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vAbstra
tGeneri
 Hamiltonian systems have a mixed phase spa
e, in whi
h regular and 
haoti
 motion
oexist. In the 
haoti
 sea the 
lassi
al transport is limited by partial barriers, whi
h allowfor a �ux Φ given by the 
orresponding turnstile area. Quantum me
hani
ally the transport issuppressed if Plan
k's 
onstant is large 
ompared to the 
lassi
al �ux, h≫ Φ, while for h≪ Φ
lassi
al transport is re
overed. For the transition between these limiting 
ases there are manyopen questions, in parti
ular 
on
erning the 
orre
t s
aling parameter and the width of thetransition.To investigate this transition in a 
ontrolled way, we design a ki
ked system with a parti
ularlysimple phase-spa
e stru
ture, 
onsisting of two 
haoti
 regions separated by one dominantpartial barrier. We �nd a universal s
aling with the single parameter Φ/h and a transitionwidth of almost two orders of magnitude in Φ/h. In order to des
ribe this transition, we
onsider several matrix models. While the numeri
al data is not well des
ribed by the randommatrix model proposed by Bohigas, Tomsovi
, and Ullmo, a deterministi
 2×2-model, a 
hannel
oupling model, and a unitary model are presented, whi
h des
ribe the transitional behavior ofthe designed ki
ked system. This is also 
on�rmed for the generi
 standard map, suggesting auniversal s
aling behavior for the quantum transition of a partial barrier.ZusammenfassungGeneris
he Hamilton's
he Systeme besitzen einen gemis
hten Phasenraum, in dem sowohl reg-uläre als au
h 
haotis
he Dynamik vorkommen. Der klassis
he Transport in der 
haotis
henSee wird dur
h partielle Barrieren begrenzt, die nur einen Fluss Φ hindur
h lassen. Der quan-tenme
hanis
he Transport ist stark unterdrü
kt, wenn die Plan
k's
he Konstante groÿ gegenden klassis
hen Fluss ist, h ≫ Φ. Ist hingegen h ≪ Φ folgt die Quantenme
hanik der klas-sis
hen Dynamik. Für den Übergangsberei
h zwis
hen diesen Grenzfällen gibt es no
h vieleo�ene Fragen, insbesondere bezügli
h des ri
htigen Skalierungsparameters und der Breite desÜbergangs.Um gezielt diesen Übergang zu untersu
hen, haben wir ein System mit einem besonderseinfa
hen Phasenraum entworfen. Er besteht aus zwei 
haotis
hen Gebieten, die dur
h einedominante partielle Barriere getrennt sind. Es zeigt si
h, dass das universelle Verhalten dur
hden Parameter Φ/h bes
hrieben wird und der Übergang si
h über zwei Gröÿenordnungen er-stre
kt. Wir betra
hten vers
hiedene Matrixmodelle um diesen Übergang zu verstehen. Dienumeris
hen Daten werden ni
ht dur
h das Zufallsmatrixmodell von Bohigas, Tomsovi
 undUllmo bes
hrieben. Ein deterministis
hes 2 × 2-Modell, eine Kanalkopplung und ein unitäresMatrixmodell bes
hreiben hingegen den Übergang des entworfenen geki
kten Systems. DieTatsa
he, dass au
h die generis
he Standardabbildung diesem Verhalten folgt, spri
ht für einuniverselles Verhalten des Quantenübergangs einer partiellen Barriere.
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1 Introdu
tionIn the 1960s Edward N. Lorenz performed meteorologi
al simulations at the Massa
husettsInstitute of Te
hnology and observed that 
lose-by initial weather 
onditions yield very di�erent�nal out
omes [1,2℄. This phenomenon of sensitive dependen
e on initial 
onditions is known asthe butter�y e�e
t and is 
hara
teristi
 for 
haoti
 motion [3℄. Although the dynami
s obeysdeterministi
 di�erential equations, the predi
tability of the motion is limited. The reasonfor this is the impre
ise knowledge of the initial state and the exponential growth of smalldeviations under the time evolution. Therefore the resulting dynami
s seems random and isoften des
ribed using statisti
al measures rather than individual traje
tories. The oppositeextreme of a dynami
al system, 
ompared to the 
haoti
 situation, is an integrable system. Insu
h a system the number of 
onserved quantities equals the number of degrees of freedom f andthe dynami
s is 
on�ned to f -dimensional tori in the 2f -dimensional phase spa
e. Variation ofthe initial 
ondition 
hanges the �nal out
omes only slightly and the motion is 
alled regular.Typi
al Hamiltonian systems are neither integrable nor 
haoti
, but have a mixed phase spa
e,in whi
h regular and 
haoti
 motion 
oexist [4℄. Figure 1.1(a) shows an illustration of su
h ageneri
 two-dimensional mixed phase spa
e. Regular orbits are 
on�ned to one-dimensionallines and the whole set of su
h lines is 
alled regular island. The regular island is surroundedby 
haoti
 orbits. They uniformly �ll a two-dimensional region in phase spa
e, whi
h is 
alled
haoti
 sea. Inside all the holes of the 
haoti
 sea further regular islands exist.For an ensemble of orbits started in some phase-spa
e region almost all of them will eventuallyreturn to the initial region a

ording to the Poin
aré re
urren
e theorem [3, Se
. 7.1.3℄. Thisstatement, however, does not provide any information about the time at whi
h a 
ertain orbitreturns. Therefore the distribution of re
urren
e times R(t) is an interesting quantity. Forfully 
haoti
 systems it de
ays exponentially R(t) ∝ exp(−α · t) [5℄. This behavior 
hanges
ompletely if we 
onsider systems with a mixed phase spa
e. At large times one typi
allyobtains a power law for the return of 
haoti
 orbits to some initial region R(t) ∝ t−γ [6℄.Su
h an algebrai
 de
ay has also been observed in experiments [7,8℄, where ultra-
old atomsare pla
ed inside an open billiard system and the number of remaining atoms is re
orded as afun
tion of time. For the stadium billiard with hard walls, whi
h is fully 
haoti
, the fra
tion ofremaining atoms de
ays exponentially, in a

ordan
e with the theoreti
al predi
tion. However,if the billiard walls are soft an algebrai
 de
ay t−γ is observed, whi
h is attributed to regularislands arising in the 
haoti
 sea.



2 Chapter 1. Introdu
tion
(a)

q

p (b)
Φ

Figure 1.1: (a) Illustration of a system with a mixed phase spa
e. In the 
enter three regulartori (violet, green, and orange) in the regular island are shown. They are surrounded by the
haoti
 sea, whi
h is indi
ated by two 
haoti
 orbits (blue and red). (b) Illustration of thea
tion of a partial barrier (solid green horizontal line) with �ux Φ 
rossing it (light greenshaded region). The preimage of the partial barrier is indi
ated by the dotted green line andtogether with the partial barrier it forms the turnstile. Chaoti
 orbits, indi
ated by red dots,entering the turnstile are mapped (arrow) to the opposite region.What is the reason for the drasti
 
hange in the de
ay behavior? If the regular regions wouldnot a�e
t the 
haoti
 dynami
s one would expe
t an exponential de
ay also for the mixed phasespa
e. However, in su
h systems with a mixed phase spa
e 
haoti
 orbits typi
ally remain 
loseto regular islands for long times. This phenomenon has been 
alled sti
kiness [9�12℄. It isthe origin of the qualitative 
hange in the return time distribution R(t) and in the de
ay of
orrelations [6, 12, 13℄.The reason for the sti
kiness around regular regions are partial barriers [14�20℄, whi
h arethe main topi
 of this thesis. Partial barriers are lines in the two-dimensional phase spa
ewith a non-vanishing �ux Φ 
rossing them; i.e. a 
ertain amount of phase-spa
e volume Φ istransported a
ross this line per unit time. Due to area preservation in Hamiltonian systemsthe volume transported from one side to the other and vi
e versa is the same. The me
hanismof a partial barrier is illustrated in Fig. 1.1(b). Orbits from above the partial barrier enter theright part of the turnstile and are mapped to below, whereas orbits from below may enter theleft part of the turnstile and are mapped to above the partial barrier. The two 
haoti
 orbitsin Fig. 1.1(a) are separated by su
h a partial barrier and at large times �ll the whole 
haoti
region. In general there are in�nitely many partial barriers in the 
haoti
 part of phase spa
e.However, only those partial barriers, whi
h have the smallest �ux are relevant, as they are mostlimiting for the transport in the 
haoti
 sea. These partial barriers allow for a de
ompositionof the 
haoti
 sea into sub-regions, that are ea
h qui
kly mixing within the time s
ale in whi
horbits typi
ally leave a region and enter another sub-region. This kind of de
omposition givesrise to Markov models for the transport in the 
haoti
 sea, whi
h explain the algebrai
 de
ayof re
urren
e time distributions [17�20℄.A partial barrier 
an originate from a 
antorus, the remainder of a torus with quasiperiodi




3motion whi
h has been destroyed by a perturbation [21, 22℄. Another me
hanism giving riseto a partial barrier is the 
ombination of the stable and the unstable manifold of a hyperboli
�xed point [22, 23℄.The impa
t of partial barriers on the 
lassi
al transport was des
ribed in the 1980s. Anotherquestion of fundamental importan
e is the impli
ation of partial barriers to the 
orrespondingquantum system. Ma
Kay, Meiss, and Per
ival 
onje
tured that for the 
orresponding quantumsystem the size of the turnstile Φ needs to be 
ompared to the size of Plan
k's 
onstant h [15℄.Depending on the ratio Φ/h the quantum evolution uses the 
lassi
al transport 
hannel (Φ ≫ h)or quantum transport is suppressed (Φ ≪ h). For Φ ≪ h quantum me
hani
s is even morerestri
tive than 
lassi
al me
hani
s. The partial barrier a
ts as a barrier for the quantumsystem, be
ause the 
lassi
al transport 
hannel is not resolved by the quantum system, whoseresolution is determined by h. The phenomenon of quantum suppression of transport givesrise to lo
alization of wave pa
kets, started in one 
haoti
 region, for large times [23�28℄. Forexample it was observed for the multiphoton ionization of ex
ited atoms that the 
lassi
al�ux needs to ex
eed Plan
k's 
onstant in order to �nd signi�
ant ionization [21℄. In this
ase the partial barrier a
ts like a torus for large h. Also experimentally the role of partialbarriers for the quantum system has been investigated [29℄. Here, the quantum suppression oftransport implies the lo
alization of eigenstates in regions limited by partial barriers. In theneighborhood of a regular island a hierar
hy of partial barriers gives rise to the lo
alizationof 
haoti
 eigenstates 
lose to the regular region, so-
alled `hierar
hi
al states' [30℄. Re
entlythe quantum signatures of partial barriers were studied for mi
ro
avities [31,32℄, whi
h 
an beused e.g. to build mi
rolasers [33,34℄. Generi
ally these mi
ro
avities have a mixed phase spa
eand partial barriers exist in the 
haoti
 sea. Experimental eviden
e for the impa
t of turnstiletransport on the quantum system is presented in Refs. [31, 35℄. In Ref. [36℄ it was spe
ulatedthat os
illations in the quality fa
tor of the lasing modes arise due to partial barriers in the
haoti
 part of phase spa
e.While the quantum transition of a partial barrier from quantum suppression for Φ ≪ h to
lassi
al transport for Φ ≫ h is qualitatively understood, a quantitative des
ription is stillmissing. In parti
ular there are several open questions: Is the ratio Φ/h the 
orre
t s
alingparameter of the transition? Does the transition take pla
e at Φ = h? How broad is thistransition?The aim of this thesis is to answer these questions and to give a quantitative des
ription ofthe quantum transition of a partial barrier from quantum suppression to 
lassi
al transport.To investigate this transition in a 
ontrolled way, we design a system with one isolated partialbarrier. This is in 
ontrast to the generi
 
ase that usually provides in�nitely many partialbarriers arranged in a hierar
hi
al manner. Using this designed system we are able to answerthe open questions and give a quantitative des
ription of the transition in terms of a suitablemeasure.



4 Chapter 1. Introdu
tionFurthermore we dis
uss matrix models in order to des
ribe the quantum transition of apartial barrier. On the level of matrix modeling this 
orresponds to a transition of two un
ou-pled 
haoti
 sub-systems (quantum suppression) to one large system (
lassi
al transport). Theonset of the 
lassi
ally established transport through the turnstile for in
reasing ratio Φ/h 
or-responds to an enhan
ed 
oupling between the formerly independent 
haoti
 regions separatedby the partial barrier. This transitional behavior is similar to the �ooding of the regular islandby 
haoti
 states, whi
h arises due to the tunneling 
oupling between the 
lassi
ally distin
tregions [37�39℄. Moreover it is related to symmetry breaking, where two distin
t sub-systemsare 
oupled by an additional for
e [40℄. Bohigas, Tomsovi
, and Ullmo used this analogy topropose a random matrix model to des
ribe the impa
t of a partial barrier on the 
orrespond-ing quantum system [23℄. We �nd that this matrix model does not reprodu
e the numeri
aldata for the quantum transition of the partial barrier. Hen
e, we introdu
e a 
hannel 
ouplingmodel, unitary matrix models, and a deterministi
 2 × 2-model, whi
h are able to des
ribethe quantum transition of a partial barrier. To understand the di�erent results for the matrixmodels we study the spe
tral statisti
s of the system with one partial barrier.In Chap. 2 the 
onsidered example systems and their properties are dis
ussed. In Chap. 3we investigate the phenomenon of quantum suppression and design a map with a parti
ularlysimple phase spa
e, whi
h allows to study the quantum transition of a partial barrier in detail.Several modeling approa
hes for the quantum transition are presented in Chap. 4. Spe
tralsignatures of partial barriers are dis
ussed in Chap. 5. We 
on
lude by a summary and outlook.



2 Ki
ked systemsIn this 
hapter we �rst dis
uss basi
 properties of 
lassi
al Hamiltonian systems (see Se
. 2.1).As a prominent example we introdu
e the standard map in Se
. 2.2 to illustrate the phase-spa
e stru
tures found in Hamiltonian systems (see Se
. 2.3) and dis
uss the impa
t of thesestru
tures on the transport (see Se
. 2.4). In Se
. 2.5 we explain time reversal invarian
e.The quantization of ki
ked systems and time-independent systems is presented in Se
. 2.6 and2.7, respe
tively. The Husimi distribution as phase-spa
e representation of a quantum state isintrodu
ed in Se
. 2.8.2.1 Hamiltonian systemsThe deterministi
 mathemati
al des
ription for the time evolution of possible states of a (phys-i
al) system is 
alled `dynami
al system' [3, Se
. 1.3℄. The state of the system is 
hara
terizedby a ve
tor x inside the spa
e of all possible states (e.g. G j R
n) 
alled phase spa
e. For time
ontinuous systems the evolution is des
ribed by x(t) at times t ∈ R. This fun
tion x(t) is thesolution of the di�erential equation a

ording to the dynami
al system

ẋ = f(x, t) (2.1)with initial 
ondition x(0) = x0. The information about the system dynami
s is 
ompletely
ontained in the fun
tion f : G×R → R
n, whi
h returns a ve
tor as value. The resulting graph

{x(t, x0) : t ∈ R} is 
alled traje
tory.Hamiltonian systems are a spe
ial 
lass of dynami
al systems. They are 
ompletely des
ribedby one s
alar fun
tion, namely the Hamiltonian or Hamiltonian fun
tion H(q, p, t). This fun
-tion depends on the 
anoni
al 
oordinates q (position) and p (momentum), whi
h des
ribestates as points x = (q, p) in the phase spa
e. In order to �nd the Hamiltonian for a me
hani
alsystem one usually starts with the Lagrangian L(q, q̇, t), whi
h depends on positions q andvelo
ities q̇. Both fun
tions, H(q, p, t) and L(q, q̇, t), are related by a Legendre transformation
H(q, p, t) = p · q̇ − L(q, q̇, t). (2.2)By use of this transformation the dependen
e on velo
ities q̇ is repla
ed by a dependen
e on the
onjugate momenta p = ∂L

∂q̇
. The equations of motion are derived using Hamilton's prin
iple.



6 2.1 Hamiltonian systemsIn order to do so we de�ne the a
tion
S(q, t1, t2) =

t2∫

t1

L(q(t), q̇(t), t) dt (2.3)along a path q(t) between times t1 and t2. The system will take the route between the �xedend points q(t1) and q(t2), whi
h yields minimal or rather stationary a
tion: δS = 0. Using the
al
ulus of variations, Euler-Lagrange equations,
d

dt

∂L(q, q̇, t)

∂q̇
− ∂L(q, q̇, t)

∂q
= 0 (2.4)as well as Hamilton's equations of motion,

q̇ =
∂H(q, p, t)

∂p
,

ṗ = −∂H(q, p, t)

∂q
, (2.5)(a

ording to the above Legendre transformation) 
an be derived. Both, Euler-Lagrange equa-tions and Hamilton's equations of motion, 
ompletely des
ribe the dynami
s. The latter set ofequations, Eq. (2.5), are of the type of Eq. (2.1). We identify x = (q, p) and

f(q, p, t) = Ω ·
(

∂H(q,p,t)
∂q

∂H(q,p,t)
∂p

) (2.6)with the symple
ti
 matrix
Ω =

(
0 1

−1 0

)
, (2.7)where 0 and 1 are the zero and identity matrix of dimension a

ording to q; and therefore p.A mapping F of the kind

x(ti+1) = F (x(ti)) (2.8)de�nes a time dis
rete dynami
al system. In this 
ase time takes only dis
rete values ti =

t0 + i ·∆t with i ∈ Z. Su
h a mapping may arise from a time 
ontinuous system, Eq. (2.1), bysampling of the traje
tory and observation only at dis
rete times {ti}. This is espe
ially usefulfor periodi
 fun
tions f : f(x, t) = f(x, t + ∆t) and the resulting map is 
alled strobos
opi
.For simpli
ity we will assume ∆t = 1 in the following, whi
h means that all times are measuredin multiples of ∆t. The res
aled time only takes integer values and Eq. (2.8) 
an be written as
xt+1 = F (xt) with t ∈ Z. (2.9)



2.1 Hamiltonian systems 7In the following we restri
t ourselves to two-dimensional mappings. They arise for instan
efrom systems with one degree of freedom, that are periodi
ally driven. In 
ontrast to time-independent systems with one degree of freedom, whi
h are always integrable, these systemsmay exhibit 
haos and a mixed phase spa
e (see Se
. 2.3). Furthermore the dynami
s insidetwo-dimensional billiard systems, whi
h have a four-dimensional phase spa
e, 
an be des
ribedby use of so 
alled Birkho� 
oordinates [22℄. These 
oordinates map the time 
ontinuousdynami
s onto a two-dimensional phase spa
e with time dis
rete dynami
s.The set of states (points in phase spa
e) visited by a parti
le initially lo
ated at x0 is 
alledorbit. The time evolution is given by Eq. (2.9) and an orbit 
an therefore be written as
{xt : xt = F tx0, t ∈ N}, (2.10)where we de�ne F 2x := FFx = F (Fx). If the inverse mapping F−1 is also de�ned, we 
onsiderthe set
{xt : xt = F tx0, t ∈ Z}. (2.11)Based on that, we de�ne an orbit segment as �nite subset of an orbit between time t1 and t2.If we talk about orbits in the following, we have orbit segments in mind, whi
h re�e
t typi
alproperties of an orbit.One 
lass of mappings, whi
h result from strobos
opi
 observation of a Hamiltonian system,are ki
ked systems. Their Hamiltonian is given by

H(q, p, t) = T (p) + V (q)
∑

i∈Z
δ(t− i). (2.12)Thereby T (p) is the kineti
 energy and the potential V (q) a
ts instantaneously at integer times

t = i. The resulting Hamilton's equations of motion are
q̇ =

∂H

∂p
= T ′(p),

ṗ =−∂H
∂q

= −V ′(q)
∑

i∈Z
δ(t− i). (2.13)In order to get a strobos
opi
 mapping, we �rst integrate the equations over one period ofthe driving. For the mapping we observe the dynami
s just after the ki
k and 
onsider

qt := lim
ǫ→0 (ǫ>0)

q(t+ ǫ) and
pt := lim

ǫ→0 (ǫ>0)
p(t + ǫ), (2.14)



8 2.1 Hamiltonian systemsrespe
tively. The new 
oordinates after one period qt+1 and pt+1 are given by
qt+1 = qt + T ′(pt),

pt+1 = pt − V ′(qt+1) (2.15)in terms of the old 
oordinates at time t.Another 
hoi
e for the observation time is given by splitting the ki
k into two parts and
onsidering the half ki
k mapping
p̃ = pt −

1

2
V ′(qt),

qt+1 = qt + T ′(p̃),

pt+1 = p̃− 1

2
V ′(qt+1). (2.16)We will use this kind of mapping in Se
. 3.1.6 to de�ne a 
omposed map, whi
h obeys timereversal invarian
e.An important property of Hamiltonian systems is area 
onservation. If one 
onsiders the timeevolution of a given phase-spa
e region, the measure of the time evolved region is 
onserveda

ording to Liouville's theorem as the 
orresponding mapping is symple
ti
. Lo
ally thissymple
ti
ity is des
ribed by

DF (q, p)† Ω DF (q, p) = Ω, (2.17)where Ω is the symple
ti
 matrix from Eq. (2.7) and DF (q, p) is the Ja
obian matrix. Theelements of the latter are the �rst derivatives of the new 
oordinates with respe
t to the oldones and the role of DF will be dis
ussed in more detail later in this se
tion. A general
hara
terization of symple
ti
 maps 
an be found in the review arti
le [22℄.
Fixed points and periodi
 orbitsA spe
ial 
lass of orbits arises from �xed points. A �xed point of a mapping is a point x∗ inphase spa
e with

x∗ = F (x∗). (2.18)That is, it is invariant under the appli
ation of the mapping F and all images fall on top of ea
hother. Therefore the point x∗ and the orbit {x∗} are identi�ed. Fixed points are the spe
ial
ase of the more general question of periodi
 orbits. Su
h orbits are invariant under the n-fold
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xi = F n(xi), i = 0, . . . , n− 1 (2.19)and 
onsist of n distin
t points xi, whi
h arise from ea
h other by multiple appli
ation of themapping. The image of the n-th point, xn−1, under F is just the �rst point x0. The periodi
orbit 
onsists of the set

{xi ∈ G : xi+1 = F (xi) for i = 0, . . . , n− 1 and x0 = xn}. (2.20)Fixed points are 
ategorized a

ording to their stability, whi
h is determined by the behaviorof 
lose-by orbits. For that purpose we 
onsider the linearized mapping
F (x) ≈ F (x∗) +DF (x∗) · (x− x∗), (2.21)whi
h is determined by the monodromy or Ja
obian matrix DF at the �xed point x∗

DF (x∗) =

(
∂F(i)

∂x(j)

)

i,j

(x∗) =

( ∂F(1)

∂x(1)

∂F(1)

∂x(2)
∂F(2)

∂x(1)

∂F(2)

∂x(2)

)
(x∗). (2.22)The indexes (i) and (j) in Eq. (2.22) label the 
omponents of the 
onsidered ve
tors x and

F (x). The stability properties 
an be determined from the eigenvalue equation
DF (x∗) · ξ = λ · ξ (2.23)with the displa
ement ξ = x− x∗.In the following we will dis
uss the general 
ase of a periodi
 orbit. To analyze its stability,we 
onsider the linear approximation of the n-fold mappingDF n := D(F n) at the point x = x0:

∆xn = DF n(x0) ∆x0, (2.24)where ∆xi is the displa
ement from the periodi
 orbit after i steps in linear approximation and
∆x0 the initial distan
e from x0. We use x0 for simpli
ity, however, all statements hold for ea
hpoint of the periodi
 orbit. The linearization DF n(x0) follows a

ording to the 
hain rule

DF n(x0) = DF (xn−1) ·DF (xn−2) · · · · ·DF (x0). (2.25)We 
onsider the eigenvalue equation
DF n(x0) · ξ = λ · ξ. (2.26)



10 2.1 Hamiltonian systemsFor two-dimensional maps the 
orresponding eigenvalues are
λ1,2 =

1

2

(
Tr{DF n} ±

√
(Tr{DF n})2 − 4

)
, (2.27)where we introdu
ed the tra
e of the matrix DF n as Tr{DF n} and used the symple
ti
ity of

F n (see Ref. [22℄) to repla
e its determinant by 1. The eigenvalues of DF n(x0) only dependon the tra
e Tr{DF n(x0)}, whi
h is independent of the parti
ular 
hoi
e of x0 within the orbitpoints.Depending on the tra
e Tr{DF n} there are four types of periodi
 orbits for two-dimensionalmaps [22℄, namely
• hyperboli
: Both eigenvalues are real, positive, and form the pair λ, 1/λ for Tr{DF n} > 2.The resulting properties are dis
ussed later.
• ellipti
: The eigenvalues have unit modulus and form a 
omplex 
onjugate pair for
Tr{DF n} ∈ (−2, 2). This is the only stable �xed point [22℄. Close-by orbits 
ir
ulate onellipses around the �xed point.

