply given by the renormalization of the n-th iterate of the original time evolution U . We

express ϕ in terms of eigenstates {ψk}Nk=1 of U , Uψk = λkψk, and obtain

Unϕ =
N∑

k=1

ckλ
n
kψk (6.8)

with 
oe�
ients ck as in Eq. (2.45). Sin
e U is subunitary, the modulus of λk is below unity

su
h that asymptoti
ally, i.e., for su�
iently large n, the time evolution of ϕ is governed by

the ψk with largest value |λk| and ck 6= 0. All other eigenstates with larger de
ay rate are

exponentially suppressed.
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Hen
e, in order to understand the asymptoti
 evolution of wave pa
kets in open systems,

one only has to understand the lo
alization of the longest-lived resonan
e states. Resonan
e

states of larger de
ay rate are relevant only for the initial temporal regime. To demonstrate

this dominan
e of long-lived resonan
e states, we 
onsider the example of the standard map

at κ = 2.9 with a mixed phase spa
e opened in the 
haoti
 sea by two stripes of width 0.05, 
f.

Se
. 3.1. The longest-lived state is the regular ground state lo
ated at the 
entral ellipti
 �xed

point. It is 
oupled to the opening only by the rather slow pro
ess of dynami
al tunneling [36℄.

Still, a wave pa
ket initialized in the 
haoti
 sea resembles the ground state for su�
iently

large times as 
an be seen in Fig. 6.4. As a te
hni
al remark, we mention that numeri
ally

these large iteration times, t = 2n, are a
hieved by an n-fold loop multiplying U with itself in

ea
h loop 
y
le.
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Figure 6.4. Husimi representation of the renormalized time evolution of a wave pa
ket

for the standard map, κ = 2.9, h = 1/150, for di�erent number t of iterations as indi
ated
above ea
h panel. The system is opened by absorbing stripes (gray shaded) of total area

|Ω| = 0.1. The magenta lines show the dominant partial barriers of the system.
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Chapter 7

Semi
lassi
al Stru
ture

of Chaoti
 Resonan
e States

The observations on the semi
lassi
al lo
alization of 
haoti
 resonan
e states due to a partial

transport barrier in Se
. 6.1 led us to the question: What is the 
lassi
al 
ounterpart of a

quantum resonan
e state? This is the 
entral topi
 of this 
hapter. First, we review basi


results on the semi
lassi
al stru
ture of quantum eigenstates for 
losed systems in Se
. 7.1.

We parti
ularly dis
uss the relevan
e of invariant measures in this 
ontext. In Se
. 7.2 we

fathom the stru
ture of 
haoti
 resonan
e states for open systems based on the work by

Keating et al. [49℄. Semi
lassi
ally, this leads to the study of 
onditionally invariant measures.

We introdu
e the 
lass of γ-natural 
onditionally invariant measures, originally published

in [34℄, for whi
h quantum-to-
lassi
al 
orresponden
e with 
haoti
 resonan
e states will be

demonstrated in Chaps. 8 and 9.

7.1 Quantum�Classi
al Corresponden
e in Closed Systems

For 
losed systems the semi
lassi
al phase-spa
e lo
alization of quantum eigenstates is well

understood. Following the line of arguments as presented in Ref. [146, Se
. 3℄ we review

fundamental results on the semi
lassi
al lo
alization of regular and 
haoti
 eigenstates in

the following. It turns out that the relevant 
lassi
al obje
ts are invariant measures whi
h


orrespond to uniform phase-spa
e distributions for Hamiltonian systems.

7.1.1 Semi
lassi
al Stru
ture of Quantum Eigenstates

Let us begin with the 
ase of integrable dynami
s. Here, the 
lassi
al dynami
s takes pla
e

as periodi
 or quasi-periodi
 (ergodi
) motion on invariant tori. From the semi
lassi
al eigen-

fun
tion hypothesis [11,14,15℄, one knows that quantum eigenstates are 
on
entrated in their
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Husimi representation on su
h invariant tori with minimal un
ertainty as de�ned by the size h

of Plan
k's 
ell. For an example of su
h a regular eigenstate for the standard map, see

Fig. 7.1(a). The quantizing tori Cn obey the Bohr�Sommerfeld quantization 
ondition [102,

Se
. 11.3℄,

∮

Cn

p(q) dq =

(

n +
1

2

)

h, (n ∈ N0) (7.1)

where p denotes the (multivalued) momentum along the irredu
ible 
ir
uit of the torus Cn
as a fun
tion of the position q, su
h that

∮

Cn
p(q) dq is the phase-spa
e area en
losed by Cn.

From the approximation s
heme by Wentzel, Kramers, and Brillouin, one even has an expli
it

representation for a regular eigenstate ψ that is semi
lassi
ally 
orre
t, namely

ψ(q) =
∑

±

c±
√

|p(q)|
exp

{

± i

~

∫ q

p(x) dx

}

, (7.2)

with appropriate expansion 
oe�
ients c± [175, Se
. VII℄. It has been shown in [13, Se
. 3℄

that this approa
hes a uniform distribution along the regular torus for h ց 0, using the

Wigner�Weyl formalism. We emphasize that, quite intuitively, this uniform distribution on

the torus is invariant under the 
lassi
al time evolution.

For 
haoti
 systems there is in general no expli
it semi
lassi
al expression like Eq. (7.2)

for eigenstates [146, Se
. 3.2℄. The generi
 behavior, however, is 
aptured by the quantum

ergodi
ity theorem [27℄: Consider a unitary quantum map UN : CN → CN

orresponding

to an ergodi
 symple
ti
 map on a tori
 phase spa
e with a basis of normalized eigenstates,

ψNn ∈ CN
, n ∈ {1, . . . , N}. Then there exists a sequen
e (EN)N∈N of sets EN ⊆ {1, . . . , N}

satisfying limN→∞#EN/N = 1, su
h that for every sequen
e (nN )N∈N with nN ∈ EN , the

sequen
e (HψN
nN

)N∈N of Husimi distributions 
onverges towards the uniform distribution (in

q

p

(a)

q

p

(b)

Figure 7.1. Husimi representation of a typi
al eigenstate of the standard map, h = 1/1000,
for (a) κ = 0.5 and (b) κ = 10.0, that is (a) 
on
entrated on a regular torus and (b)

distributed over the 
haoti
 sea, 
f. underlying phase-spa
e portrait (bla
k lines and dots).



7.1.2 Invariant Measures 69

the w

∗
-topology). The restri
tion to sequen
es (nN)N∈N is ne
essary as there exist ex
eptional

eigenstates that are s
arred with enhan
ed lo
alization in the vi
inity of unstable periodi


orbits [29℄. Obviously, su
h states do not 
orrespond to the uniform distribution. An example

of a typi
al uniformly distributed 
haoti
 eigenstate of the standard map is shown in Fig. 7.1(b).

There are other and more general formulations of the quantum ergodi
ity theorem available,

see e.g., the fundamental results in [12, 18, 21℄, results on quantum ergodi
 billiards in [25,

26, 29℄, on ergodi
 Hamiltonian �ows on energy surfa
es [22℄, on ergodi
 quantum maps in

general [27,28℄, and on the quantum Baker map with its dis
ontinuities [176℄. Thus, similar to

the integrable 
ase, up to dimensionality, typi
al 
haoti
 eigenstates approa
h the 
lassi
ally

invariant uniform phase-spa
e distribution in the semi
lassi
al limit.

Let us dis
uss su
h 
lassi
ally invariant distributions in a little more detail. We 
hoose a

rather abstra
t approa
h in terms of measures here, whi
h is suitable as it allows to rigorously

in
lude fra
tal properties for open systems below. For a short overview on measure theory we

refer to Se
. A in the appendix.

7.1.2 Invariant Measures

The forward time evolution of a probability measure µ under the map T : Γ → Γ is given by

the pushforward measure T∗µ, whi
h is de�ned by

T∗µ(X) := µ
(
T−1(X)

)
(7.3)

for all measurable sets X ⊆ Γ. Note that the preimage T−1(X) of X under T is well-de�ned

even in the 
ase that T is not invertible, whi
h is relevant for open systems below. Let us give

an intuitive argument, why T∗µ may be interpreted as the iterate of µ: Suppose that µ has a

density ̺ : Γ → [0, 1] with respe
t to the Lebesgue measure Λ, that is,

µ(X) =

∫

X

̺ dΛ (7.4)

for all measurable X ⊆ Γ. In Fig. 7.2 this is illustrated by a two-dimensional Gaussian

distribution for ̺ in the left panel. Let ˜̺ denote the probability distribution after one iteration

by the map T . In Fig. 7.2 this 
orresponds to the density distribution in the right panel after

iteration by the Baker map. Numeri
ally, this may be realized by generating a sample of

random points in phase spa
e whi
h are distributed a

ording to the probability distribution ̺

by an a

eptan
e�reje
tion algorithm for instan
e [177,178℄, and by iterating these points on
e

by virtue of T . The distribution of the iterates obeys a new density fun
tion ˜̺. This fun
tion

˜̺ is the density of the measure T∗µ as de�ned by Eq. (7.3). With this it be
omes 
lear that

the weight of T∗µ on the set X is, in fa
t, the weight of µ on the set T−1(X) sin
e the
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q

p

µ
(

T−1(X)
)

q

p

T∗µ(X)

Figure 7.2. Sket
h motivating the de�nition of the pushforward measure T∗µ in terms of

densities: The weight of the Gaussian density de�ning µ within the set T−1(X) (
olored

region; left panel) is the same as the weight of the iterated density 
orresponding to T∗µ
within the iterated set X (
olored region; right panel). The map T is 
hosen to be the

Baker map; the bla
k lines in the ba
kground de
omposing the phase spa
e verti
ally and

horizontally into thirds are a guide to the eye.

overlap of a density with a given set does not 
hange if both the density and the set are

iterated. This is visualized in Fig. 7.2 for X = [0, 1/3) × [0, 2/3), the preimage of whi
h

is T−1(X) = {[0, 1/9)× [0, 1)} ∪ {[1/3, 4/9)× [0, 1)}. In the general situation that µ does

not provide a proper density ̺, Eq. (7.3) must be taken as a de�nition. We stress that T∗µ


orresponds to the forward iteration of µ even though the inverse iteration T−1
enters in

Eq. (7.3).

We are now able to de�ne invarian
e for a measure as motivated by the above dis
ussion on

the 
lassi
al 
ounterpart of quantum states in 
losed systems. A measure µ is 
alled invariant

under the map T if T∗µ = µ. Liouville's theorem states that for Hamiltonian systems, or

symple
ti
 maps respe
tively, the uniform Lebesgue measure is invariant [129, Prop. 3.3.4℄.

In 
haoti
 systems the invariant measure is parti
ularly important for the asymptoti
 time

evolution as any generi
 initial measure 
onverges towards it: Sin
e a typi
al orbit explores

the entire phase spa
e uniformly in the long run, it seems reasonable to expe
t some kind

of 
onvergen
e of (T n∗ ν)n∈N for suitable initial measures ν towards the invariant Lebesgue

measure µ. First of all, we fo
us on measures ν that are absolutely 
ontinuous with respe
t to

µ, i.e., µ(X) = 0 implies ν(X) = 0 for all measurable sets X ⊆ Γ. This parti
ularly ex
ludes

ex
eptional Dira
 measures lo
alized on periodi
 orbits for instan
e. Moreover, let us 
onsider

the spe
ial 
ase that the 
onsidered 
haoti
 system is ergodi
. The symple
ti
 map T together

with its invariant measure µ is 
alled ergodi
 if for any invariant measurable set X , T (X) = X ,

it is µ(X) = 0 or µ(X) = 1 [173, Se
. 6.3℄. As a 
onsequen
e of the mean ergodi
 theorem by
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von Neumann [118, Thm. II.11℄, ergodi
ity implies

lim
N→∞

1

N

N−1∑

n=0

T n∗ ν(X) = µ(X) (7.5)

for all measurable X . In other words, for ergodi
 Hamiltonian systems the so-
alled Cesàro

average of any absolutely 
ontinuous measure indeed 
onverges towards the invariant Lebesgue

measure as expe
ted. In order to obtain 
onvergen
e of the sequen
e (T n∗ ν)n∈N itself, and not

only 
onvergen
e on average, ergodi
ity is not su�
ient. However, if the map T is (strongly)

mixing, i.e., if for all measurable X , Y it holds that [173, Se
. 9.1℄

lim
n→∞

µ(T−n(X) ∩ Y ) = µ(X)µ(Y ), (7.6)

it 
an be shown that

lim
n→∞

T n∗ ν(X) = µ(X) (7.7)

for all measurable X . Hen
e, in mixing Hamiltonian systems any absolutely 
ontinuous mea-

sure 
onverges towards the invariant Lebesgue measure under time evolution. An idea of the

proofs for Eqs. (7.5) and (7.7) is given in Se
. B.3 in the appendix.

7.2 Quantum�Classi
al Corresponden
e in Open Systems

Invariant measures also exist for symple
ti
 maps that are opened by an absorbing region.

First, if the dynami
al system displays regular motion away from the opening, this phase-spa
e

region supports invariant measures as in 
losed systems. But invariant measures exist even in

the 
haoti
 
omponent of phase spa
e that 
ontains an opening [58℄. They are supported by

the maximal invariant set in the 
haoti
 part of phase spa
e, the fra
tal repeller, 
f. Se
. 3.3.

However, by de�nition, su
h invariant measures do not display de
ay and therefore 
annot be

the 
lassi
al 
ounterpart of quantum resonan
e states.

In this se
tion we �rst dis
uss the stru
ture of 
haoti
 resonan
e states based on the work

by Keating et al. [49℄. It turns out that 
lassi
al 
onditionally invariant measures, whi
h in 
on-

trast to invariant measures exhibit de
ay, obey lo
alization 
onditions analogous to quantum

resonan
e states. Thus, they are ideal 
andidates for quantum-to-
lassi
al 
orresponden
e.

Still, it is ne
essary to identify the 
onditionally invariant measures that are quantum me-


hani
ally relevant. To this end, we propose the 
lass of γ-natural 
onditionally invariant

measures [34℄.



72 7.2 Quantum�Classi
al Corresponden
e in Open Systems

7.2.1 Semi
lassi
al Stru
ture of Chaoti
 Resonan
e States

For open systems, quantum-to-
lassi
al 
orresponden
e between the stru
ture of quantum


haoti
 eigenstates and 
lassi
al properties is by far not as well explored as for 
losed systems.

Still, a few fundamental results are presented in Refs. [46, 48, 49, 51℄ or reviewed in a broader


ontext in Refs. [56, 58℄. We will brie�y dis
uss them here. Note that there are other related

works on a short periodi
 orbit approa
h to resonan
es [92, 179, 180℄, dis
ussing s
arring ef-

fe
ts [54, 181℄, and investigations on lo
alization on manifolds [182℄ for open systems. As we

fo
us on the generi
 behavior of quantum resonan
e states in the spirit of quantum ergodi
ity,

these issues are not taken into a

ount.

Following the seminal paper by Keating et al. [49℄ we dis
uss two fundamental semi
las-

si
al properties of the lo
alization of quantum resonan
e states in their Husimi representa-

tion: (i) Chaoti
 resonan
e states are semi
lassi
ally supported by the ba
kward trapped set.

(ii) Their weight on semi
lassi
ally resolved forward es
aping sets de
ays by e−γ between 
on-

se
utive levels, determined by the de
ay rate γ of the resonan
e state. In the following, it

is instru
tive to illustrate the explanation of both statements using the example of the open

Baker map. Its resonan
e states exhibit the 
hara
teristi
 features of (i) being supported on

ba
kward trapped set (horizontal stripes), and of (ii) having an additional γ-depending pro�le

governed by the forward es
aping sets (verti
al stripes), as shown in Fig. 7.3.

q

p

(a)

q

p

(b)

Figure 7.3. Average Husimi distribution of 
haoti
 resonan
e states of the Baker map

(1/h = 729; Ω = [1/3, 2/3) × [0, 1); γ
nat

= − log(2/3) ≈ 0.405) with (a) γ ∈ [γ
nat

/1.1, γ
nat

·
1.1] (20 states) and (b) short γ ∈ [0.8/1.1, 0.8 · 1.1] (17 states). Colored regions in the

ba
kground show the opening (Ω, dark gray), the �rst forward es
aping set (T−1(Ω), light
blue), and the se
ond forward es
aping set (T−2(Ω), medium blue)
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(i) The Husimi distribution Hψ of a resonan
e state ψ is invariant under the quantum time

evolution UP up to normalization, where U denotes the unitary part of the quantum map and

P is the proje
tion onto the 
omplement of the opening Ω. More pre
isely, the time evolution

ψ 7→ UPψ reads Hψ 7→ HUPψ in terms of the Husimi representation. The invarian
e of Hψ

under time evolution up to normalization parti
ularly means that even though a substantial

part of the distribution Hψ leaves the system through the opening Ω, the entire phase-spa
e

distributionHψ has to re
onstru
t itself after one iteration by UP up to de
ay. This invarian
e

property of ψ implies that Hψ must not have any weight on the iterate T

l

(Ω) of the opening

Ω under the 
lassi
al 
losed system dynami
s T

l

: Semi
lassi
ally speaking, under the open

dynami
s T = T

l

◦O nothing is mapped to T

l

(Ω) sin
e

T (Γ) = T

l

(O(Γ)) = T

l

(Γ \ Ω) ∪ {∞} = (Γ \ T

l

(Ω)) ∪ {∞} (7.8)

as T

l

is bije
tive. For illustration, see Fig. 7.4 for the Baker map. Here, by iterating the entire

q

p

n = 0(a)

q

p

n = 1

q

p

n = 2

q

p

n = 3

0

1

0 1q

p

(b)

0

1

0 1q

p

(c)

Figure 7.4. (a) Forward iteration of the uniform phase-spa
e distribution under the open

Baker map (iteration number n as indi
ated above ea
h panel). (b) Forward es
aping

sets T−n(Ω) for n = 0 (gray), n = 1 (light blue), n = 2 (medium blue). (
) Disjoint

representation of the iterates T n

l

(Ω) of the opening under the 
losed Baker map T

l

for

n = 1 (light blue), n = 2 (medium blue), and n = 3 (dark blue).
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phase spa
e on
e under the open map, Fig. 7.4(a), nothing is mapped to the middle horizontal

third whi
h is T

l

(Ω), Fig. 7.4(
). Suppose Hψ does not vanish on T

l

(Ω). While the weight of

Hψ in T

l

(Ω) will redistribute over phase spa
e within one iteration, nothing enters T

l

(Ω) su
h

that Hψ 
annot re
onstru
t. Hen
e, any invariant Husimi distribution Hψ must not have any

weight in T

l

(Ω). The same line of semi
lassi
al argument applies to all images T n

l

(Ω) of the

opening up to the Ehrenfest time, n ≤ τ
Ehr

, whi
h is the time s
ale of quantum-to-
lassi
al


orresponden
e [48℄. Therefore, Hψ is semi
lassi
ally supported by the set of points in phase

spa
e that are trapped in the system at least τ
Ehr

ba
kward iterations. This is 
on�rmed by

the averaged Husimi distributions of 
haoti
 resonan
e states in Fig. 7.3 whi
h are zero on the

sets T n

l

(Ω) for n . 3 (horizontal gaps), 
f. Fig. 7.4(
). The remaining weight is supported by

the threefold ba
kward trapped set. Note that the �nite-time approximation of the ba
kward

trapped set 
orresponds to its spatially �nite approximation on the Plan
k s
ale h.

We 
an also show this lo
alization on the ba
kward trapped set from a more general

perspe
tive: Let ψ be a resonan
e state of the quantum map UP , i.e., UPψ = λψ, λ 6= 0.

This implies

(UP )n
ψ

λn
= ψ (7.9)

for n ∈ N0, su
h that ψ ∈ im (UP )n for ea
h n. Here,

imS := {Sψ : ψ ∈ D(S)} (7.10)

denotes the image or range of an operator S with domain D(S). Using the general relation

imS ⊆ (ker S∗)⊥ between the image of S and the orthogonal 
omplement of the kernel of

S∗
, 
f. Eq. (2.27), for a bounded linear operator S on some Hilbert spa
e [151, �21.3.5℄, we


on
lude

ψ ∈
(
ker(PU−1)n

)⊥
, (n ∈ N0). (7.11)

In words, a resonan
e state ψ is orthogonal to all subspa
es that are mapped to zero under

the ba
kward open quantum time evolution PU−1
. Semi
lassi
ally, that des
ribes pre
isely

the lo
alization on the 
lassi
al ba
kward trapped set. As the semi
lassi
al argument is only

valid for n ≤ τ
Ehr

, we re
over the above result (i). We emphasize that Eq. (7.11) is the

quantum-me
hani
al generalization of the semi
lassi
al lo
alization on the ba
kward trapped

set. In the original work [49℄, the argument for the semi
lassi
al lo
alization on the τ
Ehr

-fold

ba
kward trapped set is slightly more te
hni
al, analyzing the ba
kward time evolution of

the 
oherent state whi
h enters the de�nition of the Husimi representation of the resonan
e

state. Note that fra
tal properties in the lo
alization of quantum resonan
e states have �rst
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been observed and attributed to the 
lassi
al ba
kward trapped set in the pioneering work by

Casati et al. [46℄.

(ii) We now fo
us on the weight of resonan
e states on forward es
aping sets T−n(Ω). For

the Baker map the forward es
aping sets are verti
al stripes in phase spa
e, see Fig. 7.4(b).

Let us start from the eigenvalue equation UPψ = λψ with |λ| = e−γ/2 whi
h implies the norm

de
ay of the resonan
e state,

‖UPψ‖2 = e−γ . (7.12)

Denoting the orthogonal proje
tion onto the opening by P0 := 1− P , this gives

‖UPψ‖2 = ‖(1− P0)ψ‖2 (7.13)

= ‖ψ‖2 − 〈ψ |P0ψ 〉 − 〈P0ψ |ψ 〉+ ‖P0ψ‖2 (7.14)

= 1− ‖P0ψ‖2, (7.15)

using that

〈ψ |P0ψ 〉 = 〈ψ |P 2
0ψ 〉 = 〈P0ψ |P0ψ 〉 = ‖P0ψ‖2. (7.16)

Equations (7.12) and (7.15) establish the simple but important relation

‖P0ψ‖2 = 1− e−γ. (7.17)

We stress that this result is remarkable as it relates the lo
alization of the resonan
e state ψ

with its de
ay rate γ. Qualitatively, this is very intuitive: The more weight of ψ lies in the

opening the faster its de
ay. This is also 
on�rmed by the averaged 
haoti
 resonan
e states in

Fig. 7.3. The resonan
e state with larger de
ay rate (b) has more weight on the opening (gray

region) than the resonan
e state shown in (a) with smaller de
ay rate. Note that Eq. (7.17)

is important beyond the study of 
haoti
 resonan
e states, e.g., it 
an also be used for the


omputation of dynami
al-tunneling rates from the regular to the 
haoti
 phase-spa
e region

of mixed systems as initially worked out in 
ollaboration with Normann Mertig [183, 184℄.

Pro
eeding with the iterated operators Pn := (UP )∗nP0(UP )
n
, n ∈ N0, one �nds

〈ψ |Pnψ 〉 = 〈 (UP )nψ |P0(UP )
nψ 〉 (7.18)

= e−γn ‖P0ψ‖2 (7.19)

= e−γn(1− e−γ), (7.20)

whi
h generalizes Eq. (7.17). Semi
lassi
ally, for n ≤ τ
Ehr

, Pn 
orresponds to the proje
tion

onto the forward es
aping set T−n(Ω) su
h that 〈ψ |Pnψ 〉 des
ribes the weight on that set.
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We point out though that the operators Pn, n 6= 0, are stri
tly speaking not proje
tions if

not 
onsidered semi
lassi
ally. This is essentially due to the fa
t that in general U−1P0UP 6=
PU−1P0UP , although they are equal semi
lassi
ally. To 
on
lude, Eq. (7.20) expli
itly relates

the weight of a resonan
e state in ea
h of the forward es
aping sets T−n(Ω) up to τ
Ehr

with its

de
ay rate γ. The ratio of weights 〈ψ |Pn+1ψ 〉/〈ψ |Pnψ 〉 between 
onse
utive levels equals

e−γ for all n ∈ N0, 
f. Eq. (7.20). Qualitatively, this agrees with the lo
alization of 
haoti


resonan
e states shown in Fig. 7.3. A pre
ursor on this kind of semi
lassi
al de
omposition of

resonan
e states 
an be found already in the work by S
homerus and Tworzydªo [48℄, where

the authors identify regions of ballisti
 es
ape in order to study the number of instantaneous

de
ay modes.

Let us point out that the Ehrenfest time τ
Ehr

being the temporal threshold between 
lassi
al

and quantum-me
hani
al behavior is not sharp but rather de�nes a s
ale, meaning there is a

smooth transition from one regime to the other. In the same spirit, it is not essential in the

following whether there is quantum-to-
lassi
al 
orresponden
e both in forward and ba
kward

time dire
tion up to τ
Ehr

or in ea
h dire
tion only up to τ
Ehr

/2, whi
h seems more appropriate.

In this regard, the above dis
ussion should be rather seen as a proof of 
on
ept.

Given the dis
ussed results from [49℄, we have now seen some fundamental semi
lassi
al

properties of quantum resonan
e states. Still, this leaves the question about the 
orre
t


lassi
al framework to 
apture these properties. The work by Nonnenma
her and Rubin [51℄

suggests the 
on
ept of 
onditionally invariant measures. Before we dis
uss a few important

results from [51℄, let us introdu
e 
onditionally invariant measures as developed in Refs. [43,50℄.

7.2.2 Conditionally Invariant Measures

A probability measure µ is 
alled 
onditionally invariant measure (
im) with respe
t to the


lassi
al map T : Γ → Γ, if it obeys the 
ondition

T∗µ = ‖T∗µ‖µ, (7.21)

with ‖T∗µ‖ = T∗µ(Γ) and the pushforward measure T∗µ as de�ned in Eq. (7.3). In 
ontrast

to an invariant measure, T∗µ = µ, a 
im is invariant under T only up to a global fa
tor ‖T∗µ‖.
In fa
t, the n-fold iteration

T n∗ µ = ‖T∗µ‖nµ = e−γnµ, (7.22)

using T∗(‖T∗µ‖µ) = ‖T∗µ‖ T∗µ, yields an exponential de
ay with rate

γ = − log(‖T∗µ‖). (7.23)
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For the spe
ial 
ase that the opening O is performed before the 
losed map iteration T

l

,

T = T

l

◦O, it is

‖T∗µ‖ def

= µ
(
T−1(Γ)

)
= µ

(
O
(
T−1

l

(Γ)
︸ ︷︷ ︸

=Γ

))
= µ (Γ \ Ω) (Ω⊆Γ)

= µ(Γ)
︸︷︷︸

=1

−µ(Ω), (7.24)

su
h that the de
ay rate γ may be written as

γ = − log (1− µ(Ω)) . (7.25)

With this, Eq. (7.21) states that the measure µ
(
T−1(X)

)
of the set T−1(X) that will be

mapped to X is smaller than µ(X) by the fa
tor e−γ.

By de�nition, 
ims obey the same lo
alization 
onditions as quantum resonan
e states do

semi
lassi
ally in terms of (i) being supported by the ba
kward trapped set, Eq. (7.11), and

(ii) having de
ay-rate depending weights in the forward es
aping sets a

ording to Eq. (7.20):

(i) By mathemati
al indu
tion we show µ (T n

l

(Ω)) = 0 for n ∈ N, that is, a 
im µ is

supported by the ba
kward trapped set, 
f. Eq. (3.25),

Γ
bwd

= Γ \
∞⋃

n=1

T n

l

(Ω). (7.26)

First, for the base 
ase n = 1, it is

µ
(
T

l

(Ω)
)

Eq. (7.21)

= eγ T∗µ
(
T

l

(Ω)
)

(7.27)

= eγ µ
(
O ◦ T−1


l

◦ T

l

(Ω)
)

(7.28)

= eγ µ
(
O(Ω)

)
(7.29)

= eγ µ(∅) (7.30)

= 0. (7.31)

For the indu
tive step, we show that µ
(
T n

l

(Ω)
)
= 0 impies µ

(
T n+1

l

(Ω)
)
= 0,

µ
(
T n+1

l

(Ω)
)

= eγ T∗µ
(
T n+1

l

(Ω)
)

(7.32)

= eγ µ
(
O ◦ T−1


l

◦ T n+1

l

(Ω)
)

(7.33)

= eγ µ
(
T n

l

(Ω) \ Ω
)

(7.34)

≤ eγ µ
(
T n

l

(Ω)
)

(7.35)

= 0. (7.36)

A more intuitive argument analogous to the dis
ussion for quantum resonan
e states applies

for 
ims as well, i.e., a 
im must not have any weight in any iterate T n

l

(Ω) of the opening as
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any 
ontribution on T n

l

(Ω) leaves the region under iteration by T but no weight enters again.

Figure 7.5 shows the lo
alization of 
ims on the ba
kward trapped set (horizontal stripes) for

the Baker map.

(ii) In addition to the lo
alization on the ba
kward trapped set, the weights of 
ims in

the forward es
aping sets obey a de
ay-rate depending relation just like Eq. (7.20) for 
haoti


resonan
e states. Dire
tly from the de�nition of 
ims, Eq. (7.21), one �nds

µ
(
T−n(Ω)

)
= T n∗ µ(Ω) = e−γnµ(Ω)

(7.25)

= e−γn(1− e−γ), (7.37)

the 
lassi
al equivalent of Eq. (7.20). Examples for 
ims with de
ay-rate depending weights

in the forward es
aping sets are shown in Fig. 7.5 for the open Baker map.

We have seen that 
ims are invariant up to de
ay and obey the same two fundamental

lo
alization properties as quantum 
haoti
 resonan
e states. Hen
e, they are the ideal 
an-

didates for quantum-to-
lassi
al 
orresponden
e. So far, however, we have not addressed the

question how many di�erent 
ims a
tually exist, i.e., whether there are too few 
ims to �nd

a 
ounterpart for ea
h quantum resonan
e state or, vi
e versa, whether there are too many


ims su
h that one needs to investigate whi
h of them are quantum me
hani
ally relevant. In

Ref. [51, Thm. 1℄, it is proved that quantum resonan
e states ne
essarily 
onverge towards


ims in the semi
lassi
al limit, provided that they 
onverge at all. The authors also develop a

method, originally presented in [50, Thm. 3.1℄, to 
onstru
t un
ountably many 
ims for ea
h

de
ay rate γ [51, Prop. 2℄. They emphasize that it is not 
lear whi
h of these in�nitely many


ims are quantum me
hani
ally relevant. In other words, if one expe
ts that for ea
h γ there

exists a single 
im that 
aptures the semi
lassi
al behavior of generi
 
haoti
 resonan
e states

with the same de
ay rate γ then one needs to be able to sele
t this 
im out of the huge variety

of in�nitely many di�erent 
ims that exist for this γ.

Let us begin with the following simpler problem: Whi
h of these in�nitely many 
ims

are 
lassi
ally relevant? An appealing attempt to answer this question is put forward in [50,

Se
. 5.1℄. Re
all that for 
losed systems, ergodi
ity and mixing imply a 
onvergen
e of almost

arbitrary initial measures towards the invariant uniform Lebesgue measure, 
f. Eqs. (7.5) or

(7.7). For open systems, an analogue 
onsideration is based on the nonlinear iteration by

ν 7→ T∗ν

‖T∗ν‖
, (7.38)

where the nonlinearity 
ompensates the de
ay. Any 
im is a �xed point of this iteration as

follows immediately from the de�nition, Eq. (7.21). Likewise, if the iteration 
onverges, the

limit measure is 
onditionally invariant. Note that this relation between 
ims and Eq. (7.38)

a
tually motivates the notion of 
onditional invarian
e as the n-th iterate applied to X ⊆ Γ is

the 
onditional probability for being in X after n iterations under the 
ondition of being in Γ
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after n iterations [43℄. Moreover, note that in order to a
hieve 
onvergen
e, it might also be

useful to 
onsider 
onvergen
e on average in the Cesàro sense as performed in Eq. (7.5). The

relevan
e of 
ims may now be 
lassi�ed by the stability of the 
orresponding �xed point of

Eq. (7.38). This means, the more di�erent initial measures ν 
onverge towards a 
im µ, the

more important µ be
omes. A �rst reasonable 
andidate for whi
h one 
ould expe
t 
lassi
al

relevan
e [55, 56℄ is the so-
alled natural 
im µ
nat

, de�ned by the limit measure a

ording to

Eq. (7.38) when using the Lebesgue measure for ν [50℄. This yields the uniform distribution

on its support, i.e., the ba
kward trapped set, as visualized in Fig. 7.5(b) for the Baker map,

see also Fig. 7.4(a). Numeri
ally, one observes that not only the Lebesgue measure but rather

any generi
 initial measure 
onverges towards µ
nat

(not shown). This seems reasonable in

view of Eqs. (7.5) and (7.7) for 
losed 
haoti
 systems. Noti
e, however, that even the mere

existen
e of µ
nat

, i.e., the 
onvergen
e of Eq. (7.38) for the Lebesgue measure ν, is in general

not guaranteed [50, Se
. 5.1℄.

Quantum me
hani
ally, the natural 
im des
ribes typi
al long-lived resonan
e states in

the semi
lassi
al limit up to system spe
i�
 s
arring e�e
ts, as is already pointed out in [46℄

without using the notion of a natural 
im though. For instan
e, 
ompare the natural 
im

µ
nat

of the Baker map, Fig. 7.5(b), with the average 
haoti
 resonan
e state with γ ≈ γ
nat

,

Fig. 7.3(a). In the 
ontext of opti
al mi
ro
avities the natural 
im 
oin
ides with the steady

probability distribution, for whi
h quantum-to-
lassi
al 
orresponden
e is observed [70℄. Note

that opti
al mi
ro
avities are modeled with partial absorption, i.e., by quantum maps UP

with a unitary part U and a subunitary part P = 1 − αP0, with the absorption 
oe�
ient

α ∈ [0, 1] and the proje
tion P0 onto the opening, 
f. [56℄. Throughout this thesis we use

α = 1, whi
h simpli�es some arguments. For a generalization of our results to systems with

partial absorption, we refer to a short dis
ussion in the outlook in Chap. 11.

As the natural 
im has a single de
ay rate only, it 
annot be the 
lassi
al 
ounterpart for

all quantum resonan
e states with a wide range of de
ay rates. 
ims with other de
ay rates

may be 
onstru
ted as follows [50,51℄: Let ν be an arbitrary probability measure on Ω∩Γ
bwd

,

that is ν(Γ) = ν(Ω ∩ Γ
bwd

) = 1. Then for ea
h γ > 0, the measure de�ned by

1

µ := (1− e−γ)
∑

n∈N0

e−γn T ∗nν (7.39)

is 
onditionally invariant with de
ay rate γ. Here, T ∗ν denotes the pullba
k measure of ν,

obeying

T ∗ν(X) := ν
(
T (X)

)
(7.40)

1

Note that, given the di�erent notation used in [51℄, there is a typo in Eq. (2.14): The authors a

identally

use the pushforward measure instead of the pullba
k measure.
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q

p

(a) γ < γnat

q

p

(b) γ = γnat

q

p

(c) γ > γnat

q

p

(d) γ < γnat

q

p

(e) γ > γnat

Figure 7.5. (a, 
) Constru
tion of γ-natural 
ims for the Baker map by trun
ation of the

series in Eq. (7.49) to n ≤ 2 for (a) γ < γ
nat

and (
) γ > γ
nat

. This is based on the natural


im shown in (b) for whi
h the weight in Ω (gray stripe), T−1(Ω) (light blue stripes), and
T−2(Ω) (medium blue stripes) is adapted. (d, e) Finer resolution of γ-natural 
ims for (d)
γ < γ

nat

and (e) γ > γ
nat


omputed by the integration method dis
ussed on page 82.

for measurable X ⊆ Γ for maps T su
h that T (X) is measurable as well. The 
onditional

invarian
e of µ as de�ned by Eq. (7.39) 
an be seen by

T∗µ = (1− e−γ)

{

T∗ν
︸︷︷︸

=0

+

∞∑

n=1

e−γn T∗T
∗nν

︸ ︷︷ ︸

=T ∗(n−1)ν

}

(7.41)

= (1− e−γ) e−γ
∞∑

n=0

e−γn T ∗nν (7.42)

= e−γµ. (7.43)



7.2.2 Conditionally Invariant Measures 81

The pushforward measure T∗ν equals zero be
ause for ea
h X ⊆ Γ the preimage T−1(X) is in

Γ\Ω and thus has no overlap with the support Ω∩Γ
bwd

of ν. The relation T∗T
∗nν = T ∗(n−1)ν

also follows from the restri
tion of ν to Ω∩Γ
bwd

. Due to the arbitrariness of ν, this 
onstru
tion

demonstrates that there exist un
ountably many 
ims for ea
h γ. Interestingly, a 
onstru
tion

of 
haoti
 resonan
e states analogous to Eq. (7.39) 
an be proved, see Se
. B.4, whi
h further

indi
ates quantum-to-
lassi
al 
orresponden
e.

So again, the question arises, whi
h of these in�nitely many 
ims is relevant for 
lassi
al

or quantum me
hani
al 
onsiderations. Classi
ally, 
ims other than µ
nat

tend to be irrelevant

in terms of the stability for the iteration by Eq. (7.38) as introdu
ed above. An initial mea-

sure ν in the notation of Eq. (7.38) must ful�ll ex
eptional selfsimilarity properties in order to


onverge towards a spe
i�
 
im µ as represented by Eq. (7.39). That is, the initial measure ν

of sets that will es
ape through the opening under forward iteration must be 
hosen a

ording

to the de
ay rate γ su
h that µ is essentially already 
ontained in the �ne stru
ture of ν up

to lo
alization on the ba
kward trapped set and therefore ex
eptional. For a detailed study of

appropriate initial measures as worked out in 
ollaboration with Tobias Be
ker and Konstantin

Clauÿ we refer to Ref. [185℄. Still, the results presented in Refs. [49,51℄ suggest that 
ims with

γ 6= γ
nat

are quantum me
hani
ally relevant even though they may be ex
eptions 
lassi
ally.

Whi
h 
im out of the huge variety of 
ims for a single de
ay rate γ is quantum me
hani
ally

important? We here propose the 
lass of γ-natural 
ims and show in Chaps. 8 and 9 that

they are, in fa
t, quantum me
hani
ally relevant, as they des
ribe the lo
alization of quantum

resonan
e states on both sides of a partial barrier. We use the 
onstru
tion des
ribed by

Eq. (7.39) for the parti
ularly simple 
ase that

ν(X) :=
µ
nat

(X ∩ Ω)

µ
nat

(Ω)
, (7.44)

whi
h is the normalized restri
tion of the natural 
im µ
nat

to Ω. This 
hoi
e of a measure,

whi
h is 
onstant on its support, is motivated in analogy to quantum ergodi
ity for 
losed fully


haoti
 systems, where eigenstates in the semi
lassi
al limit approa
h the 
onstant invariant

measure [29, 186℄. Then we may write

T ∗nν(X) = ν
(
T n(X)

)
(7.45)

=
µ
nat

(T n(X) ∩ Ω)

µ
nat

(Ω)
(7.46)

=
eγnatn

1− e−γnat
T n∗ µnat

(
T n(X) ∩ Ω

)
(7.47)

=
eγnatn

1− e−γnat
µ
nat

[
T−n

(
T n(X) ∩ Ω

)

︸ ︷︷ ︸

X∩T−n(Ω)

]
. (7.48)
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Note that in general, T−n
(
T n(X) ∩ Ω

)
⊇ X ∩ T−n(Ω) as T is not bije
tive (open system).

However, here it is su�
ient for equality to hold that T is invertible within all forward es
aping

sets T−n(Ω). Inserting Eq. (7.48) in Eq. (7.39), we obtain the 
im

µγ(X) :=
1− e−γ

1− e−γnat

∑

n∈N0

e(γnat−γ)nµ
nat

(
X ∩ T−n(Ω)

)
(7.49)

of arbitrary de
ay rate γ, whi
h we refer to as γ-natural 
im. This series multiplies µ
nat

in

ea
h forward es
aping set T−n(Ω) by an appropriate fa
tor whi
h imposes the overall de
ay

rate γ a

ording to Eq. (7.21). The γ-natural 
im µγ is 
onstant on T−n(Ω) ∩ Γ
bwd

for ea
h

n ∈ N0. With in
reasing n, this 
onstant is de
reasing (in
reasing) for γ > γ
nat

(γ < γ
nat

), in

parti
ular short-lived measures µγ have more weight in the opening. This is shown in Fig. 7.5

for the Baker map. Note that for γ < γ
nat

the density within the interse
tion T−n(Ω) ∩ Γnum

bwd

of forward es
aping sets with the 
oarse-grained ba
kward trapped set Γnum

bwd

in
reases with n,

µγ
(
T−n(Ω)

)

|T−n(Ω) ∩ Γnum

bwd

| ∼
µγ
(
T−n(Ω)

)

µ
nat

(
T−n(Ω)

) =
1− e−γ

1− e−γnat
e(γnat−γ)n, (7.50)

although the weight µγ
(
T−n(Ω)

)
de
reases a

ording to Eq. (7.37). The 
lass of γ-natural


ims de�ned by Eq. (7.49) is the 
entral obje
t of our 
lassi
al studies.

The 
onditional invarian
e of µγ is already shown above as it satis�es Eq. (7.39). Let us

brie�y demonstrate its normalization. By de�nition, it is

‖µγ‖ =
1− e−γ

1− e−γnat

∑

n∈N0

e(γnat−γ)nµ
nat

(
Γ ∩ T−n(Ω)

)
. (7.51)

Using

µ
nat

(
Γ ∩ T−n(Ω)

)
= T n∗ µnat(Ω) = e−γnatn(1− e−γnat), (7.52)

one �nds

‖µγ‖ = (1− e−γ)
∑

n∈N0

e−γn = 1, (7.53)

su
h that µγ is indeed a 
onditionally invariant probability measure with de
ay rate γ.

Numeri
al Computation

Con
eptually, the stru
ture of γ-natural 
ims is thoroughly des
ribed above. A γ-natural 
im

µγ of de
ay rate γ is 
onstru
ted by the following steps: Compute the ba
kward trapped set

Γ
bwd

, that is, remove all iterates T

l

(Ω) of the opening Ω under the 
losed map T

l

. Uniformly



7.2.3 Perron�Frobenius Theory 83

distribute the weight µγ(T
−n(Ω)) = e−γn(1−e−γ) on the interse
tion T−n(Ω)∩Γ

bwd

of the n-th

forward es
aping set T−n(Ω) and the ba
kward trapped set Γ
bwd

. This gives the γ-natural 
im

of de
ay rate γ, regardless of the 
onsidered map T . However, the numeri
al implementation

of the above steps is not straightforward. Let us therefore explain an algorithm that is 
apable

of providing γ-natural 
ims for generi
 maps as presented in [34℄.

First, one has to approximate (the 
haoti
 part of) the ba
kward trapped set Γ
bwd

. To

this end, one may de�ne a uniform grid of N
grid

points in phase spa
e of whi
h one has to

dis
ard points whi
h leave the system within N
iter

iterations of the map T in ba
kward time

dire
tion. Points within a generi
ally existing regular phase-spa
e region should be omitted

manually. The remaining points provide the �nite-time approximation Γnum

bwd

of Γ
bwd

and need

to be 
lassi�ed by their forward es
aping times. Finally, assuming equidistribution for the

points in T−n(Ω) ∩ Γnum

bwd

, we �nd

µγ(X ∩ T−n(Ω)) ≈ fn(X) e−γn(1− e−γ), (7.54)

with

fn(X) :=
# (X ∩ T−n(Ω) ∩ Γnum

bwd

)

# (T−n(Ω) ∩ Γnum

bwd

)
, (7.55)

for ea
h measurable subset X of phase spa
e. Using µγ(X) =
∑∞

n=0 µγ(X ∩ T−n(Ω)) we

have a numeri
al estimate for the γ-natural 
im µγ. As the sample Γnum

bwd

is only �nite the

series will terminate and the numeri
ally approximated measure is not perfe
tly normalized.

This method is not appropriate for ex
eedingly small γ sin
e the weight on forward es
aping

sets T−n(Ω) ∩ Γnum

bwd

with large es
ape times n be
omes in
reasingly important while they are

approximated by a few points only.

7.2.3 Perron�Frobenius Theory

Another approa
h to 
ompute 
ims is based on the Perron�Frobenius theory on the time

evolution of phase-spa
e densities brie�y reviewed in this se
tion. This approa
h will be

used for the analyti
al study of 
ims of the partial-barrier Baker map in Chap. 8. To this

end, we restri
t ourselves to absolutely 
ontinuous measures with densities and fo
us on their

time evolution. In order to illustrate the general idea, 
onsider the simple 
ase of a 
losed

autonomous Hamiltonian system with Hamilton fun
tion H . In this 
ase the 
ontinuous time

evolution of a phase-spa
e density ̺ : Γ× R → R≥0 is given by the Liouville equation,

∂t̺(x, t) = LH̺(x, t), (7.56)
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with the Liouville operator LH̺ := {H, ̺} in terms of the Poisson bra
ket, 
f. Ref. [187, Se
.

2.3℄. Then the expli
it time evolution of ̺ reads

̺(x, t) = FH(t)̺(x, 0), (7.57)

with the so-
alled Perron�Frobenius operator

FH(t) := exp
(
LHt

)
. (7.58)

Here, we are interested in maps rather than time-
ontinuous dynami
al systems, whi
h are

not ne
essarily des
ribed by a Hamilton fun
tion. For 
losed systems, the most general 
ase of

importan
e in this thesis is a symple
ti
 map T in a two-dimensional phase spa
e Γ, su
h that

detDT = 1. Note that this parti
ularly implies the lo
al invertibility of T . Given an absolutely


ontinuous measure µ with respe
t to the Lebesgue measure Λ and the 
orresponding density

̺ : Γ → R≥0, i.e.,

µ(X) =

∫

X

̺ dΛ, (7.59)

the temporal iterate FT̺ of ̺ is given by the density of T∗µ,

T∗µ(X) =

∫

X

FT̺ dΛ. (7.60)

By the 
hange of variables formula for pushforward measures, 
f. Eq. (A.2), it is

T∗µ(X) =

∫

Γ

χX dT∗µ =

∫

Γ

χX ◦ T dµ =

∫

Γ

χT−1(X) dµ, (7.61)

with the indi
ator fun
tion χ. Using that µ has density ̺, one obtains

T∗µ(X) =

∫

T−1(X)

̺ dΛ (7.62)

=

∫

X

(
̺ ◦ T−1

)
·| detDT−1| dΛ. (7.63)

Sin
e T is symple
ti
 the Ja
obian determinant is identi
al to unity (Liouville theorem) and

the Perron�Frobenius operator FT simply reads

FT̺ = ̺ ◦ T−1, (7.64)


f. Ref. [187, Se
. 2.2℄. If T is not symple
ti
 but the 
omposition T = T

l

◦O of a symple
ti


map T

l

and the opening map O on region Ω, the above derivation is valid up to Eq. (7.62),
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where T−1(X), Eq. (3.20), is the preimage of X as the inverse map T−1
does not exist. In

order to apply the transformation law leading to Eq. (7.63), the domain T−1(X) of integration

needs to be de
omposed. For X ⊆ T

l

(Ω), it is T−1(X) ∩ Γ = ∅ su
h that T∗µ(X) = 0 and

(FT̺)|X = 0. Otherwise, for X ∩ T

l

(Ω) = ∅, the inverse T−1
exists and one obtains Eq. (7.64)

again. In total, this gives

FT̺(x) =







̺ ◦ T−1

l

(x) : x 6∈ T

l

(Ω),

0 : x ∈ T

l

(Ω).
(7.65)

The advantage of using densities instead of measures is that it immediately provides thor-

oughly developed Hilbert spa
e methods for the time-evolution operator FT like the spe
tral

theorem [173℄. To this end, one needs to restri
t the set of allowed density fun
tions on phase

spa
e Γ to the spa
e L2(Γ) provided that su
h densities exist at all. We stress that solving the

eigenvalue problem for FT , i.e., FT̺ = λ̺, λ ∈ C, in prin
iple establishes all absolutely 
on-

tinuous 
ims. However, there is a 
ru
ial drawba
k: Numeri
ally feasible �nite-dimensional

approximations of FT provide the natural 
im only, as we will dis
uss now.

First, let us brie�y explain what is meant by �nite-dimensional approximations of FT . The

Perron�Frobenius operator FT a
ting on the Hilbert spa
e L2(Γ) is of in�nite dimensionality.

In order to treat FT numeri
ally, an approximation s
heme for FT is desired, whi
h approxi-

mates FT by a sequen
e of �nite-dimensional matri
es and provides some kind of 
onvergen
e

of the �nite-dimensional eigenve
tors towards the in�nite-dimensional eigenfun
tions of FT . A


ommon approa
h is the Ulam method [188, Chap. 4℄: One de�nes a �nite partition of phase

spa
e Γ into disjoint subsets Sk, k ∈ {1, . . . , n}, ⋃k Sk = Γ, and asso
iates a transition proba-

bility with ea
h pair of phase-spa
e regions Si and Sk. Usually, this transition probability is

de�ned by

F k→i
nat

:=
|Sk ∩ T−1(Si)|

|Sk|
(7.66)

for the transition from Sk to Si, that is the fra
tion of Sk whi
h is mapped to Si under T [188,

Chap. 4℄. Numeri
ally, this 
orresponds to iterating a uniform sample of initial 
onditions in

Sk and to 
ounting how many of these points end up in Si after one iteration. This gives an

n× n matrix approximation (F k→i
nat

)ik for FT .

In general, one may also use initial distributions other than the uniform distribution to


ompute the transition probability from Si to Sk. We will 
omment on the dependen
e on

initial distributions below. For systems with a two-dimensional mixed phase spa
e it is useful

to derive the transition probabilities from a single long orbit instead of many orbits that are

iterated only on
e. This preserves the invarian
e of phase-spa
e regions [189, 190℄. Another

important generalization is the Ulam�Galerkin method [188, Chap. 4℄, where one sele
ts a
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�nite number of appropriate basis fun
tions and proje
ts FT onto their span. The advantage

of this method is that the basis fun
tions may be 
hosen adapted to a spe
i�
 system. In

Ref. [191, 192℄ for instan
e, spheri
al harmoni
s are used for the ki
ked top on a spheri
al

phase spa
e. The 
ommon Ulam method may be interpreted as a spe
ial 
ase of the Ulam�

Galerkin method by 
hoosing indi
ator fun
tions that are supported by the elements of the

used phase-spa
e partitions.

The understanding of the asymptoti
 dynami
s that one 
an obtain from �nite-dimensional

approximations of FT is limited essentially due to the Perron�Frobenius theorem [193, Se
. 1.1℄.

For referen
e it is stated here in full detail followed by an interpretation.

Theorem. Let F ∈ R
N×N
≥0 be an irredu
ible matrix with nonnegative entries, spe
-

trum σ(F ) and spe
tral radius r := maxλ∈σ(F ) |λ|. Then the following assertions hold:

(i) The spe
tral radius r is an algebrai
ally simple eigenvalue of F , i.e., dim ker(F −
r1) = 1; moreover it is r > 0 if F 6= 0,

(ii) There exists a normalized eigenve
tor ̺ 
orresponding to the eigenvalue r ∈ σ(F ),

that has only positive 
omponents,

(iii) Any eigenve
tor of F that has ex
lusively nonnegative 
omponents is a multiple

of ̺,

(iv) If F has exa
tly q eigenvalues λ with |λ| = r, then these eigenvalues are given by

r e2πi k/q for 0 ≤ k < q,

(v) If the 
omponents of F are stri
tly positive, it is |λ| < r for ea
h λ ∈ σ(F ) with

λ 6= r.

For the proof see Refs. [194, Se
s. 15.3, 15.4℄ and [195, Se
s. 8.2, 8.3℄. The Perron�Frobenius

theorem basi
ally states that the eigenvalue r ∈ σ(F ) of maximal modulus lies on the positive

real axis. It is 
alled Perron�Frobenius eigenvalue. The 
orresponding eigenspa
e is one-

dimensional and provides the only eigenve
tor ̺ that has purely nonnegative 
omponents,


alled Perron�Frobenius eigenve
tor. In 
ontrast to all other eigenve
tors it may therefore be

interpreted as a 
lassi
al probability density. Sin
e r has maximal modulus, ̺ is the eigenve
tor

of slowest de
ay interpreting the Perron�Frobenius theorem as though r < 1 like in our studies.

Note that the irredu
ibility of F ex
ludes that there are invariant subregions in phase spa
e.

If there are any, the theorem may be applied to ea
h of them individually.

In appli
ation to the Perron�Frobenius operator FT this theorem implies that any �nite-
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dimensional matrix approximation provides an approximation for a single 
im, only. It is

not 
lear whether the other eigenstates, whi
h have negative entries, 
arry en
oded infor-

mation about other 
ims. They are 
ertainly important for the transient time evolution by

means of spe
tral de
omposition of initial distributions. In prin
iple, for any 
im µ a Perron�

Frobenius matrix Fµ =
(
F k→i
µ

)

ik
whi
h approximates µ by its Perron�Frobenius eigenstate

̺ :=
(
µ(S1), . . . , µ(Sn)

)

an be 
onstru
ted by a generalized Ulam method, if the transition

probabilities are not 
hosen a

ording to Eq. (7.66) but with respe
t to µ itself as

F k→i
µ :=

µ
(
Sk ∩ T−1(Si)

)

µ(Sk)
. (7.67)

This 
an be veri�ed by expli
itly 
al
ulating the i-th 
omponent of Fµ̺,

[Fµ̺]i =
n∑

k=1

F k→i
µ µ(Sk) (7.68)

=
n∑

k=1

µ
(
Sk ∩ T−1(Si)

)
(7.69)

=

n∑

k=1

T∗µ
(
T (Sk) ∩ Si

)
(7.70)

= T∗µ(Si) (7.71)

= ‖T∗µ‖µ(Si), (7.72)

where we use that T−1
(
T (Sk)∩Si

)
= Sk ∩T−1(Si) be
ause T

−1(Si)∩Ω = ∅, and that the sets

T (Sk), k ∈ {1, . . . , n}, provide a partition of the support of T∗µ.

This 
onstru
tion, however, is based on the 
im µ one is eventually interested in. It is

therefore not useful to obtain µ. For the natural 
im µ
nat

this is not an issue sin
e generi
 initial

distributions 
onverge towards µ
nat

as dis
ussed on page 79. Thus, the transition probabilities

of the Perron�Frobenius matrix Fµ
nat

do not need to be 
hosen 
arefully in order to obtain

µ
nat

. For instan
e, in view of the de�nition of µ
nat

by the asymptoti
 behavior of an initial

Lebesgue measure Λ, F
nat

= FΛ is an ideal substitute for Fµ
nat

. For γ-natural 
ims µγ with

γ 6= γ
nat

, however, only ex
eptional initial distributions 
onverge towards µγ as dis
ussed on

page 81. Hen
e, one has to �nd the 
orre
t Perron�Frobenius matrix Fµγ without knowing µγ.

To the best of our knowledge it is not known how to solve this problem.

As a te
hni
al remark, we mention that fra
tal measures are nonzero even on sets of

Lebesgue measure zero, and thus, 
annot be absolutely 
ontinuous with respe
t to the Lebesgue

measure. Hen
e, they do not have a proper density. Therefore, a naive approa
h using

Perron�Frobenius operators for open systems, where fra
tal measures are omnipresent, is not

fruitful. This issue 
an be over
ome for 
ims that are absolutely 
ontinuous with respe
t to

the Lebesgue measure on the ba
kward trapped set [50℄. In the physi
s literature, a rigorous
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dis
ussion of this issue is usually omitted as �nite-resolution approximations of densities for

fra
tal measures are often su�
ient.



Chapter 8

Lo
alization in the

Partial-Barrier Baker Map

In order to eventually understand the lo
alization phenomena of 
haoti
 resonan
e states due

to a partial transport barrier presented in Chap. 6, we have introdu
ed the 
lass of γ-natural


ims in Se
. 7.2.2 for whi
h we expe
t quantum-to-
lassi
al 
orresponden
e. In this 
hapter we

investigate the lo
alization of both 
lassi
al γ-natural 
ims and quantum resonan
e states for

the partial-barrier Baker map. We show that, indeed, the 
lassi
al and quantum-me
hani
al

lo
alization due to a partial barrier semi
lassi
ally 
oin
ide. We start with an analyti
al


onstru
tion of an Ulam approximation of the Perron�Frobenius operator on arbitrary �ne

s
ales in Se
. 8.1. In Se
. 8.2 we prove that the eigenvalue problem of the Perron�Frobenius

operator of arbitrary resolution 
an be rigorously redu
ed to the solution of a 2×2matrix. This

allows us to 
al
ulate the Perron�Frobenius eigenve
tor and eigenvalue, whi
h 
orresponds to

the natural 
im in Se
. 8.3, where we also demonstrate quantum-to-
lassi
al 
orresponden
e

with resonan
e states of natural de
ay rate. In Se
. 8.4 we generalize the natural 
im to

the 
lass of γ-natural 
ims and show quantum-to-
lassi
al 
orresponden
e with resonan
e

states of arbitrary de
ay rate. We emphasize that the subsequent study of lo
alization in

generi
 systems strongly relies on our insights gained in this 
hapter. The idea to study the

partial-barrier Baker map and a �rst solution for the lo
alization of the natural 
im of a

related one-dimensional problem goes ba
k to Roland Ketzmeri
k. The tensor formulation

established in Se
. 8.1, whi
h is the key to rigorously prove the redu
tion in Se
. 8.2, is worked

out in 
ollaboration with Mar
us Wauri
k.

8.1 Perron�Frobenius Operator: Ulam Approximations

Let us start with an introdu
tory example. We 
onsider a grid of three 
ells on ea
h side of

the partial barrier as illustrated in Fig. 8.1, and want to understand the Perron�Frobenius
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operator as applied to this grid. As we negle
t anything that happens on �ner s
ales than this

grid, this is a very 
oarse Ulam approximation of the true dynami
s. We will generalize this

approa
h to arbitrary �ne approximations below.

Consider an initial density v = (v1, . . . , v6)
T
on this grid, where the enumeration follows

Fig. 8.1. The �rst 
omponent (lower left 
ell) after one iteration of the map is given by

v′1 =
1

3
v1 +

1

3
v2 +

1

3
v3 =: 〈v1 v2 v3〉, (8.1)

whi
h is the average weight that has been on the left hand side of the partial barrier before

the iteration. This step is visualized by the green shaded regions in Fig. 8.1. We stress that

there is no information 
ontained in the initial distribution v that 
orresponds to s
ales whi
h

are �ner than the grid. Hen
e, ea
h 
ell on the left 
ontributes a third of its total weight to

the lower left 
ell after one iteration. Pro
eeding analogously for the other 
ells of the grid,

the full iteration is des
ribed by the map

v = (v1, . . . , v6)
T 7→ T1v = (〈v1 v2 v3〉, 0, 〈v4 v5 v6〉, 〈v1 v2 v3〉, 〈v4 v5 v6〉, 〈v4 v5 v6〉)T, (8.2)

with the Ulam approximation

T1 =
1

3














1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 1 1 1

1 1 1 0 0 0

0 0 0 1 1 1

0 0 0 1 1 1














(8.3)

7→
T1

〈v4 v5 v6〉

〈v1 v2 v3〉

〈v4 v5 v6〉

〈v4 v5 v6〉

〈v1 v2 v3〉v1

v2

v3 v6

v5

v4

Figure 8.1. Illustration of Ulam approximation T1 for the partial-barrier Baker map. After

one iteration, the value in ea
h 
ell is given by the average over the initial values either on

the left hand side or on the right hand side of the partial barrier (magenta line). The weight

in the middle left 
ell drops to zero due to the opening.
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of the partial-barrier Baker map. For the following generalization it is useful to de
ompose T1

into the averaging matrix A3 := (1, 1, 1)/3 ∈ R1×3
and the sorting matrix

σ3 :=

(

1 0 0 1 0 0

0 0 1 0 1 1

)T

∈ R
6×2, (8.4)

whi
h yields

T1 = σ3 ⊗A3. (8.5)

The Krone
ker produ
t ⊗ of the m × n matrix A = (Aik)ik and the p × q matrix B is given

by the mp× nq matrix

A⊗ B :=









A11B A12B . . . A1nB

A21B A22B . . . A2nB
.