• re�e
tion hyperboli
: Both eigenvalues are real and form the pair λ, 1/λ. In 
ontrast tothe hyperboli
 
ase both eigenvalues are negative and the tra
e is Tr{DF n} < −2.
• paraboli
: Both eigenvalues are +1 or −1 for Tr{DF n} = ±2.Hyperboli
 �xed pointsIn the neighborhood of a hyperboli
 �xed point there are orbits approa
hing the �xed pointat large time and orbits diverging from it. They are asso
iated with the two eigendire
tions ofthe DF n(x0) with one eigenvalue λ smaller than 1 and one eigenvalue 1/λ larger than 1. The
olle
tion of all orbits, whi
h approa
h the �xed point x0 of F n at large times is 
alled stablemanifold

Ws(x0) = {x ∈ G : x0 = lim
j→∞

F j·nx}. (2.28)All orbits that approa
h the �xed point for iteration with the inverse map F−n are 
olle
tedinto the unstable manifold. It is given by
Wu(x0) = {x ∈ G : x0 = lim

j→−∞
F j·nx}. (2.29)The stable and unstable manifold are invariant under the mappings F n and F−n. That is,orbits started on su
h a manifold, will remain on it forever. Be
ause of the uniqueness of themapping and the 
ontinuous dependen
e on initial 
onditions, other orbits 
annot 
ross the



2.1 Hamiltonian systems 11stable or unstable manifold. Therefore these manifolds are total transport barriers in phasespa
e.By use of the stable manifold theorem, approximations of the above de�ned sets Ws(x0) and
Wu(x0) 
an be numeri
ally determined [22℄. This theorem implies that the eigenve
tors of theJa
obian matrixDF are tangential to the 
orresponding manifold at the �xed point. By pla
inginitial 
onditions 
lose to the �xed point along the unstable dire
tion and iterating these pointsforward in time, an approximation of the unstable manifold is obtained. The stable manifold
an be approximated by orbits starting on the stable dire
tion and being iterated ba
kward intime or forward in time with the inverse mapping. In Figure 2.1 these approximations of stableand unstable manifold of the hyperboli
 �xed point (0, 0) for the standard map are shown.The stable and unstable manifold 
annot interse
t with itself be
ause of the uniqueness ofthe mapping, but the stable and unstable manifold may interse
t one another as shown inFig. 2.1. Su
h interse
tions are 
alled homo
lini
 or hetero
lini
 points. Homo
lini
 points areinterse
tions between the stable and unstable manifold of one �xed point. All of their imageslie on both stable and unstable manifold, and they approa
h the �xed point for forward andba
kward iteration following the stable and unstable manifold, respe
tively. Hetero
lini
 pointsare interse
tions of the stable and the unstable manifold of di�erent �xed points. The stru
tureof the stable and the unstable manifold � indi
ated in Fig. 2.1 � is 
alled homo
lini
 tangle.
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Figure 2.1: (a) Part of the stable manifolds (blue) and the unstable manifolds (red) of thehyperboli
 �xed point (q, p) = (0, 0) (=̂(1, 0)) for the standard map with ki
king strength
K = 1 and (b) fra
tion of (a) with longer bran
hes of the manifolds.



12 2.2 Standard map2.2 Standard mapOne famous example of a Hamiltonian system is the standard map, whi
h was introdu
ed byChirikov in 1979 [41℄, sometimes 
alled Chirikov-(Taylor-)map. It des
ribes essential propertiesof several systems. The standard map is a one-parametri
 family of maps and provides allgeneri
 features of Hamiltonian systems [41℄.It is an example of a ki
ked system and its Hamiltonian fun
tion in terms of dimensionlessposition q and momentum p is
H(q, p) =

p2

2
+

K

(2π)2
cos(2πq)

∑

i∈Z
δ(t− i), (2.30)where the potential term a
ts instantaneously at integer times and vanishes otherwise. Theonly parameter is the ki
king strength K. The Hamilton's equations of motion, Eq. (2.13), are

q̇ =
∂H

∂p
= p,

ṗ = −∂H
∂q

= −∂V
∂q

=
K

2π
sin(2πq)

∑

i∈Z
δ(t− i). (2.31)If we observe the dynami
s on
e per period of the driving, we get a strobos
opi
 mappingsimilar to Eq. (2.15). Here we 
hoose for the observation time the moment just after the i-thki
k and obtain the standard map as

qi+1 = qi + pi,

pi+1 = pi +
K

2π
sin(2πqi+1) (2.32)or as a mapping F : (q, p) 7→ (q′, p′)

q′ = q + p,

p′ = p+
K

2π
sin(2πq′). (2.33)The 
hange in momentum p in Eq. (2.33) is periodi
 with period 1 and therefore the positionvariable q 
an be restri
ted to [0, 1) with periodi
 boundary 
onditions like it was an angle.Considering this periodi
 boundary 
ondition in q for the 
hange of q in Eq. (2.33) one may
hoose the same period for the momentum p and �nally get the dynami
s on a torus. TheJa
obian matrix, Eq. (2.22), of the standard map is

DF (q, p) =

(
∂q′

∂q
∂q′

∂p
∂p′

∂q
∂p′

∂p

)
=

(
1 1

K · cos(2πq′) 1 +K · cos(2πq′)

)
. (2.34)



2.3 Phase-spa
e stru
ture 132.3 Phase-spa
e stru
tureIn this se
tion important aspe
ts of the phase-spa
e stru
ture and their origin are dis
ussed.In the following, the standard map will be used as a typi
al example, be
ause it provides allgeneri
 features of symple
ti
 maps.
Integrable motionA given Hamiltonian system is 
alled integrable, if there exists a 
anoni
al transformation tonew variables (J,Θ) with the following property: The dynami
s of J and Θ is des
ribed by the
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Figure 2.2: Phase spa
e of the standard map: (a) integrable motion on horizontal tori withpreserved momenta p for K = 0, (b) dynami
s of slightly deformed horizontal tori and orbits
ir
ulating around the ellipti
al �xed point at (q, p) = (1/2, 0) for K = 0.2, (
) mixed phasespa
e 
omposed of regular regions, whi
h are en
losed by 
haoti
 orbits for K = 1, and (d)there are no regular regions visible and the plotted 
haoti
 orbit �lls the whole phase spa
euniformly for K = 10.



14 2.3 Phase-spa
e stru
tureHamilton fun
tion H̃(J), whi
h is independent of Θ. The Hamilton's equations of motion read
Θ̇ =

∂H̃(J)

∂J
=: ν(J),

J̇ = 0. (2.35)The solution of these di�erential equations has the form
Θ(t) = Θ(0) + ν(J) · t,
J = 
onst. (2.36)That is, the a
tion J is preserved and the angle Θ in
reases 
onstantly. It 
orresponds to themotion on the 
ir
le with �xed velo
ity ν(J), whi
h is 
alled winding frequen
y. The a
tion
onservation restri
ts the motion to a one-dimensional line in phase spa
e, whi
h is 
alled torus.In the following we will 
onsider Θ as an angle between 0 and 1.Figure 2.2(a) shows the phase spa
e of su
h an integrable motion, where the a
tion-anglevariables are denoted by p and q. For vanishing ki
king strengthK the standard map, Eq. (2.32),redu
es to Eq. (2.36) with the winding frequen
y ν(p) = p.Depending on the winding frequen
y orbits 
an be 
lassi�ed as periodi
 or quasiperiodi
. Forrational winding frequen
y ν = m

n
with m ∈ Z, n ∈ N the orbit is periodi
 on the torus withperiod n. Su
h an orbit is 
alled (m,n)-orbit. For integrable systems the set of (m,n)-orbitsform the torus of winding frequen
y ν = m

n
. For irrational winding frequen
y the orbit is notperiodi
, but densely �lls a one-dimensional line with re
urring 
lose visits of the initial point.Chaoti
 motionIn addition to the integrable motion the 
haoti
 motion is another limiting 
ase of a dynami
alsystem and will be dis
ussed in the following before the mixed phase spa
e is 
onsidered, whereboth motions 
oexist. As dis
ussed in the introdu
tion, 
haoti
 dynami
s is 
hara
terized bythe sensitive dependen
e on the initial 
onditions. Although the dynami
s is deterministi
it is impossible to predi
t the exa
t evolution of an initial 
ondition neither numeri
ally norexperimentally. This be
omes 
lear by 
onsidering the time evolution of two 
lose-by initial
onditions. For two su
h initial 
onditions in the phase spa
e of the standard map with K = 10(see Fig. 2.2(d)), we 
onsider their distan
e at time t,

d
(
x
(1)
t , x

(2)
t

)
=
∥∥∥
(
q
(1)
t , p

(1)
t

)
−
(
q
(2)
t , p

(2)
t

)∥∥∥ =

√(
q
(2)
t − q

(1)
t

)2
+
(
p
(2)
t − p

(1)
t

)2
. (2.37)The result is plotted in Fig. 2.3 and shows an exponential growth as a fun
tion of time,

d
(
x
(1)
t , x

(2)
t

)
∝ exp{L · t} · d

(
x
(1)
0 , x

(2)
0

)
, (2.38)



2.3 Phase-spa
e stru
ture 15

10−14

10−12

10−10

10−8

10−6

d
( x

(1
)

t
,x

(2
)

t

)

2 4 6 8 10 12

exp{1.9 · t}

tFigure 2.3: Distan
e of two orbits of the standard map for K = 10 with initial 
onditions
q
(1,2)
0 = 1/2, p(1)0 = 1/4 and p(2)0 = p(1) + 10−14 in 
omparison to an exponential growth.whi
h is 
hara
teristi
 for 
haoti
 systems. This growth is des
ribed by the Lyapunov exponent

L [3, Se
. 4.4℄. In general it depends on the dire
tion of the initial displa
ement and it isobtained in the limit of vanishing displa
ement and arbitrary large observation time. Forpra
ti
al estimations �nite time Lyapunov exponents are useful. They are based on the largereigenvalue λ1 of the Ja
obian matrix along a 
haoti
 orbit started in x and given by [3, Se
. 9.4℄
L(x, t) =

lnλ1(x, t)

t
≈ Tr{DF t(x)}

t
, (2.39)where λ1 of Eq. (2.27) is approximated by the tra
e of the Ja
obian matrix, whi
h is valid atlarge times. Due to the area preservation of Hamiltonian systems, additionally to the exponen-tial divergen
e of nearby orbits, there is a dire
tion in whi
h separated orbits approa
h ea
hother. The latter is the tangent to the lo
al stable manifold (see Se
. 2.1).Mixed phase spa
eBesides the limiting 
ases of the regular and the 
haoti
 system, in general both dynami
s 
oex-ist � the mixed phase spa
e. Su
h a mixed phase spa
e is illustrated in Fig. 2.2(
). Dependingon the initial 
onditions the resulting orbit is either regular, 
on�ned to a one-dimensionalline, or 
haoti
 and �lls a two-dimensional region in phase spa
e. The sets of regular tori formregular islands within the 
haoti
 sea.A

ording to Ref. [4℄ the mixed phase spa
e is the generi
 
ase of a Hamiltonian system. Itmay arise from an integrable system H0(J) by adding a small perturbation εH1(J,Θ). Thedes
ription of the e�e
ts governed by the perturbation is given by Kolmogorov, Arnol'd, andMoser and nowadays known as KAM theory (see Refs. [3, Chap. 7℄ and [22℄).Pursuant to the KAM theorem, almost all tori (ex
ept for sets of measure zero) of theunperturbed problem exist in the limit of vanishing perturbation ε → 0. For non-vanishing



16 2.4 Transport in Hamiltonian systemsperturbation the preserved tori are more or less deformed and are 
alled KAM tori to distinguishthem from the tori of the unperturbed system. Both kinds of tori form invariant sets in phasespa
e.The impa
t of an in
reasing perturbation on KAM tori with rational or irrational windingfrequen
y is quite di�erent. A torus with rational winding frequen
y ν = m
n
is broken by anarbitrary small perturbation [14, 15℄. A

ording to the Poin
aré-Birkho� theorem (see Ref. [3,Se
. 7.2.2℄) this rational torus is repla
ed by an island 
hain, whi
h 
onsists of n ellipti
alislands. In between the ellipti
al islands there are hyperboli
 �xed points. For the 
ase of thestandard map the perturbation is given by the ki
king potential determined by the ki
kingstrength K. In the phase spa
e shown in Fig. 2.2 the horizontal torus with (m,n) = (0, 1) forvanishing ki
king strength (Fig. 2.2(a)) has been repla
ed by one ellipti
al island in the 
enteraround (q, p) = (1

2
, 0) and one hyperboli
 �xed point at the boundary, (q, p) = (0, 0)=̂(1, 0), inFig. 2.2(b) and (
).Even within the tori with irrational winding frequen
y the e�e
t of the perturbation is notuniform. Depending on how well the irrational frequen
y 
an be approximated by rationalnumbers, the torus will persist even strong perturbations or not [11,42,43℄. A well settled tool toapproximate irrational numbers is the 
ontinued fra
tion expansion (see Ref. [22, p. 814℄). Thegolden ratio is the irrational number, whose 
ontinued fra
tion expansion 
onverges most slowly.Therefore tori with a golden winding frequen
y or more general a noble winding frequen
yshould break up only for very strong perturbations.The breakup of a tori with irrational winding frequen
y yields a Cantor set. Due to thequasiperiodi
 motion there exist in�nitely many holes along the formerly 
losed torus. Su
ha set is 
alled 
antorus and allows for a non-vanishing �ux 
rossing it. Their impa
t on thetransport in phase spa
e is dis
ussed in Se
. 2.4.Starting with an integrable system, we obtain a mixed phase spa
e by introdu
ing a per-turbation. Depending on the strength of the perturbation tori are deformed or even break upinto island 
hains. Lo
ally the dynami
s in the islands is again regular and if we in
rease theperturbation strength further the above pro
edure repeats for these islands ( [3, Se
. 7.2.2℄, [22,p. 810℄). This repetition on smaller and smaller s
ales give rise to the hierar
hi
al phase-spa
estru
ture observed in systems with a mixed phase spa
e. Around ea
h island, there are againsmaller islands and this repeats ad in�nitum yielding as self-similar phase spa
e.2.4 Transport in Hamiltonian systemsIn this se
tion we 
onsider the impa
t of the stru
tures dis
ussed in the previous se
tion on thetransport. For integrable systems the dynami
s is equivalent to a rotation with the windingfrequen
y ν(J), whi
h depends on the a
tion J (see Fig. 2.2(a) with J = p). For quasiperiodi
motion (irrational winding frequen
y) the orbit visits all points of the torus uniformly. In fully
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haoti
 systems an orbit again explores the available region uniformly, but in 
ontrast to theintegrable 
ase it explores the whole two-dimensional phase spa
e. Therefore it is appropriate todes
ribe the main features of the transport in terms of sto
hasti
 models although the dynami
sis deterministi
. For instan
e the time a 
haoti
 orbit spends in some phase-spa
e region isstatisti
ally proportional to the area of the region [44℄.In the mixed phase spa
e both kinds of dynami
s 
oexist. Depending on the initial 
onditionorbits 
an be 
lassi�ed into regular or 
haoti
. Orbits started in the 
haoti
 sea never enterthe regular islands and vi
e versa. If the regular islands were only holes in the 
haoti
 sea thedes
ription of the transport in the 
haoti
 sea would be the same as for the fully 
haoti
 
ase.However, as already mentioned in the introdu
tion this is not the 
ase.Let us 
onsider the time evolution of two orbits started in the 
haoti
 sea with slightlydi�erent initial 
onditions. Their distan
e as a fun
tion of time is shown in Fig. 2.4 (a) andexhibits an exponential growth at times up to t = 18. This is the same as for the fully 
haoti

ase shown in Fig. 2.3. However, at t ∈ [19, 26] the distan
e d(x(1)t , x
(2)
t ) stays almost 
onstantbefore it again in
reases up to the system size. The plateau at times in between is related to theregular islands around (1

4
, 0), be
ause for these iterations the orbit pair sti
ks to these islands.That is, the exponential growth slows down and the Lyapunov exponent drops to zero 
lose tothe island. This impa
t of the regular islands on the dynami
s of 
haoti
 orbits is dis
ussed inthe following.
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Figure 2.4: (a) Distan
e d(x(1)t , x
(2)
t ) of two orbits in the mixed phase spa
e (standard mapwithK = 6.908745). The initial 
onditions are q(1,2)0 = 1/2, p(1)0 = 1/4 and p(2)0 = p

(1)
0 +10−14.The distan
e is 
ompared to an exponential growth. At 
ertain iteration times indi
ated bythe numbers the orbit pair is shown within the phase spa
e (see inset of (a) and (b)). Theregular islands in phase spa
e are indi
ated by the 
olored tori. At times larger than t = 29 theorbits are signi�
antly apart from ea
h other, indi
ated by the line 
onne
ting the two orbits.The orbit points in the inset 
orrespond to the en
ir
led values of the distan
e d(x(1)t , x

(2)
t )in (a).
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haoti
 orbits 
lose to the regular islands: (a) shows the phase spa
eof the standard map with K = 6.908745 whereas the two 
haoti
 orbits, whi
h stay 
lose tothe regular islands for at least t = 106 iterations are shown in (b) and (
). The rows showmagni�
ations of the region indi
ated by a box in the previous row.



2.4 Transport in Hamiltonian systems 19Figure 2.5(a) shows the phase spa
e of the standard map with K = 6.908745, where thevalue of K is 
hosen be
ause of the ni
e self-similar island around island stru
ture [45, 46℄.Figure 2.5(b) and (
) display two 
haoti
 orbits, whi
h stay for more than 106 iterations 
loseto the regular region. Chaoti
 orbits are somehow trapped in the neighborhood of the regularislands. This phenomenon is 
alled sti
kiness and is mentioned by several authors [6,11�13,41℄.Comparing the two 
haoti
 orbits in Fig. 2.5, we see that they follow the self-similar islandaround island stru
ture for many magni�
ations and only in the last magni�
ation they sti
kto di�erent islands. This indi
ates that there is a huge number of phase-spa
e regions a 
haoti
orbit may sti
k to [47, 48℄.The above idea that regular regions are simple holes within the 
haoti
 sea is wrong. Closeto the islands there are stru
tures giving rise to limitation of the 
haoti
 transport. In 
ontrastto total barriers in phase spa
e, orbits 
an pass these stru
tures. However, it may last severaliterations before the orbit does so.Flux in phase spa
e and partial barriersThe reason for the sti
kiness of regular islands are partial barriers, whi
h we dis
uss here. Firstof all we introdu
e the term �ux in phase spa
e. The �ux a
ross a smooth 
urve C is themeasure Φ of the phase-spa
e volume transported a
ross the 
urve C per unit time. It is givenby the area between the 
urve C and its preimage F−1(C) shown in Fig. 2.6. For 
urves, whi
hare invariant under the map F like regular tori, the �ux 
rossing them vanishes. Su
h 
urvesare 
alled total transport barriers. Partial barriers are de�ned as 
urves in phase spa
e, thatallow for a non-vanishing �ux 
rossing them. They 
an be 
onstru
ted for instan
e from thestable and the unstable manifold of a hyperboli
 periodi
 orbit or from 
antori [14,15,22℄. Forthe designed map we dis
uss the 
onstru
tion of the partial barrier in Se
. 3.1.3.
Φdown

Φup

C
F−1(C)Figure 2.6: Illustration of the �ux Φ a
ross a 
urve C (solid line). The �ux is given by thesize of the shaded regions between C and its preimage F−1(C) (dotted). For simpli
ity weassume that the two 
urves deviate only in the 
entral part forming the turnstile and are ontop of ea
h other outside.
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eThe netto �ux a
ross the 
urve is given by the di�eren
e of upward and downward �ux
Φnetto = Φup − Φdown (2.40)and for area preserving maps it is zero. That is, volumes of equal size are ex
hanged betweenthe upper and lower region,
Φ = Φup = Φdown. (2.41)Therefore the 
entral part of Fig. 2.6, where the 
urve and its preimage di�er, is 
alled turnstile.In this way orbits pass the partial barrier by entering the turnstile and being mapped to theother side of the partial barrier.Although there are in�nitely many partial barriers in a mixed phase spa
e, those with minimal�ux are most restri
tive for the transport and therefore of spe
ial interest. They allow for ade
omposition of the phase spa
e into regions of strong mixing that are 
onne
ted by the slowtransport a
ross the partial barrier.