.

.

.

.

.

.

.

.

Am1B Am2B . . . AmnB









. (8.6)

It represents the tensor produ
t of the two linear maps A and B in a suitable basis.

In order to generalize this Ulam approximation s
heme of the Perron�Frobenius operator

to arbitrary �ne grids, we de�ne for any given k ∈ N the 
ells of the partition by

[0, 1
2
)× [(n− 1)/3k, n/3k), (1 ≤ n ≤ 3k) (8.7a)

and

[1
2
, 1)× [(n− 1)/3k, n/3k), (1 ≤ n ≤ 3k), (8.7b)

having 3k 
ells on ea
h side of the partial barrier. Note that for the purpose of a 
onvenient

notation, we here 
onsider the partial-barrier Baker map on [0, 1) × [0, 1) instead of [0, 1) ×
[−1

2
, 1
2
) as was introdu
ed for the general partial-barrier map in Chap. 4. This grid is exa
tly

that of Fig. 8.1 for k = 1. In order to eventually de�ne a ve
tor v ∈ R
2·3k

whi
h des
ribes

a density on this grid, we order the 
ells 
orresponding to the above index n on the left and

n+ 3k on the right.

The general iteration s
heme for any k is depi
ted in Fig. 8.2, de
omposing a single iteration

into two parts: First, the phase-spa
e regions on ea
h side are shrunk by one third in their

height. This is a
hieved by an average on the highest order of resolution, that is an average

over 
onse
utive triples for a given ve
tor. In matrix notation, this reads

Ek = 13k−1 ⊗ A3 ∈ R
3k−1×3k . (8.8)
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7→ 7→

shrink
(average) sort

copy
&

Figure 8.2. Sket
h of the a
tion of the Perron�Frobenius operator of the partial-barrier

Baker map as applied to the grid in Eqs. (8.7a) and (8.7b). In a �rst step, the two regions

on ea
h side of the partial barrier are shrunk to a third of their initial height by averaging

over the highest order of resolution de�ned by k. In a se
ond step, these regions are 
opied

and sorted into the 
orresponding phase-spa
e parts.

For the example of k = 2, the matrix E2 is

E2 =
1

3






1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1




 , (8.9)

and 
learly maps a ve
tor of dimension nine to a ve
tor of a third of this dimension by averaging

over 
onse
utive triples. In a se
ond step, these averaged obje
ts are sorted in just the same

way as in the introdu
tory example before, that is, by virtue of the sorting matrix σ3. In total,

the Ulam approximation of order k of the Perron�Frobenius operator for the partial-barrier

Baker map is given by

Tk := σ3 ⊗ Ek. (8.10)

Finally, we generalize this Ulam approximation s
heme to a more general map: Instead

of the partial-barrier Baker map based on the ternary Baker map, we 
onsider the partial-

barrier N
B

-Baker map. The a
tion of this map for the example of N
B

= 5 is illustrated in

Fig. 8.3. This generalization is an important step in order to investigate di�erent values for

the opening |Ω| and the �ux φ. For the partial-barrier Baker map based on the ternary Baker

map the openness and the 
oupling is always given by |Ω| = φ = 1/6. In 
ontrast, using an

arbitrary integer N
B

instead of the spe
i�
 
ase N
B

= 3 allows us to adapt the 
oupling a
ross

the partial barrier and the size of the opening by 
hoosing C 
oupling stripes and L opening

stripes instead of a single one. To this end, we adapt the grid, Eqs. (8.7a) and (8.7b), to the

new parameter N
B

, and obtain the Nk
B


ells

[0, 1
2
)× [(n− 1)/Nk

B

, n/Nk
B

), (1 ≤ n ≤ Nk
B

) (8.11a)
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7→
T

︸ ︷︷ ︸

NBC

︸︷︷︸︸︷︷︸

L

Figure 8.3. Illustration of the partial-barrier map T based on the 5-Baker map with

N
B

= 5, C = 2, L = 2. The a
tion of T within ea
h stripe is given by horizontal stret
hing

and verti
al 
ompression just as for the usual partial-barrier Baker map, 
f. Fig. 4.2.

on the left hand side of the partial barrier, and vi
e versa the Nk
B


ells

[1
2
, 1)× [(n− 1)/Nk

B

, n/Nk
B

), (1 ≤ n ≤ Nk
B

) (8.11b)

on the right hand side. This grid is exa
tly that of Fig. 8.1 for N
B

= 3 and k = 1. Again,

the 
ells are ordered 
orresponding to the above index n on the left and n +Nk
B

on the right.

Now, the averaging matrix is

AN
B

:=
1

N
B

(1, . . . , 1
︸ ︷︷ ︸

N
B

) ∈ R
1×N

B, (8.12)

with the 
orresponding operator

Ek := 1Nk−1
B

⊗ AN
B

∈ R
Nk−1
B

×Nk
B, (8.13)

and the sorting matrix reads

σN
B

:=

(

1 . . . 1 0 . . . 0 0 . . . 0 1 . . . 1 0 . . . 0

︸ ︷︷ ︸

N
B

− L− C

0 . . . 0
︸ ︷︷ ︸

L

0 . . . 0
︸ ︷︷ ︸

C

1 . . . 1
︸ ︷︷ ︸

C

0 . . . 0
︸ ︷︷ ︸

N
B

− C

1 . . . 1

)T

∈ R
2N

B

×2. (8.14)

The iteration in Ulam approximation of order k then obeys

Tk := σN
B

⊗ Ek. (8.15)
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8.2 Perron�Frobenius Operator: Selfsimilarity Redu
tion

Re
all that we treat the Perron�Frobenius operator of the partial-barrier Baker map in order

to 
ompute its Perron�Frobenius ve
tor ϕ and eigenvalue λ, i.e., the density distribution

and de
ay rate 
orresponding to the natural 
im. In this se
tion we will proof that the full

information about the Perron�Frobenius pair (λk, ϕk) of Tk lies in the 
ombination of a simple

2× 2 matrix and the sorting operator σN
B

. A
tually, this redu
ibility is already suggested by

the tensor stru
ture of Tk as developed in the previous se
tion.

Proposition. Let Tk for k ∈ N be de�ned as in Eq. (8.15). There exist at most two

nontrivial solutions (λk, ϕk) of the eigenvalue problem Tkϕk = λkϕk. They are given by

λk = λ0, ϕk = σ̂N
B

(k − 1) · · · σ̂N
B

(0)ϕ0, (8.16)

with σ̂N
B

(n) := σN
B

⊗ 1Nn
B

, n ∈ N0, and where (λ0, ϕ0) solves the eigenvalue problem

for

T0 :=
1

N
B

(

N
B

− L− C C

C N
B

− C

)

. (8.17)

Proof. First, we show that the eigenstates of T0 give eigenstates of Tk as stated in the propo-

sition. To this end, we prove that

Tk+1σ̂N
B

(k) = σ̂N
B

(k)Tk (8.18)

for k ∈ N. By de�nition, it is

Tk+1σ̂N
B

(k) = (σN
B

⊗Ek+1)(σN
B

⊗ 1Nk
B

). (8.19)

Furthermore, we �nd

Ek+1 = 1Nk
B

⊗ AN
B

= 1N
B

⊗ 1Nk−1
B

⊗AN
B

= 1N
B

⊗Ek. (8.20)

Using that the Krone
ker produ
t is asso
iative, A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C, and

that (A⊗ B)(C ⊗D) = (AC)⊗ (BD) as long as the matrix produ
ts AC and BD are
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well-de�ned, we obtain

Tk+1σ̂N
B

(k) = ((σN
B

⊗ 1N
B

)⊗ Ek)(σN
B

⊗ 1Nk
B

) (8.21)

= ((σN
B

⊗ 1N
B

)σN
B

)⊗
(

Ek1Nk
B

)

(8.22)

= ((σN
B

⊗ 1N
B

)σN
B

)⊗
(

1Nk−1
B

Ek

)

(8.23)

=
(

(σN
B

⊗ 1N
B

)⊗ 1Nk−1
B

)

(σN
B

⊗Ek) (8.24)

=
(

σN
B

⊗ 1Nk
B

)

(σN
B

⊗ Ek) (8.25)

= σ̂N
B

(k)Tk. (8.26)

Thus, given Tkϕk = λkϕk, we de�ne ϕk+1 := σ̂N
B

(k)ϕk whi
h obeys

Tk+1ϕk+1 = Tk+1σ̂N
B

(k)ϕk = σ̂N
B

(k)Tkϕk = λkσ̂N
B

(k)ϕk = λkϕk+1, (8.27)

i.e., ϕk+1 = σ̂N
B

(k)ϕk is an eigenve
tor of Tk+1 asso
iated with the eigenvalue λk+1 := λk

for k ∈ N.

Moreover, let (λ0, ϕ0) be a solution of the eigenvalue problem for T0. By ordinary

matrix multipli
ation, it is straightforward to show that T1σN
B

= σN
B

T0, whi
h just as

before yields that σ̂N
B

(0)ϕ0 = σN
B

ϕ0 is an eigenve
tor of T1 = σN
B

⊗ E1 = σN
B

⊗ AN
B


orresponding to the eigenvalue λ0, 
f. Eq. (8.27).

Hen
e, from the at most two di�erent solutions of the eigenvalue problem for T0, we 
an

dedu
e two solutions for Tk, k ∈ N, as 
laimed in the proposition. We still have to show

that these are the only nontrivial solutions. This will be a

omplished by demonstrating

that it is possible to redu
e an eigenve
tor of Tk+1 to an eigenve
tor of Tk and that this

redu
tion is inje
tive. To this end, we have to study the left inverse

σ−1
N
B

=

(
1

N
B

−L . . . 1
N
B

−L 0 . . . 0 0 . . . 0 1
N
B

−L . . . 1
N
B

−L 0 . . . 0

︸ ︷︷ ︸

N
B

− L− C

0 . . . 0
︸ ︷︷ ︸

L

0 . . . 0
︸ ︷︷ ︸

C

1
N
B

. . . 1
N
B

︸ ︷︷ ︸

C

0 . . . 0
︸ ︷︷ ︸

N
B

− C

1
N
B

. . . 1
N
B

)

(8.28)

of σN
B

, i.e., σ−1
N
B

σN
B

= 12. This immediately provides the left inverse

σ̂N
B

(n)−1 = σ−1
N
B

⊗ 1Nn
B

(8.29)

of σ̂N
B

(n) be
ause

σ̂N
B

(n)−1σ̂N
B

(n) =
(
σ−1
N
B

σN
B

)
⊗
(
1Nn

B

1Nn
B

)
= 12 ⊗ 1Nn

B

= 12Nn
B

(8.30)
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for n ∈ N0.

We emphasize that σN
B

σ−1
N
B

6= 12N
B

, that is, the left inverse is not the right inverse.

Nevertheless, for an arbitrary eigenve
tor ϕk+1 of Tk+1, it is

σ̂N
B

(k)σ̂N
B

(k)−1ϕk+1 = ϕk+1 (8.31)

for k ∈ N0 as we now show. At �rst

ϕk+1 ∈ imTk+1 = im (σN
B

⊗ 1Nk
B

⊗AN
B

) = span{
ols(σN
B

⊗ 1Nk
B

)}, (8.32)

where 
ols(X) denotes the set of 
olumns of the matrix X . Note that the Krone
ker

produ
t with AN
B

does not generate additional linearly independent 
olumns, su
h that

the dimension of imTk+1 is 2N
k
B

. The 
olumns of σN
B

⊗ 1Nk
B

may be written as

σ
(1)
N
B

⊗ 1(j)
Nk
B

, σ
(2)
N
B

⊗ 1(j)
Nk
B

, (1 ≤ j ≤ Nk
B

), (8.33)

where the two 
olumns of σN
B

are denoted by σ
(1)
N
B

and σ
(2)
N
B

, and the j-th 
olumn of 1Nk
B

is denoted by 1

(j)

Nk
B

, respe
tively. With this, the eigenve
tor ϕk+1 
an be represented as

ϕk+1 =

Nk
B∑

j=1

(

s
(j)
1 σ

(1)
N
B

⊗ 1(j)
Nk
B

+ s
(j)
2 σ

(2)
N
B

⊗ 1(j)
Nk
B

)

, (8.34)

with appropriate 
oe�
ients s
(j)
1 , s

(j)
2 . Using

σ̂N
B

(k)−1
(

σ
(ℓ)
N
B

⊗ 1(j)
Nk
B

)

= (σ−1
N
B

⊗ 1Nk
B

)
(

σ
(ℓ)
N
B

⊗ 1(j)
Nk
B

)

(8.35)

=
(

σ−1
N
B

σ
(ℓ)
N
B

)

⊗
(

1Nk
B

1

(j)

Nk
B

)

(8.36)

=
(

1

(ℓ)
2 ⊗ 1(j)

Nk
B

)

(8.37)

for ℓ ∈ {1, 2}, su
h that

σ̂N
B

(k)σ̂N
B

(k)−1
(

σ
(ℓ)
N
B

⊗ 1(j)
Nk
B

)

= (σN
B

⊗ 1Nk
B

)
(

1

(ℓ)
2 ⊗ 1(j)

Nk
B

)

(8.38)

=
(

σN
B

1

(ℓ)
2

)

⊗
(

1Nk
B

1

(j)

Nk
B

)

(8.39)

=
(

σ
(ℓ)
N
B

⊗ 1(j)
Nk
B

)

, (8.40)

we obtain Eq. (8.31) by linearity.

Now, we are able to redu
e the eigenve
tor ϕk+1 of Tk+1 to an eigenve
tor of Tk. By
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multipli
ation of Tk+1σ̂N
B

(k) = σ̂N
B

(k)Tk with σ̂N
B

(k)−1
from the left and the right, we

in general obtain

σ̂N
B

(k)−1Tk+1σ̂N
B

(k)σ̂N
B

(k)−1 = Tkσ̂N
B

(k)−1, (8.41)

for k ∈ N0, and after restri
tion to the eigenspa
es of Tk+1, we further �nd

σ̂N
B

(k)−1Tk+1ϕk+1 = Tkσ̂N
B

(k)−1ϕk+1 (8.42)

for k ∈ N0. Thus, given Tk+1ϕk+1 = λk+1ϕk+1, it is

Tkσ̂N
B

(k)−1ϕk+1 = λk+1σ̂N
B

(k)−1ϕk+1, (8.43)

su
h that ϕk := σ̂N
B

(k)−1ϕk+1 an eigenve
tor of Tk asso
iated with the eigenvalue λk :=

λk+1. Let us stress that σ̂N
B

(k)−1
is inje
tive on the eigenspa
es of Tk+1, following from

Eqs. (8.34) and (8.37),

σ̂N
B

(k)−1ϕk+1 =

Nk
B∑

j=1

(

s
(j)
1 1

(1)
2 ⊗ 1(j)

Nk
B

+ s
(j)
2 1

(2)
2 ⊗ 1(j)

Nk
B

)

. (8.44)

Hen
e, the only pairs of eigenve
tors and eigenvalues of Tk+1 are the ones lifted from the

eigenvalue problem for Tk by virtue of σ̂N
B

(k) for k ∈ N0. �

This proposition simpli�es the analyti
al 
omputation of the natural 
im for the partial-barrier

Baker map tremendously. We only have to solve the eigenvalue problem of the 2×2 matrix T0,

Eq. (8.17), and lift its eigenve
tors by mere matrix multipli
ation to the required resolution.

The matrix T0 des
ribes the iteration of weights from one side of the partial barrier to the

other side in the lowest reasonable Ulam approximation, that is, asso
iated with the two 
ells

[0, 1/2)× [0, 1) and [1/2, 1)× [0, 1). As this 2×2 matrix is parti
ularly relevant in the following

analysis of the partial-barrier Baker map and also for the generalization to generi
 maps, we

express it in terms of the variables |A1| = |A2| = 1/2, |Ω| = L/N
B

, and φ = C/N
B

, whi
h

gives

T0 =

(

1− (|Ω|+ φ)/|A1| φ/|A2|
φ/|A1| 1− φ/|A2|

)

. (8.45)

The diagonal elements des
ribe the probability to remain on one or the other side of the

partial barrier within one iteration of the map, while the o�-diagonal elements des
ribe the

probability to get from one side to the other. Note that the main purpose of the generalization

of the partial-barrier Baker map to the partial-barrier N
B

-Baker map with variables L and C
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was to plausibly motivate Eq. (8.45) in terms of more general variables. That this 2×2 matrix

is a
tually important for more generi
 systems will be shown in Chap. 9. In the following, we

again fo
us on the example of the partial-barrier Baker map based on the ternary Baker map.

In this spe
ial 
ase, T0 reads

T0 =
1

3

(

1 1

1 2

)

. (8.46)

8.3 Natural Conditionally Invariant Measure

Let us now study the natural 
im of the partial-barrier Baker map. From the redu
ed Perron�

Frobenius operator T0, Eq. (8.46), we 
ompute the Perron�Frobenius eigenve
tor ϕ0, i.e., the

one with larger eigenvalue λ, and lift ϕ0 to an eigenve
tor of Tk by ϕk = σ̂3(k − 1) · · · σ̂3(0)ϕ0

as explained in Se
. 8.2. For referen
e, the pre
ise value of ϕ0 and λ is

ϕ0 =
1√
5 + 1

(√
5− 1

2

)

, λ =
1

6
(3 +

√
5). (8.47)

We normalized ϕ0 su
h that the sum of the two 
omponents equals unity. Note that both 
om-

ponents 
an be 
hosen nonnegative due to the Perron�Frobenius theorem, Se
. 7.2.3. More-

over, note that ϕk 
omputed as above is not yet normalized. The phase-spa
e distribution


orresponding to ϕk is shown in Fig. 8.4(a�e) for di�erent values of k. These distributions

approximate the natural 
im µ
nat

of the studied map. The two di�erent nonzero heights in

ea
h of the distributions 
orrespond to the two di�erent 
omponents of ϕ0. The lift by virtue

of σ̂3(n) just 
opies these two values and rearranges them appropriately. Therefore, pre
isely

these two values, up to normalization, appear in ea
h ϕk.

In Se
. 7.2.2 we argued that the natural 
im is provided by the uniform distribution

on the ba
kward trapped set, Fig. 8.4(f). The two di�erent heights in the shown phase-spa
e

distributions seem to 
ontradi
t this uniformity at �rst sight. However, the two values originate

from an integration over 
ells of the phase-spa
e partition used for the Ulam approximation,


f. Se
. 8.1. Depending on the number and size of gaps in ea
h 
ell, the integration over these


ells 
an yield di�erent values for di�erent 
ells although the distribution may be uniform on

the asymptoti
 obje
t, i.e., the proper fra
tal. This is illustrated in Fig. 8.5. It is 
lear that

an integration over the uniform distribution on the ba
kward trapped set in [0, 1/2)× [0, 1/9)

gives a di�erent value than an integration over [0, 1/2)× [2/9, 3/9).

In prin
iple, there are at least two reasonable ways to approximate µ
nat

. One 
ould either

use a uniform distribution on a �nite-time approximation of the proper ba
kward trapped

set, or an integration of the proper µ
nat

over 
ells of a phase-spa
e partition. The latter

approa
h 
orresponds to the ϕk distributions asso
iated with the Ulam approximation Tk
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shown in Fig. 8.4. We stress that both alternatives produ
e di�erent but valid approximations

of µ
nat

, i.e., both ways 
onverge towards µ
nat

on asymptoti
ally �ne s
ales. Still, one of the

two s
hemes 
ould be more useful than the other, meaning that it 
ould be more suitable to

address spe
i�
 questions. In the present study, the relevan
e of 
lassi
al measures and its

q

p

k = 0(a)

q

p

k = 1(b)

q

p

k = 2(c)

q

p

k = 3(d)

q

p

k = 4(e)

q

p

k = 5(f)

Figure 8.4. (a�e) Perron�Frobenius eigenve
tor ϕk of the Ulam approximation Tk of the

partial-barrier Baker map, 
omputed a

ording to Eqs. (8.16) and (8.17). The resolution

parameter k is indi
ated above ea
h panel. Ea
h ϕk is an approximation of the natural 
im

when integrated over 
ells of the partition a

ording to Se
. 7.2.2. (f) Approximation of the

ba
kward trapped set Γ
bwd

for k = 5 ba
kward iterations.
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q

p

k = 2

0
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9

3

9

(a)

q

p

k = 3

0
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9

2

9

3

9

(b)

Figure 8.5. (a) Perron�Frobenius eigenve
tor ϕ2 of the Ulam approximation T2 of the

partial-barrier Baker map. The two di�erent nonzero heights originate from integration of

the uniform distribution on the nonuniformly fra
tal ba
kward trapped set over 
ells. This


an be seen in (b) the �nite-time approximation Γ
bwd

for k = 3 ba
kward iterations, whi
h


learly has two di�erent weights in the sets [0, 1/2) × [0, 1/9) and [0, 1/2) × [2/9, 3/9).

approximations is determined by quantum-to-
lassi
al 
orresponden
e. A 
lassi
al measure is

helpful if it provides a good estimate for 
ertain properties of quantum resonan
e states. The

property whi
h is of most interest to us is the lo
alization with respe
t to the partial barrier.

Regarding this issue, let us fo
us on the lo
alization of the ϕk obtained by the Ulam

approximation Tk. For the �rst approximation ϕ0, see Fig. 8.4(a), the total weight is split as

ϕ
(1)
0 to the left and ϕ

(2)
0 to the right, where ϕ

(ℓ)
0 denotes the ℓ-th 
omponent of ϕ0, ℓ ∈ {1, 2}.

The next level of approximation is given by

ϕ1 = σ3

(

ϕ
(1)
0 , ϕ

(2)
0

)T

=
(

ϕ
(1)
0 , 0, ϕ

(2)
0 ,

︸ ︷︷ ︸

left

ϕ
(1)
0 , ϕ

(2)
0 , ϕ

(2)
0

︸ ︷︷ ︸

right

)T

, (8.48)

up to normalization, 
f. Fig. 8.4(b). Thus, the ve
tor of new weights on the left and right of

the partial barrier is given by

(

ϕ
(1)
0 + ϕ

(2)
0

ϕ
(1)
0 + 2ϕ

(2)
0

)

=

(

1 1

1 2

)(

ϕ
(1)
0

ϕ
(2)
0

)

, (8.49)

again up to normalization. The matrix relating the weights from one level of approximation

to the next is just T0 up to a fa
tor su
h that ϕ0 is an eigenve
tor of the iteration of weights.

This holds true for all approximations ϕk. Hen
e, the weights of µnat on the left and right of

the partial barrier are exa
tly the 
omponents of the 
oarsest approximation ϕ0.

The situation is di�erent for the other approximation s
heme, using a uniform distribution

on the �nite-time approximation Γ
(k)
bwd

= Γ \ ⋃k
n=1 T

n

l

(Ω) of the ba
kward trapped set Γ
bwd

.

The weight of a uniform distribution on Γ
(k)
bwd

on the left and right of the partial barrier is
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given by

(

|Γ(k)
bwd

∩A1|
|Γ(k)

bwd

∩A2|

)

∼ T k0

(

1

1

)

, (8.50)

up to normalization. Although this 
onverges towards ϕ0 in agreement with the previously

dis
ussed Ulam approximation, now the weight on ea
h side depends on the level of approxi-

mation.

In order to judge whi
h of the two approximation s
hemes is more appropriate to des
ribe

the lo
alization of quantum resonan
e states, the most 
onvenient way would be to dire
tly


ompare the approximate phase-spa
e distribution of µ
nat

with the Husimi representation of

resonan
e states. This is done in Fig. 8.6. One might suspe
t that there are indeed lower

weights on the horizontal stripes indi
ated by the arrows, just like in the 
lassi
al phase-spa
e

distribution 
orresponding to ϕk from the Ulam approximation Tk. However, there are two

drawba
ks. First, the quantum �u
tuations are relatively large 
ompared to the di�eren
e

of the two heights in the approximate 
lassi
al measure. A se
ond problem is that it is not


lear how to distinguish between two possible reasons for di�erent weights in the Husimi

distribution: Either the di�erent weights are due to integration on the Plan
k 
ell level like in

the 
lassi
al 
ase or the di�erent weights originate from an already resolved next level of gaps

that is only smeared out. Thus, this 
omparison is not 
onvin
ing and in
on
lusive.

This problem 
an be over
ome by looking at how the weights of quantum resonan
e states

on the left and right of the partial barrier depend on the e�e
tive size h of Plan
k's 
ell.

q

p

Figure 8.6. Average Husimi representation of resonan
e states of the partial-barrier Baker

map with 1/h = 2 · 33 = 54. The average is performed over the Husimi distributions of

all twelve resonan
e states with γ ∈ [γ
nat

/1.25, γ
nat

· 1.25]. The arrows indi
ate horizontal

stripes of lower weight possibly related to the di�erent heights in Fig. 8.5(a).
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Figure 8.7 demonstrates that they essentially remain 
onstant under variation of h = 1/N up

to �u
tuations. In parti
ular, the quantum data is not des
ribed by the resolution depending

weights 
omputed from the uniform distribution on a �nite-time approximation Γ
(k)
bwd

of the

ba
kward trapped set. Instead, the quantum data is well des
ribed by the weights of ϕk whi
h

are independent of the level of approximation. In order to amplify the imbalan
e in the two

nonzero heights of the phase-spa
e distribution 
orresponding to ϕk, and thus, to emphasize

the di�eren
e between the two approximation s
hemes, we use N
B

= 10, L = 5, and C = 1

instead of the partial-barrier map based on the ternary Baker map.

Hen
e, we 
on
lude that the lo
alization of quantum resonan
e states with γ ≈ γ
nat

should

be approximated by the Perron�Frobenius ve
tor of an appropriate Ulam approximation of

the 
lassi
al Perron�Frobenius operator if feasible. We point out that it is not 
lear whether

this also holds for generi
 maps or whether this might be related to spe
i�
 properties of the

Baker map, su
h as its strongly dis
ontinuous behavior.

0.0

0.1

0.2

0.3

0.4

10
1

10
2

10
3

10
4

10
5

N

‖P1ψ‖
2

Figure 8.7. Weight ‖P1ψ‖2 (bla
k 
rosses) of resonan
e states ψ in region A1 on the left

side of the partial barrier for the partial-barrier Baker map (N
B

= 10, L = 5, C = 1)
vs matrix dimension N = 1/h of the quantum time-evolution operator. The weights are

averaged over all states ψ with γ ∈ [γ
nat

/1.05, γ
nat

·1.05]. This is 
ompared with the 
lassi
al

predi
tions from the Perron�Frobenius ve
tor ϕk of an Ulam approximation Tk (green solid

line; Eq. (8.47)), and from a uniform distribution on a �nite-time approximation of ba
kward

trapped set (orange points; Eq. (8.50)). They are semi
lassi
ally related to the quantum

data by 
hoosing the 
ell size as h.
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8.4 γ-Natural Conditionally Invariant Measures

The generalization of the natural 
im µ
nat

with the single de
ay rate γ
nat

to the 
lass of γ-

natural 
ims µγ of arbitrary de
ay rate γ is dis
ussed in detail in Se
. 7.2.2. Considering again

their de�nition in Eq. (7.49),

µγ(X) :=
1− e−γ

1− e−γnat

∑

n∈N0

e(γnat−γ)nµ
nat

(
X ∩ T−n(Ω)

)
, (8.51)

the measure µγ results from µ
nat

by adapting its weight within ea
h forward es
aping set

T−n(Ω) in order to a
hieve the overall de
ay rate γ. This 
onstru
tion is illustrated for the

partial-barrier Baker map in Fig. 8.8(a�
). Sin
e the partial-barrier Baker map exhibits a

simple de
omposition in the stable (verti
al) and unstable (horizontal) dire
tion, the forward

es
aping sets are verti
al stripes splitting the phase spa
e in horizontal dire
tion, see blue

q

p

(a) γ < γnat

q

p

(b) γ = γnat

q

p

(c) γ > γnat

q

p

(d) γ < γnat

q

p

(e) γ > γnat

Figure 8.8. (a, 
) Constru
tion of γ-natural 
ims for the partial-barrier Baker map by

trun
ation of the series in Eq. (7.49) to n ≤ 2 for (a) γ < γ
nat

and (
) γ > γ
nat

. This

is based on the natural 
im shown in (b) for whi
h the weight in Ω (gray stripe), T−1(Ω)
(light blue stripes), and T−2(Ω) (medium blue stripes) is adapted. The level T−3(Ω) (dark
blue stripes) is not yet resolved. (d, e) Finer resolution µγ for (d) γ < γ

nat

and (e) γ > γ
nat


omputed by the integration method dis
ussed in Se
. 7.2.2.
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regions in the ba
kground of Fig. 8.8. Starting with the approximation of the natural 
im µ
nat

shown in Fig. 8.8(b), we �rst adapt the weight on the opening to µγ(Ω) = 1−e−γ. As this only
requires an appropriately 
hosen fa
tor the stru
ture of µ

nat

within Ω is not a�e
ted by this, see

Figs. 8.8(a) and (
). Depending on whether the new de
ay rate γ is larger or smaller than the

original γ
nat

, the weight in Ω is in
reased or de
reased, respe
tively. We pro
eed analogously

with the weight in T−1(Ω) (two light blue stripes) and T−2(Ω) (�ve blue stripes) using that

µγ(T
−n(Ω)) = e−γnµγ(Ω). This gives the phase-spa
e distributions shown in Figs. 8.8(a) and

(
), whi
h 
orresponds to a trun
ation of the series in Eq. (7.49) to n ≤ 2. We see that for the

generalization of µ
nat

to µγ in 
ase of the partial-barrier Baker map, an additional pro�le in

horizontal dire
tion is imposed on µ
nat

but the stru
ture along the verti
al axis is not a�e
ted.

For a �ner resolution the out
ome of this 
onstru
tion is again shown in Figs. 8.8(d) and (e)

for γ < γ
nat

and γ > γ
nat

, respe
tively. This resolution highlights the 
omplex fra
tal nature

of the measures. Note that in Figs. 8.8(d) and (e), the measures are 
omputed a

ording to

Se
. 7.2.2: We 
ompute the es
ape time for ea
h point of a phase-spa
e grid and asso
iate an

intensity to it a

ording to the weight µγ(T
−n(Ω)) and the number of grid points in T−n(Ω).