2.5 Time reversal invarian
eIn this se
tion the property of time reversal invarian
e is introdu
ed and the impli
ations forthe 
omposition of maps are dis
ussed. This is important for Se
. 3.1.6, where we de�ne amapping as 
omposition of two maps.Time reversal invarian
e τ is one example of an anti
anoni
al symmetry of the 
lassi
alsystem des
ribed by the map F [49℄,
τ ◦ F ◦ τ = F−1 (2.42)with τ 2 = τ ◦ τ = 1. This symmetry indu
es an antiunitary symmetry K to the 
orrespondingquantum system des
ribed by the time evolution operator U ,
KUK−1 = U−1. (2.43)Consider the two time reversal invariant maps Fi,

τ ◦ Fi ◦ τ = F−1
i for i = 1, 2 (2.44)
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e 21and use them to 
onstru
t two new maps F ′ and F̃ by
F ′ = F2 ◦ F1 (2.45)
F̃ =

√
F2 ◦ F1 ◦

√
F2, (2.46)where we assume that there exists a map denoted by √
F2 with √

F2 ◦
√
F2 = F2 and that √F2ful�lls time reversal invarian
e, too. The 
orresponding inverse mappings are (F ′)−1 = F−1

1 ◦F−1
2and F̃−1 =

√
F2

−1 ◦ F−1
1 ◦

√
F2

−1. Now let us 
he
k the time reversal invarian
e of F̃
τ ◦ F̃ ◦ τ = τ ◦

√
F2 ◦ F1 ◦

√
F2 ◦ τ

= τ ◦
√
F2 ◦ τ 2 ◦ F1 ◦ τ 2 ◦

√
F2 ◦ τ

=
√
F2

−1 ◦ F−1
1 ◦

√
F2

−1
= F̃−1, (2.47)where we inserted τ 2 = 1 and used the time reversal invarian
e of F1 and √

F2.For the map F ′ the above symmetry τ is not satis�ed
τ ◦ F ′ ◦ τ = τ ◦ F2 ◦ F1 ◦ τ = τ ◦ F2 ◦ τ 2 ◦ F1 ◦ τ

= F−1
2 ◦ F−1

1 = (F1 ◦ F2)
−1 6= F ′−1

. (2.48)Therefore we 
onsider a symmetry τ ′ := √
F2 ◦ τ ◦

√
F2

−1 with (τ ′)2 = 1, whi
h is 
anoni
ally
onjugated to τ and therefore also anti
anoni
al
τ ′ ◦ F ′ ◦ τ ′ =

√
F2 ◦ τ ◦

√
F2

−1 ◦ F2 ◦ F1 ◦
√
F2 ◦ τ ◦

√
F2

−1

=
√
F2 ◦ τ ◦

√
F2 ◦ F1 ◦

√
F2 ◦ τ ◦

√
F2

−1

=
√
F2 ◦

√
F2

−1 ◦ F−1
1 ◦

√
F2

−1 ◦
√
F2

−1

= F−1
1 ◦ F−1

2 = F ′−1
, (2.49)where Eq. (2.47) is used. This generalized time reversal invarian
e τ ′ gives rise to an antiunitarysymmetry of the quantum system. Therefore the spe
tral statisti
s of F ′ is the same as for F̃with time reversal invarian
e τ [49℄.In preparation for Se
. 3.1.6 we here mention that half ki
k maps, de�ned by Eq. (2.16), obeythe generalized time reversal invarian
ẽ

τ :

(
q

p

)
7→
(
−q
p

) (2.50)if the derivative of the potential is an odd fun
tion: V ′(−q) = −V ′(q), whi
h 
an be shown byevaluating Eq. (2.42) for this situation.
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ked systems2.6 Quantization of ki
ked systemsHere we derive a quantization rule for ki
ked systems based on the famous paper of Chang andShi from 1986 [50℄ and the le
ture notes [51℄. The starting point for the quantization s
hemeis the Hamilton operator of a ki
ked system
H(q̂, p̂, t) = T (p̂) + V (q̂)

∑

n∈Z
δ(t− n). (2.51)The dis
rete time evolution of a state |ψ(t)〉 
an be written as

|ψ(t+ 1)〉 = U |ψ(t)〉 (2.52)with some unitary time evolution operator U . In order to �nd an expression for U we use thetime 
ontinuous evolution and restri
t our observation by means of after ki
ked maps. Thetime evolution operator is expressed in terms of the Hamilton operator as
U = lim

ε→0
T̂ exp



− i

~e� t+1+ε∫

t+ε

dt H(q̂, p̂, t)



 , (2.53)where T̂ indi
ates the time ordering needed for time-dependent Hamiltonians and ~e� is Plan
k's
onstant measured in multiples of a typi
al a
tion S0 found in the system: ~e� = ~/S0. Be
auseof the instantaneous a
tion of the ki
k at integer times the time evolution is split into freeevolution and the ki
k

U = lim
ε→0

T̂ exp



− i

~e� t+1+ε∫

t+1−ε

dt H(q̂, p̂, t)



 T̂ exp



− i

~e� t+1−ε∫

t+ε

dt H(q̂, p̂, t)



 (2.54)

= lim
ε→0

T̂ exp



− i

~e� t+1+ε∫

t+1−ε

dt [T (p̂) + V (q̂)
∑

n∈Z
δ(t− n)

]
 T̂ exp



− i

~e� t+1−ε∫

t+ε

dt T (p̂)(2.55)
= lim

ε→0
exp

{
− i
~e� [2εT (p̂) + V (q̂)]

}
exp

{
− i
~e� [1− 2ε]T (p̂)

} (2.56)
= exp {−iV (q̂)/~e�} exp {−iT (p̂)/~e�} . (2.57)Note that in the spe
ial 
ase of ki
ked systems the splitting into free evolution (e−iT (p̂)/~e�) andki
k (e−iV (q̂)/~e�) is exa
t in 
ontrast to other systems, where the split-operator te
hnique is anapproximation (see Ref. [52, Se
. 2.3.2℄). The reason for this is the instantaneous a
tion of thepotential as δ-ki
k, whi
h is zero at almost all times (`free evolution') and arbitrary large atinteger times.
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ked systems 23In position representation the time evolution is given as
ψ(q, t+ 1) = 〈q|ψ(t+ 1)〉 = 〈q|e− i

~e� V (q̂) e− i
~e� T (p̂)ψ(t)〉 = e− i

~e� V (q) 〈q|e− i
~e� T (p̂)ψ(t)〉. (2.58)Inserting unity operators in position and momentum spa
e, 1 =

∫ dq′|q′〉〈q′| and 1 =
∫ dp|p〉〈p|,and using the position-spa
e representation of a momentum eigenstate

〈q|p〉 = 1√
he� e i

~e� q·p (2.59)we have
ψ(q, t+ 1) =

1

he� e− i
~e� V (q)

∫ dq′ ∫ dp e− i
~e� T (p)e i

~e� (q−q′)·p
ψ(q′, t). (2.60)In order to obtain quantum me
hani
s on the 
lassi
al torus, we have to assume periodi
ityof e− i

~e� T (p) as a fun
tion of p with period Mp ∈ R. This implies, that we 
an repla
e theintegration over R by an integration over one period and an in�nite sum
∫ dp 7→ pmin+Mp∫

pmin dp
∑

mp∈Z
(2.61)

p 7→ p+mp ·Mp, (2.62)whi
h yields
ψ(q, t+ 1) =

1

he� e− i
~e� V (q)

∫ dq′pmin+Mp∫

pmindp ∑mp∈Z
e− i

~e� T (p+��
�mp·Mp)e i

~e� (q−q′)·(p+mp·Mp) ψ(q′, t). (2.63)The summation over mp 
an be performed using Poisson summation formula
∑

mp∈Z
e i

~e� (q−q′)·mp·Mp =
∑

mp∈Z
e2πi·mp

(q−q′)·Mp

he�
=
∑

j∈Z
δ

(
(q − q′) ·Mp

he� − j

)
=
∑

j∈Z

he�
Mp

δ

(
q − q′ − j

he�
Mp

) (2.64)and gives
ψ(q, t+ 1) =

1

Mp
e− i

~e� V (q)
∫ dq′ pmin+Mp∫

pmin dp e− i
~e� T (p)e i

~e� (q−q′)·p∑

j∈Z
δ

(
q − q′ − j

he�
Mp

)
ψ(q′, t).(2.65)
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ked systemsNow we 
onsider the impli
ations for the position variable q. The distan
e between two positionsis dis
retized and we therefore 
an restri
t ourselves to q-values of the following grid
qk = q0 +

he�
Mp

k or qk =
he�
Mp

(k + θp) with k ∈ Z. (2.66)This result and the role of θp 
an be understood in the following way. The time evolutionoperator des
ribes all properties of the quantum system and 
ommutes with the translationoperator in momentum spa
e (p 7→ p +Mp). Therefore these operators have a 
ommon set ofeigenstates. One set of eigenstates of the translation operator in momentum spa
e are periodi
fun
tions of the momentum p with period Mp ∈ R. They 
an be expressed as a Fourier series
f(p) =

∑

n∈Z
cne2πinp/Mp =

∑

n∈Z
cneiqnp/~e� with qn =

2π~e�
Mp

n. (2.67)In quantum me
hani
s the last expression is the sum of position eigenstates with eigenvalues
qn in momentum representation. That is, in the des
ription of a periodi
 fun
tion we only needa dis
rete set of position eigenvalues qn.Let us now extend our 
onsideration to a fun
tion, whi
h is built by the produ
t of a periodi
fun
tion and a phase fa
tor with θp ∈ [0, 1), whi
h is the most general 
ase for an eigenstate ofthe above translation operator

g(p) = e2πiθpp/Mpf(p) =
∑

n∈Z
cneiqnp/~e� with qn =

2π~e�
Mq

(θp + n). (2.68)It is again given by a sum of position eigenstates with eigenvalues qn in momentum represen-tation. However, in 
ontrast to the above expression, Eq. (2.67), the dis
rete positions qn areshifted with θp in Eq. (2.68), whi
h originates from the eigenvalue of the translation operator.With this de�nition, Eq. (2.66), we 
an repla
e q and q′ in Eq. (2.65) with grid points qn and
qk, respe
tively. In the next step the sum over j is repla
ed by a sum over k by performing theintegration over the δ-fun
tion and 
onsidering qn = qk+j. More pre
isely in the �rst step theintegration over qk is performed and therefore qk is repla
ed by qn − j · he�

Mp
, where we sum overinteger j from −∞ to +∞. This summation 
an be repla
ed by a summation over k from −∞to +∞ using the rede�nition of qn − j · he�

Mp
being qk again.The �nal expression 
an be written as

ψ(qn, t+ 1) =
∑

k∈Z
〈qn|U |qk〉ψ(qk, t)with 〈qn|U |qk〉 =

1

Mp
e− i

~e� V (qn)

pmin+Mp∫

pmin dp e− i
~e� T (p)e i

~e� (qn−qk)·p. (2.69)
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ked systems 25If we now additionally involve the periodi
ity of the fun
tion e− i
~e� V (q) with some period

Mq ∈ R, we 
an repla
e the in�nite sum over the position grid points by a sum over one periodand an in�nite sum
∑

k∈Z
7→

∑

k∈Z:
qk∈[qmin,qmin+Mq)

∑

mq∈Z
(2.70)

qk 7→ qk +mq ·Mq. (2.71)Furthermore this periodi
ity implies, that the possible q-values in Eq. (2.66) have to ful�ll
qk +Mq = qk+N for some natural number N , whi
h means that the q-grid is 
ommensurable tothe period Mq. It follows

Mq = N · he�
Mp

or he� =
MqMp

N
. (2.72)With that we 
an restri
t ourselves to qn, qk ∈ [qmin, qmin+Mq) in the 
onsideration of eigenstatesof U , be
ause 〈qn|U |qk〉 is periodi
 in position spa
e and the whole eigenfun
tion 
an thereforebe re
onstru
ted by an additional Blo
h phase θq

ψ(qk +mq ·Mq, t) = ψ(qk, t) ei2πθq·mq . (2.73)
Performing the same steps as above resulting from the periodi
ity of position variable yieldsa dis
rete latti
e for the momentum variable

pj =
he�
Mq

(θq + j) with j ∈ Z (2.74)and �nally gives
ψ(qn, t+ 1) =

∑

k∈Z:
qk∈[qmin,qmin+Mq)

〈qn|U |qk〉ψ(qk, t)with 〈qn|U |qk〉 =
1

N
e− i

~e� V (qn)
∑

j∈Z:
pj∈[pmin,pmin+Mp)

e− i
~e� T (pj)e i

~e� (qn−qk)·pj . (2.75)The possible p-values in the interval [pmin, pmin +Mp) are obtained by rewriting Eq. (2.74),
pj =

Mp

N
(θq + j + n(0)

p ) for j = 0, . . . , N − 1, (2.76)
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ked systemswhere we introdu
e an o�set n(0)
p , whi
h 
an be derived as follows.

p0 ∈ [pmin, pmin +Mp/N) (2.77)
p0 =

Mp

N
(θq + n(0)

p )
!
≥ pmin (2.78)

n(0)
p :=

⌈
N

Mp

pmin − θq

⌉
. (2.79)In the last expression ⌈x⌉ denotes the smallest integer number greater than or equal to x. Asimilar derivation for q gives

qk =
Mq

N
(θp + k + n(0)

q ) for k = 0, . . . , N − 1 and n(0)
q :=

⌈
N

Mq

qmin − θp

⌉
. (2.80)For the 
ase of a unit 
ell [0,Mq)× [0,Mp) the integral o�sets n(0)

q and n(0)
p vanish.With an expli
it in
orporation of the grids the above time evolution reads

ψ(qn, t+ 1) = e− i
~e� V (qn)

︸ ︷︷ ︸mult. in q e 2πi
N

n·(θq+n(0)
p ) 1√

N

N−1∑

j=0

e 2πi
N

n·j

︸ ︷︷ ︸IFTp 7→q

e− i
~e� T (θq+n(0)

p +j)

︸ ︷︷ ︸mult. in p
× 1√

N

N−1∑

k=0

e− 2πi
N

k·j

︸ ︷︷ ︸FTq 7→p

e− 2πi
N

k·(θq+n(0)
p )ψ(qk, t). (2.81)

This equation provides an e�
ient way of performing the time evolution using the forward andba
kward dis
rete Fourier transformation as well as multipli
ations in position and momen-tum spa
e, be
ause these transformations have very fast numeri
al implementations in severallibraries.Note that in the derivation of Eq. (2.75) for the time evolution operator in the �nite dis
retebasis of position and momentum, we used the periodi
itiese−iT (p)/~e� = e−iT (p+Mp)/~e� with some period Mp ∈ R and (2.82)e−iV (q)/~e� = e−iV (q+Mq)/~e� with some period Mq ∈ R. (2.83)If the quantum system under 
onsideration in
orporates these periodi
ities the above quan-tization pro
edure holds. If this is not the 
ase, we have the possibility to 
hoose a latti
e of qor p-values (by 
hoosing θq or θp), whi
h leads toe−iT (pn)/~e� = e−iT (pn+Mp)/~e� for n = 0, . . . , N − 1 and (2.84)e−iV (qk)/~e� = e−iV (qk+Mq)/~e� for k = 0, . . . , N − 1. (2.85)



2.7 Dire
t quantization of time-independent systems 27That is, for the �nite matrix U the periodi
ities are inherent and therefore numeri
s 
annotdistinguish between su
h an apparent periodi
ity and a real periodi
ity of the system.2.7 Dire
t quantization of time-independent systemsIn this se
tion we review a quantization pro
edure for time-independent systems [53℄, whi
hwill be used in Se
. 3.1.6. The starting point is the time-independent S
hrödinger equation
H(q̂, p̂)|ψ〉 = E|ψ〉 (2.86)in position representation

∫ dq′〈q|H(q̂, p̂)|q′〉〈q′|ψ〉 = 〈q|E|ψ〉, (2.87)where the unity operator in position representation 1 =
∫ dq′|q′〉〈q′| was inserted. In order toevaluate this expression further, we insert also the unity operator in momentum representation1 =

∫ dp|p〉〈p|. For the matrix elements we obtain
〈q|H(q̂, p̂)|q′〉 = 1

2

∫ dp {〈q|H(q̂, p̂)|p〉〈p|q′〉+ 〈q|p〉〈p|H(q̂, p̂)|q′〉} (2.88)whi
h for a Hamiltonian H(q̂, p̂) = T (p̂) + V (q̂) 
an be evaluated using
〈q|H(q̂, p̂)|p〉 = 〈q|T (p̂) + V (q̂)|p〉 = T (p)〈q|p〉+ V (q)〈q|p〉 = H(q, p)〈q|p〉. (2.89)Therefore we obtain for the matrix elements

〈q|H(q̂, p̂)|q′〉 = 1

2

∫ dp [H(q, p) +H(q′, p)] 〈q|p〉〈p|q′〉 (2.90)
=

1

2

∫ dp [H(q, p) +H(q′, p)]
1

he� exp{ i
~e� (q − q′) · p

}
, (2.91)in whi
h only the 
lassi
al Hamilton fun
tion H(q, p) enters. If the Hamiltonian is not of theabove type the ordering of q and p needs to be adapted in order to evaluate the expressions.In those 
ases Eq. (2.91) negle
ts terms of the order ~2e�.In order to obtain the eigenstates of H on the torus we �rst assume periodi
ity in momentumspa
e. That is, the Hamiltonian ful�llsH(q, p) = H(q, p+Mp) su
h that the in�nite integrationin momentum spa
e 
an be repla
ed by an integration over one unit 
ell and an in�nite sum

〈q|H(q̂, p̂)|q′〉 = 1

2he� ∑
mp∈Z

pmin+Mp∫

pmindp [H(q, p) +H(q′, p)] exp

{ i
~e� (q − q′)(p+mp ·Mp)

}
. (2.92)



28 2.8 Husimi representationThe summation over mp 
an be performed using the Poisson summation formula (see Eq. (2.64)of Se
. 2.6). Inserting this result into Eq. (2.87) and performing the integration over q′ gives
∑

j∈Z

1

2Mp

pmin+Mp∫

pmin dp [H(q, p) +H(q′, p)] exp

{ i
~e� (q − q′) p

}
ψ(q′) = Eψ(q), (2.93)where q′ = q − j he�

Mp
. In analogy to Se
. 2.6 the periodi
ity in momentum establishes a dis
retelatti
e for the position spa
e with spa
ing he�/Mp

qn = q0 + n
he�
Mp

(2.94)and therefore the above equation needs to be evaluated for positions q = qn and q′ = q−jh/Mp =

qn−j =: qk only,
∑

k∈Z

1

2Mp

pmin+Mp∫

pmin dp [H(qn, p) +H(qk, p)] exp

{ i
~e� (qn − qk) p

}
ψ(qk) = Eψ(qn). (2.95)Finally, the position spa
e is restri
ted to N values between qmin and qmax = qmin +Mq, where

N =MqMp/h. This yields a matrix equation
N−1∑

k=0

Hnkψ(qk) = Eψ(qn) (2.96)with the Hermitian matrix
Hnk =

1

2Mp

pmin+Mp∫

pmin dp [H(qn, p) +H(qk, p)] exp

{ i
~e� (qn − qk) p

}
. (2.97)The assumption of periodi
ity in momentum spa
e is 
ru
ial to derive Eq. (2.97) on a dis
retelatti
e and the restri
tion in position spa
e gives rise to a �nite dimensional matrix. Both fa
tslimit the appli
ability of this approa
h to obtain eigenstates of the time-independent system.However, for the lower ex
ited states lo
ated far from the boundary of the unit 
ell theseassumptions are well ful�lled and we �nd ex
ellent agreement with analyti
al expressions forthe eigenstates evaluated on the latti
e.2.8 Husimi representationQuantum eigenstates are given in position representation or by use of Fourier transform alsoin momentum representation. In order to 
ompare properties of the quantum states with 
las-
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al phase-spa
e stru
tures we need a phase-spa
e representation of a quantum state. Thisis a
hieved by the Husimi representation. Starting point for the Husimi representation are
oherent states. They are the quantum analogue of 
lassi
al points respe
ting Heisenberg'sun
ertainty relation. They are a Gaussian fun
tion in position as well as momentum represen-tation su
h that the produ
t of the standard deviation ful�lls σqσp = ~e�/2. A 
oherent stateat a phase-spa
e point (q̃0, p̃0) in position representation is given as
α(qn, q̃0, p̃0) =

(
2h

M2
p

)1/4

exp

{
−(qn − q̃0)

2

2~e� }
exp

{ i
~e� p̃0qn} , (2.98)where we 
hoose σq = σp =

√
~e�/2 and normalized with respe
t to the ve
tor norm, be
auseall eigenstates of a quantum map are des
ribed on dis
rete latti
e points a

ording to Se
. 2.6.With that we 
an write down the Husimi representation as proje
tion of an arbitrary stateto a 
oherent state at point (q̃0, p̃0),

Hφ(q̃0, p̃0) :=
1

he� |〈α(q̃0, p̃0)|φ〉|2 = 1

he� ∣∣∣∣∣∑n α∗(qn, q̃0, p̃0) · φ(qn)
∣∣∣∣∣

2

. (2.99)That is, the Husimi fun
tion at phase-spa
e point (q̃0, p̃0) is the overlap of a quantum state φwith a 
oherent state lo
ated at (q̃0, p̃0). One 
an show that the integral of the Husimi fun
tionover the entire phase spa
e gives one for normalized states. Moreover the integration over allmomenta gives ba
k the squared modulus of the state in position representation. Therefore,and be
ause Hφ is non-negative, it is useful to interpret the Husimi fun
tion as probabilitydensity in phase spa
e.