Afterwards, this intensity is integrated over the 
ells of an appropriate phase-spa
e partition.

It is demonstrated in Fig. 8.9 that the proposed 
onstru
tion of γ-natural 
ims qualitatively


learly exhibits quantum-to-
lassi
al 
orresponden
e. The quantum resonan
e state is well

resembled by the 
lassi
al measure even on �ne s
ales up to quantum �u
tuations.

In order to quantitatively study quantum-to-
lassi
al 
orresponden
e, we now analyti
ally

q

p

(a) quantum:

q

p

(b) classics:

Figure 8.9. (a) Average Husimi distribution of resonan
e states for the partial-barrier

Baker map (1/h = 480) with γ ∈ [4γ
nat

/1.25, 4γ
nat

· 1.25] (24 states). (b) Approximate

γ-natural 
im for γ = 4γ
nat

.
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ompute the 
lassi
al weights µγ(Ak) on either side of the partial barrier. A 
on
ise version

of the following derivation is presented in Ref. [34℄. In virtue of Eq. (7.49), we only have to

analyze the natural 
im µ
nat

(Ak ∩ T−n(Ω)) in more detail to 
ompute µγ(Ak) for all de
ay

rates γ instantaneously. As a �rst essential step, we �nd that the natural 
im of Ak ∩ T−n(Ω)

is proportional to the relative area inside Ak,

µ
nat

(
Ak ∩ T−n(Ω)

)
= µ

nat

(Ak) ·
|Ak ∩ T−n(Ω)|

|Ak|
. (8.52)

This follows from the fa
t that the forward es
aping sets T−n(Ω) (verti
al stripes) de
ompose

the ba
kward trapped set Γ
bwd

in the unstable (horizontal) dire
tion, on whi
h µ
nat

is uniformly

distributed within A1 and A2 individually, see Fig. 8.10.

The distribution of the opening Ω over phase spa
e under ba
kward time evolution, whi
h

enters Eq. (8.52) in terms of |Ak ∩ T−n(Ω)|, follows from
(

|A1 ∩ T−n(Ω)|
|A2 ∩ T−n(Ω)|

)

= T n0

(

|Ω|
0

)

, (8.53)

with T0 given by Eq. (8.46). Note that the transition matrix for the ba
kward time evolution

of Ω is given by T0 itself. We illustrate this relation by examining the �rst steps expli
itly.

Consider Fig. 8.10: In the beginning, Ω (gray verti
al stripe) is supported on A1. In the

q

p

Figure 8.10. Finite-time approximation of the ba
kward trapped set Γ
bwd

of the partial-

barrier Baker map (bla
k). Blue verti
al stripes in the ba
kground are forward es
aping

sets (light blue: T−1(Ω); medium blue: T−2(Ω); dark blue: T−3(Ω)).
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next step, T−1(Ω) (light blue) splits into equal parts of size |Ω|/3 on A1 and A2. Afterwards,

T−2(Ω) (medium blue) 
ontributes two stripes of size |Ω|/32 to A1 and three to A2, and region

T−3(Ω) (dark blue) splits into pie
es of size |Ω|/33 �ve stripes of whi
h are in A1 while eight

are in A2. This is pre
isely des
ribed by the iteration with T0,

|Ω|
(

1

0

)

T07→ |Ω|
3

(

1

1

)

T07→ |Ω|
32

(

2

3

)

T07→ |Ω|
33

(

5

8

)

. (8.54)

Inserting the relations (8.52) and (8.53) in Eq. (7.49), we obtain

µγ(Ak) =
1− e−γ

1− e−γnat
µ
nat

(Ak)

|Ak|

[
∑

n∈N0

(
eγnat−γT0

)n

(

|Ω|
0

)]

k

, (8.55)

and using Neumann's series, this is

µγ(Ak) =
1− e−γ

1− e−γnat
µ
nat

(Ak)

|Ak|

[

(
1− eγnat−γT0

)−1

(

|Ω|
0

)]

k

. (8.56)

This expression already 
ontains all physi
ally relevant ideas and 
ould be interpreted as

the �nal result on the lo
alization of µγ due to a partial barrier for the partial-barrier Baker

map. By spe
tral de
omposition of the ve
tor (|Ω|, 0), however, it 
an still be simpli�ed


onsiderably. This leads to one of the main results of this thesis:

Theorem. The lo
alization of the γ-natural 
im µγ of the partial-barrier N
B

-Baker

map due to the partial transport barrier is given by

µγ(A1) =
µ
nat

(A1)− cγ
1− cγ

, µγ(A2) = 1− µγ(A1), (8.57)

with

cγ =
(
1− eγ−γnat

) (
1− e−γnat

) |A1|
|Ω|

|A2|
φ
. (8.58)

Here, Ak denotes the region on ea
h side of the partial barrier, Ω denotes the opening,

and φ the �ux a
ross the partial barrier. Moreover, for the natural de
ay it is

µ
nat

(A1) =
|A1|
|Ω|

(
1− e−γnat

)
, (8.59)

and e−γnat is the Perron�Frobenius eigenvalue of the 2× 2 matrix T0, Eq. (8.45).
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Proof. The simpli�
ation of Eq. (8.56) to Eq. (8.57) as presented in the following is to a large

extent based on a 
al
ulation by Roland Ketzmeri
k. Consider the eigenvalue problem

of

J := 1− T0 =

(
|Ω|+φ
|A1|

− φ
|A2|

− φ
|A1|

φ
|A2|

)

, (8.60)

Jxk = λkxk, with λk ∈ C and xk ∈ C2
for k ∈ {1, 2}. The eigenspa
es are spanned by

xk =

(

λk − φ
|A2|

− φ
|A1|

)

, (8.61)

using that φ/|A1| 6= 0. The essential step to treat Eq. (8.56) is the de
omposition of

(|Ω|, 0) in terms of eigenve
tors of J ,

(

|Ω|
0

)

= α (x1 − x2) (8.62)

with α := |Ω|/(λ1 − λ2), and to use that J and (1 − eγnat−γT0)
−1

share the same

eigenspa
es,

(
1− eγnat−γT0

)−1
xk =

(
1− eγnat−γ(1− λk)

)−1
xk. (8.63)

Using this spe
tral de
omposition, we obtain

µγ(A1) =
1− e−γ

1− e−γnat
µ
nat

(A1)

|A1|
|Ω|

λ1 − λ2

[
λ1 − φ

|A2|

1− eγnat−γ(1− λ1)
−

λ2 − φ
|A2|

1− eγnat−γ(1− λ2)

]

.

(8.64)

We apply Eq. (8.52) for k = 1, n = 0 with Ω ⊆ A1 and �nd

µ
nat

(Ω)

µ
nat

(A1)
=

|Ω|
|A1|

. (8.65)

Having µ
nat

(Ω) = 1− e−γnat , Eq. (8.64) reads

µγ(A1) =
1− e−γ

λ1 − λ2

[
λ1 − φ

|A2|

1− eγnat−γ(1− λ1)
−

λ2 − φ
|A2|

1− eγnat−γ(1− λ2)

]

. (8.66)
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In view of

T0

(

µ
nat

(A1)

µ
nat

(A2)

)

= e−γnat

(

µ
nat

(A1)

µ
nat

(A2)

)

, (8.67)

we already know one of the eigenvalues λk of J . Without loss of generality, let

λ1 = 1− e−γnat = µ
nat

(Ω). (8.68)

This implies

λ2 =
det J

λ1
=

|Ω|φ
|A1||A2|

1

λ1
=

φ

|A2|µnat(A1)
, (8.69)

su
h that

φ

|A2|
= λ2 µnat(A1). (8.70)

Inserting Eq. (8.70) in Eq. (8.66) and using eγnat = (1− λ1)
−1
, 
f. Eq. (8.68), we obtain

µγ(A1) =
1− e−γ

λ1 − λ2

[

λ1 − λ2 µnat(A1)

1− e−γ
− λ2 − λ2 µnat(A1)

1− e−γ 1−λ2
1−λ1

]

. (8.71)

After some straightforward algebrai
 manipulations, where we only show the essential

intermediate steps for referen
e, we get

µγ(A1) =
µ
nat

(A1)

λ1 − λ2

[

λ2 (1− e−γ)

1 − e−γ 1−λ2
1−λ1

− λ2

]

+
1

λ1 − λ2

[

λ1 −
λ2 (1− e−γ)

1− e−γ 1−λ2
1−λ1

]

(8.72)

= µ
nat

(A1)
λ2 e

−γ

1− λ1 − e−γ(1− λ2)
− λ1 + e−γ − 1

1− λ1 − e−γ(1− λ2)
(8.73)

=
1

1− λ1+e−γ−1
λ2 e−γ

[

µ
nat

(A1)−
λ1 + e−γ − 1

λ2 e−γ

]

, (8.74)

and de�ne

cγ :=
λ1 + e−γ − 1

λ2 e−γ
. (8.75)

Inserting Eqs. (8.68) and (8.69) gives Eqs. (8.58) and (8.57). Equation (8.59) follows

from Eq. (8.65). �

With this, we are able to quantitatively investigate quantum-to-
lassi
al 
orresponden
e for

the lo
alization due to the partial barrier. To this end, we diagonalize the quantum time-
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evolution operator for the matrix dimension 1/h = 2100 and 
ompute the weight of ea
h

resonan
e state in A1. This is shown in Fig. 8.11 in dependen
e of the de
ay rate γ (red dots).

We observe a transition from predominant lo
alization in A2 to lo
alization in A1 for in
reasing

γ. The quantum me
hani
al behavior is very well des
ribed by the 
lassi
al lo
alization of

the 
lass of γ-natural 
ims, Eq. (8.57) (green line). Small deviations apart from �u
tuations

in the quantum data are dis
ussed in detail in Se
. 9.2 in the 
ontext of generi
 systems. To

demonstrate both the validity of our analyti
al 
lassi
al predi
tion as well as the a

ura
y of

our approximation s
hemes for µγ, we also integrate the numeri
ally determined approximation

of µγ, 
f. Se
. 7.2.2, over A1 for di�erent values of γ (bla
k 
rosses). The analyti
al 
lassi
al

result and the numeri
ally determined 
lassi
al data are in perfe
t agreement. Note that we

will 
omment on the quantitative study of quantum-to-
lassi
al 
orresponden
e on �ner s
ales

in the outlook, Chap. 11.

q

p

q

p
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Figure 8.11. Weight ‖P1ψγ‖2 (red points) of resonan
e states ψγ in region A1 vs de
ay

rate γ for the partial-barrier Baker map (h = 1/2100). This is 
ompared to the γ-natural

im µγ(A1) 
omputed a

ording to Eq. (8.57) (solid green line), and by integration over

numeri
al approximations (bla
k 
rosses). Upper panels: Husimi representation of typi-


al long-lived (left) and short-lived (right) resonan
e state for h = 1/1080 with γ values

indi
ated by arrows.
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Chapter 9

Lo
alization in Generi
 Maps

Chaoti
 resonan
e states display lo
alization transitions with respe
t to a partial barrier for

varying ratio of openness |Ω| and �ux φ, and for varying de
ay rates γ. This is observed for the

partial-barrier standard map in Chap. 6 and explained for the partial-barrier Baker map using

γ-natural 
ims in Chap. 8. The goal of this 
hapter is to demonstrate this quantum-to-
lassi
al


orresponden
e between 
haoti
 resonan
e states and γ-natural 
ims also for generi
 maps.

To this end, we numeri
ally examine the partial-barrier standard map for whi
h we initially

observed the studied lo
alization transitions in Se
. 9.1. We will see that the lo
alization of


haoti
 resonan
e states is indeed very well des
ribed by the lo
alization of γ-natural 
ims

in the semi
lassi
al regime. Chara
teristi
 deviations away from the semi
lassi
al regime are

presented in Se
. 9.2. Finally, we verify quantum-to-
lassi
al 
orresponden
e for the generi


standard map with a mixed phase spa
e of regular and 
haoti
 motion in Se
. 9.3. The

limitations for the appli
ability of the analyti
al predi
tion, Eq. (8.57), for the weights of

γ-natural 
ims on ea
h side of a partial barrier for generi
 systems and its generalization are

dis
ussed in detail. The main results of this 
hapter were originally reported in Ref. [34℄.

9.1 Partial-Barrier Standard Map

First of all, let us qualitatively demonstrate the 
orresponden
e between quantum resonan
e

states and 
lassi
al γ-natural 
ims for the partial-barrier standard map by merely looking

at the 
orresponding phase-spa
e distributions. Figure 9.1 shows that for a single but typ-

i
al example (|Ω| = 0.2, φ = 0.1, |A1| = |A2| = 0.5) we indeed �nd very good agreement

between the quantum and 
lassi
al lo
alization. Owing to the 
omplex fra
tal stru
ture of

the partial-barrier standard map, we additionally show the quantum and 
lassi
al phase-spa
e

distributions in top view and in a mutual 
olor s
ale. This reveals that quantum-to-
lassi
al


orresponden
e is evident even on �ne s
ales up to the quantum resolution limit.

In order to investigate this agreement between 
lassi
al and quantum me
hani
s quantita-



112 9.1 Partial-Barrier Standard Map
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Figure 9.1. (a) Average Husimi distribution of resonan
e states for the partial-barrier

standard map (|Ω| = 0.2; φ = 0.1; |A1| = 1/2; h = 1/1000) with γ ∈ [4γ
nat

/1.4, 4γ
nat

· 1.4]
(88 states). (b) Approximate γ-natural 
im for γ = 4γ

nat

. Lower panels: Same data on

mutual gray s
ale, top view. Bla
k dashed line illustrates opening; magenta line shows

partial barrier.

tively, we restri
t ourselves to the lo
alization with respe
t to the partial barrier, that is, we


ompute the 
lassi
al measure µγ(A1) and 
ompare it with the quantum me
hani
al weight

‖P1ψγ‖2 in region A1. This is 
ertainly a 
omparison on a rather 
oarse s
ale. However, re
all

that our major goal is to understand the lo
alization transitions introdu
ed in Se
. 6.1. In

parti
ular, this is (i) a transition from equipartition to lo
alization of long-lived 
haoti
 reso-

nan
e states on A2 for in
reasing size |Ω| of the opening, Fig. 6.2, and (ii) a transition from

lo
alization on A2 to lo
alization on A1 for in
reasing γ, Fig. 6.3. In order to see whether

both transitions semi
lassi
ally 
orrespond to lo
alization transitions of γ-natural 
ims, we

basi
ally need to 
ompute µγ(A1) for di�erent parameter setups. To this end, we have two
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possibilities: First we 
an numeri
ally approximate µγ as des
ribed in Se
. 7.2.2 and integrate

over A1. The se
ond opportunity is given by the analyti
al result for the partial-barrier Baker

map, Eq. (8.57). One should be 
autious when applying Eq. (8.57) here as we derived this

relation spe
i�
ally for the partial-barrier Baker map. However, as we shall see below it turns

out that Eq. (8.57) is perfe
tly appli
able also for the partial-barrier standard map.

For the investigation of quantum-to-
lassi
al 
orresponden
e for transition (i) from equipar-

tition to lo
alization when opening the system, we fo
us on long-lived resonan
e states with

γ ≈ γ
nat

. We 
ompute the 
lassi
al measure µ
nat

(A1) dire
tly from Eq. (8.57) for γ = γ
nat

(cγ = 0 in this 
ase). The results are shown in Fig. 9.2, whi
h is analogous to Fig. 6.2, now

in
luding the 
lassi
al lo
alization (green line). The lo
alization of µ
nat

perfe
tly des
ribes

the lo
alization transition (i) of quantum resonan
e states of the partial-barrier standard map

over the whole range of parameters. We point out that at �rst sight, the parameters |Ω| and
φ enter individually in the 
lassi
al lo
alization a

ording to Eq. (8.57) when using Eq. (8.45)

µnat(A1)

‖P1ψγ‖
2
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Figure 9.2. Weight ‖P1ψγ‖2 (symbols) of resonan
e states on region A1 vs ratio of size |Ω|
of opening and �ux φ a
ross partial barrier for di�erent parameters of the partial-barrier

standard map (10 ≤ φ/h, |Ω|/h ≤ 2048; |A1| = 1/2; h = 1/6000). Weight of state with γ

losest to γ

nat

(red points) and averaged over states with de
ay rates γ ∈ [γ
nat

/1.1, γ
nat

·1.1]
(bla
k 
rosses). This is 
ompared to the natural 
im µ

nat

(A1) (Eq. (8.57), solid green line).

Inset: Same data shown on double-logarithmi
 s
ale. Upper panels: Husimi representation

of typi
al resonan
e states with γ ≈ γ
nat

for h = 1/1000, φ/h = 20, and two values |Ω|/φ
indi
ated by arrows.
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for the fundamental 2× 2 transition matrix T0. That this transition, in fa
t, only depends on

the single parameter |Ω|/φ 
an be easily seen the following way. We rephrase the transition

matrix T0, whi
h approximates the Perron�Frobenius operator with respe
t to the two sides

of the partial barrier, a

ording to

T0 =

(

1− (|Ω|+ φ)/|A1| φ/|A2|
φ/|A1| 1− φ/|A2|

)

(9.1)

= 1−
(

(|Ω|+ φ)/|A1| −φ/|A2|
−φ/|A1| φ/|A2|

)

(9.2)

= 1− φ

|A1|

(

|Ω|/φ+ 1 −|A1|/|A2|
−1 |A1|/|A2|

)

. (9.3)

Note that for the natural de
ay, the weights µ
nat

(A1) and µ
nat

(A2) are simply given by the


omponents of the long-lived Perron�Frobenius eigenve
tor of T0. However, following Eq. (9.3),

T0 admits the same eigenve
tors as the matrix

|A1|
φ

(1− T0) =

(

|Ω|/φ+ 1 −|A1|/|A2|
−1 |A1|/|A2|

)

(9.4)

whi
h only depends on the two ratios of |Ω|/φ and |A1|/|A2|. In Fig. 9.2 we �x |A1|, and thus,

of 
ourse, also |A2| su
h that transition (i) from equipartition to lo
alization for resonan
e

states with γ ≈ γ
nat

indeed depends exa
tly on the single parameter |Ω|/φ, only.

For 
ompleteness, we show that Eq. (8.57) a

urately des
ribes the lo
alization transition (i)

not only in the symmetri
 
ase |A1| = |A2| but also for |A1| 6= |A2|, see Fig. 9.3. The �gure is
analogous to Fig. 9.2 using (a) |A1| = 2/3 and (b) |A1| = 1/3. Again, the 
lassi
al lo
alization

of the natural 
im µ
nat

perfe
tly des
ribes the transition of quantum resonan
e states from

equipartition, µ
nat

(A1) = |A1|, for |Ω| ≪ φ to lo
alization in A2, µnat(A1) ≈ 0, for |Ω| ≫ φ.

For a single quantum system, we found the lo
alization transition (ii) from lo
alization on

region A2 for long-lived resonan
e states (small γ) to lo
alization on region A1 for short-lived

resonan
e states (large γ), Fig. 6.3. We again 
ompute the lo
alization of the 
orresponding

γ-natural 
ims and 
ompare the 
lassi
al and quantum data in Fig. 9.4. In addition to deter-

mining µγ(A1) from the analyti
al predi
tion, Eq. (8.57) (green line), we also plot the values

for µγ(A1) obtained by integration over the numeri
ally determined measure µγ as des
ribed

in Se
. 7.2.2 (bla
k 
rosses). For the numeri
ally determined measure, we use a uniform grid

of N
grid

= 106 points and approximate the ba
kward trapped set Γ
bwd

by N
iter

= 50 steps.

The two ways of 
omputing µγ(A1) perfe
tly mat
h. Even more important, the 
lassi
al lo
al-

ization of µγ displays pre
isely the same transition depending on γ as the quantum resonan
e

states. Both lo
alization transitions for 
haoti
 resonan
e states introdu
ed in Chap. 6 are



9.1 Partial-Barrier Standard Map 115

µnat(A1)

‖P1ψγ‖
2

0.0

0.5

1.0

|Ω|/φ10−2 10−1 100 101 103

(a)
∼
(|Ω

|/φ) −
1

10−3

10−2

10−1

100

10−2 10−1 100 101 102 103

q

p

q

p

µnat(A1)

‖P1ψγ‖
2

0.0

0.5

1.0

|Ω|/φ10−2 10−1 100 101 103

(b)
∼
(|Ω

|/φ) −
1

10−3

10−2

10−1

100

10−2 10−1 100 101 102 103

q

p

q

p

Figure 9.3. Weight ‖P1ψγ‖2 (symbols) of resonan
e states on region A1 vs ratio of size |Ω|
of opening and �ux φ a
ross partial barrier for di�erent parameters of the partial-barrier

standard map (10 ≤ φ/h, |Ω|/h ≤ 2048; h = 1/6000; (a) |A1| = 2/3 and (b) |A1| = 1/3).
Weight of state with γ 
losest to γ

nat

(red points) and averaged over states with de
ay

rates γ ∈ [γ
nat

/1.1, γ
nat

· 1.1] (bla
k 
rosses). This is 
ompared to the natural 
im µ
nat

(A1)
(Eq. (8.57), solid green line). Inset: Same data shown on double-logarithmi
 s
ale. Upper

panels: Husimi representation of typi
al resonan
e states with γ ≈ γ
nat

for h = 1/1000,
φ/h = 20, and two values |Ω|/φ indi
ated by arrows.
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Figure 9.4. Weight ‖P1ψγ‖2 (red points) of resonan
e states ψγ in region A1 vs de
ay rate γ
for the partial-barrier standard map (φ/h = 100; |Ω|/h = 1000; |A1| = 1/2; h = 1/6000).
This is 
ompared to the γ-natural 
im µγ(A1) 
omputed a

ording to Eq. (8.57) (solid

green line), and by integration over numeri
al approximations (bla
k 
rosses). Upper panels:

Husimi representation of typi
al long-lived (left) and short-lived (right) resonan
e state for

h = 1/1000 with γ values indi
ated by arrows.

thus of 
lassi
al origin and the new 
lass of γ-natural 
ims provides the appropriate 
lassi
al


ounterpart. The 
ase of asymmetri
 regions, |A1| 6= |A2| is shown in Fig. 9.5 and ni
ely

exhibits quantum-to-
lassi
al 
orresponden
e again. Nevertheless, Fig. 9.5(a) for |A1| = 2/3

is the �rst example where the 
lassi
al quantity µγ(A1) deviates systemati
ally from the mean

behavior of ‖P1ψγ‖2. Although the deviations are small, it seems as if the slope in the quan-

tum data is a little larger than in the 
lassi
al 
ase. We emphasize that even though the

quantum and 
lassi
al data do not perfe
tly agree, it is still irrelevant whether the 
lassi
al

measures µγ(A1) are 
omputed by integration over numeri
al approximations (bla
k 
rosses)

or by the analyti
al predi
tion, Eq. (8.57), whi
h is derived for the partial-barrier Baker map.

9.2 Deviations due to Quantum Suppression of Transport

In order to understand the origin of the small deviations between the 
lassi
al and the quantum-

me
hani
al lo
alization values as observed in Fig. 9.5(a), we now 
onsider the partial-barrier

standard map for rather extreme parameter values. Re
all that the study of 
lassi
al 
ims
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Figure 9.5. Weight ‖P1ψγ‖2 (red points) of resonan
e states ψγ in region A1 vs de
ay rate γ
for the partial-barrier standard map (φ/h = 134; |Ω|/h = 1334; h = 1/6000; (a) |A1| = 2/3
and (b) |A1| = 1/3). This is 
ompared to the γ-natural 
im µγ(A1) 
omputed a

ording

to Eq. (8.57) (solid green line), and by integration over numeri
al approximations (bla
k


rosses). Upper panels: Husimi representation of typi
al long-lived (left) and short-lived

(right) resonan
e state for h = 1/1000 with γ values indi
ated by arrows.



118 9.2 Deviations due to Quantum Suppression of Transport

is motivated by the fa
t that the lo
alization transitions of quantum resonan
e states have

been observed for values of |Ω| ≫ h and φ ≫ h, where quantum e�e
ts should be negligible,


f. Chap. 6. Still, for su�
iently large values of h quantum deviations should be observable.

Parti
ularly the known quantum lo
alization transition for a partial transport barrier in a


losed system depending on φ/h, see Se
. 5.1, is expe
ted to have a strong in�uen
e. More-

over, for su�
iently large h, it is quite reasonable to expe
t that the phase-spa
e stru
ture

of quantum resonan
e states might di�er from the stru
ture of γ-natural 
ims on �ner s
ales,

even in systems without partial barriers. In su
h parameter regimes, we do not expe
t agree-

ment between 
lassi
al γ-natural 
ims and quantum resonan
e states. In fa
t, we will see

below that the phenomenology of su
h quantum deviations is very 
hara
teristi
. Moreover,

it turns out that the regime where one might observe remnants of su
h quantum deviations


an be surprisingly large, i.e., for parameters for whi
h one 
ould expe
t quantum-to-
lassi
al


orresponden
e at �rst glan
e. For instan
e, we will attribute the deviations in Fig. 9.5(a) to

not being su�
iently semi
lassi
al although h = 6000 and φ/h = 134, |Ω|/h = 1334.

In Fig. 9.6, we again show the lo
alization transition of a single quantum system depending

on the de
ay rate γ of resonan
e states. We emphasize that the �ux φ a
ross the partial barrier

is 
hosen very small, φ/h = 2, su
h that we expe
t a strong impa
t of the quantum-me
hani
al

suppression of transport a
ross the partial barrier in view of the quantum lo
alization tran-

sition known from 
losed system, Se
. 5.1. Indeed, the quantum data 
learly di�er from the


orresponding 
lassi
al lo
alization. In parti
ular, we observe that the quantum data ni
ely

obeys the linear behavior

‖P1ψγ‖2 =
µ
nat

(A1)

γ
nat

γ. (9.5)

This 
an be seen on a linear, Fig. 9.6(a), and on a logarithmi
 s
ale of the ordinate, Fig. 9.6(b),

over several orders of γ up to ‖P1ψγ‖2 ≈ 1. We point out that the quantum lo
alization

a

ording to Eq. (9.5) 
oin
ides with the 
lassi
al lo
alization for γ = γ
nat

. In agreement

with the fa
t that quantum transport a
ross the partial barrier is suppressed for φ ≈ h, the

lo
alization of resonan
e states is enhan
ed 
ompared to the 
lassi
al lo
alization. That means,

a quantum resonan
e state for whi
h the 
orresponding 
lassi
al γ-natural 
im lo
alizes in A1

has quantum me
hani
ally enhan
ed weight in A1 and vi
e versa for A2. The transition

takes pla
e at the natural de
ay rate, whi
h 
orresponds to a 
im with 
onstant measure

on its support. Note that Eq. (9.5) is merely a numeri
al observation the veri�
ation and

explanation of whi
h remains for future studies.

The enhan
ement of lo
alization due the quantum suppression of transport is also sup-

ported by the quantum and 
lassi
al phase-spa
e distribution shown in Fig. 9.7. For the

partial-barrier standard map with φ/h = 2 and |Ω|/h = 16 the deviations between quantum
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Figure 9.6. Weight ‖P1ψγ‖2 (red points) of resonan
e states ψγ in region A1 vs de
ay

rate γ for the partial-barrier standard map (φ/h = 2; |Ω|/h = 512; |A1| = 1/2; h =
1/6000) for linear ordinate (a) and for logarithmi
 ordinate (b). This is 
ompared to the γ-
natural 
im µγ(A1) [a

ording to Eq. (8.57) (solid green line); by integration over numeri
al

approximations (N
grid

= 106, N
iter

= 3000; bla
k 
rosses)℄ and 
ompared to the linear

s
aling a

ording to Eq. (9.5) (dashed gray line).

and 
lassi
al lo
alization are 
omparable with the deviations in Fig. 9.6. We 
hoose the de
ay

rate γ = γ
nat

/µ
nat

(A1) ≈ 10 γ
nat


orresponding to the de
ay rate where ‖P1ψγ‖2 rea
hes its

maximum a

ording to Eq. (9.5). For this example the numeri
ally determined weights in

A1 are ‖P1ψγ‖2 ≈ 0.807 and µγ(A1) ≈ 0.537. The weight of the quantum resonan
e state,

Fig. 9.7(a), is enhan
ed or lowered over the entire region A1 or A2, respe
tively, 
ompared

to the 
lassi
al γ-natural 
im, Fig. 9.7(b). In parti
ular, the larger quantum-me
hani
al

weight ‖P1ψγ‖2 does not arise from new types of lo
alization on 
hara
teristi
 subsets of the

fra
tal trapped sets or from pronoun
ed peaks. Instead, the lo
alization enhan
ement a
ts on

the entire region on ea
h side of the partial barrier.

Coming ba
k to Fig. 9.6 for the example of a system with extremely small �ux φ = 1/3000,
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Figure 9.7. (a) Average Husimi distribution of resonan
e states for the partial-

barrier standard map (φ/h = 2; |Ω|/h = 16; |A1| = 1/2; h = 1/1000) with γ ∈
[(γ

nat

/µ
nat

(A1))/1.2, (γnat/µnat(A1)) · 1.2] (77 states). (b) Approximate γ-natural 
im for

γ = γ
nat

/µ
nat

(A1). The phase-spa
e distributions in (a) and (b) are plotted with a mutual


olor s
ale; the dashed bla
k line indi
ates the boundary of the opening Ω.

we also observe slightly di�erent 
lassi
al expe
tations around γ ≈ 1.0 (green line vs bla
k


rosses). However, it is not 
lear whether this results from a failure of Eq. (8.57) or whether

the numeri
al approximation of µγ is not su�
iently a

urate (N
grid

= 106, N
iter

= 3000). The

very di�erent es
ape probabilities from regions A1 and A2 indi
ate that, in fa
t, the numeri
al

approximation of µγ with the algorithm presented in Se
. 7.2.2 is not su�
iently a

urate

here. Still, sin
e both 
lassi
al estimates are 
lose to ea
h other and 
learly o� the quantum

data, the deviations between the 
lassi
al and the quantum lo
alization 
ertainly 
annot be

attributed to an insu�
ient approximation of the 
lassi
al γ-natural 
ims.