3 Quantum signatures of partialbarriers in phase spa
eIn this 
hapter we design a map with one isolated partial barrier (Se
. 3.1) for a quantitativestudy of the quantum transition of a partial barrier from quantum suppression to the 
lassi
altransport behavior. This e�e
t and quantitative measures to des
ribe the transition 
urve aredis
ussed in Se
. 3.2. In Se
. 3.3 we present results for these quantitative measure using thedesigned maps. Results for the standard map are dis
ussed in Se
. 3.4.3.1 Designed map with one partial barrierIn Se
. 2.4 it was pointed out that a generi
 mixed phase spa
e exhibits in�nitely many partialbarriers. These partial barriers have di�erent �uxes and form a hierar
hi
al de
omposition ofthe phase spa
e. A detailed analysis of the in�nitely many partial barriers is impossible. Inorder to investigate the impa
t of partial barriers on quantum systems, we therefore restri
tourselves to the 
ase of one partial barrier. We design a system with a parti
ularly simplephase-spa
e stru
ture, namely two 
haoti
 regions separated by one dominant partial barrier,whi
h signi�
antly limits the transport in the 
haoti
 region. There still might exist otherpartial barriers, but their �ux is large 
ompared to the dominant partial barrier.3.1.1 Map with a regular stripeAt this point we review a mapping introdu
ed by Ishikawa, Tanaka, and Shudo in Ref. [54℄,be
ause it inspired the design of our map with one partial barrier, see Se
. 3.1.2. Res
aled toa phase spa
e of size 1, this ki
ked system is des
ribed by the �rst derivative of kineti
 andpotential energy
T ′(p) =

1

2π

(
8πap+

1

2
(d1 − d2) +

1

2
[8πap− ω + d1] tanh [b(8πp− pd)] (3.1)

+
1

2
[−8πap + ω + d2] tanh [b(8πp+ pd)]

)

V ′(q) = −K

8π
sin(2πq) (3.2)



32 3.1 Designed map with one partial barrier
(a)

−1

2

−1

4

0

1

4

1

2

0
1

4

1

2

3

4
1

q

p

(b)

−5 0 5

T ′(p)Figure 3.1: (a) Phase-spa
e portrait of the map with a regular stripe de�ned by Eqs. (3.1)and (3.2) with the parameters a = 5, b = 100, d1 = −24, d2 = −26, ω = 1, pd = 5, and
K = 2 as in Ref. [54℄. The horizontal regular tori (lines) and the 
haoti
 sea (dots) aresharply separated. The fun
tion T ′(p) of Eq. (3.1) determines the phase spa
e stru
ture andis shown in (b). The dashed green lines are at p = ±pd/(8π) and indi
ate the border ofalmost 
onstant T ′(p) and therewith the border of the regular region in the phase spa
e (a).with parameters a, b, d1, d2, ω, pd for the kineti
 part. The potential is identi
al to the standardmap, Eq. (2.30), ex
ept for the prefa
tor 1

4
of the ki
king strength K.Figure 3.1 shows the phase spa
e and the �rst derivative of the kineti
 energy of the mapde�ned by Eqs. (3.1) and (3.2). The phase spa
e is well separated into regular tori and a 
haoti
sea surrounding them. This is a
hieved by the di�erent slopes of T ′(p) as shown in Fig. 3.1. Foralmost vanishing slope around p = 0 we �nd regular motion and for large slopes the dynami
sis 
haoti
. This will be dis
ussed in Se
. 3.1.2 in more detail.3.1.2 Design of the map Fpb with one partial barrierWe now design a map with one dominant partial barrier. For this we 
ompose T ′(p) of linearsegments similar to the map with a regular stripe dis
ussed in Se
. 3.1.1. For the potentialenergy we use the one of the standard map (ex
ept for the sign), whi
h is de�ned as

V (q) = − K ′

(2π)2
cos(2πq),

V ′(q) = +
K ′

2π
sin(2πq), (3.3)



3.1.2 Design of the map Fpb with one partial barrier 33with ki
king strength K ′. For the derivative of the kineti
 energy T ′(p) we use pie
ewise linearfun
tions (see Fig. 3.2)
T ′(p) =





ωreg for p ≤ pd,reg
ωreg + bleft · (p− pd,reg) for pd,reg ≤ p ≤ p�x − pd,lo
ω�x + b · (p− p�x) for p�x − pd,lo ≤ p ≤ p�x + pd,up
ωreg + bright · (p− p�x − pd,up) for p�x + pd,up ≤ p ≤ 1− pd,reg
ωreg for 1− pd,reg ≤ p ≤ 1

(3.4)
with parameters b, p�x, pd,reg, pd,up, pd,lo ∈ R, ωreg ∈ R \ Z, ω�x ∈ Z and the derived slopes

bleft = ω�x − b · pd,lo − ωreg
p�x − pd,lo − pd,reg and

bright = ωreg − ω�x − b · pd,up
1− pd,reg − p�x − pd,up , (3.5)respe
tively. The resulting fun
tion T ′(p) is shown in Fig. 3.2(b). This de�nes a ki
ked systemand we 
all the 
orresponding mapping Fpb. For p ≤ pd,reg and p ≥ 1 − pd,reg the winding
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T (p)Figure 3.2: (a) The phase spa
e of the map with one partial barrier Fpb 
onsists of a large
haoti
 sea (dots) between the upper and lower regular tori (lines). (b), (
) Illustration of
T ′(p), Eq. (3.4), and T (p). At momenta p, where T ′(p) is 
onstant, regular motion o

urs,while at p, where T ′(p) behaves linearly, the dynami
s is 
haoti
. The dashed green linesindi
ate the borders in the pie
ewise de�ned T ′(p) and are at p = pd,reg, p�x − pd,lo, p�x,
p�x + pd,up, and 1− pd,reg.



34 3.1 Designed map with one partial barrierfrequen
y is 
onstant and regular tori 
an exist. Around p = 1
2
we �nd three di�erent slopes,whi
h lead to a 
haoti
 region.In order to gain a deeper understanding of the map Fpb we dis
uss the impli
ations of aregion, where T ′(p) has non-vanishing slope b̃ and winding frequen
y ω̃

T ′(p) = ω̃ + b̃ · p, (3.6)whi
h yields the following mapping
q′ = q + ω̃ + b̃ · p mod 1, (3.7)
p′ = p− K ′

2π
sin(2πq′) mod 1. (3.8)We now 
ompare this mapping to the famous Chirikov's standard map (see Se
. 2.2)

Q′ = Q+ T ′stdmap(P ) = Q+ P mod 1, (3.9)
P ′ = P − V ′stdmap(Q′) = P +

K

2π
sin(2πQ) mod 1, (3.10)where we introdu
ed 
apital letters for position and momentum.In order to translate the 
oordinates q, p into the 
oordinates Q,P of the standard map, weidentify

Q = q, (3.11)
P = b̃ · p, (3.12)
K = −b̃ ·K ′. (3.13)Ex
ept for the additional winding due to ω̃, lo
ally the map Fpb behaves like the standard mapif the momentum and the absolute value of the ki
king strength are res
aled by the slope of

T ′(p). This needs to be 
onsidered whenever features of the standard map like 
haoti
ity areused to des
ribe features of the map Fpb. Furthermore, p is periodi
 with period 1/b̃, be
ause
q is only de�ned up to modulo 1.After this 
omparison with the standard map the resulting phase-spa
e stru
ture of thedesigned map Fpb 
an be understood: The large slopes in the upper and lower region (seeFig. 3.2) yield a high value for the standard map ki
king strength and therefore 
haoti
 motion.The 
entral part has only a small slope and its properties need to be 
ompared with the standardmap with smaller ki
king strength K. This feature is the de
isive property of our map Fpb, asit allows for di�erent e�e
tive ki
king strengths in one system. For non-integer ω̃ an additionalwinding is indu
ed, whi
h is needed for the regular region de�ned by (ωreg, pd,reg) in order toprovide the horizontal tori.



3.1.2 Design of the map Fpb with one partial barrier 35Up to now only an inhomogeneous 
haoti
 region has been introdu
ed and we need to dis
ussthe existen
e of a partial barrier in the 
entral part of the phase spa
e. By 
onstru
tion we�nd a �xed point of the mapping at (1
2
, p�x)

Fpb(
1
2
, p�x) = (1

2
+ ω�x + b · 0, p�x − K ′

2π
sin(2π[1

2
+ ω�x]))mod 1 =

(
1
2
, p�x) , (3.14)and at (0, p�x)

Fpb(0, p�x) = (0 + ω�x + b · 0, p�x − K ′

2π
sin(2π[0 + ω�x]))mod 1 = (0, p�x) , (3.15)as long as ω�x is 
hosen as an integer value.The stability of the �xed point is 
hara
terized by the Ja
obian matrix of the mapping (seeSe
. 2.1), whi
h for map Fpb is

DFpb(q, p) =

(
∂q′

∂q
∂q′

∂p
∂p′

∂q
∂p′

∂p

)
(q, p) =

(
1 b

−K ′ cos(2πq′) 1−K ′ cos(2πq′)b

)
(q, p) (3.16)and at the �xed point (q�x, p�x) reads

DFpb(q�x, p�x) = ( 1 b

−K ′ cos(2πq�x) 1−K ′ cos(2πq�x)b ) . (3.17)The tra
e of the Ja
obian matrix is
TrDFpb(q�x, p�x) = 2−K ′ cos(2πq�x)b = 2− bK ′ for q�x = 0

2 + bK ′ for q�x = 1
2
.

(3.18)For bK ′ ∈ (−4, 4) we have one stable (ellipti
) �xed point at (0, p�x) and one unstable (hyper-boli
) �xed point at (1
2
, p�x). A similar dis
ussion of possible �xed points applies for the regionabove p�x + pd,up and below p�x − pd,lo, too. In 
ontrast to the 
entral region the periodi
ityin p determined by 1/bleft and 1/bright is mu
h smaller and their instabilities determined byEq. (3.18) are mu
h larger for the parameters used in this thesis.Quantum me
hani
ally, we 
onsider the map Fpb on the torus as dis
ussed in Se
. 2.6. Thisrequires the periodi
ity of the potential energy, whi
h is indeed ful�lled by V (q) in Eq. (3.3),and of

exp{−iT (p)/~e�} = exp{−2πi ·N · T (p)/(MpMq)}
Mq=Mp=1

= exp{−2πi ·N · T (p)} (3.19)as a fun
tion of p, whi
h in general is not ful�lled. We introdu
e ∆T := [T (1) − T (0)] as anabbreviation for the di�eren
e of the kineti
 energy between the lower and upper boundary of



36 3.1 Designed map with one partial barrierthe phase spa
e. In order to a
hieve periodi
ity of the quantity in Eq. (3.19) the produ
t N ·∆Tneeds to be an integer. To permit this 
onstraint at least for some N = 1/he�, we slightly varythe value of pd,reg: We rede�ne pd,reg → pd,reg + δpd,reg su
h that N0 ·∆T ∈ Z for some N0 ∈ Nand a
hieve the periodi
ity of Eq. (3.19) for all N , whi
h are multiples of N0. The 
hange of
pd,reg 
an be 
al
ulated expli
itly as

δpd,reg := ⌊N0 ·∆Told⌋/N0 −∆Told
ωreg − ω�x + b/2(pd,lo − pd,up) , (3.20)where ⌊x⌋ is the largest integer value smaller or equal to x and ∆Told denotes the di�eren
e ofthe kineti
 energy without introdu
ing δpd,reg. An upper bound for δpd,reg is given by

|δpd,reg| ≤ 0.5/N0

ωreg − ω�x + b/2(pd,lo − pd,up) , (3.21)whi
h has to be 
ompared to pd,reg in order to evaluate the 
hange 
aused by δpd,reg on themapping.3.1.3 Constru
tion of a partial barrierThe starting point for the 
onstru
tion of a partial barrier in the designed map Fpb is the stableand the unstable manifold of the hyperboli
 �xed point at (1
2
, p�x). We will 
hoose the upperextension of the 
entral region given by pd,up to be almost zero su
h that the upper bran
hesof the stable and the unstable manifold have almost no support on the plateau with slope b(see Fig. 3.2). Their dynami
s is mainly governed by the upper region, whi
h is mu
h more
haoti
, be
ause the e�e
tive ki
king strength brightK ′ is mu
h larger than in the 
entral regionas bright ≫ b in all examples 
onsidered in the following. Therefore the transport limitation dueto these bran
hes is negligible and we 
an restri
t ourselves to the lower bran
h of the stableand the unstable manifold, whi
h are lo
ated on the 
entral part of T ′(p) (see Fig. 3.2).These bran
hes are shown in Fig. 3.3 and 
an be used to quantify the �ux transported throughthis region. In order to 
onstru
t almost invariant subsets of the phase spa
e, the invariantstable and unstable manifold need to be 
ombined. Starting with the hyperboli
 �xed pointwe 
hoose the stable manifold and at some arbitrary interse
tion point swit
h to the unstablemanifold following it until we rea
h the �xed point again. The interse
tion point of swit
hing isarbitrary and all partial barriers 
onstru
ted in that way will have the same �ux Φ. Ea
h imageand preimage of one of the partial barriers again gives rise to a partial barrier with the same�ux and the same size of area below and above the partial barrier due to area preservation (seeFig. 3.3(
) for 
omparison of a partial barrier and its preimage). For the 
lassi
al dynami
sthere is no distinguished partial barrier and we therefore 
hoose a simple looking one for ourinvestigation. This is supported by the Husimi representation of eigenstates, whi
h respe
ts



3.1.3 Constru
tion of a partial barrier 37
hyp. fixed point

0.3

0.5

0.7

0.0 0.2 0.4 0.6 0.8 1.0

stable

unstable

q

p

(a)

0.3

0.5

0.7

0.0 0.2 0.4 0.6 0.8 1.0q

p

(b)

Fpb

flux Φ

(upwards)

0.3

0.5

0.7

0.0 0.2 0.4 0.6 0.8 1.0

partial barrier

preimage of partial barrier

q

p

(c)

Figure 3.3: Illustration of a partial barrier built from stable and unstable manifolds of ahyperboli
 �xed point for the map Fpb. In (a) the lower bran
h of the stable manifold (blue)and the unstable manifold (red) are shown. (b) Shorter versions of them are used to de�nethe partial barrier and 
onstru
t their preimage in (
). The �ux Φ towards the upper regionas well as the �ux towards the lower region are 
olored. The image of the �ux towards thelower region under Fpb is illustrated by the arrow.this partial barrier. Nonetheless the partial barrier is not uniquely de�ned in the quantumsystem. We observe that the Husimi representation of some eigenstates respe
ts the partialbarrier whereas other eigenstates ignore the partial barrier.



38 3.1 Designed map with one partial barrier3.1.4 De�nition of examples for the map FpbIn the following, we will 
onsider several parameter sets for the map Fpb introdu
ed in Se
. 3.1.2.In this se
tion we provide the parameter values and introdu
e four di�erent examples.For all 
onsidered examples we 
hoose
ω�x = 20, (3.22)
ωreg = 0.411, (3.23)
pd,reg = 0.125, (3.24)
K ′ = 0.5, (3.25)
N0 = 10. (3.26)In order to vary the �ux of the partial barrier dis
ussed in Se
. 3.1.3, we 
hoose di�erent slopes

b for the examples (see Tab. 3.1). Larger slope b yields a larger e�e
tive ki
king strength bK ′and therefore stronger 
haos su
h that the �ux Φ in
reases with b. The lower limit of the
entral region determined by pd,lo is adjusted su
h that the lower bran
hes of the stable andthe unstable manifold are not a�e
ted up the �rst interse
tions. If pd,lo is 
hosen too small thepartial barrier 
onstru
ted from the lower bran
hes will have a mu
h larger �ux (see dis
ussionof upper bran
hes of Se
. 3.1.3), be
ause none of the loops is lo
ated in the 
entral region andExample 1 2 3 4
p�x 0.553 0.578 0.599 0.613
pd,lo 0.15 0.15 0.1725 0.195
pd,up 0.015 0.015 0.025 0.025
b 6.0 3.0 2.0 1.5
bleft 67.16 62.93 64.44 66.22
bright -64.05 -69.34 -77.89 -83.88
∆Told 9.19486 9.27773 9.61681 9.8451
δpd,reg -0.00027 -0.00115 0.000865 0.00232
∆T 9.2 9.3 9.6 9.8
A
h,up 0.422 0.422 0.419 0.424
A
h,lo 0.421 0.423 0.419 0.424
Areg 0.157 0.1511 0.162 0.152
Φ 0.0053 0.0012 0.0003 0.00011/Φ 187.9 823.8 3065.7 9675.41/Φ′ 327 1814 7357 38722Table 3.1: Parameter values of the examples of map Fpb. The �rst 4 rows provide additionalparameters for the individual example to the 
ommon given parameters of Eq. (3.22). The5 
entral rows are quantities, whi
h are 
al
ulated from these parameters (see Eq. (3.5) andEq. (3.20)). The last rows are determined from the 
orresponding phase spa
e ex
ept for Φ′,whi
h will be de�ned in Se
. 3.1.5.



3.1.4 De�nition of examples for the map Fpb 39they are stret
hed into the lower 
haoti
 region. The upper limit pd,up is 
hosen su
h that theupper bran
hes of the stable and the unstable manifold have almost no support on the 
entralregion and therefore yield no additional transport limitation as dis
ussed in Se
. 3.1.3. Fromthese parameters the slopes bleft and bright for the straight lines in T ′(p) given in Eq. (3.4) 
anbe 
al
ulated using Eq. (3.5). Furthermore the variation δpd,reg of pd,reg follows a

ording toEq. (3.20), whi
h is indeed a small 
hange in the de�nition of the map. Therewith, also the oldand new di�eren
e of the kineti
 energy at upper and lower phase-spa
e limit ∆Told and ∆Tare �xed. All these values are given in Tab. 3.1 for four di�erent examples.Figure 3.4 shows the 
entral part of the phase spa
e for the introdu
ed examples. Thehyperboli
 �xed point with its lower bran
h of the stable and of the unstable manifold as wellas the limits p�x − pd,lo and p�x + pd,up are plotted. The surrounding phase spa
e exhibits onlysmall islands.For ea
h of the examples de�ned in Tab. 3.1 we 
onstru
t the partial barrier as dis
ussed in
Ex. 1
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Figure 3.4: Stable manifold (blue solid line) and unstable manifold (red solid line) of thehyperboli
 �xed point at (0.5, p�x) for the examples 1 (Φ ≈ 1/200), 2 (Φ ≈ 1/800), 3(Φ ≈ 1/3000), and 4 (Φ ≈ 1/104) of the map Fpb. The bla
k dashed lines indi
ate thepositions of p�x − pd,lo and p�x + pd,up. The area of one loop between the stable and theunstable manifold is the �ux Φ a
ross the partial barrier 
onstru
ted from these manifolds.



40 3.1 Designed map with one partial barrierSe
. 3.1.3. As se
ond border of the 
haoti
 regions we use the regular torus 
losest to the 
haoti
sea, where the latter is only an approximation, be
ause it is hard to �nd the last surviving KAMtorus [9,55℄. Therewith the size of the upper 
haoti
 region A
h,up and the lower 
haoti
 region
A
h,lo is �xed (see Tab. 3.1). Although the size of the regular region is �xed by the 
hoi
e of
pd,reg the measured values vary slightly, whi
h indi
ates the a

ura
y of the measurement ofthe region sizes.Numeri
ally the �ux Φ is determined from the loop area between the stable and the unstablemanifold by use of a polygon approximation. Therefore the a

ura
y of the �ux depends on thequality of the manifolds, whi
h we 
onstru
ted by forward and ba
kward iterations of points
lose to the �xed point.3.1.5 Chara
terization of the 
lassi
al system FpbWe now 
hara
terize the mapping with one partial barrier Fpb introdu
ed in the last se
tionto 
he
k the predi
ted 
lassi
al property, that the dis
ussed partial barrier is the one withsmallest �ux. The impa
t of a partial barrier on the 
lassi
al system is the limitation of thees
ape of orbits from the en
losed region for intermediate times. Orbits are trapped for severaliterations until they enter the turnstile and are mapped into the other region. The number ofiterations needed to leave the initial region is 
alled es
ape time and a quantitative measure ofthe trapping is given by the distribution of these es
ape times. In the 
ase of a 
haoti
 regionthis distribution de
ays exponentially [5℄

p(t) ∝ exp{−αt}. (3.27)It is determined by the es
ape rate α, i.e. the probability to leave a 
haoti
 region through theturnstile. Its inverse is the average es
ape time, 
alled dwell time tdwell.The 
lassi
al es
ape rate α is given by the ratio of the �ux a
ross the partial barrier Φ andthe size of the a

essible region Aa

ess,i
αi =

1

tdwell,i = Φ

Aa

ess,i . (3.28)There are several ways of de�ning es
ape time distributions p(t). We �rst apply a de�nitionwhi
h uses one long orbit. The segments of the orbit are labeled by `upper' and `lower' a

ordingto the upper and lower 
haoti
 region. The es
ape time is de�ned as the number of 
onse
utiveiterations before the orbit enters the opposite region. The densities p′up(t) and p′lo(t) 
ontainall es
ape times for the upper and the lower 
haoti
 region, respe
tively. Figure 3.5 showsthe resulting distributions for example 2 of the map Fpb. The average es
ape time of upper
〈tup〉 ≈ 345 and lower region 〈tlo〉 ≈ 348 are in good agreement with the expe
ted value
tdwell,i = Aa

ess,i/Φ ≈ 346. Also the density of es
ape times of the upper region p′up(t) is
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Figure 3.5: Es
ape time distribution for the example 2 of the map Fpb (expe
ted �ux
Φ ≈ 1/825) of an orbit started at (q, p) = (0.25, 0.75) and iterated 107 times. The numeri
allydetermined densities of es
apes times from the upper and the lower region, p′up and p′lo,are shown as blue histograms in (a) and (b), respe
tively. They are 
ompared with theexpe
ted exponential de
ay proportional to exp{−t/tdwell,i} (solid bla
k line) with the dwelltime tdwell,i = Aa

ess,i/Φ ≈ 346. The distribution p′up is well des
ribed by this exponentialde
ay. However, the distribution p′lo shows a di�erent exponential de
ay proportional to
exp{−t/762} (dashed bla
k line).well des
ribed by the exponential de
ay using tdwell,i. However, for the lower 
haoti
 regionthe distribution p′lo(t) 
learly deviates from the expe
ted behavior. Here the de
ay is ratherdes
ribed by exp{−t/762}, whi
h is 
onsistent with a smaller �ux Φ′ ≈ 1/1800 (assuming thatthe area Aa

ess,i is un
hanged). This �nding indi
ates the existen
e of at least one furtherpartial barrier in the 
entral region p ∈ [p�x − pd,lo, p�x + pd,up]. For the other examples su
hkind of mismat
h of p′lo(t) is also observed. Note that the average value of the es
ape times isindependent of this �nding, be
ause it depends only on the �ux a
ross the 
onsidered partialbarrier. In terms of the distributions shown in Fig. 3.5, the 
orre
t average es
ape time isa
hieved due to many qui
kly es
aping events of the orbit. At these events the orbit entersthe lower region, but returns to the upper 
haoti
 region before it passes the additional partialbarrier.In order to examine this �nding in more detail, we introdu
e the survival probability asanother measure of the trapping. For this, many orbits are started inside one region and areiterated until they leave this region. The survival probability P (t) is the fra
tion of orbits,whi
h stay in the initial region at least up to time t. The de�nition of the upper and thelower region depends on the de�nition of the border of the regular region. Therefore eventuallyregular or nearly regular orbits might be in
luded. Hen
e, orbits whi
h are trapped up to themaximal time are assumed to be regular and removed from the statisti
s. Figure 3.6 showsthe survival probability of the upper and the lower region of the same example as in Fig. 3.5.
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Figure 3.6: Survival probability Pup(t) and Plo(t) for the example 2 of the map Fpb oforbits started equidistantly in the upper 
haoti
 region (blue solid histogram) and in thelower 
haoti
 region (green dotted histogram). At small times Pup(t) is des
ribed by anexponential de
ay with tdwell,i ≈ 346. In 
ontrast, Plo(t) follows a slower exponential de
aywith tdwell,i ≈ 762 indi
ating the existen
e of a partial barrier with a smaller �ux in the lower
haoti
 region.Again the distribution asso
iated with the lower 
haoti
 region exhibits a slower exponentialde
ay given by the enhan
ed dwell time tdwell, lo ≈ 762.Finally, we 
on
lude that there is an additional partial barrier below the partial barrier
onstru
ted in Se
. 3.1.3 and this additional partial barrier has smaller �ux. The value of this�ux is derived from exponential �ts to the survival probability assuming that the 
hange ofthe areas is negligible. This �tted �ux for the examples 
onsidered up to now is given as Φ′ inTab. 3.1. This additional partial barrier might be attributed to a 
antorus or the stable andthe unstable manifolds of a periodi
 orbit of any period. As within this thesis, this additionalpartial barrier 
ould not be 
onstru
ted, we remove this one by an approa
h presented in thefollowing se
tion and restri
t ourselves to the investigation of the partial barrier 
onstru
ted inSe
. 3.1.3.3.1.6 Extension of the map Fpb � phase-spa
e drillingWe want to investigate the impa
t of the partial barrier 
onstru
ted in Se
. 3.1.3 and getrid of the unknown additional partial barriers dis
ussed in Se
. 3.1.5. Therefore the previouslydis
ussed map Fpb is 
omposed with a lo
al rotation de�ned in some 
ir
ular phase-spa
e region.We 
all this approa
h phase-spa
e drilling. The rotation is given by
Frot :

(
q

p

)
7→
(
q

p
)+

(
cos(ω
) − sin(ω
)
sin(ω
) cos(ω
) )(q − q


p− p
) (3.29)



3.1.6 Extension of the map Fpb � phase-spa
e drilling 43for points inside a 
ir
le of radius r
 around (q
, p
). The points are rotated by an angle of
ω
 in 
ounter
lo
kwise dire
tion and all points outside the 
ir
le are un
hanged. The resultingmapping is dis
ontinuous on the 
ir
le line. While the rotation itself is an integrable motionand the distan
e to the point (q
, p
) is un
hanged by the mapping, the 
omposition Fpb,rot of
Fpb and Frot yields stronger 
haos in the sense of less transport limitations inside the 
haoti
region.Figure 3.7 illustrates the idea of the destru
tion of partial barriers using the additionalrotation. If we, for example, assume that the green horizontal line in Fig. 3.7 is a partialbarrier with a very small �ux, then the �ux of the 
omposed mapping Fpb,rot = Frot ◦ Fpb isdetermined by the fra
tion of the blue 
rosses lo
ated below the partial barrier. Therefore the
omposed mapping has an enhan
ed �ux a
ross the green horizontal line.The quantum version of the map introdu
ed above is the 
omposition of the unitary timeevolution operators of the original map Upb and the rotation Urot. For Urot the quantizationpro
edure is not straightforward, but 
an be performed using the eigenstates of the harmoni
os
illator. We use the set of harmoni
 os
illator eigenstates {ηm} as a basis set inside the 
ir
learound (q
, p
). We de�ne the proje
tor onto the 
orresponding sub-spa
e and the asso
iated

q

p ωc

(qc, pc)

Figure 3.7: Illustration of the a
tion of the map Frot. During one appli
ation of Frot the redtriangles lo
ated above the green horizontal line are mapped to the blue 
rosses and some ofthem are below the green horizontal line. This transport of points below the green horizontalline gives rise to an enhan
ed �ux a
ross this line. The �ux is maximal for ω
 = π.
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PHO :=

NHO−1∑

m=0

|ηm〉〈ηm|, (3.30)
UHO :=

NHO−1∑

m=0

λm|ηm〉〈ηm|, (3.31)where λm = exp{+i(m + 1
2
)ω
} is the eigenvalue for the eigenstate ηm and the number of
onsidered states NHO < N is 
hosen a

ording to NHO =

⌊
1
2
+ πr2
/he�⌋. Note that theeigenvalue has the opposite sign as expe
ted for the harmoni
 os
illator, be
ause ω
 is the
ounter
lo
kwise in
rease of the angle whereas orbits in the harmoni
 os
illator evolve 
lo
kwisein time. An important property of the states {ηm} is that they are well lo
alized inside the
ir
le and have almost no tails into the region outside of the 
ir
le. Therefore they give a sharpproje
tion onto the 
ir
le, smoothened on the size of Plan
k's 
onstant.The quantum time evolution 
orresponding to the 
lassi
al rotation is given by

Urot = (1− PHO) + UHOPHO = (1− PHO) + UHO. (3.32)That is, the proje
tion of a state onto the 
ir
le with {ηm : m = 0, ..., NHO− 1} is time evolvedusing UHO whereas the other 
omponents, orthogonal to the set {ηm}, are un
hanged. One
he
ks the unitarity of Urot using the unitarity of UHO and the orthogonality of the states {ηm}.Therefore the total time evolution operator
Upb,rot := UrotUpb (3.33)is unitary, too.An approa
h to obtain eigenstates 
orresponding to the 
lassi
al rotation numeri
ally is thedire
t quantization of the time-independent harmoni
 os
illator. This is dis
ussed in Se
. 2.7and extends the appli
ability of this approa
h to eigenstates of the harmoni
 os
illator, forwhi
h the analyti
al expressions, in parti
ular the Hermite polynomials, 
annot be evaluatednumeri
ally with su�
ient pre
ision.This kind of modi�
ation of a given map by superimposing an additional mapping is notrestri
ted to rotations on harmoni
 os
illator like islands. More generally, one may 
onsideran arbitrary island and follow the dynami
s inside the island, while outside the mapping isthe identity. The quantum version of su
h a map 
an be derived as above by repla
ing theeigenstates of the harmoni
 os
illator {ηm} by eigenstates of the island and the λm by eigenvaluesof the 
orresponding quantum map. In order to have properly lo
alized states one has to restri
tthe used states to those lo
ated well inside the island with almost no overlap with the 
haoti
region.



3.1.7 De�nition of examples for the map Fpb,rot 45In order to preserve time reversal invarian
e of the 
omposed map, we have to re
all thedis
ussion of Se
. 2.5 and investigate the assumptions needed for the 
omposed map to possesstime reversal invarian
e. Although the ki
ked map Fpb and the lo
al rotation Frot ful�ll timereversal invarian
e it is not obvious that the 
omposed map Fpb,rot = Frot ◦ Fpb does. Themap Fpb,rot is of the type of Eq. (2.45), where we identify F1 with Fpb and F2 with Frot. Thede�nition of √F2 is a rotation with a 
hange of the angle of ω
/2.As the �rst step, we show that the map Fpb possesses an anti
anoni
al symmetry. In orderto do so, we have to 
onsider the map in the half ki
k representation Fpb,hk, whi
h is 
anoni
al
onjugated to the map itself. The anti
anoni
al symmetry ful�lled by Fpb,hk is (see Se
. 2.5)
τ̃ : (q, p) 7→ (1− q, p) (3.34)with τ̃ 2 = 1 and we 
an show that

τ̃ ◦ Fpb,hk ◦ τ̃ = F−1
pb,hk ⇐⇒ V ′(1− q) = V ′(q), (3.35)whi
h is ful�lled for the potential 
hosen in Eq. (3.3).In order to prove the time reversal invarian
e of Eq. (2.45), it was used that both mapspossess the same anti
anoni
al symmetry. Therefore also the rotation Frot needs to ful�ll

τ̃ ◦ Frot ◦ τ̃ = F−1
rot , (3.36)whi
h is equivalent to 1− q
 = q
 and therefore the 
enter of the 
ir
le needs to lie on the line

q = 1
2
. If one 
onsiders a rotation with a 
enter not lo
ated on this line, one has to 
hoose twonon-overlapping 
ir
les with p
,1 = p
,2, q
,1 = 1−q
,2 and ω
,1 = ω
,2. It is important that thesetwo 
ir
les do not overlap in order to think of the two lo
al rotations as one mapping.

3.1.7 De�nition of examples for the map Fpb,rotThe mapping Fpb,rot de�ned in the last se
tion is 
omposed of the half ki
k version of map Fpbintrodu
ed in Se
. 3.1.2 and a rotation. For map Fpb we use the parameters of Tab. 3.1 and
hoose pd,up = 0.005 for all 
onsidered examples. For the rotation Frot the values determiningthe rotation are given in Tab. 3.2. The rotation frequen
y ω
 is 
hosen 
lose to π in order tomaximize the impa
t of the additional rotation as illustrated in Fig. 3.7. The position andradius of the rotating region are 
hosen su
h that the additional partial barrier are removed,whi
h is 
he
ked in the next se
tion.



46 3.1 Designed map with one partial barrierExample 1 2 3
q
,1 0.5 0.5 0.5
p
,1 0.33 0.46 0.48
r
,1 0.2 0.1 0.1
ω
,1 3.0 3.0 3.0
πr2
,1 0.13 0.03 0.03
q
,2 0.2
p
,2 0.66
r
,2 0.15
ω
,2 3.0
πr2
,2 0.07Table 3.2: Parameter values of the basi
 examples of map Fpb,rot in addition to values givenin Tab. 3.1. The third drilled region is determined by q
,3 = 1 − q
,2, p
,3 = p
,2, r
,3 = r
,2,and ω
,3 = ω
,2. The impa
t of the drilling 
an be estimated by the size of the drilling region

πr2
,i 
ompared to the size of the phase spa
e.3.1.8 Chara
terization of the 
lassi
al system Fpb,rotAfter introdu
ing the map with lo
al rotation Fpb,rot, we have to verify that now only theexpe
ted partial barrier signi�
antly limits the transport between the upper and the lower
haoti
 region. In analogy to Se
. 3.1.5 we 
onsider the survival probability of orbits startedin the upper and the lower 
haoti
 region, respe
tively. Figure 3.8 
ompares the resultingdistributions Pup(t) and Plo(t) of example 2 of the map Fpb to example 2 of the new map
Fpb,rot. By use of the phase-spa
e drilling the additional partial barrier with mu
h smaller
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Figure 3.8: Survival probability for (a) example 2 of the map Fpb (Φ′ ≈ 1/1800) and (b)example 2 of the map Fpb,rot (Φ ≈ 1/800, right pi
ture): Pup(t) and Plo(t) of orbits startedin the upper (blue solid histogram) and lower (green dotted histogram) 
haoti
 region. In(a) the dwell time a

ording to the �ux Φ′ is shown as dashed line and in (b) an exponentialde
ay with a dwell time enhan
ed by a fa
tor of 1.1 is shown as dashed line.



3.2 Quantum suppression of transport 47�ux is removed and the survival probability in the lower region is in good agreement with theexponential de
ay determined by the dwell time tdwell,i = Aa

ess,i/Φ. In Fig. 3.8(a) a slowerde
ay is plotted as a dashed line and gives an estimate of the previously found exponentialde
ay 
aused by the additional partial barrier. The dashed line in Fig. 3.8(b) 
orresponds toa dwell time enhan
ed by a fa
tor of 1.1 and gives an estimation of the agreement with theexpe
ted exponential de
ay.The distributions for the example 2 and also for the other examples of map Fpb,rot are in goodagreement with the expe
ted de
ay. Therefore we 
on
lude that using the phase-spa
e drillingthe additional partial barrier has been destroyed. The partial barrier 
onstru
ted in Se
. 3.1.3is the only limitation for 
lassi
al transport.3.2 Quantum suppression of transportAs des
ribed in Se
. 2.4 a 
lassi
al parti
le started in the upper 
haoti
 region (see Fig. 3.9(a))will eventually enter the turnstile and in the next step is mapped to the lower 
haoti
 region.Therefore any orbit initially lo
ated in the upper 
haoti
 region will at large times �ll the whole
haoti
 sea quite uniformly. Hen
e, partial barriers in�uen
e the 
lassi
al dynami
s only onintermediate time s
ales, where a typi
al orbit is restri
ted to one part of phase spa
e. At largetimes su
h a 
haoti
 orbit will explore the whole 
haoti
 sea.In 
ontrast to the 
lassi
al dynami
s, the 
orresponding quantum system 
an be more re-stri
tive as illustrated in Fig. 3.9(b). In analogy to a 
lassi
al initial 
ondition (q, p), quantumme
hani
ally we use a 
oherent state with minimal un
ertainty (see Se
. 2.8) 
entered at (q, p)as initial state. Although under time evolution this initial state spreads, almost no weightis transmitted into the lower 
haoti
 region. This observation holds even at arbitrary largetimes, whi
h will be
ome 
lear if properties of eigenstates are 
onsidered. This is surprisingas typi
ally a quantum system has, due to tunneling, more transport 
hannels than the 
orre-sponding 
lassi
al system. Here, however, quantum me
hani
s is more restri
tive than 
lassi
alme
hani
s.For small Plan
k's 
onstant the 
lassi
al behavior of a partial barrier is re
overed as illustratedin Fig. 3.9(
). At large times, the wave pa
ket spreads over the whole 
haoti
 region quiteuniformly. As a fun
tion of Plan
k's 
onstant we �nd that a partial barrier behaves in di�erentways: like a barrier for large Plan
k's 
onstant and like a partial barrier for small Plan
k's
onstant.The impa
t of partial barriers on the 
orresponding quantum system was �rst mentionedin Ref. [15℄. Here, Ma
Kay, Meiss, and Per
ival 
onje
tured: `The quantization is limited bythe size of the turnstiles in units of Plan
k's 
onstant. Sin
e the turnstiles vary in a very
ompli
ated way as a fun
tion of frequen
y, this 
riterion is di�
ult to apply in pra
ti
e.' Theimpa
t of a partial barrier on the quantum system is governed by the ratio of the 
lassi
al
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)

... ... ...

... ... ...
heff

heffFigure 3.9: Classi
al (a) and quantum (b, 
) time evolution a
ross the partial barrier (solidgreen line) of the map Fpb,rot. The 
lassi
al �ux Φ equals 1/190 (light green shaded region)and Plan
k's 
onstant is 1/40 in (b) and 1/1000 in (
). The size of Plan
k's 
onstant he� isillustrated by an orange square in the last row. The rows 
orrespond to times t = 0, 1, 2,
500, and 2000 (top to bottom).
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(a) (b) (
)Figure 3.10: Comparison of the size of Plan
k's 
onstant (orange square) to the 
lassi
al�ux Φ, whi
h is the size of one part of the turnstile (light green shaded region within the solidline indi
ating the partial barrier and the dotted line indi
ating the preimage of the partialbarrier). (a) Plan
k's 
onstant ex
eeds the 
lassi
al �ux and the quantum system 
annotresolve the 
lassi
al transport 
hannel (quantum suppression of transport). (
) Plan
k's
onstant is small 
ompared to the 
lassi
al �ux and quantum wave pa
kets behave 
lassi
allywith respe
t to the partial barrier. (b) Plan
k's 
onstant and the 
lassi
al �ux are of the sameorder and we �nd a transition from quantum suppression of transport to 
lassi
al behaviorof the partial barrier.�ux divided by Plan
k's 
onstant, where both 
orrespond to areas in phase spa
e. This idea isillustrated in Fig. 3.10. For Plan
k's 
onstant being large 
ompared to the 
lassi
al �ux we �ndquantum suppression of transport. Whereas in the opposite 
ase of small Plan
k's 
onstant
lassi
al transport behavior is re
overed. In the Se
. 3.2.3 we de�ne suitable measures in orderto investigate the quantum transition of a partial barrier between these two limiting 
ases.In order to get rid of the ambiguity of the �nal time when the time evolution has settled, wenow 
onsider properties of eigenstates of the quantum map. Figures 3.11 and 3.12 show Husimiand momentum-spa
e representations of eigenstates, whi
h represent the typi
al behavior ofeigenstates. The states in Fig. 3.11 are lo
alized and the one in Fig. 3.12 is delo
alized withrespe
t to the partial barrier. These two opposite behaviors 
orrespond to Plan
k's 
onstantbeing large and small 
ompared to the 
lassi
al �ux. In the latter 
ase 
haoti
 eigenstatesextend over the whole 
haoti
 region quite uniformly. As dis
ussed in Se
. 3.2.3, properties ofeigenstates 
an be used to give an equivalent des
ription of the quantum transition of a partialbarrier.
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0.0 0.3|φ(pj)|2Figure 3.11: Husimi and momentum representation of states lo
alized in one 
haoti
 regionfor the map Fpb,rot. The 
lassi
al �ux Φ equals 1/190 and Plan
k's 
onstant is 1/50. Typi
al
haoti
 eigenstates either lo
alize above or below the partial barrier.
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0.00 0.02|φ(pj)|2Figure 3.12: Husimi and momentum representation of a delo
alized state for the map Fpb,rot.The 
lassi
al �ux Φ equals 1/190 and Plan
k's 
onstant is 1/800. Typi
al 
haoti
 eigenstatesextend over the whole 
haoti
 region.



3.2.1 Time s
ales for quantum transport 513.2.1 Time s
ales for quantum transportUp to now we dis
ussed the quantum transition of a partial barrier as a fun
tion of the ratio ofthe 
lassi
al �ux Φ and the e�e
tive Plan
k's 
onstant he�. An alternative interpretation of thequantum suppression of transport is provided by the 
onsideration of the involved time s
ales.The 
lassi
al impa
t of a partial barrier 
an be des
ribed either by its �ux Φ or by the time atypi
al orbit remains on one side of the partial barrier, whi
h we refer to as dwell time tdwell.The dwell time in region i is given by (see e.g. Ref. [44℄)
tdwell,i = Aa

ess,i

Φ
i = 1, 2, (3.37)where Aa

ess,i is the area an orbit in region i 
an a

ess.As a matter of fa
t the dis
reteness of quantum levels remains hidden up to a 
ertain time,the so-
alled Heisenberg time tH, whi
h therefore de�nes a further system spe
i�
 time s
ale.Equivalently, one may obtain this quantity as the time at whi
h the mean level spa
ing 〈∆ϕ〉
ontributes 2π in the exponent of the time evolution, whi
h for maps reads exp{i〈∆ϕ〉tH} andwith 〈∆ϕ〉 = 2π/N yields

tH = N =
1

he� . (3.38)Asso
iated with region i there are N
h,i 
haoti
 states and therefore the Heisenberg time forthis sub-system is
tH,i = N
h,i = Aa

ess,iN = Aa

ess,itH. (3.39)By use of these time s
ales the ratio of the �ux and Plan
k's 
onstant 
an be written as

Φ

he� = NΦ = tHΦ = tHAa

ess,i
tdwell,i =

tH,1
tdwell,1 =

tH,2
tdwell,2 ; (3.40)namely as the ratio of the Heisenberg time and the dwell time asso
iated with regions 1 and2, respe
tively. This gives rise to the following alternative interpretation of the quantum sup-pression of transport a
ross the partial barrier. For Heisenberg time being small 
ompared tothe dwell time we �nd this quantum suppression. In this situation a typi
al orbit of length

tH will not have visited the region behind the partial barrier. Semi
lassi
ally, the spe
tralproperties of a 
haoti
 quantum system are determined by periodi
 orbits up to length tH/2,whi
h is shown by Berry and Keating by resummation of periodi
 orbit sums [56�58℄ and re-viewed in Ref. [59, Se
. 10.5℄. As long as the properties of the quantum system are des
ribedby short (
ompared to the dwell time) periodi
 orbits, wave pa
kets will lo
alize in the initialregion. This is similar to the phenomenon 
alled `s
arring', introdu
ed by Heller in 1984 [60℄,where quantum states lo
alize on short unstable periodi
 orbits and give rise to nonuniformly



52 3.2 Quantum suppression of transportdistributed wave fun
tions. In the opposite situation, where the Heisenberg time is large 
om-pared to the dwell time, a typi
al orbit of length tH will extend over the region behind thepartial barrier and a

ording to semi
lassi
s, also a wave pa
ket of the quantum system willspread over this region.Note that for open systems the ratio of the Heisenberg time and the dwell time 
an berelated to the number of open 
hannels (see Ref. [61�63℄ and referen
es therein). For 
haoti
open systems the 
lassi
al dwell time 
an be related to the (quantum) Wigner delay time andtherefore also to the ratio of the Heisenberg time and the size of the s
attering matrix (numberof open 
hannels). A system with a partial barrier may be 
onsidered as being 
omposedof two open systems, whi
h are 
onne
ted at the opening. The 
onne
tion via the openings
orresponds to the turnstile, whi
h allows for an ex
hange of phase-spa
e volume betweenthe two sub-systems. Applying the results of open systems to this situation gives rise to theidenti�
ation of Eq. (3.40) with the number of 
hannels n 
onne
ting the two sub-systems. Thisis 
onsistent with asso
iating n states with the phase-spa
e region Φ. This identi�
ation willbe used in Se
. 4.3, where we introdu
e a matrix model to des
ribe the quantum transition ofa partial barrier.
Ehrenfest timeThe Ehrenfest time tE,i is the time s
ale on whi
h a phase-spa
e area of the size of Plan
k's
onstant he� is stret
hed onto the a

essible phase-spa
e area Aa

ess,i in terms of the 
lassi
aldynami
s

√
Aa

ess,i ≈√he� exp{L · tE,i}, (3.41)

tE,i = ln(Aa

ess,i/he�)
2L

=
ln(Aa

ess,i)− ln(he�)

2L
, (3.42)where L is the largest Lyapunov exponent in the a

essible region Aa

ess,i (see Se
. 2.3). It isthe time s
ale of mixing in the 
lassi
al system and it has to be small 
ompared to the otherinvolved time s
ales

tE,i = ln(tH,i)
2L

≪ tH,i , (3.43)
tE,i = ln(tH,i)

2L
=

ln(tdwell,i · Φ/he�)
2L

≪ tdwell,i (3.44)in order to allow for random matrix predi
tions, be
ause random matri
es 
orrespond to in-stantaneous mixing. We will 
on�rm the validity of Eqs. (3.43) and (3.44) in Se
. 4.2.4, wherewe 
ompare the results for our designed map to a random matrix model.