Let us 
onsider another example of the same kind of lo
alization transition. In Fig. 9.8 we


hoose a value of φ/h = 16. Although from the 
losed system's point of view, the quantum-

me
hani
al in�uen
e of the partial barrier should be negligible, φ≫ h, 
f. Fig. 5.2, we observe

a similar lo
alization for quantum resonan
e states as in Fig. 9.6. Even though the quantum

data do not follow the linear behavior from Eq. (9.5) as in the previous 
ase, the tenden
y is

evident. Roughly speaking, the quantum data are somewhere in between the deeply quantum-

me
hani
al regime (dashed gray line), Eq. (9.5), and the semi
lassi
al behavior (solid green

line) in terms of the lo
alization of γ-natural 
ims. Moreover, it seems as though there are

two di�erent ways of approa
hing the semi
lassi
al expe
tation distinguishing between de
ay

rates γ & γ
nat

and γ . γ
nat

. While one observes a systemati
 intermediate behavior for

γ & γ
nat

, Fig. 9.8(a), the resonan
es for γ . γ
nat

simply disappear, Fig. 9.8(b). In parti
ular,
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Figure 9.8. Weight ‖P1ψγ‖2 (red points) of resonan
e states ψγ in region A1 vs de
ay

rate γ for the partial-barrier standard map (φ/h = 16; |Ω|/h = 128; |A1| = 1/2; h =
1/6000) for linear ordinate (a) and for logarithmi
 ordinate (b). This is 
ompared to the γ-
natural 
im µγ(A1) [a

ording to Eq. (8.57) (solid green line); by integration over numeri
al

approximations (N
grid

= 106, N
iter

= 100; bla
k 
rosses)℄ and 
ompared to the linear s
aling

a

ording to Eq. (9.5) (dashed gray line).

the quantum data for γ . γ
nat

always seem to follow the deeply quantum-me
hani
al behavior

and never obey the 
lassi
al expe
tation (green line) but the smaller h the less resonan
es

exist in this regime.

Let us investigate this transition from the deeply quantum-me
hani
al behavior to the

semi
lassi
al behavior in a little more detail. To this end, we investigate yet another example

in Fig. 9.9, whi
h allows to observe this transition dire
tly in a single system by varying the

size h of Plan
k's 
ell on numeri
ally feasible s
ales. First, for h = 1/375 the transition region

of the partial barrier is quantum me
hani
ally not well resolved, φ/h = 2. A

ordingly, the

lo
alization of quantum resonan
e states basi
ally follows the linear behavior from Eq. (9.5),

see Fig. 9.9(a) for γ > γ
nat

and Fig. 9.9(
) for γ < γ
nat

. However, by de
reasing the size h of
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Figure 9.9. Weight ‖P1ψγ‖2 (red points) of resonan
e states ψγ in region A1 vs de
ay rate γ
for the partial-barrier standard map (φ = 2/375; |Ω| = 64/375; |A1| = 1/2) for two di�erent

values of h as spe
i�ed. The data are shown with linear ordinate (a, b; shared axes) and

with logarithmi
 ordinate (
, d; shared axes). This is 
ompared to the γ-natural 
im µγ(A1)
[a

ording to Eq. (8.57) (solid green line); by integration over numeri
al approximations

(N
grid

= 106, N
iter

= 100; bla
k 
rosses)℄ and 
ompared to the linear s
aling a

ording to

Eq. (9.5) (dashed gray line).

Plan
k's 
ell by a fa
tor of 24 to h = 1/9000, su
h that φ/h = 48 the quantum-me
hani
al

in�uen
e of the partial barrier is parti
ularly redu
ed and the lo
alization approa
hes the

semi
lassi
al expe
tation, see Fig. 9.9(b, d). The shown transition 
on�rms our previous

observation, Fig. 9.8, of two di�erent regimes: For γ & γ
nat

the quantum data systemati
ally

pass the gray shaded region between the deeply quantum-me
hani
al regime, Eq. (9.5), and

the lo
alization of γ-natural 
ims, Eq. (8.57). For γ . γ
nat

, the resonan
es seem to vanish in

the semi
lassi
al limit.

The statement that the lo
alization of quantum resonan
e states due to the partial barrier

semi
lassi
ally follows the lo
alization of 
orresponding γ-natural 
ims is further supported by

Fig. 9.10. Here, we 
ompare the lo
alization transition of two systems with the same values of

|Ω|/φ and |A1| . However, in Fig. 9.10(a), φ and |Ω| are both in the regime where we expe
t

quantum suppression of transport in view of the 
losed system's theory, φ/h = 2, |Ω|/h = 8,
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Figure 9.10. Weight ‖P1ψγ‖2 (red points) of resonan
e states ψγ in region A1 vs de
ay

rate γ for the partial-barrier standard map for (a) φ/h = 2, |Ω|/h = 8, and (b) φ/h = 512,
|Ω|/h = 2048 with |A1| = 1/2 and h = 1/6000 in both 
ases. This is 
ompared to the γ-
natural 
im µγ(A1) [a

ording to Eq. (8.57) (solid green line); by integration over numeri
al

approximations (N
grid

= 106, (a) N
iter

= 3000 and (b) N
iter

= 10; bla
k 
rosses)℄ and


ompared to the linear s
aling a

ording to Eq. (9.5) (dashed gray line).


f. Se
. 5.1. A

ordingly, the weight of quantum resonan
e states ‖P1ψγ‖2 basi
ally follows the
linear behavior, Eq. (9.5), whi
h we interpret as the deeply quantum-me
hani
al regime. We

attribute the pronoun
ed width of the quantum data around their mean behavior to the small

ratio of |Ω|/h whi
h has been observed in other examples as well (not shown). In Fig. 9.10(b)

where the quantum resolution of the �ux φ and the opening Ω is improved by a fa
tor of 256,

i.e., φ/h = 512 and |Ω|/h = 2048, we a
tually observe perfe
t 
orresponden
e between the

lo
alization of quantum resonan
e states and the lo
alization of γ-natural 
ims in dependen
e

of their de
ay rates γ. Note that the weight µ
nat

(A1) of the natural 
im is the same for (a)

and (b) a

ording to Eq. (8.57), as we 
hoose the same values for |Ω|/φ and |A1|, but the
natural de
ay rate γ

nat

di�ers.
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Even though this study indi
ates that the lo
alization of 
haoti
 resonan
e states with

respe
t to a partial barrier, indeed, approa
hes the 
lassi
al lo
alization of γ-natural 
ims for

su�
iently small values of h, it also demonstrates that the 
onvergen
e is rather slow. While

for 
losed systems one �nds quantum-me
hani
al in�uen
e for the lo
alization due to partial

barrier roughly up to φ/h ≈ 10, the quantum in�uen
e for open systems seems to extend to

even larger ratios of φ/h. A more 
areful analysis should take into a

ount results on the

spe
tral gap [196℄ and on super sharp resonan
es [197℄.

9.3 Standard Map

So far, we have seen that our 
lassi
al theory for the lo
alization of 
haoti
 resonan
e states

proves 
orre
t for the partial-barrier Baker map and the partial-barrier standard map in the

semi
lassi
al regime. Even the analyti
al result for the lo
alization of γ-natural 
ims with

respe
t to a partial barrier, Eq. (8.57), whi
h was rigorously derived for the partial-barrier

Baker map, turns out to perfe
tly des
ribe the lo
alization of γ-natural 
ims also for the

example of the partial-barrier standard map. Still, in order to validate our approa
h more

generally we now examine whether the lo
alization of 
haoti
 resonan
e states semi
lassi
ally

follows the lo
alization of γ-natural 
ims also for the paradigmati
 standard map (κ = 2.9)

with a generi
 mixed phase spa
e, 
f. Se
. 3.1.

Let us 
onsider the standard map with �xed opening Ω =
(
[0, |Ω|/2) ∪ [1 − |Ω|/2, 1)

)
×

[−1
2
, 1
2
), |Ω| = 0.1, i.e., two verti
al stripes on the left and right edge of the phase-spa
e 
ell of

width 0.05 ea
h. As a �rst qualitative veri�
ation of quantum-to-
lassi
al 
orresponden
e, we


ompare the average Husimi distribution of resonan
e states with de
ay rate γ ≈ 0.12 with the

numeri
ally determined phase-spa
e density of the 
orresponding γ-natural 
im in Fig. 9.11.

We observe that the quantum and 
lassi
al distributions are supported by the same sets, i.e.,

the 
haoti
 part of the ba
kward trapped set, and thus, are zero on the forward es
aping

sets and the regular regions. Moreover, the lo
ation of high and low density regions mat
h.

Owing to the involved fra
tal stru
ture of the trapped sets we show the same quantum and


lassi
al phase-spa
e distributions from Fig. 9.11 again in Fig. 9.12(
, d) in top view to better

demonstrate their agreement even on �ner s
ales of the fra
tal sets. Indeed, the dark and

bright regions of large or low intensity ni
ely mat
h up the quantum resolution limit. This


orresponden
e is essentially also 
on�rmed for 
haoti
 resonan
e states and γ-natural 
ims of

other de
ay rate in Fig. 9.12(a, b) for γ = 0.05 and in Fig. 9.12(e, f) for γ = 0.2. However, when

examining these two examples very 
losely they already indi
ate the limitations of quantum-

to-
lassi
al 
orresponden
e: In Fig. 9.12(a, b) for γ = 0.05 the quantum resonan
e states (a)

exhibit an overall enhan
ed lo
alization behind the outer partial barrier. This phenomenon

agrees with the deviations already observed in Se
. 9.2. The �ux a
ross this dominant partial
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Figure 9.11. (a) Average Husimi distribution of resonan
e states for the standard map

(κ = 2.9; |Ω| = 0.1; h = 1/1000) with γ ∈ [0.12/1.25, 0.12·1.25] (93 states). (b) Approximate

γ-natural 
im for γ = 0.12.

barrier is quantum me
hani
ally not su�
iently resolved, φ/h ≈ 12. Thus, the enhan
ement

of lo
alization is due to the quantum-me
hani
al suppression of transport a
ross the partial

barrier. In Fig. 9.12(e, f) for γ = 0.2, we observe a new kind of deviation. The quantum

resonan
e states show pronoun
ed peaks on 
ertain lobes of the ba
kward trapped set. This

quantum e�e
t is not dire
tly related to the partial barrier. It is rather related to the question:

How does quantum me
hani
s resolve fra
tal sets? This issue is beyond the s
ope of this thesis

and left for future studies. We will 
omment on this again in the outlook in Chap. 11. Note

that this quantum lo
alization on �ne s
ales of the fra
tal turns out to be irrelevant when


onsidering only the weights on ea
h side of the partial barrier for the examples studied in

this work.

Let us now fo
us on the lo
alization with respe
t to the main partial barrier (φ ≈ 0.0126;

Fig. 9.13 inset: magenta line) in order to quantitatively study quantum-to-
lassi
al 
orre-

sponden
e. The dominant partial barrier de
omposes phase spa
e into the outer region A1

(Fig. 9.13 inset: medium gray shaded) of area |A1| ≈ 0.6664, and the inner region A2 (Fig. 9.13

inset: light gray shaded) of area |A2| ≈ 0.2061. The next hierar
hi
al level is well separated

on the numeri
al s
ales 
onsidered. The �ux a
ross the partial barrier around the island 
hain

of period four (Fig. 9.13 inset: red lines) is smaller by a fa
tor of about 474; the �ux a
ross

the next partial barrier towards the 
entral regular island (Fig. 9.13 inset: pink line) is even

smaller. For the standard map with opening Ω, we 
ompute the Husimi weight ‖P1ψγ‖2 of

ea
h 
haoti
 resonan
e state within A1. Regular and deeper hierar
hi
al states having less

than 50% of their weight within A1 and A2 are dis
arded. As some of the remaining 
haoti
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Figure 9.12. (a, 
, e) Average Husimi distribution of resonan
e states for the standard

map (κ = 2.9; |Ω| = 0.1; h = 1/1000) with (a) γ ∈ [0.05/1.25, 0.05 · 1.25] (88 states), (
)

γ ∈ [0.12/1.25, 0.12 · 1.25] (93 states), and (e) γ ∈ [0.2/1.25, 0.2 · 1.25] (77 states). (b, d, f)

Approximate γ-natural 
im for (b) γ = 0.05, (d) γ = 0.12, and (f) γ = 0.2. Mutual gray


olor s
ale for 
orresponding quantum and 
lassi
al phase-spa
e distributions used.
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Figure 9.13. Weight ‖P1ψγ‖2 (red points) of 
haoti
 resonan
e states ψγ in region A1

vs de
ay rate γ for the standard map at κ = 2.9, with |A1| ≈ 0.6664, |A2| ≈ 0.2061,
φ ≈ 0.0126, |Ω| = 0.1, and h = 1/10000. This is 
ompared to the γ-natural 
im µγ(A1)
determined by integration over numeri
al approximations (N

grid

= 106, N
iter

= 50; solid
green line), a

ording to Eq. (8.57) (dotted blue line), and by semianalyti
al generalizations

of Eq. (8.57) by 
omputing T
nat

numeri
ally (dashed blue line) and by 
omputing |A1 ∩
T−n(Ω)| numeri
ally (solid blue line). In addition, the lo
alization is 
ompared to the linear

s
aling a

ording to Eq. (9.5) (dashed gray line). Inset: Phase spa
e of the standard map

with regular and 
haoti
 regions, illustrating regions A1 (medium gray shaded), A2 (light

gray shaded) on either side of the main partial barrier (thi
k solid magenta line), and opening

Ω (dark gray shaded). Upper panels: Husimi representation of typi
al long-lived (left) and

short-lived (right) resonan
e state for h = 1/1000 with γ values indi
ated by arrows.

resonan
e states still have signi�
ant 
ontribution outside of A1 ∪ A2, we renormalize them

su
h that ‖P1ψγ‖2 + ‖P2ψγ‖2 = 1. Qualitatively, we again �nd the lo
alization transition

from resonan
e states whi
h lo
alize on A2 for small γ to resonan
e states lo
alizing on A1 for

large γ, see Fig. 9.13. Quantitatively, the transition is well des
ribed by the weight µγ(A1)

of 
orresponding γ-natural 
ims whi
h are 
omputed by integration over numeri
ally approxi-

mated measures as des
ribed in Se
. 7.2.2 (solid green line). The 
lassi
al estimate a

ording

to Eq. (8.57) (dotted blue line) also 
aptures the basi
 behavior of the lo
alization transition

although the agreement with the numeri
ally determined measures (solid green line) is not as

good as for the partial-barrier standard map for instan
e. Before dis
ussing this dis
repan
y

between analyti
ally and numeri
ally determined weights µγ(A1) in more detail, we point out

that also the linear behavior related to the deeply quantum-me
hani
al regime (dashed gray
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line), Eq. (9.5), seems to be relevant for the lo
alization transition. This 
an be seen for

resonan
e states with γ . γ
nat

whi
h s
ale di�erent than the states with γ & γ
nat

.

For the partial-barrier Baker map, Eq. (8.57) together with Eq. (8.45) for T0 exa
tly de-

s
ribes the lo
alization of γ-natural 
ims in terms of the weight µγ(A1). For other systems

like the standard map, however, Eq. (8.57) is in general not valid. This is due to following

three steps in its derivation, Se
. 8.4:

(i) For the partial-barrier Baker map the measure µ
nat

(A1) is pre
isely given by the 
om-

ponents of the Perron�Frobenius eigenve
tor of the 2 × 2 matrix T0, Eq. (8.45). The matrix

T0 
ontains the transition probabilities to get from one side of the partial barrier to the other

side or to es
ape from the system within one iteration for an initially uniform phase-spa
e

distribution. However, to ensure that the 
omponents of the Perron�Frobenius eigenve
tor of

T0 provide the weights µnat(A1) (and µnat(A2)) for generi
 maps these transition probabilities

must 
orrespond to using the true natural 
im µ
nat

as initial phase-spa
e distribution instead

of the uniform one. We 
all this adapted 2 × 2 transition matrix T
nat

. It 
an be a
hieved

numeri
ally, for instan
e, by the one-step iteration of a numeri
ally approximated ba
kward

trapped set. In view of the lo
alization transition of the standard map, Fig. 9.13, the improve-

ment when using T
nat

instead of T0 
an be seen by 
omparing the dashed and the dotted blue

line.

(ii) For the partial-barrier Baker map, the weight µ
nat

(
Ak ∩ T−n(Ω)

)
of µ

nat

within the

forward es
aping sets T−n(Ω) asso
iated with A1 or A2 follows from the exa
t relation

µ
nat

(
Ak ∩ T−n(Ω)

)

µ
nat

(
Ak)

=
|Ak ∩ T−n(Ω)|

|Ak|
, (9.6)


f. Eq. (8.52). This proportionality is a dire
t 
onsequen
e of the Cartesian produ
t stru
ture

of stable and unstable manifolds within ea
h region Ak. It seems reasonable to expe
t that

this relation 
an be generalized to generi
 systems for whi
h stable and unstable manifolds

also display a produ
t stru
ture. To this end, the argument needs to be revised in the natural


oordinates of the invariant manifolds.

(iii) For the partial-barrier Baker map the Lebesgue measure |Ak ∩T−n(Ω)| of the forward
es
aping set T−n(Ω) within Ak is given by Eq. (8.53),

(

|A1 ∩ T−n(Ω)|
|A2 ∩ T−n(Ω)|

)

= T n0

(

|Ω|
0

)

. (9.7)

Even when repla
ing T0 by Tnat, 
f. step (i), this relation is not ne
essarily 
orre
t for generi


systems. For large n the iteration of Ω will lead to a phase-spa
e distribution given by the

natural 
im of the inverse dynami
s. For this, re
all that any generi
 phase-spa
e distribution


onverges towards the natural 
im under time evolution whi
h in this 
ase is the ba
kward
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iteration, see Se
. 7.2.2. Hen
e, asymptoti
ally the transition of weights from one side of the

partial barrier to the other when iterating Ω is indeed given by the single matrix 
orresponding

the natural measure whi
h may be related to T
nat

by time-reversal invarian
e. However,

initially the iteration of Ω is not ne
essarily des
ribed by one and the same matrix for di�erent

iteration steps n. In 
ontrast, the transition probabilities to go from one side of the partial

barrier to the other when iterating Ω need to be investigated individually for ea
h time step

up to the asymptoti
 regime where these transition probabilities remain 
onstant. In view

of the lo
alization transition of the standard map, Fig. 9.13, the improvement when using

this adapted approa
h and not T
nat

for all steps n 
an be seen by 
omparing the solid and

the dashed blue line. At least for the standard map, using the pre
ise iteration of Ω seems

not to be spe
i�
ally relevant. This impression is also supported by the expli
it values of

the transition probabilities: The absolute di�eren
e in the initial and asymptoti
 transition

probabilities is below 0.05 already in the �rst iteration, and at most about 0.01 in the fourth

iteration.

Sin
e the steps (i�iii) are the only approximations made when applying Eq. (8.57) to the

generi
 standard map, and as we numeri
ally took 
are of steps (i) and (iii), the di�eren
e

between the full numeri
al result, solid green line in Fig. 9.13, and the semianalyti
al result

(solid blue line) is attributed to the approximation in step (ii).

Summary of Central Results

This 
hapter 
on
ludes the 
entral part of this thesis, i.e., Chaps. 6�9. Let us therefore brie�y

summarize the 
ru
ial points. We observe two transitions for the lo
alization of 
haoti
 reso-

nan
e states due to a partial barrier: (i) A transition from equipartition to lo
alization when

opening the system, and (ii) a transition from lo
alization on one side of the partial barrier

to the other for in
reasing de
ay rates of the resonan
e states. Both transitions take pla
e

also in the semi
lassi
al regime, meaning that the ex
hange region of the partial barrier is

quantum me
hani
ally well resolved. This has two impli
ations: First, partial barriers are

more in�uential in open quantum systems than in 
losed ones, as in the latter 
ase, eigen-

states are semi
lassi
ally equipartitioned with respe
t to the partial barrier as if there were

no partial barrier at all. Se
ondly, a 
lassi
al origin of the observed lo
alization transitions

is suspe
ted. We introdu
e the new 
lass of γ-natural 
ims and demonstrate quantum-to-


lassi
al 
orresponden
e with 
haoti
 resonan
e states for the partial-barrier Baker map, the

partial-barrier standard map, and the generi
 standard map with a mixed phase spa
e. In

parti
ular, the observed lo
alization transitions are ni
ely des
ribed by the lo
alization of the


orresponding 
lassi
al measures, whi
h thus shows that the transitions are indeed of 
lassi
al

origin. A useful analyti
al predi
tion, Eq. (8.57), for the weights of γ-natural 
ims on ea
h side

of a partial barrier is rigorously derived for the partial-barrier Baker map. It turns out that
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Eq. (8.57) provides ex
ellent results even when applied to the partial-barrier standard map

and works reasonably well also for the standard map. If the �ux a
ross the partial barrier is

not su�
iently well resolved by Plan
k 
ells, we observe a quantum-me
hani
al enhan
ement

of lo
alization 
ompared to the 
lassi
al expe
tation.



Chapter 10

Hierar
hi
al Fra
tal Weyl Laws

In this 
hapter we present an important appli
ation of the lo
alization of 
haoti
 resonan
e

states due to a partial barrier. We show that the number of resonan
e states that are pre-

dominantly lo
ated on either side of the partial barrier obeys an individual e�e
tive fra
tal

Weyl law. To this end, we �rst review the Weyl law for 
losed systems and the fra
tal Weyl

law for globally 
haoti
 systems in Se
. 10.1. In Se
. 10.2 we generalize the fra
tal Weyl law

to the partial-barrier Baker map and parti
ularly fo
us on the in�uen
e of the partial barrier.

It turns out that the repeller e�e
tively exhibits di�erent fra
tal dimensions on ea
h side of

the partial barrier. Quantum me
hani
ally, this implies e�e
tively di�erent fra
tal Weyl laws

for the number of resonan
e states asso
iated with ea
h side. In Se
. 10.3 we demonstrate

that these individual fra
tal Weyl laws 
an also be found for the generi
 standard map. For

the partial-barrier standard map with two partial barriers we 
an show numeri
ally that the

individual fra
tal Weyl laws are even present in systems with multiple partial barriers. We

then dis
uss the presen
e of a hierar
hy of fra
tal Weyl laws for generi
 systems with an in�n-

ity hierar
hy of partial barriers. We 
on
lude by dis
ussing the relation of these hierar
hi
al

fra
tal Weyl laws with other fra
tional Weyl laws. The main results of this 
hapter have �rst

been reported in Ref. [33℄.

10.1 Weyl Law and Fra
tal Weyl Law

Consider the free stationary S
hrödinger equation,

(△+ k2)ψ = 0, (10.1)

for the Hamiltonian H = −(~2/2m)△ on a bounded domain G ⊂ Rf
with Diri
hlet boundary


ondition ψ|∂G = 0 for the pie
ewise smooth boundary ∂G and k2 = 2mE/~2
. Weyl's law [77,
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78℄ des
ribes the asymptoti
 distribution of the eigenvalues En of H . It states that the number

N(E) := #{En ∈ σ(H) : En ≤ E} (10.2)

of eigenvalues of H below energy E s
ales as

lim
E→∞

N(E)

Ef/2
=

(
2m

~2

) f
2 Vf
(2π)f

|G|, (10.3)

where Vf = πf/2/Γ(1 + f/2) is the volume of the f -dimensional unit ball, 
f. [198, Eq. 7.3.9℄.

Note that the 
ommon but sloppy notation of the 
ounting fun
tion, Eq. (10.2), is meant

to 
ount eigenvalues in
luding their multipli
ity. Equation (10.3) 
ontains two remarkable

insights. First, the number N(E) of eigenvalues below E asymptoti
ally s
ales as a power

law in the variable E the exponent of whi
h is related to the dimensionality f of the problem.

For an example where this is relevant, think of an ideal quantum gas of n free identi
al

parti
les in a d-dimensional box, whi
h is in
luded in the above setting (f = d · n). Then

Weyl's law yields that the density of states for the quantum gas 
on�ned to two spatial

dimensions is very di�erent from that in three-dimensional spa
e. This is 
entral to the

Mermin�Wagner�Hohenberg theorem [199, 200℄ that forbids Bose�Einstein 
ondensation and

(anti)ferromagnetism for nonzero temperature in the two-dimensional 
ase although they are

allowed in three dimensions, see Refs. [201, Se
. 8.1.1℄ and [202, Chap. 9℄. Note that in order to


ompute the density of states, one needs to modify Eq. (10.3) by taking into a

ount additional

fa
tors due to spin degenera
y as well as the indistinguishability of parti
les. Se
ondly, the

asymptoti
 s
aling of the number N(E) of eigenvalues below E does not depend on the shape

of G but only on its volume |G|. The shape of G determines lower-order 
orre
tions in terms

of the 
urvature of the boundary for instan
e, see e.g. Refs. [203, 204℄. This motivates the

question whether there exist regions G of di�erent shape that share identi
al spe
trum [205℄,

whi
h is indeed possible [206℄. Note that Weyl's law is, of 
ourse, not restri
ted to the quantum

me
hani
al 
ontext but applies to all problems des
ribed by the Helmholtz equation, Eq. (10.1).

For instan
e it is widely studied in the 
ontext of a
ousti
s, opti
al 
avities, and quantum

billiards [198, 203, 205℄.

The Weyl law for the free Hamiltonian, Eq. (10.3), 
an be generalized to Hamiltonians

with nonvanishing potential. This more general Weyl law reads

N(E) =
1

hf

∫

H(q,p)≤E

dfq dfp+O(h1−f ), (hց 0) (10.4)

where H denotes the 
lassi
al Hamilton fun
tion here [207, Se
. 6.4℄. Equation (10.4) allows for

the intuitive interpretation that an eigenstate o

upies the phase-spa
e volume hf of a Plan
k
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ell, 
onsistent with Heisenberg's un
ertainty prin
iple. The total number of eigenvalues up to

energy E is thus given by partitioning the total available phase-spa
e region en
losed by the

energy shell for E by Plan
k 
ells. This prin
iple belongs to the foundations of statisti
al me-


hani
s. We stress that this de
omposition argument relies on the orthogonality of eigenstates.

For a quantum map U ∈ CN×N
semi
lassi
ally 
orresponding to time-dis
rete dynami
s on a

d-dimensional phase spa
e Γ, the Weyl law relates the number NI of eigenstates asso
iated

with an invariant phase spa
e region I ⊆ Γ and the e�e
tive size hd/2 of Plan
k's 
ell by

NI = |I|/hd/2. For the number of all eigenstates this boils down to the quantization 
ondition

N = h−d/2 for a phase spa
e of unit volume. Note that for quantum maps the fo
us is put on

the power-law dependen
e of h sin
e there is no energy parameter.

In order to generalize the Weyl law to open systems, the nonorthogonality of resonan
e

states turns out to be the major 
hallenge [48℄. As a 
onsequen
e of nonorthogonality, it is no

longer reasonable to de
ompose the available phase-spa
e region disjointly by Plan
k 
ells in

order to 
ompute the number of resonan
e states. This issue 
an be over
ome by restri
ting

to long-lived resonan
e states whi
h are mutually almost orthogonal, that is, 〈ψm |ψn 〉 ≈ δmn

if γm, γn ≪ 1. To begin with, let us 
onsider a fully 
haoti
 quantum map with a totally

absorbing region and subunitary time-evolution operator U . In this 
ase, the set of long-lived

resonan
e states may be de�ned as

L := {λ ∈ σ(U) : |λ| ≥ e−γ
/2 }, (10.5)

with a 
onstant 
uto� de
ay rate γ



in order to distinguish between short-lived and long-lived

states. This is a 
ommon way of dis
arding short-lived states [47℄. Sin
e resonan
e states

are not arbitrarily lo
alized in phase spa
e but supported by the trapped set, the available

phase-spa
e region turns out to be the fra
tal repeller Γ
rep

smeared out on the s
ale of Plan
k's


ell [47℄. Asymptoti
ally for h ց 0, de
omposing the h-resolved repeller by Plan
k 
ells is

nothing but 
ounting the minimal number of boxes of side length

√
h ne
essary to 
over Γ

rep

.

This, however, turns out to be equivalent to 
ounting the number of boxes of an appropriate

phase-spa
e partition o

upied by Γ
rep

[142, p. 43℄. We have already seen in Se
. 3.3 that

su
h a box-
ounting algorithm gives a power law depending on the box size when applied to

a uniformly fra
tal set. Its exponent is determined by the fra
tal dimension of the set. By

means of quantum-to-
lassi
al 
orresponden
e, it is

lim
hց0

N
res

(h)

h−D(Γ
rep

)/2
= s(γ




), (10.6)

where N
res

(h) := #L denotes the number of long-lived 
haoti
 resonan
e states, D(Γ
rep

) is the

fra
tal box-
ounting dimension of the repeller, and s(γ



) is the so-
alled shape fun
tion [208℄.

Note that the 
uto� rate γ



, when 
hosen in a reasonable range, enters in the 
ounting fun
tion
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N
res

only through this proportionality fa
tor s. In parti
ular, γ



does not 
ontribute to the

power-law exponent. In open 
haoti
 systems, the number N
res

of long-lived resonan
e states

therefore s
ales as a power law depending on the e�e
tive size h of Plan
k's 
ell similar to the

Weyl law. In 
ontrast to 
losed systems, however, the power-law exponent is not determined

by the ordinary integer dimension of phase spa
e but by the fra
tal dimension of the trapped

set Γ
rep

. Equation (10.6) is therefore referred to as fra
tal Weyl law. Fra
tal Weyl laws

for 
haoti
 open systems have been numerously veri�ed numeri
ally [47, 48, 51, 52, 61, 71, 81,

82, 86�88, 90�92, 96℄, analyti
ally [53, 79, 80, 83�85, 95, 97℄, and even experimentally [93℄. In

parti
ular, fra
tal Weyl laws are also studied for 
haoti
 s
attering systems [47, 90, 93℄ and

for 
haoti
 systems with partial absorption su
h as mi
ro
avities [52, 61, 71℄. They have been

investigated even in the 
ontext of 
lassi
al Perron�Frobenius operators [209℄ and for the

Google matrix [210℄.

The above heuristi
 box-
ounting argument for determining the number of long-lived reso-

nan
e states, whi
h was put forward in Ref. [47℄, sometimes 
reates a little 
onfusion. Chaoti


resonan
e states, no matter whether they are short-lived or long-lived, are semi
lassi
ally sup-

ported by the ba
kward trapped set Γ
bwd

and not by Γ
rep

[49℄. One might argue that therefore

the h-resolved ba
kward trapped set should be de
omposed by Plan
k 
ells, su
h that the

fra
tal dimension of Γ
bwd

should enter the 
ounting argument rather than the fra
tal dimen-

sion of Γ
rep

. Note that Γ
bwd

is mu
h larger than Γ
rep

and should support more resonan
es.

Roughly speaking, the problem with this argument is that the lo
alization of resonan
e states

in the subregions Γ
bwd

∩ T−n(Ω) (forward es
aping sets) is related by time evolution and,

therefore, these regions do not 
ontribute independently. In fa
t, it is shown for instan
e in

Ref. [53, Se
. 6℄ that it is possible to redu
e the dynami
s onto the h-resolved repeller without

losing the relevant information about the spe
trum. More pre
isely, the Hamiltonian, sub-

je
t to 
omplex s
aling in order to un
over the resonan
e poles, is 
onjugate to an auxiliary

Hamiltonian whi
h suppresses 
ontributions outside of the h-resolved repeller by an exponen-

tial weight. This 
onjuga
y assures that the set of resonan
e poles remains un
hanged under

this transformation. Thus, indeed, the h-resolved repeller needs to be partitioned by Plan
k


ells in order to 
ompute the number of long-lived resonan
es. In other words, de
omposing

the h-resolved ba
kward trapped set by Plan
k 
ells overestimates the number of long-lived

resonan
es. Still this 
ounting argument using Plan
k 
ells is not rigorous to some extent for

that the resonan
e states are nonorthogonal. In order to address this issue, it is suggested in

Ref. [48℄ to investigate the Hilbert subspa
e asso
iated with instantaneous de
ay modes. By

partial S
hur de
omposition of the subunitary time-evolution operator the authors determine

the dimension of this spa
e and thereby �nd the number of instantaneous de
ay modes taking

into a

ount their mutual nonorthogonality. Sin
e this task is 
omplementary to the study of

long-lived resonan
e states, the fra
tal Weyl law is re
overed where the exponent is given by
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the fra
tal dimension of the repeller.

So far, we 
onsidered open systems that are fully 
haoti
. This has the advantage that the

repeller is typi
ally a rather homogeneous fra
tal. In this 
ase, it is irrelevant whether one


onsiders the box-
ounting dimension, the Hausdor� dimension, or any other Rényi dimension

as they all 
oin
ide [143℄. The Kantz�Grassberger relation, Eq. (3.30),

δu(Γ
rep

) = 1− γ
nat

Λ
, (10.7)

even yields an analyti
 estimate for the partial fra
tal dimension along the unstable dire
tion

in terms of the Lyapunov exponent Λ and the natural de
ay rate γ
nat

. For time-reversal invari-

ant systems, the partial fra
tal dimensions along the stable and unstable dire
tion 
oin
ide,

δs(Γ
rep

) = δu(Γ
rep

) =: δ(Γ
rep

) [56℄, su
h that the fra
tal dimensionD(Γ
rep

) of the repeller reads

D(Γ
rep

) = 2 ·
(

1− γ
nat

Λ

)

. (10.8)

As mentioned, this relation serves as a predi
tion for any Rényi dimension as long as the

studied fra
tal is homogeneous. It then also provides a useful estimate for the exponent in the

fra
tal Weyl law.

However, if the repeller is an inhomogeneous fra
tal the di�erent notions of fra
tal dimen-

sion are not equivalent and it is still under debate, whi
h of the dimensions enters the fra
tal

Weyl law. There are two situations where su
h an inhomogeneous fra
tal repeller appears

very naturally: In systems with a mixed phase spa
e partial transport barriers may indu
e

e�e
tively an inhomogeneity in the 
haoti
 repeller. This is the subje
t of the next se
tion.

Furthermore, for systems with partial absorption there is no orbit whi
h fully es
apes, su
h

that the repeller is stri
tly speaking the entire phase spa
e. In su
h 
ases, the fra
tal Weyl

law seems to be determined by the multifra
tality of the natural 
im µ
nat

[52, 61, 71℄.

10.2 Partial-Barrier Baker Map

In this se
tion we show that already a single partial transport barrier 
an have a strong

in�uen
e on the homogeneity of the fra
tal repeller for the example of the partial-barrier

Baker map. It turns out that the repeller exhibits e�e
tively two di�erent fra
tal dimensions

on ea
h side of the partial barrier. Moreover, we demonstrate that this gives rise to individual

fra
tal Weyl laws for the number of long-lived 
haoti
 resonan
e states asso
iated with the

two regions.
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10.2.1 E�e
tive Fra
tal Dimensions

Just by looking at Fig. 10.1, one tends to think that the repeller Γ
rep

of the partial-barrier

Baker map 
ontributes more �weight� to region A2 on the right hand side of the partial barrier

than to A1. Of 
ourse, the repeller is a fra
tal set of Lebesgue measure zero su
h that the

notion of weight is ambiguous here. Still, this visual imbalan
e 
ould be re�e
ted in di�erent

fra
tal dimensions of Γ
rep

∩ A1 and Γ
rep

∩ A2. In order to analyze the fra
tal dimension

individually in ea
h region, we de�ne a phase-spa
e partition of re
tangular boxes of side

length εn = 1/3n in verti
al dire
tion and εn/2 in horizontal dire
tion, where n ∈ N denotes

the order of approximation, see Fig. 10.1. As 
an be seen, the number of boxes o

upied by

Γ
rep

is larger in A2 than in A1 for all n:

(a) n = 1: 4 out of 9 boxes in A1 and 9 out of 9 boxes in A2,

(b) n = 2: 25 out of 81 boxes in A1 and 64 out of 81 boxes in A2,

(
) n = 3: 169 out of 729 boxes in A1 and 441 out of 729 boxes in A2.

This is 
onsistent with our previous visual per
eption of di�erent weights.

Again the Cartesian produ
t stru
ture of Γ
rep

∩ A1 and Γ
rep

∩ A2 allows us to de
ompose

the fra
tal box-
ounting dimension of Γ
rep

into its stable and unstable dire
tion individually

within ea
h region Ak,

Dk = δsk + δuk , (10.9)

where we introdu
ed the short-hand notation Dk := D(Γ
rep

∩ Ak), δ
s

k := δs(Γ
rep

∩ Ak), and

δuk := δu(Γ
rep

∩Ak). Due to time-reversal invarian
e, the partial fra
tal dimension along both
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Figure 10.1. Repeller Γ
rep

of the partial-barrier Baker map (bla
k set) in 
ombination with

a box-
ounting grid (green lines) of order (a) n = 1, (b) n = 2, and (
) n = 3 for re
tangular
boxes of side length εn = 1/3n in verti
al dire
tion and εn/2 in horizontal dire
tion.
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dire
tions 
oin
ides, δsk = δuk [56℄. Let us fo
us on the partial fra
tal dimension δsk asso
iated

with the verti
al stable dire
tion. This is the dire
tion of fra
tality of the ba
kward trapped

set Γ
bwd

whi
h supports 
ims and semi
lassi
ally also resonan
e states, 
f. Fig. 10.2. Choosing

a one-dimensional box-
ounting grid with boxes of side length εn = 1/3n in ea
h region,


onsistent with the two-dimensional grid used above for Γ
rep

, the number of o

upied boxes


an be 
al
ulated from the redu
ed 2 × 2 Perron�Frobenius operator T0, Eq. (8.45). Re
all

that T n0 (1, 1)
T
des
ribes the weight of the uniform distribution after n forward iterations in

ea
h of the regions Ak. This initial uniform distribution 
onverges towards Γ
bwd

. For �nite

n, the iterated distribution is exa
tly Γ
bwd

when resolved on the box-
ounting grid of order

n. Taking into a

ount that we want to 
al
ulate the number of o

upied boxes and not the

weight in ea
h region, we have res
ale T0 by the stret
hing fa
tor N
B

= 3, giving

T# := 3T0 =

(

1 1

1 2

)

. (10.10)

Thus, the number N s

b


(Γ
rep

∩ Ak, εn) of boxes of a one-dimensional grid along the stable

(verti
al) dire
tion of order n that are o

upied by Γ
rep

in region Ak is given by

(

N s

b


(Γ
rep

∩A1, εn)

N s

b


(Γ
rep

∩A2, εn)

)

= T n#

(

1

1

)

. (10.11)
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Figure 10.2. O

upied boxes (bla
k) of the repeller Γ
rep

for the partial-barrier Baker map

using a verti
al box-
ounting grid (green lines) of order (a) n = 1, (b) n = 2, and (
) n = 3
for re
tangular boxes of side length εn = 1/3n on both sides of the partial barrier (magenta

line).
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As 
an be 
ompared with Fig. 10.2 the expli
it number of o

upied boxed reads

(

1

1

)

T#7→
(

2

3

)

T#7→
(

5

8

)

T#7→
(

13

21

)

. (10.12)

Squaring these numbers N s

b


(Γ
rep

∩Ak, εn), and thereby taking into a

ount the fra
tality along
the previously negle
ted unstable dire
tion, gives exa
tly the number of o

upied boxes of the

repeller Γ
rep

in region Ak for the two-dimensional grid of order n, 
f. Fig. 10.1.

The partial fra
tal box-
ounting dimension δsk along the stable dire
tion, and thus, indi-

re
tly also the fra
tal dimension of the repeller, follows from Eq. (3.26),

δsk = − lim
n→∞

log(N s

b


(Γ
rep

∩Ak, εn))
log(εn)

. (10.13)

In view of Eq. (10.11), it is 
onvenient to apply a spe
tral de
omposition of (1, 1)T into

eigenve
tors of T#. We denote the eigenvalues and eigenve
tors a

ording to T#ϕj = λjϕj,

j ∈ {1, 2}, and normalize the eigenve
tors su
h that ‖ϕj‖2 = 〈ϕj |ϕj 〉 = 1 with the Eu
lidean

s
alar produ
t. Note that the eigenve
tors ϕj are orthogonal sin
e T# is symmetri
. This

gives

(

1

1

)

=

2∑

j=1

〈ϕj | (1, 1)T 〉ϕj =
2∑

j=1

(

ϕ
(1)
j + ϕ

(2)
j

)

ϕj, (10.14)

where ϕ
(1)
j and ϕ

(2)
j denote the two 
omponents of ϕj . With Eq. (10.11), we therefore �nd

(

N s

b


(Γ
rep

∩ A1, εn)

N s

b


(Γ
rep

∩ A2, εn)

)

= T n#

2∑

j=1

(

ϕ
(1)
j + ϕ

(2)
j

)

ϕj =
2∑

j=1

(

ϕ
(1)
j + ϕ

(2)
j

)

λnjϕj (10.15)

for the number of o

upied boxes, su
h that the partial fra
tal dimension, Eq. (10.13), obeys

δsk = − lim
n→∞

log
[
∑2

j=1

(

ϕ
(1)
j + ϕ

(2)
j

)

λnjϕ
(k)
j

]

log(3−n)
(10.16)

=
1

log(3)
log



 lim
n→∞

n

√
√
√
√

2∑

j=1

(

ϕ
(1)
j + ϕ

(2)
j

)

λnjϕ
(k)
j




(10.17)

=
log [max{λ1, λ2}]

log(3)
. (10.18)

The last step is shown in Se
. B.5. Using that the maximal eigenvalue of T# = 3T0 is deter-

mined by the natural de
ay rate, max{λ1, λ2} = 3e−γnat, and that the Lyapunov exponent of
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the partial-barrier Baker map reads Λ = log(3), it is

δsk = 1− γ
nat

Λ
. (10.19)

That is, asymptoti
ally the repeller has the same fra
tal dimension in regions A1 and A2 in

agreement with the Kantz�Grassberger relation, Eq. (3.30). The visual imbalan
e of Γ
rep

in A1

and A2 is therefore not re�e
ted in the fra
tal s
aling properties for arbitrary �ne resolution.

This 
an be also seen in Fig. 10.3(a). Clearly, the physi
al origin of this asymptoti
 equivalen
e

is the 
oupling a
ross the partial transport barrier. As we will now demonstrate, the imbalan
e

is rather re�e
ted in the way both regions approa
h the mutual asymptoti
 behavior.

Re
all that, in general, the number N
b


of o

upied boxes of length ε asymptoti
ally obeys

a power law, N
b


∼ ε−D, ε ց 0. The fra
tal dimension D follows from its exponent whi
h is

the slope in a double-logarithmi
 plot. On �nite s
ales ε, however, the number N
b


of o

upied

boxes does not have to obey a power law. Still, it is possible to asso
iate an e�e
tive fra
tal

Γrep ∩A1

Γrep ∩A2

∼ ε−δ s
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Figure 10.3. (a) Number N s

b


(Γ
rep

∩ Ak, ε) of boxes of a one-dimensional grid along the

stable dire
tion at s
ale ε that are o

upied by the repeller Γ
rep

of the partial-barrier Baker

map in region A1 (green) or A2 (orange), a

ording to Eq. (10.15). (b) E�e
tive partial

fra
tal dimension δsk(ε) at s
ale ε of the repeller Γrep of the partial-barrier Baker map along

its stable dire
tion in ea
h region A1 (green) and A2 (orange), a

ording to Eq. (10.22).
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dimension at s
ale ε by 
omputing its lo
al slope on a double-logarithmi
 plot [98℄, i.e.,

D(ε) := −d logNb


(ε)

d log ε
= − (log ◦N

b


◦ exp)′ (log ε) = −N
′
b


(ε)

N
b


(ε)
ε. (10.20)

Of 
ourse, the e�e
tive fra
tal dimension D(ε) at s
ale ε and the fra
tal dimension D 
oin
ide

for ε ց 0 in the spirit of l'H�pital's rule. It is 
onvenient in the following to interpret ε, and

thus, also N
b


as a fun
tion of a (
ontinuous) parameter n, whi
h gives

D(εn) = −εn
ε′n

(N
b


◦ ε)′(n)
N

b


(εn)
. (10.21)

Let us apply this e�e
tive treatment of a fra
tal dimension to the above 
ase of the partial

fra
tal dimension δs of the repeller of the partial-barrier Baker map along the stable dire
tion.

Here, it is εn = 3−n su
h that ε′n = − log 3 · εn, and using Eqs. (10.15) and (10.21) we �nd

δsk(εn) =
1

log 3

∑2
j=1

(

ϕ
(1)
j + ϕ

(2)
j

)

ϕ
(k)
j λnj log(λj)

∑2
j=1

(

ϕ
(1)
j + ϕ

(2)
j

)

ϕ
(k)
j λnj

. (10.22)

The 
orresponding graphs, shown in Fig. 10.3(b), illustrate that, in fa
t, the e�e
tive fra
tal

dimension in region A2 (orange) is larger than in A1 (green), whi
h is 
onsistent with the

previously dis
ussed visual imbalan
e of the repeller Γ
rep

. We stress that asymptoti
ally,

ε ց 0, the e�e
tive partial fra
tal dimension in both regions 
onverges towards the same

value δs = δs1 = δs2, Eq. (10.19). Furthermore, we emphasize again that the partial fra
tal

dimensions δsk and δ
u

k along the stable and unstable dire
tion 
oin
ide for ea
h region Ak due

to time-reversal invarian
e. In the following we therefore write δk := δsk = δuk . Let us brie�y


omment on the fa
t that the partial fra
tal dimension δs2(ε) of the repeller in regionA2 (orange)

ex
eeds unity for large ε a

ording to Eq. (10.22) and evident from Fig. 10.3(b). This is an

artifa
t from 
hoosing n in Eq. (10.21) 
ontinuously and amounts to an inappropriate 
hoi
e

of box-
ounting grids. For values of εn = 3−n, n ∈ N, this e�e
t is not present. Nevertheless,

this physi
ally irrelevant regime for large ε is shown as a guide to the eye in order to emphasize

the di�eren
e in the e�e
tive fra
tality in both regions. For values ε ≤ 1/3 this di�eren
e is

still present but, parti
ularly in Fig. 10.3(a), hardly re
ognizable.

10.2.2 Quantum-to-Classi
al Corresponden
e

So far, we dis
ussed the relevan
e of e�e
tive fra
tal dimensions by their 
apability of 
apturing

the visual imbalan
e of the repeller on both sides of the partial barrier. However, mu
h

more important for us are the quantum signatures of the di�erent e�e
tive fra
tal dimensions.

As we will now demonstrate the s
aling of the number N
res

of long-lived resonan
e states
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depending on the e�e
tive size h of Plan
k's 
ell on numeri
ally feasible s
ales is governed

by the e�e
tive fra
tal dimension of the repeller, not by the asymptoti
 fra
tal dimension.

Even more remarkable, we will show that there are e�e
tively individual fra
tal Weyl laws

asso
iated with the two regions A1 and A2.

Re
all the 
ommon heuristi
 argument for the fra
tal Weyl law, a

ording to whi
h the

number N
res

(h) of long-lived resonan
e states for a spe
i�
 value h is obtained by a box-


ounting algorithm with boxes of area h applied to the repeller Γ
rep

. In view of that, it is

quite expe
ted that the s
aling of N
res

around h is des
ribed by the e�e
tive fra
tal dimension

on that spe
i�
 s
ale and not by the asymptoti
 one. Pre
isely this behavior is shown in

Fig. 10.4 (blue), whi
h requires some explanation. In order to in
rease the di�eren
e between

the e�e
tive and the asymptoti
 fra
tality of Γ
rep

, we do not 
onsider the ordinary partial-

barrier Baker map but adapt its transition probabilities for both regions by 
hoosing N
B

= 10,

L = 3, and C = 1, using the notation from Se
. 8.1. Furthermore, we extra
t the trivial

power-law s
aling h−1
, whi
h 
orresponds to a 
losed system, by plotting N

res

(h) · h, and
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0.2

0.5

1

102 103 104 105

Γrep

Γrep ∩A1

Γrep ∩A2

h−1

ε−2

N
(k)
res (h) · h

N
(k)
bc (ε) · ε2fk

Figure 10.4. Number N
(k)
res

(h) (dots) of long-lived resonan
e states of the partial-barrier

Baker map (N
B

= 10, L = 3, C = 1) vs h−1
, res
aled by the trivial s
aling h. Di�erent


olors 
orrespond to the 
lass L of all long-lived resonan
e states (blue), or the sub
lasses

L1 (green) or L2 (orange) of states asso
iated with regions A1 or A2, respe
tively. The

quantum me
hani
al s
aling is 
ompared to the number N
(k)
b


(ε) (solid lines) of re
tangular

boxes of a grid with verti
al (horizontal) side length ε (ε/2) that are o

upied by the entire

repeller Γ
rep

(blue) or by the repeller Γ
rep

in region A1 (green) or A2 (orange), plotted

against ε−2
and res
aled by the trivial s
aling ε2. The 
lassi
al data are 
omputed a

ording

to N
(k)
b


(ε) := ε−2δk(ε)
with δk from Eq. (10.22) as adapted to the map parameters, and

verti
ally shifted by fa
tors f = 1.06, f1 = 0.47, f2 = 0.49. The asymptoti
 s
aling (gray

dashed lines) 
orresponds to a power law with δk a

ording to Eq. (10.19).
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thereby visually enhan
ing the di�eren
e between the di�erent fra
tal dimensions 
lose to

two. Note that a power law N
res

(h) ∼ h−1
would therefore 
orrespond to a horizontal line

in Fig. 10.4, and a fra
tal Weyl law like N
res

(h) ∼ h−D(Γ
rep

)/2
would lead to a de
reasing

straight line whi
h is steeper the smaller D(Γ
rep

) (double-logarithmi
 plot). The quantum

me
hani
al data (blue dots) are obtained by numeri
al diagonalization of the time evolution

operator for di�erent values of h and dis
arding all short-lived resonan
es with γ > γ



= 2.

Classi
ally, we 
ompute the e�e
tive partial fra
tal dimension δ(ε) a

ording to Eq. (10.22),

with straightforward adaptations to the 
hosen system parameters N
B

= 10, L = 3, and C = 1.

For the number of o

upied boxes of the repeller, we thus analyti
ally expe
t N
b


(ε) ∼ ε−2δ(ε)

(solid blue line). By identifying the 
lassi
al box area ε2 and the quantum me
hani
al size h

of Plan
k's 
ell, we are allowed to plot both N
res

as a fun
tion of h and N
b


as a fun
tion of ε

in one and the same 
oordinate system for 
omparison. The asymptoti
 s
aling is estimated

by the Kantz�Grassberger relation, Eq. (10.19) (gray dashed line).

Although the di�eren
e between the asymptoti
 and the e�e
tive s
aling of N
res

is small,

even in this adapted plot, one 
learly observes that the quantum data ni
ely follows the e�e
tive


lassi
al behavior. We stress that the �u
tuations in the quantum data are parti
ularly smaller

than the di�eren
e to the asymptoti
 s
aling. Note that the 
lassi
al expe
tation N
b


is

verti
ally shifted by a fa
tor of f = 1.06 to better demonstrate the mutual s
aling with N
res

.

At this point we see quantum-to-
lassi
al 
orresponden
e between the number of all long-

lived resonan
e states and the e�e
tive fra
tality of the entire repeller. However, as shown in

this thesis, resonan
e states may lo
alize predominantly on one or the other side of the partial

barrier depending on their de
ay rate, even for semi
lassi
ally small values of h. Moreover,

we have seen that the e�e
tive fra
tal dimension of the repeller di�ers on both sides of the

partial barrier. This suggests that there may be quantum-to-
lassi
al 
orresponden
e within

both regions individually, giving rise to individual e�e
tive fra
tal Weyl laws. To this end, we

de�ne the 
lass Lk, k ∈ {1, 2}, that 
ontains a long-lived resonan
e state ψγ , γ < γ



, if its

relative lo
al weight ‖Pjψγ‖2/|Aj|, j ∈ {1, 2}, is maximal for region Ak. This 
lassi�
ation is

supported by the distributions of the 
orresponding de
ay rates, see Fig. 10.5, whi
h exhibits

only a small overlap between the two distribution of the two 
lasses. We therefore de�ne

the number N
(k)
res

of long-lived resonan
e states asso
iated with Ak by the number of linearly

independent elements in Lk. The 
orresponding numeri
al data for the partial-barrier Baker

map modi�ed as above are again shown in Fig. 10.4 by green (L1) and orange (L2) dots.

They are 
ompared to the expe
ted 
lassi
al box-
ounting s
aling N
(k)
b


for Γ
rep

∩Ak with the

individual e�e
tive fra
tal dimensions δk, a

ording to Eq. (10.22) when adapted to the system

parameters (green and orange solid lines). Again, the 
lassi
al expe
tation N
(k)
b


is verti
ally

shifted by fa
tors of f1 = 0.47 and f2 = 0.49 to better demonstrate the mutual s
aling with

N
(k)
res

. Note that the fa
tors fk mainly represent the phase-spa
e fra
tion of the 
onsidered
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Figure 10.5. Distribution P (γ) of de
ay rates γ of the partial-barrier Baker map (N
B

= 10,
L = 3, C = 1) for h−1 = 12800. The distribution distinguishes between resonan
e states of


lass L1 lo
ated in region A1 (green) and resonan
e states of 
lass L2 lo
ated in region A2

(orange). Short-lived states γ > γ



are negle
ted for the fra
tal Weyl law.

region Ak.

First of all, we observe quantum-to-
lassi
al 
orresponden
e between the number of long-

lived resonan
e states asso
iated with region Ak and the e�e
tive fra
tality of the repeller in

region Ak. That is, we e�e
tively obtain individual fra
tal Weyl laws for the two di�erent

regions. For region A1, the found s
aling of the quantum data is 
learly not 
aptured by

the expe
ted asymptoti
 fra
tal s
aling of the repeller. We admit that there are signi�
ant

�u
tuations, almost os
illatory, around the box-
ounting s
aling N
b


. They have the same

order of magnitude as the �u
tuations for the 
lass L2 (orange), whi
h are less pronoun
ed

than for L1 in Fig. 10.4 due to the logarithmi
 representation. Anyway, these deviations

de
rease for smaller values of h. In parti
ular, in view of the broad quantum lo
alization

transition of the partial barrier [32℄, 
f. Se
. 5.1, quantum deviations are expe
ted at least up

to φ/h ≈ 10, whi
h 
orresponds to h−1 ≈ 200 here.

10.3 Generi
 Maps

In the previous se
tion we have seen that the repeller of the partial-barrier Baker map exhibits

di�erent e�e
tive fra
tal dimensions on ea
h side of the partial barrier. Long-lived 
haoti


resonan
e states asso
iated with these regions obey individual e�e
tive fra
tal Weyl laws. In

this se
tion we demonstrate that these results generalize to the generi
 standard map with a

mixed phase spa
e. Eventually, for the partial-barrier standard map we 
an numeri
ally show

that our results also generalize to the 
ase of two barriers. These individual e�e
tive fra
tal
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Weyl laws for the standard map and the partial-barrier standard map have �rst been reported

in Ref. [33℄.

First of all, the repeller of the standard map, see Fig. 10.6(a), qualitatively displays the

same kind of visual imbalan
e with respe
t to the partial barrier as previously dis
ussed for

the partial-barrier Baker map in Se
. 10.2.1. Furthermore, as explained in Se
. 9.3, the 
haoti


resonan
e states may lo
alize with respe
t to the dominant partial barrier depending on their

de
ay rate, 
f. Fig. 10.6(b, 
). This already suggests that the standard map also gives rise

to individual e�e
tive fra
tal Weyl laws for the 
haoti
 resonan
e states asso
iated with ea
h

side of the partial barrier. Let us now quantitatively analyze this e�e
tive fra
tality and the

expe
ted quantum-to-
lassi
al 
orresponden
e. However, the 
ommon box-
ounting algorithm

is numeri
ally hardly 
apable of analyzing the fra
tal sets over the ne
essary range of ε values.

It is, thus, useful to introdu
e the un
ertainty algorithm.

10.3.1 Un
ertainty Algorithm

Numeri
ally, the major drawba
k of the box-
ounting algorithm is the appropriate sampling

of the fra
tal set. In order to 
ompute the fra
tal dimension from the box-
ounting s
aling

at small values of ε the fra
tal set must be available in su�
ient resolution. Then the 
ru
ial

numeri
al limitations are memory 
onstraints. The un
ertainty algorithm over
omes these

−0.5
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0 1q

p
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p

(b)

q

p
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Figure 10.6. (a) Finite-time approximation of the repeller Γ
rep

of the standard map

(κ = 2.9) with |Ω| = 0.1 (gray shaded regions). It is de
omposed by the partial barrier

(magenta lines) into the regions A1 (green) and A2 (orange). (b, 
) Husimi representation

of typi
al long-lived 
haoti
 resonan
e states (1/h = 1000) asso
iated with (b) A1 and (
)

A2.
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on
erns in a fas
inating manner [98,211℄. A point x ∈ Γ is 
alled ε-
ertain if all points in an

ε-neighborhood of x have the same es
ape time as x, that is, there exists an n ∈ N0 su
h that

Bε(x) ⊆ T−n(Ω) where Bε(x) denotes the ball of radius ε 
entered around x. Otherwise x is


alled ε-un
ertain. The ε dependen
e of the phase-spa
e fra
tion ξ(ε) of ε-un
ertain points


ontains the partial fra
tal dimension δ of the trapped sets [98,211℄. Instead of analyzing the

fra
tion ξ(ε) of ε-un
ertain points dire
tly, we 
ompute the fra
tion 1−ξ(ε) of ε-
ertain points.
It is essentially governed by

1− ξ(ε) ≈
Nε−1∑

n=0

|T−n(Ω)|, (10.23)

that is the phase-spa
e fra
tion of forward es
aping sets T−n(Ω) resolved by ε. Intuitively

speaking, any point in T−n(Ω) that is ε away from the boundary of T−n(Ω) is ε-
ertain. As

long as ε is small 
ompared to the length s
ales of T−n(Ω) basi
ally all points in T−n(Ω) are

ε-
ertain. From some Nε ∈ N0 on, however, the smallest length s
ale (unstable dire
tion) of

T−Nε(Ω) is below ε su
h that basi
ally no point of T−n(Ω) is ε-
ertain for n ≥ Nε. It is again

illuminating to 
onsider the example of the Baker map, see Fig. 10.7. Here, the sets Ω and

T−1(Ω) support balls of radius ε while the sets T−n(Ω) for n ≥ Nε = 2 do not. Note that

0

1

0 1

ε

q

p

Figure 10.7. Illustration of ε-
ertain (white) and ε-un
ertain points (orange) of the Baker

map. While the opening Ω (gray) and the �rst forward es
aping set T−1(Ω) (light blue)

support balls of radius ε, all forward es
aping sets T−n(Ω) with n ≥ Nε = 2 do not. For

instan
e, the ε-neighborhood of the ε-un
ertain point in T−2(Ω) (medium blue) has overlap

with T−3(Ω) (dark blue).
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taking into a

ount ε-gaps around the boundaries of the forward es
aping sets beyond the

rough approximation in Eq. (10.23) results in higher-order 
orre
tions whi
h are irrelevant for

our purpose. Using |T−n(Ω)| = e−γnatn(1− e−γnat), 
f. Eq. (7.37), one obtains

1− ξ(ε) ≈ (1− e−γnat)

Nε−1∑

n=0

e−γnatn (10.24)

= (1− e−γnat)
1− e−γnatNε

1− e−γnat
, (10.25)

su
h that

ξ(ε) ≈ e−γnatNε. (10.26)

The number Nε of forward es
aping sets resolved by ε obeys

|Ω| e−ΛNε = ε, (10.27)

with the Lyapunov exponent Λ, assuming a uniformly hyperboli
 map for simpli
ity. For this,

re
all that the set Ω is 
ontra
ted by e−Λ
in ea
h step along the unstable dire
tion. Again,

see Fig. 10.7 for the 
ase of the Baker map. Here, the relevant length s
ale of ea
h stripe of

T−n(Ω) along the unstable dire
tion is given by

|Ω| e−Λn =
1

3
e− log(3)n =

(
1

3

)n+1

. (10.28)

The estimate for Nε, Eq. (10.27), gives

Nε =
log(|Ω|)− log(ε)

Λ
. (10.29)

Inserting this into Eq. (10.26), one obtains

ξ(ε) ≈ e−
γ
Λ
log(|Ω|) e

γ
Λ
log(ε) ∼ ε

γ
Λ . (10.30)

Finally, the Kantz�Grassberger relation, Eq. (3.30), reveals the relation,

ξ(ε) ∼ ε1−δ, (ε ց 0) (10.31)

between the phase-spa
e fra
tion ξ(ε) of ε-un
ertain points and the partial fra
tal dimension

δ of the trapped sets [98, 211℄.