3.2.2 Transition parameter-�ux relation 533.2.2 Transition parameter-�ux relationIn order to des
ribe universal features of the quantum transition for a partial barrier fromquantum suppression to 
lassi
al transport, we introdu
e a s
aling parameter Λ in terms ofsystem properties like the 
lassi
al �ux Φ and Plan
k's 
onstant he�. This Λ-�ux relation isneeded to 
ompare the results for random matrix models with the results for the quantum map.The following derivation is similar to Se
. 5.2 of Ref. [23℄, but here we 
onsider maps basedon ki
ked systems instead of 
ontinuous �ows. In order to relate the 
lassi
al �ux to a 
ouplingin the quantum system we have to make the assumption that the quantum rate of transporta
ross the partial barrier equals the 
orresponding 
lassi
al rate. The 
lassi
al rate (for systemswith period 1) is given by
Φ

A
h,1 =
Φ

f1A
h , (3.45)where A
h,1 is the 
haoti
 region, in whi
h we start, and f1 denotes its fra
tion of the total
haoti
 region. For the quantum system Fermi's golden rule gives a rate [64, p. 1299 �.℄
2π

~e� v2f2ρ
h (3.46)where v2 is the average squared matrix element between the upper and lower 
haoti
 states and
f2ρ
h is the density of 
haoti
 states in the transmission region. The equality of the 
lassi
aland the quantum rate reads

2π

~e� v2f2ρ
h = Φ

f1A
h . (3.47)By repla
ing A
h using the density of states
ρ
h = N
h

~e�ω ω=2π
=

N
h
he� =

A
h
h2e� (3.48)we have

2π

~e�v2f2ρ
h = Φ

f1h2e�ρ
h (3.49)and de�ne the s
aling or transition parameter as the ratio of the mean 
oupling and the meanlevel spa
ing of the un
oupled system [23℄
Λ =

v2

D2
h = v2ρ2
h = 1

4π2f1f2

Φ

he� . (3.50)The universal s
aling behavior depends not only on the ratio of �ux Φ and Plan
k's 
onstant
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he� as pointed out in the se
tions before, but also on the relative size of the 
haoti
 regioninvolved f1 and f2 as given in the Λ-�ux relation Eq. (3.50). The main assumption in theabove derivation is the equality of 
lassi
al and quantum rate, whi
h is expe
ted to be truein the semi
lassi
al limit. The latter is a
hieved for large numbers of states in ea
h region(N
h,i = A
h,i/he� ≫ 1) and for not too small ratio Φ/he�.3.2.3 Quantitative measures for quantum suppressionIn this se
tion we de�ne quantitative measures to des
ribe the quantum transition of a partialbarrier from quantum suppression to 
lassi
al transport. Figure 3.9 (see beginning of Se
. 3.2)shows the time evolution of a 
oherent state for di�erent values of Plan
k's 
onstant he�. Thequantum suppression o

urs for large he� and is re�e
ted in the fa
t that almost no weight istransmitted into the lower 
haoti
 region even for very long times. Therefore we introdu
e thenotion of `asymptoti
 transmitted weight' (ATW) as a quantitative measure. It is the weightof the wave pa
ket transmitted a
ross the partial barrier as time goes to in�nity. Alternativelyone 
an use the proje
tion onto the transmission region averaged over time (see Eq. (6.4) onpage 114 of Ref. [23℄).For a wave pa
ket ψ(t) started above the partial barrier we re
ord the transmitted weightin some measuring box in the lower 
haoti
 region (either the whole region or some part ofit). The resulting value for t → ∞ is 
ompared to the 
ase without a barrier. If there was nopartial barrier a wave pa
ket would uniformly extend over the whole 
haoti
 sea and thereforeits weight inside a measuring box is given by

µ[Ψuniform] = Aµ
A
h , (3.51)where we introdu
e Ψuniform for a �
titious state uniformly distributed in the 
haoti
 sea of area

A
h and Aµ 
orresponding to the phase-spa
e region of the measuring box. If the measure µin
ludes the whole lower 
haoti
 region, Eq. (3.51) redu
es to the relative fra
tion of the region
flo = A
h,lo/A
h as used in Ref. [23℄. In this thesis, however, we also 
onsider measuring regions,that do not extend over the whole lower 
haoti
 region, so that they ex
lude the region 
loseto the partial barrier. With this remarks the asymptoti
 transmitted weight is given byATW ≡ µ̃∞[ψ(t = 0)] := lim

T→∞

1

T

T−1∑

t=0

µ[ψ(t)]

µ[Ψuniform] (3.52)
=:

µ∞[ψ(t = 0)]

µ[Ψuniform] . (3.53)



3.2.3 Quantitative measures for quantum suppression 55Before we dis
uss de�nitions of suitable measures µ, we introdu
e another way of quantifyingthe level of suppression; namely by use of properties of eigenstates. As Figs. 3.11 and 3.12suggest there is also a transition from lo
alized to delo
alized behavior in the eigenstates. Asstarting point we 
hoose a momentum resolved version of the above quantity Eq. (3.52) followingRefs. [26, 27℄. For simpli
ity, we take a momentum eigenstate as initial state
ψ(t = 0) = |p0〉 (3.54)and 
onsider the asymptoti
 distribution in momentum representation,

P (p, p0) = lim
T→∞

1

T

T−1∑

t=0

|〈p|U t|p0〉|2. (3.55)Using the eigenvalue equation
U |φj〉 = exp{iϕj}|φj〉 j = 0, . . . , N − 1, (3.56)we 
an express the time evolution operator in terms of its eigenstates {φj}

P (p, p0) = lim
T→∞

1

T

T−1∑

t=0

∣∣∣∣∣
∑

j

〈p|φj〉 exp{iϕjt}〈φj|p0〉∣∣∣∣∣2 (3.57)
= lim

T→∞

1

T

T−1∑

t=0

∑

j,j′

〈p|φj〉〈φj|p0〉〈φj′|p〉〈p0|φj′〉 exp{i[ϕj − ϕj′] · t} (3.58)
= lim

T→∞

1

T

T−1∑

t=0

[
∑

j

|〈p|φj〉|2 · |〈φj|p0〉|2 + (3.59)
∑

j 6=j′
〈p|φj〉〈φj|p0〉〈φj′|p〉〈p0|φj′〉 exp{i[ϕj − ϕj′] · t}

]
. (3.60)That is, P (p, p0) 
an be written as a sum of a time-independent term and a term, whi
h is�nite and rapidly os
illates with time. This term is proportional to

lim
T→∞

1

T

T−1∑

t=0

exp{i[ϕj − ϕj′] · t} (3.61)and therefore vanishes for j 6= j′, be
ause the eigenphases are un
orrelated. The remainingpart is
P (p, p0) =

N−1∑

j=0

|〈p0|φj〉|2 · |〈p|φj〉|2. (3.62)



56 3.2 Quantum suppression of transportThe summands in Eq. (3.62) measure the overlap of an eigenstate of the quantum system φjwith the �nal state p and initial state p0 of the time evolution. In this way we related the timeevolution result to properties of the eigenstates of the quantum system.In the following we are interested in the total transmitted weight rather than in the mo-mentum resolved quantity of Eq. (3.62). Hen
e, we evaluate Eq. (3.62) in measuring boxes inmomentum spa
e. They are de�ned as follows (see Fig. 3.13)
µup := ∑

p̃up,1<pn<p̃up,2 |ψ(pn)|2, (3.63)
µlo := ∑

p̃lo,1<pn<p̃lo,2 |ψ(pn)|2, (3.64)using the parameters p̃i and the points of the momentum latti
e pn of the quantum system.We will denote the area of the measuring boxes by Aµi , whi
h is given by the di�eren
e of the
orresponding p̃i.Colle
ting all 
ontributions in the lower measuring box yields
µlo,∞[|p0〉] =

∑

p̃lo,1<p<p̃lo,2P (p, p0) = ∑

p̃lo,1<p<p̃lo,2 N−1∑

j=0

|〈p0|φj〉|2 · |〈p|φj〉|2 =
N−1∑

j=0

|〈p0|φj〉|2 · µlo[φj] (3.65)

0

1

0 1q

p

p̃lo,1

p̃lo,2

p̃up,1

p̃up,2

µlo

µup }Nµup

}Nµlo

Figure 3.13: Illustration of the momentum measures µup and µlo de�ned by Eqs. (3.63) and(3.64), respe
tively. Ea
h of the measures is determined by its two bounds, p̃up,i for the upperweight and p̃lo,i for the lower weight. On the left hand side the phase spa
e with the partialbarrier (solid green line) and its preimage (green dotted line) is shown. The set of verti
allines on the right hand side indi
ates the momentum latti
e pn of the quantum system, whi
h
onsists of N = 1/he� sites. Those sites within the two bounds of the upper and lower weight(
olored sites) are 
onsidered in the 
al
ulation of the 
orresponding measures. The numberof sites for the upper and lower weight are denoted by Nµup and Nµlo , respe
tively.



3.2.3 Quantitative measures for quantum suppression 57and therefore the relative asymptoti
 transmitted weight reads
µ̃lo,∞[|p0〉] =

µlo,∞[|p0〉]
µlo[Ψuniform] = 1

µlo[Ψuniform] N−1∑

j=0

|〈p0|φj〉|2 · µlo[φj]. (3.66)Now we perform an average over all p0 in the upper measuring box. In order to have a quantity,whi
h is symmetri
 with respe
t to upper and lower measuring box, we use the same spa
ing
∝ 1

N
for the initial 
onditions as for the p-values in the lower measuring box

〈µ̃lo,∞[|p0〉]〉p0 =
1

Nµup ∑

p̃up,1<p0<p̃up,2µ̃lo,∞[|p0〉] (3.67)
=

1

Nµup 1

µlo[Ψuniform] N−1∑

j=0

µup[φj ]µlo[φj ]. (3.68)On average, N ·Aµup points p0 are inside the upper measuring region and we therefore write
〈µ̃lo,∞[|p0〉]〉p0 =

1

N · Aµup 1

µlo[Ψuniform] N−1∑

j=0

µup[φj] µlo[φj] (3.69)
=

1

N · A
h · µup[Ψuniform] 1

µlo[Ψuniform] N−1∑

j=0

µup[φj ] µlo[φj] (3.70)
=

1

N
h N
h−1∑

j=0

µup[φj]
µup[Ψuniform] µlo[φj]

µlo[Ψuniform] . (3.71)In the last step we inserted N
h = NA
h and dropped the regular states from the sum. Thisis possible, be
ause the measures are de�ned inside the 
haoti
 region and regular states haveonly exponential tails into this region. Therefore the produ
t µup[φj]µlo[φj] for a regular stateis small 
ompared to a state uniformly distributed in the 
haoti
 sea. Equation (3.71) is anaverage over all 
haoti
 eigenstates of the quantity
M [φ] :=

µup[φ]
µup[Ψuniform] µlo[φ]

µlo[Ψuniform] = µ̃up[φ]µ̃lo[φ] (3.72)with the relative measures
µ̃up[φ] := µup[φ]

µup[Ψuniform] , (3.73)
µ̃lo[φ] := µlo[φ]

µlo[Ψuniform] (3.74)



58 3.2 Quantum suppression of transportwhi
h we 
all `produ
t measure' for obvious reason. Before we dis
uss properties of this produ
tmeasure and 
ompare it to the asymptoti
 transmitted weight, we have to add one remark here.The 
hoi
e of the momentum states as a basis for the initial and �nal states is not essential andwe 
an repla
e the {|p0〉} and {|p〉} by an arbitrary basis set. In parti
ular for the asymptoti
transmitted weight one 
an 
hoose an arbitrary initial state and some �nal measure.The produ
t measure de�ned by Eq. (3.72) gives the 
ontribution of an eigenstate to theATW. For an eigenstate φj whi
h is lo
alized in only one or even none of the measuring boxesthe 
ontribution M [φj ] vanishes. For a state uniformly distributed in the 
haoti
 sea the
ontribution is one by de�nition. However, this is not the only state with 
ontribution equalto one. A state φ with
µup[φ] = µlo[Ψuniform], (3.75)
µlo[φ] = µup[Ψuniform] (3.76)gives M = 1, too, although it is not uniformly distributed. Furthermore, the individual 
on-tribution M [φj ] is not bounded in general. Therefore one might de�ne a normalized version ofthe produ
t measure as

M̃ [φ] := 4 · µ̃up[φ]µ̃lo[φ]
(µ̃up[φ] + µ̃lo[φ])2 ∈ [0, 1], (3.77)whose values are limited by zero and one and the M̃ = 1 
orresponds to the uniformly dis-tributed state. For the 
ase of measuring boxes of equal size, we have µup[Ψuniform] = µlo[Ψuniform]and Eq. (3.77) redu
es to

M̃ [φ] := 4
µup[φ]µlo[φ]

(µup[φ] + µlo[φ])2 . (3.78)Equation (3.78) is related to an inverse parti
ipation ratio IPR de�ned asIPR[φ] := µup[φ]2 + µlo[φ]2
(µup[φ] + µlo[φ])2 (3.79)by the following equation

1 =
(µup[φ] + µlo[φ])2
(µup[φ] + µlo[φ])2 = IPR[φ] + 1

2
M̃ [φ]. (3.80)Equation (3.79) is the inverse parti
ipation ratio of a state, if we 
onsider the two measuringboxes as the only two sites of a system. The normalized weight in the upper and in the lower



3.2.3 Quantitative measures for quantum suppression 59region is
µup[φ]

µup[φ] + µlo[φ] and µlo[φ]
µup[φ] + µlo[φ] . (3.81)Their squared sum is the IPR as de�ned by Eq. (3.79) and it lies between 1, i.e. the state islo
alized on one site and the other measure vanishes, and 1

2
for a state φ with µup[φ] = µlo[φ],i.e. a state uniformly distributed with respe
t to the two measuring boxes.For measures whi
h extend over the entire a

essible region, i.e. µup[φ] + µlo[φ] = 1, thedenominator in Eq. (3.78) drops and we have

M̃ [φ] := 4µup[φ]µlo[φ], (3.82)whi
h is the same as Eq. (3.72) for µup[Ψuniform] = µlo[Ψuniform] = 1
2
. Therefore M and M̃ arethe same on the level of a 2× 2 model and their values are limited by one.Figure 3.14 shows 
ontour lines of the produ
t measure M de�ned by Eq. (3.72) and M̃de�ned by Eq. (3.77) for the 
ase of µup[φ] +µlo[φ] = 1 and relative 
haoti
 regions fup and flo,whi
h are the measures of the uniformly distributed state in this situation: fup = µup[Ψuniform]

(a)

0.0

0.5

1.0

0.0 0.5 1.0
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1
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3

µup[φ]

fup

(b)

0.0

0.5

1.0

0.0 0.5 1.0
µup[φ]

fup

Figure 3.14: Contour lines of (a) M [φ], Eq. (3.83), and (b) M̃ [φ], Eq. (3.77), for the 
ase
µup[φ] + µlo[φ] = 1. That is, the two measuring regions together 
apture the total spa
eavailable for eigenstates φ. A horizontal sli
e with �xed fup 
orresponds to one system andshows all possible values as fun
tion of µup[φ] = 1−µlo[φ]. At the fup = flo = 1

2 (bla
k dashedline) the 
ontour lines of (a) and (b) fall on top of ea
h other and are given by Eq. (3.82).Note that M̃ [φ] is limited by 1 for all fup whereas M [φ] is limited by 1 only for the 
ase
fup = flo = 1

2 .



60 3.3 Results for the designed maps with one partial barrierand flo = µlo[Ψuniform]. Equation (3.72) redu
es to
M [φ] =

µup[φ]
fup µlo[φ]

flo =
µup[φ]
fup 1− µup[φ]

1− fup ≡ µ̃up[φ]µ̃lo[φ] (3.83)and its upper bound depends on the relative phase-spa
e area fup = 1−flo and tends to in�nityfor vanishing fup or flo
M [φ] ≤ 1/4

fup[1− fup] fup→0−→ ∞. (3.84)On the line fup = flo = 1
2
(dashed bla
k horizontal line in Fig. 3.14) Eqs. (3.72) and (3.77)are the same (see Eq. (3.82)). In both pi
tures the diagonal line fup = µup 
orresponds to theuniformly distributed state. The additional diagonal line fup = 1 − µup = µlo in Fig. 3.14(a)
orresponds to the state of Eq. (3.75), whi
h is not uniformly distributed. For M̃ all states,that are not uniformly distributed with respe
t to the measure, have M̃ [φ] smaller than oneand states with the same value of M̃ are arranged symmetri
ally around the diagonal M̃ [φ] = 1(see Fig. 3.14(b)).The interpretation of the individual value M̃ [φ] is mu
h simpler than the interpretation of

M [φ], be
ause M̃ [φ] lies between zero and one, whi
h are the limiting 
ases of a state lo
alized inone region and of a state delo
alized (uniformly distributed) with respe
t to the two measuringregions. However, we will use M [φ], de�ned by Eq. (3.72), in the following, be
ause it is the
ontribution of an eigenstate to the ATW and therewith its average 〈M〉 has a well settledmeaning as ATW.3.3 Results for the designed maps with one partial barrierIn this se
tion results for the designed maps Fpb and Fpb,rot are presented. Based on the trans-mitted weight as fun
tion of time (Se
. 3.3.1) we determine the ATW introdu
ed in Se
. 3.2.3using momentum measures in Se
. 3.3.2. The properties of eigenfun
tions are des
ribed by theprodu
t measure M in Se
. 3.3.3. The results using Husimi measures for ATW and produ
tmeasure are dis
ussed in Se
. 3.3.4. With these de�nitions of the measures we quantify thequantum transition of a partial barrier from quantum suppression to 
lassi
al transport be-havior. We 
he
k the in�uen
e of the width of the regular region in Se
. 3.3.5 and 
onsiderexamples with A
h,up 6= A
h,lo in Se
. 3.3.6. The results are summarized in Se
. 3.3.7.3.3.1 Transmitted weight as a fun
tion of timeBefore dis
ussing the asymptoti
s of the transmitted weight, we investigate the initial in
reaseof the transmitted weight. The transmitted weight of a wave pa
ket ψ(t) initially lo
ated in



3.3.1 Transmitted weight as a fun
tion of time 61the upper region is
µ̃trans[ψ(t)] = µ̃lo[ψ(t)] = µlo[ψ(t)]

µlo[Ψuniform] . (3.85)In order to interpret the resulting 
urves µ̃trans[ψ(t)] for quantum wave pa
kets, we need to
ompare them to their 
lassi
al expe
tation. The 
lassi
al 
ounterpart of the time evolutionof wave pa
kets is the time evolution of an orbit density in phase spa
e ̺(q, p, t), whi
h isnormalized to one if integrated over the entire phase spa
e. Based on this density we introdu
ethe weight of orbits in the upper and lower 
haoti
 region as
µup, 
lass(t) = ∫

A
h,up dq dp ̺(q, p, t), (3.86)
µlo, 
lass(t) = ∫

A
h,lo dq dp ̺(q, p, t). (3.87)These weights give the probability to �nd an orbit in the upper and lower region at time t.Assuming instantaneous mixing in the individual regions and a Markovian des
ription of thedynami
s, we set up a Master equation des
ribing the 
hange in the orbit weights [65℄
∂

∂t

(
µup, 
lass(t)
µlo, 
lass(t)) =

(
− Φ
A
h,up Φ

A
h,lo
Φ

A
h,up − Φ
A
h,lo)(µup, 
lass(t)µlo, 
lass(t)) =: B

(
µup, 
lass(t)
µlo, 
lass(t)) . (3.88)The Markov matrix B in
ludes the rates of transitions between the two regions. These ratesare the inverse of the 
orresponding dwell times 1/tdwell,i = Φ/Aa

ess,i. The elements in ea
h
olumn of the matrix B add up to zero, whi
h a

ounts for the 
onservation of the total weightand yields one vanishing eigenvalue of B. The eigenvalue equation for B reads

Bζi = biζi (3.89)and has the solutions
b1 = 0 with ζ1 =

(
1

1

)
, (3.90)

b2 = −
(

Φ

A
h,up +
Φ

A
h,lo) =: −Γ with ζ2 =

(
1

−1

)
. (3.91)The �rst solution 
orresponds to the 
onservation of the total weight and the se
ond des
ribesthe relaxation to an equilibrium distribution, for whi
h we introdu
e a rate Γ = −b2 followingRef. [65℄. Now we 
onsider the time evolution of a density ̺(q, p, t) initially lo
ated in the upper



62 3.3 Results for the designed maps with one partial barrierregion. The resulting weights are
(
µup, 
lass(t)
µlo, 
lass(t)) =

1

2

(
1 + exp{−Γt}
1− exp{−Γt}

)
. (3.92)In this situation the transmitted weight is given by

µtrans, 
lass(t) = µlo, 
lass(t) = 1

2
[1− exp {−Γt}] =





Γ
2
t for Γt≪ 1

1
2

for Γt≫ 1.
(3.93)The de
ay of the density initially lo
ated in the upper region is determined by the rate

Γ

2
=

1

2

(
Φ

A
h,up +
Φ

A
h,lo) =
1

2

(
1

tdwell, up +
1

tdwell, lo) , (3.94)whi
h gives the inverse dwell time 1/tdwell, up if both regions are of equal size. In the followingwe restri
t ourselves to the 
ase that both regions have the same size. In analogy to Eq. (3.85),we 
onsider the ratio µ̃trans, 
lass(t) of the transmitted weight µtrans, 
lass(t), Eq. (3.93), to theweight of a uniformly distributed state, whi
h is given by 1
2
in ea
h region,

µ̃trans, 
lass(t) = µtrans, 
lass(t)
1/2

= 1− exp {−Γt} =




Γt for Γt≪ 1

1 for Γt≫ 1.
(3.95)At small times the relative transmitted weight µ̃trans, 
lass(t) in
reases linearly with slope Γ andfor large times it approa
hes one, whi
h is the limit of no barrier.Now let us turn to the time evolution of a wave pa
ket. As transmitted weight we 
onsiderthe momentum measures in the upper and lower region de�ned by Eqs. (3.63) and (3.64),respe
tively. The momentum limits are 
hosen as

p̃lo,1 = 0.175, (3.96)
p̃lo,2 = 0.325, (3.97)
p̃up,1 = 0.675, (3.98)
p̃up,2 = 0.825. (3.99)In Fig. 3.15 the in
rease of the transmitted weight in time, Eq. (3.85), is illustrated. Forone �xed initial 
ondition and �xed Blo
h phase θq (see Fig. 3.15(a)) the transmitted weightstrongly �u
tuates and shows Rabi-like os
illations, whi
h is due to the os
illatory term inEq. (3.61). Averaging over di�erent values of the Blo
h phase θq (system average) and di�erentinitial wave pa
kets ψ(0) yields a smooth 
urve as a fun
tion of time (see Fig. 3.15(b)). Forde
reasing he� = 1/N the 
urves approa
h the 
lassi
al result of Eq. (3.95) apart from a smallshift in the time (see below).
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Figure 3.15: Transmitted momentum weight µ̃trans[ψ(t)] for the example 1 of the map Fpb,rot(Φ ≈ 1/200) with time up to the dwell time of the upper (and lower) region in 
omparison tothe 
lassi
al expe
tation Eq. (3.95) (dashed) and its linear approximation (dotted). (a) Thetransmitted weight of a state ψ(t) with ψ(0) = |p0〉 = |0.3〉 exhibits strong �u
tuations. (b)Averaging µ̃trans over 20 values of θq and four initial 
onditions (two momentum eigenstateswith p0 = 0.3, 0.7 and two 
oherent states initially lo
ated at (q, p) = (0.5, 0.3) and (0.5, 0.7))yields smooth 
urves, whi
h approa
h the 
lassi
al expe
tation with in
reasing size of N , i.e.de
reasing he� = 1/N .Larger values for Plan
k's 
onstant he� = 1/N yield smaller values for the transmittedweight. For instan
e the 
urve with 1/he� = N = 100 in Fig. 3.15(b) is below the 
urvewith 1/he� = N = 3200, whi
h is most prominent at large times. That is, at large timesthe transmitted weight is redu
ed if Plan
k's 
onstant in
reases. This �nding indi
ates thepreviously dis
ussed suppression of quantum transport in the limit of Plan
k's 
onstant beinglarge 
ompared to the 
lassi
al �ux.