The main advantage of this so-
alled un
ertainty algorithm is that we 
an 
ompute the

fra
tal dimension of the trapped sets without 
omputing the fra
tal sets themselves. In par-
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ti
ular, it is not ne
essary to 
ompute the �nite-time approximation very a

urately or to

store a large sample in order to estimate its fra
tal dimension on �ne s
ales. Numeri
ally, it is

usually su�
ient and very e�
ient to 
he
k whether a point x ∈ Γ is ε-
ertain by 
omparing

the 
oin
iden
e of es
ape times with only one point y ∈ Γ for whi
h ‖x− y‖ = ε. Figure 10.8

impressively demonstrates that the range of ε values available for the un
ertainty algorithm

ex
eeds the range of the box-
ounting algorithm by several orders of magnitude. For this


omparison we 
ompute the �nite-time approximation of the repeller for the standard map

with 108 initial points where we dis
ard points whi
h leave the system within 9 iterations

for A1 and 25 iterations for A2. Note that the iteration times are 
hosen di�erently owing

to the very di�erent es
ape times from the two regions, see Se
. B.6 for their 
omputation.

The box-
ounting algorithm is applied to this sample. For the un
ertainty algorithm we de-

termine the fra
tion ξk(ε) of ε-un
ertain points in region Ak by averaging over 104 random

initial points for ea
h region. As ξk(ε) ∼ ε1−δk , the ratio ξk(ε)
2/ε2 ∼ ε−2δk

is 
omparable with

the number N
(k)
b


(ε) of boxes of side length ε o

upied by the repeller in region Ak. In the

res
aled plot in Fig. 10.8 this 
orresponds to plotting ξk(ε)
2
. Figure 10.8 
learly reveals that

e�e
tively the fra
tal dimensions of the repeller on ea
h side of the partial barrier di�er and

approa
h a mutual asymptoti
 s
aling for small ε. Note that in order to reveal this behavior
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0.85
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δ2(ε) ≈ 0.89
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N
(k)
bc (ε) · ε2

ξk(ε)
2 · fk
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Figure 10.8. Number N
(k)
b


(ε) of boxes of side length ε o

upied by the repeller Γ
rep

of

the standard map (κ = 2.9, |Ω| = 0.1) in region A1 (green solid line) or A2 (orange solid

line). The data are res
aled by the trivial s
aling ε2. This is 
ompared to the fra
tion

ξk(ε) of ε-un
ertain points in region A1 (green dots) and A2 (orange dots). The e�e
tive

partial fra
tal dimensions δk(ε) of the repeller in region Ak at s
ale ε are indi
ated by the


orresponding power-law s
aling (dashed lines). The values of ξk(ε)
2
are verti
ally shifted

by fa
tors f1 = 0.72, f2 = 0.25 in order to better demonstrate the mutual s
aling with the

box-
ounting data.
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with the box-
ounting algorithm numeri
ally, only having a su�
iently large sample of the

repeller (∼ 1015 points) in storage would require at least petabytes of memory (32 bits per

point and 
oordinate).

10.3.2 Quantum-to-Classi
al Corresponden
e

In order to investigate quantum-to-
lassi
al 
orresponden
e between the individual e�e
tive

fra
tal dimensions on ea
h side of the repeller and the number of long-lived resonan
e states, we

again 
lassify long-lived resonan
e states by their lo
alization. Just as for the partial-barrier

Baker map, the 
lass Lk, k ∈ {1, 2} 
ontains a long-lived resonan
e state ψγ , γ < γ



= 1,

if its relative lo
al weight ‖Pjψγ‖2/|Aj|, j ∈ {1, 2}, is maximal for region Ak. Note that

for the standard map it is |A1| ≈ 0.6664 and |A2| ≈ 0.2061. Resonan
e states having 50%

of their weight in deeper hierar
hi
al regions or in the regular region are dis
arded right

away. Figure 10.9 shows that the overlap in the distribution of the de
ay rates for the two

lo
alization 
lasses Lk is rather small. A

ording to this 
lassi�
ation, the number N
(k)
res

(h) of

long-lived 
haoti
 resonan
e states asso
iated with Ak is shown in Fig. 10.10 in dependen
e

of the e�e
tive size h of Plan
k's 
ell (dots). In order to redu
e �u
tuations in the data we

perform an average over max{1, ⌊5000 h⌋} di�erent realizations of the quantum standard map

by varying the Blo
h phase ϑ
mom

, 
f. Se
. 4.2.1. We restri
t ourselves to values of φ/h & 10 su
h

that transport a
ross the partial barrier is quantum me
hani
ally not signi�
antly suppressed

in view of the 
losed system's theory [32℄. The h dependen
e of N
(k)
res

is 
ompared to the
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Figure 10.9. Distribution P (γ) of de
ay rates γ of the standard map (κ = 2.9, |Ω| = 0.1)
for h−1 = 12800. The distribution distinguishes between resonan
e states of 
lass L1 lo
ated

in region A1 (green) and resonan
e states of 
lass L2 lo
ated in region A2 (orange). Short-

lived states γ > γ



are negle
ted for the fra
tal Weyl law.
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Figure 10.10. Number N
(k)
res

(h) (dots) of long-lived resonan
e states of the standard map

(κ = 2.9, |Ω| = 0.1) vs h−1
, res
aled by the trivial s
aling h. Di�erent 
olors 
orrespond

to the 
lass L of all long-lived resonan
e states (blue), or the sub
lasses L1 (green) or L2

(orange) of states asso
iated with regions A1 or A2, respe
tively. The data are averaged over

max{1, ⌊5000h⌋} realizations of the quantum map by varying the Blo
h phases ϑ
mom

. The

quantum-me
hani
al s
aling is 
ompared to the box-
ounting s
aling N
(k)
b


(ε) (solid lines;


rosses) of boxes of side length ε that are o

upied by the entire repeller Γ
rep

(blue) or by

the repeller Γ
rep

in region A1 (green) or A2 (orange), plotted against ε−2
and res
aled by

the trivial s
aling ε2. The 
lassi
al data are 
omputed numeri
ally by the box-
ounting al-

gorithm with a �nite-time approximation of Γ
rep

(
rosses) and by the un
ertainty algorithm

(solid lines). In addition they are verti
ally shifted by fa
tors f = 0.67, f1 = 0.32, f2 = 1.3
(
rosses) and f = 0.8, f1 = 0.23, f2 = 0.34 (solid lines).

box-
ounting s
aling N
(k)
b


(ε) of the repeller in region Ak by identifying the 
ell area h and ε2.

Additionally, we 
ompare the number N
(k)
res

(h) of long-lived 
haoti
 resonan
e states with the

fra
tal s
aling of the repeller 
omputed from the un
ertainty algorithm by identifying N
(k)
b


(ε)

and ξk(ε)
2/ε2. We observe ni
e agreement between the quantum me
hani
al and the e�e
tive


lassi
al s
aling behavior both for the data 
omputed by the box-
ounting algorithm (
rosses)

and by the un
ertainty algorithm (solid lines). This holds true for the number of all long-

lived 
haoti
 resonan
e states 
ompared with fra
tality of the entire 
haoti
 repeller (blue),

and parti
ularly also for the individual regions A1 (green) and A2 (orange). That is, there

are e�e
tively individual fra
tal Weyl laws for the 
haoti
 resonan
e states asso
iated with

A1 and A2 determined by the e�e
tive fra
tal dimension of the repeller in the 
orresponding

phase-spa
e region. Note again that the 
lassi
al data are verti
ally shifted by appropriate

fa
tors in Fig. 10.10 to better demonstrate the mutual s
aling with the quantum data.
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10.3.3 Multiple Partial Transport Barriers

Our last step in order to study the validity of individual fra
tal Weyl laws for generi
 systems

is their veri�
ation for the 
ase that the repeller is de
omposed by more than one partial

transport barrier. For the standard map the next level of partial barriers is numeri
ally not

a

essible. However, the 
onstru
tion of the partial-barrier map in Se
. 4.1 is easily adapted

to the 
ase of more than one partial barrier. The possibility to adapt the system parameters

of the partial-barrier map almost arbitrarily eventually allows us to numeri
ally 
on�rm the

individual fra
tal Weyl laws for the 
ase of two partial barriers.

To this end, we de�ne the partial-barrier map T :=M ◦E◦O that models b partial barriers

at the positions q1 < · · · < qb as straight lines in p dire
tion, giving a de
omposition of phase

spa
e into b+ 1 regions Ak := [qk−1, qk)× [−1
2
, 1
2
) with q0 := 0 and qb+1 := 1. Again, the map

M des
ribes the un
onne
ted 
haoti
 dynami
s within the regions Ak. Here we 
hoose the

standard map at ki
king strength κ = 10 a
ting individually on ea
h of the regions Ak after

appropriate res
aling. The map E indu
es a �ux φk between Ak and Ak+1 by ex
hanging the

regions [qk − φk, qk) × [−1
2
, 1
2
) ⊆ Ak and [qk, qk + φk) × [−1

2
, 1
2
) ⊆ Ak+1. The map O opens

the system by the absorbing region Ω, whi
h is 
ontained in region A1. It is 
onvenient to

use the �xed s
aling parameters α := |Ak+1|/|Ak| for neighboring areas and ϕ := φk+1/φk for


onse
utive �uxes with α ≥ ϕ.

Figure 10.11(a) shows the fra
tal repeller Γ
rep

of the partial-barrier standard map with

two barriers (magenta lines) de�ned as outlined above. Again, one qualitatively observes an

imbalan
e of the weights that the repeller 
ontributes to ea
h of the three regions Ak. This

suggests di�erent e�e
tive fra
tal dimensions as for the standard map and the partial-barrier

Baker map with a single partial barrier. Note that the shown �nite-time approximation of

Γ
rep

is 
omputed with a di�erent number of iterations for the di�erent regions owing to the

very di�erent es
ape times, 
f. Se
. B.6. Moreover, also the 
haoti
 resonan
e states of the


orresponding quantum map exhibit lo
alization within the three regions even though φ1,

φ2 ≪ h, see Fig. 10.11(b�d). Parti
ularly, there is no resonan
e state with large weight in

region A1 and A3 and a dip in A2, i.e., the states lo
alize in one region and fall o� to the next

regions. By 
lassifying the long-lived resonan
e states (γ



= 2) a

ording to their maximal

relative weight per region, we 
an 
ompute the number N
(k)
res

(h) of long-lived resonan
e states

asso
iated with Ak. The s
aling of N
(k)
res

(h) depending on the e�e
tive size h of the Plan
k


ell is 
ompared with the box-
ounting s
aling N
(k)
b


(ε) of the repeller again by identifying h

and ε2 in Fig. 10.12. Here we use the un
ertainty algorithm for 
omputing N
(k)
b


(ε), i.e., we

identify N
b


(ε) and ξk(ε)
2/ε2 where ξk(ε) denotes the fra
tion of ε-un
ertain points in Ak.

Figure 10.12 ni
ely demonstrates quantum-to-
lassi
al 
orresponden
e between the number

of long-lived 
haoti
 resonan
e states and the e�e
tive fra
tal s
aling of the repeller (blue).

Moreover, we �nd individual e�e
tive fra
tal Weyl laws for ea
h of the regions Ak.
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Figure 10.11. (a) Finite-time approximation of the repeller Γ
rep

of the partial-barrier

standard map with two partial barriers (κ = 10, α = 1/2, ϕ = 1/4, |Ω|/|A1| = 1/4,
φ1/|A2| = 1/8); for purpose of visualization approximation times 
hosen as 7 for A1, 19 for

A2, and 35 for A3. The repeller Γrep is de
omposed by the partial barriers (magenta lines)

into the regions A1 (green), A2 (orange), and A3 (purple). (b, 
, d) Husimi representation

of typi
al long-lived 
haoti
 resonan
e states (1/h = 1115) asso
iated with (b) A1, (
) A2,

and (d) A3.

Generi
 Hierar
hi
al Stru
ture

Let us dis
uss our �ndings in view of a generi
 system with a mixed phase spa
e of regular and


haoti
 regions and an in�nite hierar
hy of partial barriers. First, the regular states whi
h

lo
alize on the regular region 
learly obey the usual Weyl law as for 
losed systems. For

the 
haoti
 
omponent, we have seen that 
haoti
 resonan
e states are predominantly lo
ated

in one of the hierar
hi
al regions Ak depending on their de
ay rate. In view of the in�nite

hierar
hy we 
all them hierar
hi
al resonan
e states of region Ak. Depending on the e�e
tive

size h of Plan
k's 
ell the number N
(k)
res

(h) of long-lived hierar
hi
al resonan
e states of region

Ak obeys an individual fra
tal Weyl law,

N (k)
res

(h) ∼ h−δk , (10.32)

with the e�e
tive partial fra
tal dimension δk of Γrep

∩Ak. Note that e�e
tive fra
tal dimensions

may be almost 
onstant over several s
ales of the fra
tal as the transition probabilities between

hierar
hi
al regions su�
iently deep in the hierar
hi
al stru
ture are very small.

In dependen
e of Plan
k's 
onstant h, there are basi
ally four regimes for the s
aling of
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Figure 10.12. Number N
(k)
res

(h) (dots) of long-lived resonan
e states of the partial-barrier

standard map (κ = 10, α = 1/2, ϕ = 1/4, |Ω|/|A1| = 1/4, φ1/|A2| = 1/8) vs h−1
, res
aled

by the trivial s
aling h. Di�erent 
olors 
orrespond to the 
lass L of all long-lived resonan
e

states (blue), or the sub
lasses L1 (green), L2 (orange), and L3 (purple) of states asso
iated

with regions A1, A2, and A3 respe
tively. The quantum-me
hani
al s
aling is 
ompared to

the box-
ounting s
aling whi
h is numeri
ally estimated by the un
ertainty algorithm. The

s
aling of the number N
(k)
b


(ε) (solid lines) of boxes of side length ε that are o

upied by the

entire repeller Γ
rep

(blue) or by the repeller Γ
rep

in region A1 (green), A2 (orange), and A3

(purple), is plotted against ε−2
and res
aled by the trivial s
aling ε2. The 
lassi
al data are

verti
ally shifted by fa
tors f = 1.1, f1 = 0.19, f2 = 0.36, f3 = 0.19.

N
(k)
res

(h) for a spe
i�
 region Ak and Eq. (10.32) is parti
ularly relevant for one of them: (i) As

long as h is too large to resolve region Ak, h > |Ak|, there are no resonan
e states supported

by Ak. (ii) For h < |Ak| but h larger than the greatest �ux φk a
ross its surrounding partial

barriers, h > φk, one has resonan
e states lo
alized on region Ak with just a small 
oupling to

other regions, as for 
losed systems [24, 32℄. Consequently, the number of resonan
e states in

this regime s
ales with the usual Weyl law as h−1
. (iii) For h smaller than the �ux, h < φk,

the resonan
e states still lo
alize in region Ak and they begin to resolve the fra
tal stru
ture

of the trapped sets as des
ribed by γ-natural 
ims. This is the main regime dis
ussed in

this 
hapter and des
ribed by Eq. (10.32) with a fra
tal dimension δk of the interse
tion of

the repeller with region Ak. (iv) Semi
lassi
ally, h ց 0, the �ne stru
ture of the repeller is

resolved. Here the e�e
tive fra
tal dimensions of the repeller within the di�erent regions Ak

all approa
h a mutual value [98℄. Moreover, the dimension of the repeller approa
hes two for

an in�nite hierar
hi
al stru
ture of partial barriers [212℄. Hen
e, we expe
t an overall Weyl

law for the hierar
hi
al region with the number of resonan
e states s
aling as h−1
.

In this 
hapter we have shown that the hierar
hi
al fra
tal Weyl laws, Eq. (10.32), des
ribe
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the important regime (iii) where hierar
hi
al resonan
e states predominantly lo
alize on one

of the regions Ak and resolve the fra
tal stru
ture of the repeller. Note that Eq. (10.32) also

applies to the other regimes by 
hoosing the phase-spa
e regions a

ording to the predominant

lo
alization of resonan
e states.

One may wonder whether the presen
e of individual e�e
tive fra
tal Weyl laws 
ontradi
ts

the presen
e of an overall fra
tal Weyl law. Away from the asymptoti
 regime, the total number

of long-lived resonan
e states and all the individual 
lasses Lk of hierar
hi
al resonan
e states

annot obey power laws with di�erent exponents at the same time, sin
e the sum of power

laws is not a power law. Numeri
ally, we 
annot 
learly distinguish whi
h of the 
lasses gives

rise to a stri
t power law and whi
h does not. On the available s
ales quantum-to-
lassi
al


orresponden
e is basi
ally 
on�rmed for the total number of long-lived resonan
e states and

for the individual 
lasses of hierar
hi
al resonan
e states as well. This results from the fa
t that

the power-law exponents are very 
lose to ea
h other and on the 
onsidered s
ales all of them

are slowly varying. Re
all that a

ording to the 
ommon heuristi
 argument for the fra
tal

Weyl one needs to de
ompose the available phase-spa
e region by Plan
k 
ells and applies a box-


ounting argument. Here, we intuitively apply this argument individually to the hierar
hi
al

resonan
e states of region Ak and de
ompose the repeller in that region. However, even if the

repeller in region Ak is approximately homogeneous su
h that the box-
ounting s
aling obeys

a 
lear power law, deviations may arise from the fa
t that the hierar
hi
al resonan
e states

are not solely lo
ated in Ak. On the other hand, when applying the argument to the set of all

long-lived resonan
e states by de
omposing the entire repeller, the box-
ounting s
aling will


ertainly not obey a stri
t power law due to the strong fra
tal inhomogeneity with respe
t to

the di�erent regions.

Further Fra
tional Weyl Laws

Referen
e [94℄ proposes another approa
h to generalize the fra
tal Weyl law to the 
haoti



omponent of open systems with a mixed phase spa
e. Re
all that in this thesis we 
on
entrate

on the topology of the hierar
hi
al stru
ture, expli
itly in
orporating individual partial barriers.

In 
ontrast, the approa
h in Ref. [94℄, already suggested in Ref. [89℄, uses that the survival

probability S of 
haoti
 orbits de
ays as a power law, S(t) ∼ t−γ , γ > 0, in presen
e of an

in�nite hierar
hi
al stru
ture. Using this quantity, the number N
res

of long-lived resonan
e

states is determined as follows: The survival probability S(t) of 
haoti
 orbits des
ribes the

area of phase spa
e whi
h has not es
aped until time t, if we normalize the area of the 
haoti


phase-spa
e 
omponent to unity. It may therefore be interpreted as the area of the available

phase-spa
e region for resonan
e states whi
h live longer than t. For this approa
h, it is

useful to set the time s
ale for the sele
tion of long-lived resonan
e states by the h-depending

Ehrenfest time τ
Ehr

, i.e., the time s
ale of quantum-to-
lassi
al 
orresponden
e. In parti
ular,
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resonan
e states whi
h de
ay faster than τ
Ehr

show ballisti
 de
ay whereas resonan
e states

whi
h de
ay slower than τ
Ehr

show quantum-me
hani
al behavior. With this, the number of

long-lived resonan
e states is governed by

N
res

(h) ∼ S(τ
Ehr

)

h
. (10.33)

First of all, this approa
h is 
apable of re
overing the fra
tal Weyl law for fully 
haoti


systems. For fully 
haoti
 systems, one observes exponential de
ay, S(t) ∼ e−γt, and the

Ehrenfest time τ
Ehr

obeys

τ
Ehr

≈ logN
open

Λ
, (10.34)

with the number N
open

of open es
ape 
hannels and the Lyapunov exponent Λ [48℄. Using

that logN
open

∼ − log h, Eq. (10.33) yields

N
res

(h) ∼ h−1e−γτEhr ∼ h−1e
γ
Λ
log h = h−(1− γ

Λ
). (10.35)

In view of the Kantz�Grassberger relation, Eq. (3.30), this is exa
tly the fra
tal Weyl law,

Eq. (10.6).

In Ref. [94℄, this approa
h is applied to a mixed open system. One has to admit though,

that the 
onsidered system is not generi
 as it does not exhibit a hierar
hi
al stru
ture but a

sharply divided phase spa
e of regular and 
haoti
 motion. Still, 
haoti
 orbits show sti
kiness

near the regular stru
ture along with algebrai
 de
ay, S(t) ∼ t−γ , whi
h is attributed to a

family of marginal unstable periodi
 orbits [213℄. The time s
ale τ
Ehr

to sele
t long-lived

resonan
e states is set to τ
Ehr

∼ h−1
[94℄, see also Refs. [89, 214℄ for a dis
ussion of Ehrenfest

time s
ales in mixed systems. Using Eq. (10.33) this yields

N
res

(h) ∼ h−1τ−γ
Ehr

∼ hγ−1, (10.36)

that is, the number of long-lived resonan
e states (with an h-depending 
uto�) s
ales as a

power law in h with, in general, fra
tional exponent. A relation with the fra
tality of the

repeller remains un
lear.

In order to understand the relation between this fra
tional Weyl law, Eq. (10.36), and

the hierar
hi
al fra
tal Weyl laws, Eq. (10.32), it is useful to investigate the set of long-lived

resonan
e states as used in Eq. (10.36) when applied to a hierar
hi
al stru
ture. To this end,

we �rst review yet another fra
tional Weyl law whi
h is present even in 
losed systems with a

generi
 mixed phase spa
e. In Ref. [30℄ the authors introdu
e the 
lass of hierar
hi
al states

for a 
losed system with mixed phase spa
e. Hierar
hi
al states are de�ned as eigenstates that

are trapped behind a partial barrier whi
h is quantum me
hani
ally not resolved. That is, if
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the �ux a
ross the n∗
-th partial barrier is of the order of Plan
k's 
ell, φn∗ ≈ h, hierar
hi
al

states are supported by all levels An of the hierar
hy with n > n∗
. Inserting this resolution


ondition into the s
aling relation φn ∼ ϕn, 
f. Se
. 3.1, one �nds n∗ ∼ log(h)/ log(ϕ). The

available phase-spa
e region for hierar
hi
al states therefore s
ales as [30℄

∑

n>n∗

|An| ∼ αn
∗ ∼ hlog(α)/ log(ϕ) = h

γ
γ+1 , (10.37)

using that the area of the regions An s
ales as |An| ∼ αn, 
f. Se
. 3.1, and that the power-law

exponent γ of the survival probability S a

ording to Eq. (3.16). Note that di�erent to its

original formulation in Ref. [30℄ the power-law exponent γ of S here refers to the situation

when the initial 
onditions are started all over the phase spa
e, i.e., parti
ularly also deep

within the hierar
hi
al stru
ture, su
h that the γ in Eq. (10.37) refers to γ − 1 for γ from

Eq. (3.16), see dis
ussion in Se
. 3.1. Dividing the available phase-spa
e region, Eq. (10.37),

by the size h of Plan
k 
ell, one �nds that the number N
hier

of hierar
hi
al states obeys a

power law with fra
tional exponent,

N
hier

(h) ∼ h−
1

γ+1 . (10.38)

We emphasize that this fra
tional exponent o

urs in a 
losed system and is obviously not

determined by a fra
tal repeller. Now, the same line of arguments applies for the fra
tional

Weyl law for the open mixed system, Eq. (10.36), in presen
e of a hierar
hi
al stru
ture.

Merely the resolution 
ondition φn∗ ≈ h needs to be repla
ed by |An∗|/φn∗ ≈ τn∗ ≈ h−1
. That

is, the time s
ale of es
ape asso
iated with the region An∗
is of the order of the 
uto� time

s
ale τ
Ehr

∼ h−1
. Using the s
aling of |An| and φn within a generi
 hierar
hy, 
f. Se
. 3.1,

the resolution 
ondition translates into n∗ ∼ log(h)/ log(ϕ
α
), and the fra
tional Weyl law,

Eq. (10.36), is re
overed by

∑

n>n∗

|An| ∼ αn
∗ ∼ hlog(α)/ log(ϕ/α) = hγ , (10.39)

whi
h gives Eq. (10.36) when divided by h. Again Eq. (3.16) for the power-law exponent γ of

the survival probability S is used as above for the 
ase of initial 
onditions deep within the

hierar
hy. We stress that the 
ondition φn/|An| < h is more restri
tive than φn < h, that is,

there are less regions An whi
h satisfy the former 
ondition. Hen
e, the fra
tional Weyl law

Eq. (10.36) a�e
ts a subset of hierar
hi
al states. In 
ontrast, the hierar
hi
al fra
tal Weyl

laws, Eq. (10.32), fo
us on resonan
e states whi
h are not trapped behind the partial barrier

due to Heisenberg's un
ertainty, like hierar
hi
al states, but due to the lo
alization of the

semi
lassi
ally asso
iated γ-natural 
im.
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Chapter 11

Outlook: Opti
al Mi
ro
avities

The results presented in this thesis motivate further resear
h in several dire
tions. Let us

fo
us on the veri�
ation and the appli
ation of our theory within an experimentally relevant

s
enario. Parti
ularly 
lose at hand is the appli
ation to opti
al mi
ro
avities [67℄. To this

end there are still a 
ouple of pitfalls that need to be taken into a

ount:

Experimental Setup

In this thesis we investigate the lo
alization of 
haoti
 resonan
e states in phase spa
e. Ex-

perimentally, however, the 
ommon measurements provide the real-spa
e pi
ture of resonan
e

states only. It is therefore desirable to have a physi
al system for whi
h the phase-spa
e lo
al-

ization due to a partial transport barrier also indu
es pronoun
ed signatures in the lo
alization

in real spa
e. The billiard system shown in Fig. 11.1 seems promising for this purpose. It


ombines two 
haoti
 D-shaped billiards that are 
oupled by a small 
hannel. One of the two

billiard 
omponents admits an opening whi
h allows for es
ape of traje
tories. The repeller

shown in the lower panel indi
ates that there are e�e
tively two di�erent fra
tal dimensions

on the left and the right side. Note that the phase-spa
e portrait is restri
ted to a Poin
aré

se
tion at the lower boundary of the billiard. It seems likely that this imbalan
e of the repeller

is generated by a partial barrier related to the 
oupling 
hannel in the billiard. A phase-spa
e

lo
alization of 
haoti
 resonan
e states on the right or the left would dire
tly 
orrespond to a

lo
alization of the resonan
e states in real spa
e. An experimental realization of this system

seams feasible as in Ref. [196℄. This open billiard system is designed together with Roland

Ketzmeri
k.

Partial Absorption and True-Time Dynami
s

In order to appropriately des
ribe opti
al mi
ro
avities one needs to generalize the theory

presented in this thesis to systems with partial absorption and time-
ontinuous billiard dy-

nami
s. Regarding the issue of partial absorption we have already su

essfully generalized the
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Figure 11.1. Open billiard system that 
ouples two 
haoti
 D-shaped billiards by a small


hannel (upper panel). The repeller (lower panel) shown in a Poin
aré se
tion 
orresponding

to the lower billiard boundary indi
ates a restri
tive partial barrier asso
iated with the


oupling 
hannel.


onstru
tion of γ-natural 
ims to maps with a 
onstant absorption 
oe�
ient on the opening

in a proje
t together with Tobias Be
ker and Konstantin Clauÿ [185℄. To this end, we use

that a measure ν 
onverges towards a 
im under the renormalized open system dynami
s.

By adapting the initial measure ν su
h that in ea
h step the relative weight e−γ leaves the

system we obtain a 
im of de
ay rate γ. The 
ru
ial point is to rigorously a

ount for the

fa
t that the forward es
aping sets are not disjoint sin
e the opening is only partial. Still,

this approa
h needs to be generalized from the 
onstant absorption 
oe�
ient to an absorp-

tion pro�le. Moreover, it is not 
lear whether the hierar
hi
al fra
tal Weyl laws also exist

for systems with partial absorption in general. First important results for the generalization

of fra
tal Weyl laws to partially absorbing systems without relevant partial barriers 
an be

found in Refs. [52, 61, 71℄. Another issue that needs to be taken into a

ount is that opti
al

mi
ro
avities are time-
ontinuous systems and not maps. However, this 
an be over
ome in

a simple fashion for billiard systems as pointed out in Ref. [56℄. Consider a traje
tory in a

billiard. Its dynami
s between 
onse
utive hits at the boundary is a trivial free motion and

the hits obey the law of re�e
tion. Hen
e, there is a one-to-one 
orresponden
e between the

billiard dynami
s and its Poin
aré se
tion using Birkho� 
oordinates. For the es
ape dynam-

i
s it is important to note that the time between 
onse
utive hits at the boundary may vary

depending on the distan
e between the 
orresponding boundary points. By keeping tra
k of

these time intervals during the iteration one 
an 
al
ulate the true es
ape times from the map

dynami
s. In Ref. [56℄ this is referred to as true-time dynami
s.
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Higher-Dimensional Systems

So far opti
al mi
ro
avities are usually �at and treated as e�e
tively two-dimensional. This


orresponds to the two-dimensional symple
ti
 maps studied in this thesis. As soon as the

third dimension is not negligible one needs to 
onsider four-dimensional symple
ti
 maps [215℄.

At �rst sight the generalization of γ-natural 
ims to higher-dimensional systems seems to be

rather straightforward. However, the role of partial barriers in higher-dimensional systems

is not 
ompletely understood [216℄. The partial barriers that are typi
ally relevant in two-

dimensional maps have an insu�
ient dimension to de
ompose four-dimensional phase spa
e

into almost invariant regions. Perhaps, one-parameter families of su
h obje
ts may serve as

appropriate partial barriers for four-dimensional maps. Anyway, re
all that for the results in

this thesis we do not take 
are of the origin of the partial barrier. We fo
us on the transport

a
ross some hypersurfa
e in phase spa
e whi
h is 
hara
terized by the symple
ti
ity of the

map. We therefore expe
t that our results 
an be generalized to higher-dimensional systems

as long as the 
on
ept of partial barriers is appropriately adapted.