64 3.3 Results for the designed maps with one partial barrierNote that the shift in time o

urs due to the non-vanishing mixing time, whi
h is not in
ludedin the above Master-equation approa
h. This mixing time has two origins: The mixing in thequantum system is semi
lassi
ally determined by the Lyapunov exponent, whi
h yields theEhrenfest time (see Se
. 3.2.1). Moreover the wave pa
ket needs some time to rea
h the boxde�ning the momentum measure after it has 
rossed the partial barrier.Figure 3.16(a) extends the data of Fig. 3.15 to larger times and thus illustrates the idea of theasymptoti
 transmitted weight (ATW). After the initial in
rease of the transmitted weight withsome kind of overshooting its value saturates at the ATW. Similar overshootings are observedin the temporal �ooding of regular states [39, Se
. 3.4℄. The 
olored dashed and dotted linesindi
ate the average over times up to T = 104 and for times within [T, T ′] = [220, 220 + 100],respe
tively. We �nd agreement between averaging over di�erent ranges of time. For pra
ti
alinvestigations it is possible to average over times up to time T , see Eq. (3.52), or over somerange [T, T ′], whi
h we do in the following. In any 
ase the time T needs to be large 
ompared
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Figure 3.16: Transmitted weight µ̃trans[ψ(t)] for the example 1 of the map Fpb,rot (Φ ≈
1/200) in 
omparison to the 
lassi
al expe
tation, Eq. (3.95), (dashed) and its linear approx-imation (dotted). (a) Same quantity as in Fig. 3.15 (b), but as a fun
tion of time t ∈ [1, 104]and t ∈ [220, 220+100]. The 
olored dashed and dotted lines between the two graphs indi
atethe height of the average performed over the �rst and se
ond time range, respe
tively. In (b)we show the �rst part of (a) with a logarithmi
ally s
aled ordinate, whi
h reveals the initialbehavior of µ̃trans[ψ(t)]. Using the Husimi weight, the whole transmission region 
ontributes.The resulting data is shown in (
), whi
h has enhan
ed values at small t 
ompared to (b),but approa
hes the result of the momentum weight at large times.
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ales given by the dwell time and the Heisenberg time.For he� going to zero, the ATW rea
hes larger values and the range, where the transmittedweight µ̃trans follows the linear in
rease given by the 
lassi
al rate Γ, extends to larger t. Inthis limit he� → 0, or more pre
isely Φ/he� → ∞, the 
lassi
al behavior of a partial barrier isre
overed and at large times the normalized transmitted weight µ̃trans(t) rea
hes the value one.In this limit the assumption of the quantum rate being equal to the 
lassi
al rate, used in thederivation of the Λ-�ux relation of Se
. 3.2.2, is well founded.Figure 3.16(
) shows the result of the same time evolution as Figure 3.16(a) and (b), but in
ontrast to the other pi
tures the Husimi measure, whi
h we will introdu
e in Se
. 3.3.4, in thewhole transmission region is used as transmitted weight. At large times the resulting values are
lose to those of the momentum measure and therefore it is meaningful to 
onsider a universal
urve for the ATW.Note that we �nd some deviations at small t. The reason for the additional delay in themomentum measure (Figure 3.16(b)) 
ompared to the Husimi measure (Figure 3.16(
)) is thefa
t that the time evolved state has to rea
h the box used for the momentum measure asmentioned above. For the Husimi weight we �nd larger values of µ̃trans(t) and for the examples2 (Φ ≈ 1/800) and 3 (Φ ≈ 1/3000), where the ratio of Φ/he� is smaller than for example 1the Husimi weight gives values larger than the 
lassi
al expe
tation. This �nding might beattributed to the transition region around the partial barrier, whi
h is in
luded in the Husimimeasure (see dis
ussion in Se
. 3.3.4). However, in the de�nition of the ATW large times t areneeded, where the momentum and Husimi weight agree.3.3.2 ATW using momentum measuresIn the following our fo
us is on the ATW rather than the full time dependen
e of the transmittedweight. In this se
tion the transmitted weight is determined by the momentum measure de�nedin the transmission region. The initial state 
an be any state su�
iently well lo
alized in one ofthe two 
haoti
 regions. Here we 
hoose momentum eigenstates as initial states, while 
oherentstates would give the same ATW. The de
isive property of the initial states is their lo
alizationaway from the partial barrier, su
h that at t = 0 no weight is already transmitted and universalfeatures of the quantum transport a
ross the partial barrier are observed.In the 
ase of the map Fpb,rot the time evolution is performed by 
onse
utive appli
ationsof the unitary time evolution operator Upb,rot, Eq. (3.33). Numeri
ally the time evolution upto the lower limit of the time range is performed by an auxiliary matrix Ũ (n) de�ned by thefollowing re
ursion relation
Ũ (0) = Upb,rot, (3.100)

Ũ (k+1) = Ũ (k)Ũ (k). (3.101)Therewith only n matrix-matrix multipli
ations are needed to rea
h time T = 2n.
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Figure 3.17: ATW using the momentum measures for the examples 1, 2, and 3 of the map
Fpb,rot. The initial state is ψ(t = 0) = |p0〉 with p0 = 0.3 below and p0 = 0.7 above the partialbarrier. The data is averaged over 20 values of θq and 100 steps after time T = 220 ≈ 106.Figure 3.17 shows the resulting ATW for examples 1, 2, and 3 of the map Fpb,rot for twodi�erent momentum eigenvalues as initial 
onditions. The ATW is shown as a fun
tion of theratio Φ/he�. In order to observe universal features, the 
lassi
al phase-spa
e stru
tures need tobe reasonably resolved. That is, ea
h of the two 
haoti
 regions itself should be semi
lassi
allytreatable. We restri
t ourselves to 1/he� = N ≥ 100. This yields about 40 states in the upperand lower region if we asso
iate Nup = NA
h,up and Nlo = NA
h,lo states with the upper andlower region (see Tab. 3.1 for values of A
h,up and A
h,lo). All data sets in Fig. 3.17 fall on top ofea
h other under the s
aling with Φ/he�. We therefore 
on
lude that Φ/he� is the right s
alingparameter.The quantum transition of a partial barrier between the two limiting 
ases of full quantumsuppression and 
lassi
al behavior takes pla
e on a logarithmi
 s
ale. That is, the ratio Φ/he�needs to be varied over a large range in order to determine the whole transition 
urve. Theoverall behavior of the data is reasonably well des
ribed byATW =

Φ
he�

1 + Φ
he� . (3.102)Note that we varied the bounds of the momentum measures de�ned by Eqs. (3.63) and (3.64)and �nd almost no dependen
e on the 
hoi
e of the bounds as long as the 
entral part supportingthe partial barrier and the regular regions are ex
luded.For the map Fpb,rot the parameter N = 1/he� is limited numeri
ally, be
ause the full time
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Figure 3.18: ATW using the momentum measures for the examples 1, 2, 3, and 4 of themap Fpb. The �ux Φ used for the abs
issa is the �ux Φ′ dis
ussed in Se
. 3.1.5. The initialstate is ψ(t = 0) = |p0〉 with p0 = 0.3 below and p0 = 0.7 above the partial barrier. Theshown data is averaged over 20 values of θq and 100 steps after time T = 106. The totalnumber of states are N = 1/he� = 100, 200, ..., 51200.evolution operator Upb,rot has to be used for the time evolution. In the 
ase of the map Fpb,where no proje
tor is used, the fast Fourier transform 
an be used for the time evolution.Therefore N 
an be 
hosen mu
h larger. It is limited by the size of a ve
tor representing thequantum wave pa
ket rather than a N × N matrix needed for the time evolution of the map
Fpb,rot. Therefore the 
overed range of Φ/he� for ea
h of the examples of the map Fpb is almostdoubled. Furthermore, the example 4 is in
luded, whi
h extends the data to smaller values ofthe ratio Φ/he�, respe
tively (see Fig. 3.18 in 
ontrast to Fig. 3.17). The ATW for the map
Fpb is shown in Fig. 3.18. Again we �nd s
aling with the ratio Φ/he�, if we 
onsider the �ux Φ′dis
ussed in Se
. 3.1.5. We therefore 
onje
ture that the additional partial barriers with larger�ux, present in the phase spa
e of map Fpb, have only minor impa
t. As long as the regionbetween neighboring partial barriers is small (only some or even less than one he�), it is notresolved by quantum me
hani
s and the quantum suppression is governed by the partial barrierwith smallest �ux.3.3.3 Produ
t measure using momentum measuresIn Se
. 3.2.3 we derived a representation of the ATW in terms of the eigenstates. Finally, it
an be 
omputed by an average over all 
haoti
 eigenstates of the produ
t measure, Eq. (3.72),

M [φ] = µ̃up[φ]µ̃lo[φ] (3.103)



68 3.3 Results for the designed maps with one partial barrierwith the relative measures
µ̃up[φ] := µup[φ]

µup[Ψuniform] , (3.104)
µ̃lo[φ] := µlo[φ]

µlo[Ψuniform] . (3.105)In the derivation we dropped the regular states, be
ause their 
ontribution is negligible.Moreover the produ
t measure of a regular state will be in�uen
ed by its position with respe
t tothe measuring boxes inside the 
haoti
 regions, be
ause they are mu
h more lo
alized. Thereforethe resulting produ
t measure does not 
over the quantum suppression of transport for regularstates properly. Furthermore, we assumed that all other eigenstates are 
haoti
. That is, theHusimi representation of these eigenstates looks uniformly distributed with respe
t to the upperand with respe
t to the lower 
haoti
 region. This assumption is violated by states lo
alizing
lose to the partial barrier � e.g. a s
arred state on the hyperboli
 �xed point at (1
2
, p�x). Theasymmetry of the upper and the lower weight of those states does not represent the impa
t ofthe partial barrier, but 
learly depends on the relative lo
ation of the lo
alized state and themeasuring regions. Therefore we drop regular states and states lo
alized 
lose to the partialbarrier in order to observe the impa
t of the partial barrier on the 
haoti
 states only. Thisis a
hieved by introdu
ing a minimal measure for the sum of the upper and the lower weight.Again we 
ompare to the resulting µup[φ] + µlo[φ] to that of a state uniformly distributed inthe 
haoti
 region and 
onsider only states φ with

µup[φ] + µlo[φ] ≥ χ ·
(
µup[Ψuniform] + µlo[Ψuniform]) = χ ·

(
Aµup
A
h +

Aµlo
A
h ) (3.106)for the average produ
t measure. For nonzero χ all of the above mentioned states are ex
ludedin the semi
lassi
al limit (he� → 0). As long as he� is not yet small, some of these states willhave small 
ontributions in the measuring regions and we used χ = 20% in the following.Figure 3.19 shows the average produ
t measure for the examples 1, 2, and 3 of the map

Fpb,rot. The average produ
t measure is in good agreement with the ATW of Fig. 3.17. Notethat ex
luding the regular states and those lo
alized 
lose to the partial barrier is equivalentto pla
ing initial wave pa
kets inside one of the 
haoti
 regions, be
ause the initial state hasa small overlap with the lo
alized states. Averaging over many initial 
onditions �nally givesthe same averaging me
hanism as averaging over all 
haoti
 states. For the produ
t measurethe upper limit of N = 1/he� is determined by the size of a full matrix, whi
h 
an still bediagonalized on a 
omputer.A

ording to Eq. (3.72) the produ
t measure is the 
ontribution of an eigenstate to the ATW.Therefore we 
an also study the distribution of the state dependentM-values as an extension ofthe above 
onsideration of the mean value 〈M〉. Although the ATW and therefore the average
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Figure 3.19: Average produ
t measure M using the momentum measures for the examples1, 2, and 3 of the map Fpb,rot. The data is averaged over all states φ ful�lling Eq. (3.106)with χ = 20% and 100 values of the Blo
h phase θq.produ
t measure takes values between zero and one, the 
ontribution of an eigenstates is notlimited by one. The individual produ
t measure, Eq. (3.103), is limited by
M [φ] =

µup[φ]
µup[Ψuniform] µlo[φ]

µlo[Ψuniform] = µup[φ]µlo[φ]
(p̃up,2 − p̃up,1) · (p̃lo,2 − p̃lo,1)/A2
h (3.107)

≤ µup[φ](1− µup[φ])
(p̃up,2 − p̃up,1) · (p̃lo,2 − p̃lo,1)/A2
h , (3.108)where the inequality µup[φ] + µlo[φ] ≤ 1 was used. In fa
t the inequality Eq. (3.108) is onlya very rough estimate, be
ause the total measure in the two momentum measure boxes istypi
ally mu
h smaller than one. Inserting the limits p̃i for the used momentum measures ofEqs. (3.96)�(3.99) and the size of the 
haoti
 sea A
h of Tab. 3.1 gives

M [φ] ≤ 32µup[φ](1− µup[φ]) ≤ 8, (3.109)where in the last step the produ
t of the measures is estimated from above by 1
4
.Figure 3.20 shows the distribution of the produ
t measure d(M) for the examples 1�3 ofthe map Fpb,rot. The pi
tures suggest that the distributions for a �xed ratio Φ/he� 
oin
ide.Note that Φ/he� is only approximately the same for the shown data, be
ause Φ and N varyindependently. As seen in Fig. 3.20(a) almost all eigenstates have a vanishing produ
t measurefor a small ratio Φ/he�. In the limit of vanishing ratio Φ/he� all eigenstates either lo
alize inthe upper or in the lower region. In pra
ti
e this limiting 
ase is not rea
hed, due to the non-
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Figure 3.20: Distribution d(M) of the produ
t measure M using the momentum measuresfor example 3 (Φ ≈ 1/3000) in (a), 2 (Φ ≈ 1/800) in (b), and 1 (Φ ≈ 1/200) in (
) for themap Fpb,rot and N = 200, 800, 3200. (d) Same distribution as (a), but with a logarithmi
abs
issa and ordinate. The sele
tion of states is the same as in Fig. 3.19. The average ofea
h distribution is shown as verti
al line. The solid red line 
orresponds to the result with
Φ/he� ≈ 1. In total the data 
overs a range of Φ/he� ≈ 1/16 for the smallest N in (a) to
Φ/he� ≈ 16 for the largest N in (
).vanishing tunneling 
oupling between the two 
haoti
 regions. The data of Fig. 3.20(a) is shownagain in (d), where the distribution d(M) is shown on a logarithmi
 s
ale inM . For de
reasing

Φ/he� the distribution seems to approa
h a power law behavior. This behavior indi
ates thestrong spreading of M for small ratios Φ/he� and might be attributed to tunneling. If theratio Φ/he� rea
hes one, shown by the solid red line in all pi
tures, the distribution extendsover a large range in M . Although the average value is around 1
2
, some of the states are mu
hmore lo
alized in one of the regions, whereas other states are already uniformly distributedin both regions. The above estimation of the upper bound for M is 
learly mu
h too large
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t measure using Husimi measures 71for the 
onsidered distribution and less than two per
ent of the states ex
eeds the value 3
2
.For large ratios Φ/he� the peak of the distribution starts to approa
h one and its width isde
reasing. That is, in the semi
lassi
al limit, Φ/he� → ∞, all states are uniformly distributedand therewith the 
lassi
al behavior of a partial barrier is re
overed.3.3.4 ATW and produ
t measure using Husimi measuresIn generi
 systems the introdu
tion of a momentum measure or similar basis sets is not obviousand therefore the Husimi fun
tion, introdu
ed in Se
. 2.8, integrated over the upper or lowerregion is a good 
hoi
e. Thus Eqs. (3.52) and (3.72) are evaluated by use of these upper andlower Husimi weights.Figure 3.21 shows the resulting ATW for several examples of the map Fpb. Again we �nds
aling with the ratio Φ/he�. This data need to be 
ompared to the data of Fig. 3.18, where themomentum measures rather than Husimi measures are used. We see that the overall behavioris almost un
hanged and therefore universal behavior is found.For Φ/he� ≤ 0.1 a saturation o

urs as for Fig. 3.18, whi
h 
an be attributed to the non-vanishing tunneling 
oupling between the two regions. However, the plateau is enhan
ed 
om-pared to Fig. 3.18. That is, the transmitted Husimi weight is larger than the momentummeasure. This is understandable, be
ause on the one hand the Husimi fun
tion smears out
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Figure 3.21: ATW using the Husimi weight in transmission region for the examples 1, 2, 3and 4 of the map Fpb. The initial state is ψ(t = 0) = |p0〉 with p0 = 0.3 below and p0 = 0.7above the partial barrier. The data is averaged over 20 values of θq and 100 steps after time
106. The total number of states are N = 1/he� = 100, 200, ..., 51200. The universal behaviorof the data is des
ribed by x/(1 + x) with x = Φ/he�.



72 3.3 Results for the designed maps with one partial barrierinformation on the size of Plan
k's 
onstant and on the other hand the support of the Husimiweight extends up to the partial barrier. Therefore a transmitted weight is re
ognized by theHusimi weight while mu
h less weight rea
hes the support of the momentum measure.Note that the Husimi measure strongly depends on the de�nition of the partial barrier. Aspointed out in Se
. 3.1.3 for the 
lassi
al system at least all images and preimages of the partialbarrier form again partial barriers with the same �ux and the same area above and below them.Quantum me
hani
ally there is a transition region between the upper and the lower region. We�xed the 
onsidered partial barrier and therewith made a de
ision what we 
all upper and lower.Therefore the Husimi weight of the upper or the lower region in
ludes parts of this transitionregion and yields larger values than the momentum measure.The results for map Fpb,rot are shown in Fig. 3.22(a) and need to be 
ompared with themomentum measure results in Fig. 3.17. Again the overall behavior is un
hanged and we �nduniversal behavior by s
aling the data with Φ/he�.As an alternative to the time evolution, we 
onsider the produ
t measure averaged over theeigenstates of the quantum map. Similar to Se
. 3.3.3 we sele
t the 
haoti
 states by use of aminimal measure. That is, we 
onsider all states φ with
µup[φ] + µlo[φ] ≥ χ (3.110)for some χ > 0. The 
omparison with a state uniformly distributed in the 
haoti
 sea is notneeded here, be
ause its Husimi fun
tion integrated over the 
haoti
 sea yields one. Therefore

χ is the minimal value for the Husimi weight in the full 
haoti
 region. This 
onstraint withnon-vanishing χ ex
ludes again the regular states from the average. In 
ontrast to Se
. 3.3.3states lo
alized 
lose to the partial barrier and nearby the regular region are still in
luded.Figure 3.22(b) shows the resulting average produ
t measure. The minimal measure is 
hosenas χ = 10% and we do not �nd a signi�
ant dependen
e on its value as long as it is non-vanishing. The average produ
t measure is in good agreement with the ATW obtained by timeevolution. For small ratios Φ/he� the average produ
t measure 〈M〉 is larger and for largeratios Φ/he� smaller than the result using the momentum measures shown in Fig. 3.19. Thisdi�eren
e is even more pronoun
ed than for the ATW. Therefore also the agreement betweenATW and the average produ
t measure is not as good as for the momentum measures. Thereason for this di�eren
e might be attributed to the 
onsidered eigenstates. Namely stateslo
alized on the partial barrier or 
lose to the regular region have a produ
t measure, whi
his not dominated by the partial barrier, but rather a

identally gives larger or smaller values.For small ratios Φ/he� the states lo
alized on the partial barrier have already a large produ
tmeasure. Whereas for Φ/he� being large lo
alized states have small M , be
ause the asso
iatedtransport is suppressed due to the lo
alization.Figure 3.23 shows a sele
tion of distributions of the produ
t measure d(M) 
onsidered forFig. 3.22(b). The distributions for di�erent examples for similar Φ/he� are in reasonable agree-
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Figure 3.22: (a) ATW and (b) average produ
t measure using Husimi weights for theexamples 1, 2, and 3 of the map Fpb,rot. The ATW of (a) is averaged over 20 values of theBlo
h phase θq and over 4 initial states: ψ(t = 0) = |p0〉 with p0 = 0.3 and 0.7 and 
oherentstates at (q0, p0) = (0.5, 0.3) and (0.5, 0.7). The minimal measure χ a

ording to Eq. (3.110)used in (b) is 10% and the data is averaged over 100 values of the Blo
h phase θq.ment. Therefore again universal s
aling with Φ/he� is found. As dis
ussed in Se
. 3.2.3 (aroundEq. (3.82)) the produ
t measure using Husimi weights is bounded from above by one. Thisis in 
ontrast to the dis
ussion of the momentum measures. Similar to Fig. 3.20(a), for small
Φ/he� the individualM are small (see Fig. 3.23(a)) and therefore the 
orresponding eigenstateslo
alize either in the upper or in the lower region. As illustrated in Fig. 3.23(d) the behaviorfor small M follows a power law similar to Fig. 3.20(d).The distributions d(M) for the ratio Φ/he� ≈ 1 are shown as solid red lines in Fig. 3.23.
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Figure 3.23: Distribution d(M) of produ
t measure M using Husimi weights for example3 (Φ ≈ 1/3000) in (a), 2 (Φ ≈ 1/800) in (b), and 1 (Φ ≈ 1/200) in (
) for the map Fpb,rotand N = 200, 800, 3200. (d) Same distribution as (a), but on logarithmi
 s
ale and withlogarithmi
 ordinate. The sele
tion of states is the same as in Fig. 3.22(b) and we 
onsider100 values of the Blo
h phase θq to obtain the data. The average of the distribution is shownas verti
al line. The solid red line 
orresponds to the result with Φ/he� ≈ 1. In total thedata 
over a range of Φ/he� ≈ 1/15 (smallest N of example 3) to Φ/he� ≈ 16 (largest N ofexample 1).They are quite symmetri
 with respe
t to the average value around M = 1
2
and extend overthe whole range [0, 1] of M . That is, there are as many states with large M , being alreadydelo
alized, as with M smaller than 1

2
, being still lo
alized in one region. For large values of

Φ/he� the peak of the distributions approa
hes one, whi
h is the 
lassi
al expe
tation.Although we �nd di�eren
es in the details of the transition 
urve 
onsidering Husimi weightrather than momentum measures, the overall behavior is the same and we believe that theuniversal behavior is des
ribed by the ratio Φ/he�.



3.3.5 Variation of the width of the regular region 753.3.5 Variation of the width of the regular regionFor the designed maps Fpb and Fpb,rot, quantum me
hani
ally, the 
oupling between the upperand the lower 
haoti
 region might depend on the width of the regular region rather than on theturnstile transport only. More pre
isely we expe
t an additional 
ontribution to the quantumtransport due to tunneling a
ross the regular region if Plan
k's 
onstant is large and the regularregion is thin. Therefore we vary the width of the regular region and look for signatures ofthis additional transport 
hannel. We 
onsider the ATW using the Husimi weight in orderto remove any ambiguity in the de�nition of the measuring boxes for thin and thi
k regularregions, whi
h give rise to large and small 
haoti
 regions above and below the partial barrier.For the map Fpb and Fpb,rot the width of the regular region 
an be adjusted using theparameter pd,reg. Here we used pd,reg = 0.045, 0.125, and 0.25 yielding a regular region ofsize Areg ≈ 0, Areg ≈ 0.16, and Areg ≈ 0.4. Note that the given numbers are also the width in p-dire
tion be
ause the width in q is one. These three versions of examples 1 and 3 are 
onsideredand the resulting ATW is shown in Fig. 3.24. Ex
ept for small �u
tuations the data does notdepend on the width of the regular region down to the smallest ratio Φ/he� 
onsidered here.For smaller ratios Φ/he�, we expe
t an in�uen
e of the width of the regular region, be
ause atthis point the 
oupling due to the 
lassi
al turnstile transport is signi�
antly suppressed andtunneling a
ross the partial barrier and over the regular region might be of the same magnitudefor vanishing width of the regular region.
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Figure 3.24: ATW using the Husimi weight for the examples 1 and 3 of the map Fpb,rot(same as Fig. 3.22(a)) and modi�ed versions of them pd,reg = 0.125 → 0.045 and pd,reg =
0.125 → 0.25. The overall behavior is the same independently of pd,reg and only tiny 
hangesare observed.