Multiple Partial Barriers

Generi
 systems do not have just a single partial barrier but an entire hierar
hy of them. The

main part of this thesis fo
uses on the in�uen
e of a single partial barrier. The situation

of more than one partial barrier is brie�y tou
hed in Chap. 10. Still, for des
ribing generi


opti
al mi
ro
avities it is ne
essary to investigate the aggregate behavior of multiple partial

barriers more expli
itly. In fa
t, their aggregate behavior 
an have fas
inating e�e
ts as brie�y

des
ribed in the following. Think of the partial-barrier map with for instan
e two hierar
hi
ally

ordered partial barriers as introdu
ed in Se
. 10.3.3. The longest-lived resonan
e states then

lo
alize on the last phase-spa
e region, i.e., A3 using the previous notation. As preliminary

results worked out in 
ollaboration with Jan Wiersig and Julius Kullig suggest, the lo
alization

of these longest-lived resonan
e states is enhan
ed when destroying the �rst barrier. At �rst

sight, this seems surprising as usually the presen
e of a partial barrier is expe
ted to enhan
e

lo
alization. Here it is the opposite. Intuitively speaking this results from the fa
t that the

transition probability to enter A3 is lowered due to a larger 
haoti
 region adja
ent to A3, while

the transition probability to es
ape from A3 remains the same. Although the weight of the

longest-lived states in A3 is enhan
ed, their de
ay rates in
rease whi
h is again in agreement

with the restri
tive behavior asso
iated with partial barriers.

Quantum Deviations

We have seen in Se
. 9.2 that the lo
alization of 
haoti
 resonan
e states and γ-natural 
ims

with respe
t to a partial barrier does not ne
essarily agree if the e�e
tive size h of Plan
k's 
ell
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is not su�
iently small. Experimentally relevant energy s
ales are not ne
essarily su�
iently

semi
lassi
al. Already from this point of view it is therefore desirable to understand quantum

deviations in more detail. We have seen two di�erent kinds of deviations: First, if the opening

Ω or the �ux φ a
ross the partial barrier are not su�
iently resolved by h, i.e., |Ω| ≫ h

and φ ≫ h, we observe a lo
alization enhan
ement. Numeri
ally, we �nd that in the deeply

quantum-me
hani
al regime the weight of 
haoti
 resonan
e states on either side of the partial

barrier is determined by Eq. (9.5). The general validity and the derivation of this relation is

not explained so far. For a 
omplete understanding it seems to be ne
essary to 
ombine the

universal quantum lo
alization transition of 
losed systems, Se
. 5.1, with the 
lassi
al results

on the lo
alization of γ-natural 
ims. One might suspe
t that this behavior 
ould also be


aptured by an appropriate random matrix model negle
ting fra
tal properties, su
h as the

partial-barrier map with random matri
es instead of standard or Baker map blo
ks. Se
ondly,

we have seen that there may arise deviations when 
omparing 
haoti
 resonan
e states and

γ-natural 
ims on �ner s
ales. Quantum resonan
e states tend to have pronoun
ed peaks

whi
h are not 
aptured in the phase-spa
e stru
ture of γ-natural 
ims. From our studies

where we fo
us on the lo
alization with respe
t to a partial barrier, we 
annot 
on
lude that

su
h deviations vanish in the semi
lassi
al limit. The underlying question of how quantum

me
hani
s resolves fra
tal phase-spa
e stru
tures is 
urrently studied in 
ollaboration with

Konstantin Clauÿ, Arnd Bä
ker, and Roland Ketzmeri
k, 
f. [217℄. Note that motivated

by studies on the Walsh quantized Baker map, the authors in Ref. [51℄ doubt that there

a
tually exists a unique 
im for ea
h de
ay rate γ des
ribing the semi
lassi
al limit of quantum

resonan
e states de
aying with γ. Similar observations are made in [85℄. Anyway, in the


on
luding remarks in Ref. [51℄, the authors a
knowledge that the Walsh quantized Baker

map is a very spe
ial model system that is known for its high degenera
ies, and that it is not


lear whether these results are generi
. Still, this 
on
ern is quite valid and 
ertainly needs

further investigation.

Symmetries

Symmetries play an important role for opti
al mi
ro
avities. In this thesis, however, we have

not expli
itly studied their in�uen
e. We only took 
are of preserving generalized time-reversal

invarian
e, sin
e the quantum lo
alization transition for partial barriers in 
losed systems,

Chap. 5, needs to be adapted otherwise. For future studies regarding opti
al mi
ro
avities,

it might therefore be ne
essary to investigate to dependen
e of the lo
alization of 
haoti


resonan
e states on symmetries. Let us spe
i�
ally outline two examples whi
h demonstrate

the 
lose relation between symmetries and the lo
alization transitions studied in this thesis.

First, there is a known phenomenon that seems to perfe
tly 
orrespond to the situation

studied here [218�220℄. Its 
urrent explanation, however, is totally di�erent. Consider a disk-
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like mi
ro
avity with a deformation that destroys mirror symmetry. Due to a small 
oupling

of 
lo
kwise and 
ounter
lo
kwise propagating modes one �nds pairs of resonan
e states whi
h

have enhan
ed weight in either of the subspa
es. Given the results from this thesis, one might

suspe
t that the explanation is as follows: The 
lo
kwise and 
ounter
lo
kwise propagating

subspa
e 
orrespond the phase-spa
e regions of p < 0 and p > 0 where p denotes the angular

momentum. Their small 
oupling is moderated by a restri
tive partial barrier at p ≈ 0. Due

to the broken mirror symmetry the absorption on ea
h side of the partial barrier might di�er

su
h that we expe
t the lo
alization of 
haoti
 resonan
e states due to the partial barrier. In


ontrast, the explanation in Ref. [219℄ is based on the existen
e of a so-
alled ex
eptional point

at whi
h a pair of eigenvalues and the 
orresponding eigenstates 
oales
e. It will be interesting

to see how both approa
hes �t together. In parti
ular, one might learn more about the regime

whi
h we termed deeply quantum me
hani
al if the role of the ex
eptional point is restri
ted

to quantum me
hani
s. On the other hand, if the imbalan
e of 
lo
kwise and 
ounter
lo
kwise


ontributions is observable in the semi
lassi
al regime, this might indi
ate that ex
eptional

points are relevant also for 
lassi
al me
hani
s in terms of Perron�Frobenius theory.

The se
ond example shows that our theory on lo
alization transitions might even apply

to situations where the notion of partial barrier is unusual. The stru
ture of the quantized

partial-barrier map, Se
. 4.2, is surprisingly similar to the quantum Andreev map [221℄, whi
h

des
ribes parti
le�hole symmetri
 Andreev re�e
tion at the interfa
e of a normal metal and

a super
ondu
tor. There the partial barrier of the partial-barrier map may be interpreted as


oupling the parti
le and the hole subspa
e. This suggests that one might apply the theory of

lo
alization of 
haoti
 resonan
e states due to a partial barrier also to systems with symmetry

related subspa
es.
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Chapter 12

Summary

Partial transport barriers in phase spa
e are known to have a huge in�uen
e on 
lassi
al and

quantum dynami
s. They are omnipresent in generi
 Hamiltonian systems, whi
h exhibit a

mixed phase spa
e with both regular and 
haoti
 motion. So far the in�uen
e of partial barriers

has been studied mainly for 
losed systems. Remarkably a quantum lo
alization transition for


haoti
 eigenstates has been found. As long as the �ux φ a
ross a partial barrier is quantum

me
hani
ally not su�
iently resolved by means of Heisenberg's un
ertainty, φ ≪ h, 
haoti


eigenstates lo
alize on either side of the partial barrier. However, if the �ux is resolved, φ≫ h,


haoti
 eigenstates are equipartitioned as if there were no partial barrier.

In this thesis we observe lo
alization of 
haoti
 resonan
e states of open systems with

respe
t to a partial barrier even in the regime of φ ≫ h. We explain this lo
alization by

introdu
ing the 
lass of 
lassi
al γ-natural 
onditionally invariant measures. We demonstrate

quantum-to-
lassi
al 
orresponden
e for the transition from equipartition to lo
alization when

opening the system, and for a transition from lo
alization on one side of the partial barrier

to lo
alization on the other side when varying the de
ay rate γ of the 
haoti
 resonan
e

states. Moreover, we show that the lo
alization of 
haoti
 resonan
e states on either side of

a partial barrier gives rise to a hierar
hy of individual fra
tal Weyl laws for generi
 systems

with a hierar
hi
al stru
ture of partial barriers. These results have already been published in

Refs. [33, 34℄.

To this end, we design a dynami
al model system, the partial-barrier map, whi
h mimi
s

the turnstile me
hanism of a partial barrier by de
omposing dynami
s into the un
oupled

mixing dynami
s on ea
h side of the partial barrier and an ex
hange between both regions.

The partial-barriermap enables us to investigate the in�uen
e of a single partial barrier without

the 
omplexity of a generi
 hierar
hi
al stru
ture. We 
an adapt the dynami
s within ea
h

subregion whi
h yields the analyti
ally useful partial-barrier Baker map and the more generi


partial-barrier standard map. For both systems we observe that long-lived 
haoti
 resonan
e

states exhibit a smooth transition from equipartition to lo
alization on one side of the partial
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barrier for in
reasing openness, and that for a single system with �xed opening there is a

transition from lo
alization on one side of the partial barrier to lo
alization on the other

side for 
haoti
 resonan
e states with varying de
ay rate. The fa
t that both lo
alization

transitions o

ur in the semi
lassi
al regime suggests a 
lassi
al origin. Semi
lassi
ally, 
haoti


resonan
e states 
orrespond to 
onditionally invariant measures (
ims). However, for ea
h

de
ay rate γ there exist in�nitely many di�erent 
ims and it is not 
lear whi
h of them is

quantum me
hani
ally relevant. To over
ome this issue we propose the 
lass of γ-natural 
ims.

We numeri
ally 
on�rm quantum-to-
lassi
al 
orresponden
e between 
haoti
 resonan
e states

and γ-natural 
ims in terms of their lo
alization with respe
t to the partial barrier for the

partial-barrier Baker map, the partial-barrier standard map, and the generi
 standard map

with one dominant partial barrier. For the partial-barrier Baker map we analyti
ally derive

a predi
tion for the weight of γ-natural 
ims on either side of the partial barrier. We �nd

ex
ellent agreement with the numeri
ally 
omputed weight also for the partial-barrier standard

map and reasonably well agreement for the generi
 standard map. We improve the quality of

the predi
tion in the generi
 
ase by 
ombining it with numeri
al estimates.

There are two kinds of 
hara
teristi
 di�eren
es between the lo
alization of 
haoti
 res-

onan
e states and γ-natural 
ims: If the �ux φ a
ross the partial barrier is not su�
iently

resolved on the s
ale h of Plan
k's 
ell, we obtain a lo
alization enhan
ement for resonan
e

states due to the suppression of transport a
ross the partial barrier. We numeri
ally �nd a

bound for this lo
alization enhan
ement whi
h we 
all the deeply quantum-me
hani
al regime.

Extensive studies of the partial-barrier standard map in extreme parameter regimes support

that this lo
alization enhan
ement vanishes for su�
iently small values of h. Moreover, we

see that 
haoti
 resonan
e states 
an exhibit pronoun
ed peaks whi
h are not 
aptured by the

�ne stru
ture of γ-natural 
ims. It is not 
lear whether these peaks survive in the semi
las-

si
al limit. Still, these deviations are irrelevant as long as we only distinguish between the

lo
alization on di�erent sides of the partial barrier.

Our explanation of the semi
lassi
al lo
alization of 
haoti
 resonan
e states due to a partial

barrier enables us to generalize the fra
tal Weyl law from globally 
haoti
 open systems to open

systems with a mixed phase spa
e. To this end, we asso
iate ea
h 
haoti
 resonan
e state with

a single region of the hierar
hi
al stru
ture depending on its predominant lo
alization. As the

fra
tal dimension of the 
lassi
al repeller e�e
tively varies between these regions, we obtain

e�e
tively an individual fra
tal Weyl law for ea
h region. This is numeri
ally 
on�rmed for the

partial-barrier Baker map, for the partial-barrier standard map with two partial barriers, and

for the generi
 standard map with a mixed phase spa
e and one dominating partial barrier.

We argue that there exists a whole hierar
hy of individual e�e
tive fra
tal Weyl laws in generi


systems asso
iated with the hierar
hy of partial barriers.
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Appendix A

Abstra
t Measure and Integration Theory

This se
tion is a 
on
ise review of abstra
t measure theory and integration, based on Refs. [118,

151℄. The 
olle
tion of basi
 de�nitions and results is fo
used on the 
on
epts used in this

thesis. As the notion of Lebesgue measure and integral naturally appears along with Hilbert

spa
es in general 
ourses on quantum me
hani
s, we expe
t the reader to be familiar with

them and refer to the literature otherwise.

De�nition (σ-Algebra) A family Σ of subsets of a nonempty set Γ is 
alled a σ-algebra (on Γ)

if and only if (i) Γ ∈ Σ, (ii) X ∈ Σ ⇒ Γ\X ∈ Σ, and (iii) Xi ∈ Σ, i ∈ N ⇒ ⋃

i∈NXi ∈ Σ.

Throughout this thesis, we only 
onsider the Borel σ-algebra (of Rn
) whi
h is the smallest

σ-algebra 
ontaining the open sets in Rn
. Note that the Borel σ-algebra also 
ontains

the fra
tal Cantor sets. [151, �19℄

De�nition (Measure) A measure µ on a σ-algebra Σ on Γ is a mapping µ : Σ → R≥0 ∪ {∞}
for whi
h (i) µ(∅) = 0 and whi
h is (ii) σ-additive, i.e., µ

(⋃

i∈NXi

)
=
∑

i∈N µ(Xi) for

mutually disjoint Xi ∈ Σ. The elements of Σ are 
alled µ-measurable. In this thesis, we

fo
us on probability measures having µ(Γ) = 1. [151, �19℄

De�ntion (Integral) The 
onne
tion between measure and integral is provided by de�ning

∫

X
dµ :=

∫
χX dµ := µ(X), where χX denotes the 
hara
teristi
 fun
tion of X . The

integral for elementary step fun
tions follows from the linearity of the integral. One has

to de
ompose ameasurable fun
tion f : Γ → R, i.e., f−1(X) ∈ Σ for any Borel setX ⊆ R

(e.g., if Σ is the Borel σ-algebra, 
ontinuous fun
tions are measurable), into its positive

and negative parts f+ and f−, f = f+ − f−, f± ≥ 0. For the nonnegative fun
tions f+

and f−, there exists a (pointwise) monotoni
ally in
reasing sequen
e of nonnegative µ-

integrable step fun
tions ψn, 
onverging pointwise towards f±. The integral of f± is then

de�ned by

∫

Γ
f± dµ := limn→∞

∫

Γ
ψn dµ if the limit exists (otherwise

∫

Γ
f± dµ := ∞). The

integral f is then de�ned by

∫

Γ
f dµ :=

∫

Γ
f+ dµ −

∫

Γ
f− dµ and f is 
alled µ-integrable.

The set of µ-integrable fun
tions is denoted by L1(Γ, µ); the set of equivalen
e 
lasses
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in L1(Γ, µ) of fun
tions that are equal almost everywhere, i.e., up to a set of µ-measure

zero, is denoted by L1(Γ, µ). [151, �20℄

Theorem (Radon�Nikodým Theorem) Let µ, ν be two measures on (Γ,Σ). It is ν absolutely


ontinuous with respe
t to µ, i.e., µ(X) = 0 ⇒ ν(X) = 0, if and only if there is a

measurable fun
tion ̺ : Γ → R≥0 so that

ν(X) =

∫

X

̺ dµ (A.1)

for any X ∈ Σ. The fun
tion ̺, 
alled the density of ν with respe
t to µ, is uniquely

determined almost everywhere with respe
t to µ. For the proof, see Ref. [118, p. 344℄.

De�nition (Pushforward Measure) Let µ be a measure on (Γ1,Σ1) and let Σ2 be a σ-algebra

on Γ2. Moreover, let T : Γ1 → Γ2 be measurable, i.e., T−1(X) ∈ Σ1 if X ∈ Σ2. Then

T∗µ(X) := µ(T−1(X)) for X ∈ Σ2 de�nes a measure on (Γ2,Σ2), 
alled pushforward

measure. [151, �20.6.4℄

Theorem (Change of Variables Formula) Let µ be a measure on (Γ1,Σ1) and let Σ2 be a

σ-algebra on Γ2. Moreover, let T : Γ1 → Γ2 and f : Γ2 → R be measurable. Then

∫

Γ2

f dT∗µ =

∫

Γ1

f ◦ T dµ, (A.2)

provided that one of the integrals exists. For the spe
ial 
ase that Γ1 and Γ2 are domains

from Rn
, that T is a C1

-di�eomorphism, i.e., bije
tive and together with its inverse 
on-

tinuously di�erentiable, and that µ(X) :=
∫

X
| det T ′| dΛ, where Λ denotes the Lebesgue

measure, then T∗µ = Λ. For the proof, see Ref. [151, �20.6.4℄.
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Mis
ellaneous Proofs and Cal
ulations

B.1 Kernel of Composition

The following proof of Eq. (B.3) is mainly by Mar
us Wauri
k.

Lemma. Let X be a ve
tor spa
e, P : X → X a linear proje
tion, and V ⊆ X a

subspa
e. Then it is

P−1(V ) = kerP + imP ∩ V. (B.1)

Proof. Let x ∈ P−1(V ). Then there exists v ∈ V with Px = v ∈ V ∩ imP . Sin
e P is a

proje
tion, it is (1− P )x ∈ kerP . Thus, it is

x = Px+ (1− P )x ∈ (V ∩ imP ) + kerP. (B.2)

On the other hand, let p ∈ kerP . Then it is p ∈ P−1({0}) ⊆ P−1(V ) as V is a ve
tor

spa
e. Moreover, for v ∈ imP ∩ V there exists x ∈ X su
h that Px = v. Furthermore,

P is a proje
tion su
h that Pv = P 2x = Px = v. Thus, v ∈ P−1(V ). Sin
e V is a

subspa
e, it is kerP + imP ∩ V ⊆ P−1(V ). �

Proposition. Let X be a ve
tor spa
e, P1 : X → X and P2 : X → X linear

proje
tions, and let U : X → X be linear. Then it is

kerP1UP2 = kerP2 + imP2 ∩ U−1(kerP1). (B.3)
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Proof. It is

kerP1UP2 = (P1UP2)
−1({0}) = P−1

2

[
U−1

[
P−1
1 ({0})

]]
. (B.4)

The assertion follows immediately from the above lemma. �

B.2 Generating Fun
tions for Symple
ti
 Maps

Consider a su�
iently smooth fun
tion S : R
2 → R

2
, restri
ted to some appropriate domain.

Then the map T : Γ → Γ, Γ ⊆ R2
, de�ned by

(Q,P ) = T (q, p) ⇔ p = −∂2S(Q, q), P = ∂1S(Q, q), (B.5)

is symple
ti
 provided that su
h a T exists. To this end, we denote T (q, p) =
(
T1(q, p), T2(q, p)

)

su
h that

p = −∂2S(T1(q, p), q), (B.6)

T2(q, p) = ∂1S(T1(q, p), q). (B.7)

The map T is symple
ti
 if

detDT (q, p) = ∂1T1(q, p) ∂2T2(q, p)− ∂2T1(q, p) ∂1T2(q, p) = {T1, T2}(q, p) = 1. (B.8)

Di�erentiating Eq. (B.6), we obtain

∂1π2(q, p) = 0 = −∂12S(T1(q, p), q) ∂1T1(q, p)− ∂22S(T1(q, p), q), (B.9)

where the fun
tion π2 denotes the proje
tion onto the se
ond 
omponent, π2(q, p) := p. This

gives

∂1T1(q, p) = −∂22S(T1(q, p), q)
∂12S(T1(q, p), q)

. (B.10)

Analogously, it is

∂2π2(q, p) = 1 = −∂12S(T1(q, p), q) ∂2T1(q, p), (B.11)

whi
h yields

∂2T1(q, p) = − 1

∂12S(T1(q, p), q)
. (B.12)
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On the other hand, di�erentiating Eq. (B.7), we �nd

∂1T2(q, p) = ∂11S(T1(q, p), q) ∂1T1(q, p) + ∂21S(T1(q, p), q) (B.13)

= −∂11S(T1(q, p), q)
∂22S(T1(q, p), q)

∂12S(T1(q, p), q)
+ ∂21S(T1(q, p), q), (B.14)

and

∂2T2(q, p) = ∂11S(T1(q, p), q) ∂2T1(q, p) (B.15)

= −∂11S(T1(q, p), q)
∂12S(T1(q, p), q)

. (B.16)

Inserting this into Eq. (B.8) proves the symple
ti
ity of T ,

detDT (q, p) =

[
∂11S · ∂22S
[∂12S]2

+
1

∂12S

(

−∂11S · ∂22S
∂12S

+ ∂21S

)]

(T1(q,p),q)

(B.17)

=
∂21S(T1(q, p), q)

∂12S(T1(q, p), q)
(B.18)

= 1, (B.19)

using S
hwarz's theorem.

B.3 Proofs of Convergen
e towards Invariant Measure

In this se
tion, we present the main ideas for the proofs of Eqs. (7.5) and (7.7). To this end, it

is useful to introdu
e the indu
ed operator [173, Chap. 4℄: For a map T : Γ → Γ, the indu
ed

operator KT (also 
alled 
omposition or Koopman operator) is de�ned by

KTf := f ◦ T, (B.20)

for fun
tions f : Γ → R. The operator KT is linear, and if T is invertible and both T and T−1

are measurable, KT is even unitary on L2
. As this immediately provides thoroughly developed

Hilbert spa
e methods, quite often in mathemati
s, this 
on
ept is favored over the abstra
t

measure theory. We 
onsider symple
ti
 maps T su
h that T is invertible (sin
e det T ′ 6= 0)

and both T and T−1
are measurable. Thus, we are equally allowed to use the same Hilbert

spa
e methods for the transfer operator FT (also 
alled Perron�Frobenius operator), de�ned

by

FTf := f ◦ T−1. (B.21)
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Ergodi
 Systems

Consider a 
orollary of the mean ergodi
 theorem by von Neumann [173, Thm. 8.10℄: Let

T : Γ → Γ together with the invariant measure µ be ergodi
. Then it is

lim
N→∞

1

N

N−1∑

n=0

F n
T f =

(∫

Γ

f dµ

)

χΓ (B.22)

for ea
h f ∈ L2(Ω, µ).

This 
orollary 
an now be used to derive Eq. (7.5). Given a measure ν that is absolutely


ontinuous with respe
t to µ with density ̺, it is

1

N

N−1∑

n=0

T n∗ ν(X) =
1

N

N−1∑

n=0

∫

T−n(X)

̺ dµ (B.23)

=
1

N

N−1∑

n=0

∫

X

̺ ◦ T−n

︸ ︷︷ ︸

Fn
T
̺

dµ (B.24)

for all measurable X ⊆ Γ. From Eq. (B.22), we 
on
lude

1

N

N−1∑

n=0

T n∗ ν(X) =

∫

Γ

̺ dµ

︸ ︷︷ ︸

ν(Γ)=1

·
∫

X

dµ

︸ ︷︷ ︸

µ(X)

. (B.25)

Mixing Systems

Consider the following proposition [173, Thm. 9.4℄: Let T : Γ → Γ together with the invariant

measure µ be mixing as de�ned in Eq. (7.6). Then it is

〈F n
T f | g 〉 → 〈 f |χΓ 〉 〈χΓ | g 〉 =

∫

Γ

f dµ ·
∫

Γ

g dµ (B.26)

for all f , g ∈ L2(Ω, µ).

This proposition 
an now be used to derive Eq. (7.7). Given a measure ν that is absolutely


ontinuous with respe
t to µ with density ̺, it is

T n∗ ν(X) =

∫

T−n(X)

̺ dµ (B.27)

=

∫

X

̺ ◦ T−n dµ (B.28)

= 〈F n
T ̺ |χX 〉 (B.29)
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for all measurable X ⊆ Γ. From Eq. (B.26), we 
on
lude

T n∗ ν(X) → 〈 ̺ |χΓ 〉 〈χΓ |χX 〉 =
∫

Γ

̺ dµ

︸ ︷︷ ︸

ν(Γ)=1

·
∫

X

dµ

︸ ︷︷ ︸

µ(X)

. (B.30)

B.4 Constru
tion of Chaoti
 Resonan
e States

The following 
onstru
tion of 
haoti
 resonan
e states is intended to underline quantum-to-


lassi
al 
orresponden
e with 
ims in view of Eq. (7.39).

Proposition. Let U be unitary and P be an orthogonal proje
tion, P 2 = P , P ∗ = P ;

P0 := 1 − P . Moreover, let ψ0 ∈ imP0 ∩
⋂

n∈N U
nimP and λ ∈ C with |λ| < 1. Then

for ψ :=
∑

n∈N0
λn(UP )∗nψ0 it is

UPψ = λψ. (B.31)

Proof. First of all, we split the sum into

UPψ = UPψ0 +

∞∑

n=1

λnUP (UP )∗nψ0. (B.32)

The �rst term UPψ0 vanishes as

Pψ0 = (1− P0)ψ0 = ψ0 − P0ψ0 = 0, (B.33)

be
ause ψ0 ∈ imP0, i.e., P0ψ0 = ψ0. We will now show that UP (UP )∗nψ0 = (UP )∗(n−1)ψ0

for n ≥ 1. Note that if we have shown this, Eq. (B.31) follows dire
tly by an index shift,

UPψ =
∞∑

n=1

λn(UP )∗(n−1)ψ0 = λ
∞∑

n=0

λn(UP )∗nψ0. (B.34)

To this end, we expli
itly 
onsider

UP (UP )∗nψ0 = U PU−1 · · ·PU−1
︸ ︷︷ ︸

n times

ψ0. (B.35)

Using that ψ0 ∈ U imP , whi
h is equivalent to U−1ψ0 ∈ imP sin
e U is bije
tive, we
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�nd PU−1ψ0 = U−1ψ0 su
h that

UP (UP )∗nψ0 = U PU−1 · · ·PU−1
︸ ︷︷ ︸

(n−1) times

U−1ψ0. (B.36)

Analogously, as ψ0 ∈ U2imP we obtain PU−2ψ0 = U−2ψ0 and in just the same way

PU−nψ0 = U−nψ0 for all n ≥ 1. This gives

UP (UP )∗nψ0 = UU−nψ0 = U−(n−1)ψ0. (B.37)

Now the other way around, we �nd

U−(n−1)ψ0 = PU−1 · · ·PU−1
︸ ︷︷ ︸

(n−1) times

ψ0 = (UP )∗(n−1)ψ0, (B.38)

and thus, UP (UP )∗nψ0 = (UP )∗(n−1)ψ0. The 
onvergen
e of

∑

n∈N0
λn(UP )∗nψ0 is

assured by the Neumann series sin
e ‖UP‖ ≤ 1 and |λ| < 1. �

For the interpretation of this result note that we have not dis
ussed whether the set imP0 ∩
⋂

n∈N U
nimP 
ontains more than just the zero or whether for ψ0 6= 0 one obtains ψ 6= 0. Thus,

the above result should be interpreted �rst of all as an algebrai
 analogy to 
ims.

B.5 Proof of Equation (10.18)

Consider the sequen
e (sn)n∈N of elements

sn := n
√

c1λ
n
1 + c2λ

n
2 , (B.39)

with c1, c2 ∈ R and λ1 > λ2 ≥ 0. We further require that c1λ
n
1 + c2λ

n
2 ≥ 0 whi
h implies that

c1 > 0. De�ning c
max

= max{|c1|, |c2|}, it is

sn ≤ n
√

c
max

λn1 + c
max

λn2 ≤ n
√

2c
max

λn1 = n
√
2c

max

λ1 → λ1. (B.40)

In order to �nd a lower bound for sn, we use that

c1λ
n
1 + c2λ

n
2 ≥ c1

2
λn1 (B.41)
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for n > log(−2c2/c1)/ log(λ1/λ2) if c2 < 0. If c2 ≥ 0, the above inequality holds true for all

n ∈ N. For su�
iently large n, this gives

sn ≥ n

√
c1
2
λn1 = n

√
c1
2
λ1 → λ1. (B.42)

The sandwi
h theorem thus implies

lim
n→∞

n
√

c1λn1 + c2λn2 = λ1. (B.43)

B.6 Average Es
ape Times from Markov Chain

The following derivation of average es
ape times from a Markov 
hain is based on a 
al
ulation

presented in Ref. [123, Se
. 4.2℄. Let us 
onsider a simple Markov 
hain model with N regions,

A1, . . . , AN , de�ned by the matrix T ∈ RN×N
that 
ontains the transition probabilities

between neighboring regions. We parti
ularly allow for es
ape from the 
hain. The iteration

of an initial ve
tor p(0), the i-th 
omponent of whi
h des
ribes the probability to be region

Ai, is then given by

p(n) = T np(0), (n ∈ N0). (B.44)

With this the probability P
s

(n) to survive n iterations when starting in region Ai, 1 ≤ k ≤ N ,

reads

P
s

(n) =

N∑

k=1

〈 ek | T nei 〉, (B.45)

where ek, 1 ≤ k ≤ N , denotes the standard basis in RN
. The probability P

es


(n) to es
ape

from the system in step n (and not before) when starting in Ai 
an be obtained from

P
s

(n) = P
s

(n− 1) · x, (B.46)

P
es


(n) = P
s

(n− 1) · (1− x), (B.47)

where x denotes the probability to survive the n-th iteration provided survival under the

previous n− 1 iterations. This gives

P
es


(n) = P
s

(n− 1)− P
s

(n). (B.48)
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Hen
e, the average time τ
(i)
es


to es
ape from the system when starting in Ai follows from

τ (i)
es


=

∞∑

n=1

n · P
es


(n) (B.49)

=
∞∑

n=1

n ·
{

N∑

k=1

〈 ek | T n−1ei 〉 −
N∑

k=1

〈 ek | T nei 〉
}

(B.50)

=

N∑

k=1

{

〈 ek |
∞∑

n=1

n · T n−1ei 〉 − 〈 ek |
∞∑

n=1

n · T nei 〉
}

(B.51)

=
N∑

k=1

{

〈 ek |
∞∑

n=0

(n+ 1) · T nei 〉 − 〈 ek |
∞∑

n=0

n · T nei 〉
}

(B.52)

=

N∑

k=1

〈 ek |
∞∑

n=0

T nei 〉 (B.53)

=

N∑

k=1

〈 ek | (1− T )−1ei 〉. (B.54)
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