76 3.3 Results for the designed maps with one partial barrier3.3.6 Asymmetri
 
haoti
 regionsIn this se
tion we extend the dis
ussion of the previous se
tions to situations, where the upperand the lower region have di�erent size, A
h,up 6= A
h,lo. A

ording to the Λ-�ux relation [23℄,given in Eq. (3.50),
Λ =

1

4π2fupflo Φ

he� , (3.111)derived in Se
. 3.2.2, we expe
t that the s
aling depends on the relative size of the two 
haoti
regions, fup and flo, in addition to the ratio of 
lassi
al �ux and Plan
k's 
onstant. However,a reliable veri�
ation of this dependen
e on fup and flo is not found in this se
tion and furtherinvestigations are needed.For the maps Fpb and Fpb,rot the relative size of the 
haoti
 regions fup and flo 
an be adjustedby variation of the position of the �xed point (1
2
, p�x). Changing the parameter p�x from thevalue given in Tab. 3.1 moves the partial barrier in momentum dire
tion. In the following werestri
t ourselves to example 3. Note that the parameter p�x 
annot be varied arbitrarily. Itsvalue is limited by the 
onstraint that ea
h of the 
haoti
 regions should be strongly mixing.In order to ensure this property, there has to be some spa
e between pd,reg and p�x − pd,lo aswell as between p�x + pd,up and 1 − pd,reg, whi
h determine the regions of large slope bleft and

bright in T ′ (see Eq. (3.4)). These slopes yield a large value for the e�e
tive ki
king strength
bleftK ′ and brightK ′, whi
h indu
es this strong mixing behavior of the map. If these regionsa

ount only for a small fra
tion of the upper (lower) region, the behavior of 
haoti
 states inthe respe
tive region is dominated by the slower mixing parts 
lose to the regular region andthe partial barrier. Furthermore we 
hoose the value of p�x su
h that the additional rotationsintrodu
ed in Se
. 3.1.6 are shifted a

ording to the 
hange of pd,reg, but preserve their size inphase spa
e without destroying the regular regions and the 
onsidered partial barrier. In thisway we ensure that the results do not depend on the modi�
ation of the rotation, but ratheron the asymmetri
 size of the upper and lower region.As �rst quantitative measure we 
onsider the average produ
t measure using the momentummeasures as dis
ussed in Se
. 3.3.3. The resulting data for various asymmetri
 versions ofexample 3 are shown in Fig. 3.25. The results are plotted as a fun
tion of the ratio Φ/he�as well as of the parameter Λ in order to �nd the universal s
aling parameter. As a fun
tionof the ratio Φ/he� the resulting produ
t measure slightly in
reases with in
reasing asymmetry
A
h,up/A
h,lo. However, this 
hange is almost negligible. If we s
ale the data with the parameter
Λ, the data for di�erent pairs (A
h,up, A
h,lo) show deviations. Therefore we 
on
lude that forthe 
onsidered example the data s
ales with the ratio Φ/he� rather than with the parameter
Λ. Note that the relevant di�eren
e between the s
aling with Φ/he� and with Λ is the fa
tor
4fupflo, whi
h is one for the symmetri
 examples and rea
hes 4fupflo = 4 ·6/49 ≈ 1

2
for the mostasymmetri
 
ase A
h,up/A
h,lo = 6/1 
onsidered here. Therefore the di�erent s
aling behavior
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haoti
 regions 77rea
hes at most a fa
tor of two, whi
h is quite small. In order to test this s
aling in more detail,systems with stronger asymmetries A
h,up/A
h,lo need to be 
onsidered.The observed s
aling with Φ/he� is quite unexpe
ted, be
ause Λ should be the appropri-ate s
aling parameter as dis
ussed in Se
. 3.2.2. To verify our result we additionally 
on-sidered the Husimi measures introdu
ed in Se
. 3.3.4 to determine the average produ
t mea-sure as well as the ATW. The results are shown in Fig. 3.26 and Fig. 3.27, respe
tively. For
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Figure 3.25: Average produ
t measure M using the momentum measure for the example 3of the map Fpb,rot for various ratios A
h,up/A
h,lo as a fun
tion of the ratio Φ/he� in (a) andthe parameter Λ in (b). The data is averaged over 100 values of the Blo
h phase θq. It s
aleswith the ratio Φ/he� rather than the parameter Λ. The total number of states in phase spa
eis N = 1/he� = 100, 200, . . . , 3200 from the left to the right for the shown data.



78 3.3 Results for the designed maps with one partial barrierthe average produ
t measure using Husimi weights, we �nd deviations from the s
aling with
Φ/he� (Fig. 3.26(a)). As a fun
tion of Φ/he� the data in
reases with in
reasing asymmetry
A
h,up/A
h,lo. In Fig. 3.26(b) the same data is shown as a fun
tion of Λ and for the �rstdata points (N = 1/he� = 100, 200, 400) the same enhan
ement with in
reasing asymmetry
A
h,up/A
h,lo is found whereas for larger values of N = 1/he� the data for di�erent asymmetriesare 
lose to ea
h other. The enhan
ement for small N might be due to the fa
t that the num-
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Figure 3.26: Average produ
t measure M using the Husimi measure for the example 3of the map Fpb,rot for various ratios A
h,up/A
h,lo as a fun
tion of the ratio Φ/he� in (a)and the parameter Λ in (b). The total number of states in phase spa
e is N = 1/he� =
100, 200, . . . , 3200 from the left to the right for the shown data. The data is averaged over100 values of the Blo
h phase θq.
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 regions 79ber of states asso
iated with the smaller region is too small to observe universal features of thepartial barrier. Here one may 
onje
ture that the parameter Λ is the more appropriate 
hoi
efor the s
aling of the average produ
t measure using Husimi weights than the ratio Φ/he�.Considering the ATW using the Husimi weight gives the results shown in Fig. 3.27. Theenhan
ement in 〈M〉 found for small N = 1/he� in Fig. 3.26 is mu
h smaller in the ATW
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Figure 3.27: ATW using the Husimi weight for the example 3 of the map Fpb,rot for variousratios A
h,up/A
h,lo as a fun
tion of the ratio Φ/he� in (a) and the parameter Λ in (b). Thedata is averaged over 10 initial states pla
ed in the 
haoti
 regions away from the partialbarrier and the regular region. We use 20 values of the Blo
h phase θq. The total numberof states in phase spa
e is N = 1/he� = 100, 200, . . . , 3200 from the left to the right for theshown data.



80 3.3 Results for the designed maps with one partial barrierdetermined by time evolution. The reason for this di�eren
e are states lo
alized 
lose to thepartial barrier or 
lose to the regular region, whi
h are not ex
ited by wave pa
kets, that areinitially pla
ed inside the upper and the lower 
haoti
 region away from theses stru
tures. Forthe ATW shown in Fig. 3.27 neither s
aling with the ratio Φ/he� nor s
aling with the parameter
Λ yields 
urves on top of ea
h other. Both s
alings agree fairly well.As a result of this se
tion we �nd di�erent s
aling behaviors for di�erent measures 
onsideredfor the des
ription of the quantum transition of a partial barrier. Up to now we do not knowthe reason for these di�erent behaviors. Therefore further investigations are needed in order to�nd out whether the s
aling is des
ribed by the ratio Φ/he� or the parameter Λ.3.3.7 Summary of the results for the designed mapIn the last se
tions we have quanti�ed the quantum transition of a partial barrier betweenquantum suppression and 
lassi
al transport for the designed maps Fpb and Fpb,rot. We des
ribethis transition in terms of time evolution and eigenstate properties. Moreover we 
onsidermomentum and Husimi measures. As long as the two 
haoti
 regions are equal in size, i.e.
A
h,up = A
h,lo, we always �nd s
aling of the transition with the ratio Φ/he� of the 
lassi
al �uxand Plan
k's 
onstant. The overall behavior is well des
ribed by, Eq. (3.102),ATW(

Φ

he�) =
Φ
he�

1 + Φ
he� , (3.112)whi
h we motivate by a 2 × 2 model in Se
. 4.1. The transition 
urve given by Eq. (3.112) isshown in Fig. 3.28. The transition point of the 
urve is at the point, where �ux Φ and Plan
k's
onstant he� are equal in size, be
ause at this point ATW(Φ/he�) = 1

2
. That is, it is half waybetween quantum suppression ATW = 0 and 
lassi
al behavior ATW = 1. As we use Φ/he�on a logarithmi
 s
ale, it is meaningful to 
all this point the symmetry point of the transition,be
ause the ATW has the following point symmetry,ATW(

Φ

he�)− ATW(
Φ

he� = 1

)
= ATW(

Φ

he� = 1

)
− ATW([

Φ

he�]−1
)
, (3.113)

Φ
he�

1 + Φ
he� − 1

2
=

1

2
− 1

1 + Φ
he� . (3.114)Having this symmetry in mind the transition width should be des
ribed by a fa
tor in the ratio

Φ/he�. We 
onsider ATW ∈ [0.1, 0.9] as the transition region between quantum suppression and
lassi
al transport, whi
h 
orresponds to 10% up to 90% of the 
lassi
al value. This transitionregion is illustrated in Fig. 3.28 using the average produ
t measure 〈M〉. It has a width of afa
tor of 81. That is, the transition is broad and almost two orders of magnitude in the ratio
Φ/he� are needed to investigate the quantum transition of a partial barrier.
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Figure 3.28: Average produ
t measure 〈M〉 using the momentum measures for the examples1, 2, and 3 of the map Fpb,rot (same as Fig. 3.19). The width of the transition betweenquantum suppression and 
lassi
al transport is shown by the arrow. The dotted lines indi
atethe limits of the transition region given by 〈M〉 ∈ [0.1, 0.9].3.4 Results for the standard mapIn this se
tion we investigate the impa
t of a partial barrier on the 
orresponding quantumsystem for the 
ase of the generi
 standard map. We show that the results obtained for thedesigned maps Fpb and Fpb,rot in Se
. 3.3 also hold for this more general example system.3.4.1 Considered examples and 
hara
terization of the 
lassi
alsystemFor the generi
 standard map it is not possible to �nd su
h a simple phase-spa
e stru
ture asobtained for the map Fpb,rot in Se
. 3.1. Nevertheless we 
onsider two examples of the standardmap with ki
king strength K = 2.7 and K = 2.9, su
h that there is a dominant partial barrierand the regular regions on ea
h side of the partial barrier are small.The phase spa
e of the 
hosen examples is illustrated in Fig. 3.29(a) and (b) and the sizesof relevant phase-spa
e areas are given in Tab. 3.3. In both 
ases the phase spa
e 
onsistsof a large 
entral island, whi
h is surrounded by a 
hain of four islands. In between theseislands there exists a hyperboli
 periodi
 orbit and its stable and unstable manifolds are alsodisplayed. As mentioned in Se
. 2.4 these stable and unstable manifolds give rise to a partialbarrier. At ea
h point of the hyperboli
 orbit there are two bran
hes of the stable and of theunstable manifold. Only the outer pair of the manifolds gives rise to a partial barrier, be
ausethe inner pair of the manifolds is very 
lose to the 
entral island and almost no 
haoti
 region
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Figure 3.29: Phase-spa
e portrait of the standard map with (a) K = 2.7 and (b) K = 2.9.For both examples there is a large island in the 
enter, whi
h is surrounded by a 
hain offour islands. Moreover the stable manifolds (blue) and the unstable manifolds (red) of thehyperboli
 periodi
 orbit in between this island 
hain are shown.
K 2.7 2.9
Φ 0.0054 0.0126
1/Φ 185.2 79.3
A
h 0.8902 0.8818

Alarge island 0.093 0.11
Asmall island 0.0042 0.002Table 3.3: The �ux Φ, the total size of the 
haoti
 region A
h and the size of the regularislands for the standard map with K = 2.7 and K = 2.9, whose phase spa
e is illustrated inFig. 3.29.is in between the manifolds and the regular island. As pointed out in Se
. 3.1.3 the de�nitionof the partial barrier a

ording to the stable and unstable manifolds of a hyperboli
 periodi
orbit is not unique. That is, all images and preimages of a 
onstru
ted partial barrier formagain a partial barrier with the same �ux and the same area of phase spa
e on ea
h side of thepartial barrier. Therefore we 
hoose some partial barrier, whi
h seems to be relevant for thequantum system. We restri
t ourselves to partial barriers, whi
h satisfy the parity symmetryof the standard map, (q, p) 7→ (1 − q,−p). Four di�erent versions of su
h partial barriers forthe standard map at K = 2.7 are shown in Fig. 3.30. All these partial barriers have the same�ux Φ (see Tab. 3.3), whi
h is twi
e the area of one loop between the stable and the unstablemanifolds. They en
lose di�erent phase-spa
e regions A
h,in and A
h,out, whi
h are given inTab. 3.4 for K = 2.7 and in Tab. 3.5 for K = 2.9.As the next step we investigate the impa
t of the 
onstru
ted partial barriers on the 
lassi
aldynami
s. As in Se
s. 3.1.5 and 3.1.8 we 
onsider orbits uniformly distributed in the 
haoti
 sea
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Figure 3.30: (a)�(d) Four di�erent versions of partial barriers respe
ting the parity symme-try of the standard map with K = 2.7 (solid lines) as well as their preimages (dotted lines)
onstru
ted from the stable and unstable manifolds shown in Fig. 3.29(a).(a) (b) (
) (d) av.
A
h,in 0.1805 0.1751 0.1859 0.1643 0.1764
A
h,out 0.7097 0.7151 0.7043 0.7259 0.7138
f
h,in 0.2027 0.1967 0.2088 0.1845 0.2
f
h,out 0.7973 0.8033 0.7912 0.8155 0.8Table 3.4: Areas and relative areas of 
haoti
 regions inside and outside the partial barrierfor the standard map at K = 2.7. The 
olumns 
orrespond to the four versions of symmetri
partial barriers as shown in Fig. 3.30(a)-(d) and the last 
olumn displays the average values.The ratio of the region inside the partial barrier to the region outside is approximately 1/4.and measure the fra
tion of orbits, whi
h remain on one side of the partial barrier up to time t.This survival probability P (t) resulting from orbits started in the inner 
haoti
 region and inthe outer 
haoti
 are shown in Fig. 3.31(a) and (b) for the example with K = 2.7 and K = 2.9,
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) (d) av.
A
h,in 0.2402 0.2276 0.2528 0.2027 0.2308
A
h,out 0.6416 0.6542 0.6289 0.6791 0.6509
f
h,in 0.2724 0.2581 0.2867 0.2299 0.26
f
h,out 0.7276 0.7419 0.7133 0.7701 0.74Table 3.5: Areas and relative areas of 
haoti
 regions inside and outside the partial barrierfor the standard map at K = 2.9. The 
olumns 
orrespond to the four versions of symmetri
partial barriers similar to those in Fig. 3.30 for K = 2.7 and the last 
olumn displays theaverage values. The ratio of the region inside the partial barrier to the region outside isapproximately 1/3.respe
tively. For both examples we 
onsider the partial barrier illustrated in Fig. 3.30(a). Asdis
ussed in Se
. 3.1.5 we expe
t an exponential de
ay for the survival probability P (t) ∝

exp{−αit} with the 
lassi
al es
ape rate αi = 1/tdwell,i = Φ/Aa

ess,i. For both examples thesurvival probability of orbits started outside the partial barrier Pout(t) is in good agreementwith this exponential de
ay as shown in Fig. 3.31. The survival probability of orbits startedinside the partial barrier Pin(t) follows the exponential de
ay, too, but only for some time. Atlarge times Pin(t) de
ays mu
h slower. This indi
ates that at large times further partial barrierswith smaller �ux are important, whi
h additionally limit the transport. The 
onsidered partialbarrier is dominant for Pout(t) and for the short time behavior of Pin(t). However, 
lose to the
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Figure 3.31: Survival probability P (t) for the standard map at (a) K = 2.7 and (b) K =
2.9 of orbits uniformly started outside (histogram, blue solid line) and inside (histogram,green dotted line) of the partial barrier. For 
omparison the expe
ted exponential de
ay
exp{−t/tdwell,i} with tdwell,i = Aa

ess,i/Φ is plotted (dashed lines). For K = 2.7 the dwelltime is 132.4 for the region outside the partial barrier and 32.4 for inside whereas for K = 2.9it is 51.9 and 18.0 for outside and inside.



3.4.2 ATW and produ
t measure using Husimi measures 85period four island 
hain further partial barriers limit the transport. The question is whetherthese stru
tures are resolved in the 
orresponding quantum system and thereby 
ontribute tothe lo
alization of wave pa
kets. In the following we will restri
t ourselves to quantify theimpa
t of the 
onstru
ted partial barrier.3.4.2 ATW and produ
t measure using Husimi measuresIn order to investigate the quantum transition of the 
onstru
ted partial barrier, we 
onsiderthe quantitative measures introdu
ed in Se
. 3.2.3 for the two examples of the standard mapde�ned in the last se
tion. In analogy to Se
. 3.3.4 we evaluate Eqs. (3.52) and (3.72) using theHusimi fun
tion integrated over the 
haoti
 regions inside and outside of the partial barrier.First we 
onsider the ATW of a wave pa
ket initially lo
ated outside of the partial barrier.To over
ome the ambiguity of the de�nition of the partial barrier, we 
onsider the four di�erentpartial barriers of Fig. 3.30(a)�(d) for the transmitted weight. In Fig. 3.32 the obtained ATWis shown as a fun
tion of Φ/he� and of the parameter dis
ussed in Se
. 3.2.2, Eq. (3.50),
Λ =

1

4π2f
h,inf
h,out Φ

he� . (3.115)The ATW depends only slightly on the 
hoi
e of the partial barriers shown in Fig. 3.30. There-fore we �nd a universal transitional behavior. Similar to Se
. 3.3.6 it is hard to de
ide whi
hs
aling yields the best agreement within the 
onsidered examples with di�erent �ux. The rele-vant di�eren
e of the s
aling with Λ to the s
aling with Φ/he� is the fa
tor 4f
h,inf
h,out, whi
his one for f
h,in = f
h,out = 1
2
, 4f
h,inf
h,out ≈ 0.64 for the K = 2.7, and 4f
h,inf
h,out ≈ 0.77 for

K = 2.9. That is, the s
aling di�eren
e is at most a fa
tor of 1.5, whi
h is too small to observesigni�
ant di�eren
es. Therefore we 
on
lude that both data sets are quite 
lose to ea
h otherin both s
alings. The numeri
al data is well des
ribed byATW(
Φ

he�) =

Φ
he�

1 + Φ
he� , (3.116)whi
h is used as des
ription for the map Fpb,rot in Se
. 3.3.7.Complementary to the ATW we now dis
uss the average produ
t measure 〈M〉. In analogyto Se
. 3.3.4 we 
onsider only those states φ with

µup[φ] + µlo[φ] ≥ χ (3.117)for some χ > 0. That is, we in
lude all eigenstates whose Husimi weight in the 
haoti
 region islarger than χ and nonzero χ sele
ts states with at least some 
omponent in the 
haoti
 sea. Theresulting 〈M〉 for several χ is shown in Fig. 3.33 in 
omparison to the ATW of Fig. 3.32. Fornon-vanishing χ the average produ
t measure is 
lose to the ATW. However, 〈M〉 is enhan
ed
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Figure 3.32: ATW using the Husimi weight in the transmission region for the standard mapwith K = 2.7 and K = 2.9 as a fun
tion of the ratio Φ/he� in (a) and the parameter Λ in(b). The data is averaged over 15 initial 
onditions pla
ed outside the partial barrier, 10values of the Blo
h phase θp, and 100 steps after time 106. The total number of states are
N = 1/he� = 100, 200, ..., 51200.for small N = 1/he� 
ompared to the ATW. Similar results have been obtained for the map

Fpb,rot, see Fig. 3.22 in Se
. 3.3.4. We attribute this di�eren
e to states lo
alized 
lose to oreven on the stable and unstable manifold forming the partial barrier or to s
ars lo
alized on thehyperboli
 orbit [60℄. Their 
ontribution to the average produ
t measure is determined by the
hoi
e of the measuring region and does not originate from the 
oupling indu
ed by the partialbarrier. Figure 3.34 shows the distribution of the produ
t measure d(M) for the standard map
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Figure 3.33: Average produ
t measure for the standard map at (a)K = 2.7 and (b)K = 2.9.We 
onsider partial barrier (a) of Fig. 3.30 for the determination of the Husimi weights. Theminimal measure χ a

ording to Eq. (3.117) is varied and thereby di�erent sele
tions ofeigenstates 
ontributing to 〈M〉 are obtained. The data is averaged over 100 values of theBlo
h phase θp. The ATW of Fig. 3.32 is shown for 
omparison.with K = 2.7 and K = 2.9. For large ratios Φ/he� the peak of the distribution approa
hes
M = 1, whi
h 
orresponds to states uniformly distributed in the whole 
haoti
 region.Note that for the standard map, similar to Se
. 3.1.7 for the map Fpb, we introdu
ed phase-spa
e drilling in order to destroy the 
hain of regular islands inside the partial barrier. We pla
eone 
ir
le of the rotation on top of ea
h island of the period four island 
hain su
h that orbitsstarted inside these islands are mapped into the 
haoti
 region. The parameters of the rotation
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Figure 3.34: Distribution d(M) of the produ
t measure M for the standard map with(a) K = 2.7 and (b) K = 2.9. The data is the same as for Fig. 3.33 for χ = 0.1. The
orresponding ratios Φ/he� are approximately 1, 4, 16 for (a) and 2, 8, 32 for (b).
an be 
hosen su
h that there remain no regular tori. Quantum me
hani
ally, however, theresulting transitional behavior of the partial barrier is almost un
hanged.Finally, we 
ompare the results for the standard map to the results for the designed map
Fpb,rot of Se
. 3.3.4 using the Husimi weight for the symmetri
 
ase (fup = flo = 1

2
) in Fig. 3.35.
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Figure 3.35: ATW using the Husimi weight for the examples 1, 2, and 3 of the map Fpb,rotwith fup = flo = 1
2 (same as Fig. 3.22) in 
omparison to the result of the two examples of thestandard map. The standard map data is the same as in Fig. 3.32 using the partial barrier(a) of Fig. 3.30.
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t measure using Husimi measures 89Although for the standard map the inner 
haoti
 region exhibits a hierar
hi
al stru
ture the
onstru
ted partial barrier is dominant and we a �nd transitional behavior similar to the map
Fpb,rot with one partial barrier. This implies a universal behavior of the quantum transition ofa partial barrier independent of the 
onsidered example system.





4 Modeling approa
hesAfter we quanti�ed the quantum transition of a partial barrier between quantum suppressionand 
lassi
al transport behavior, we now des
ribe this transition in terms of matrix models inorder to get a deeper insight into the impa
t of the partial barrier on the quantum system.The �rst model is a two-site model (Se
. 4.1), where the upper and the lower 
haoti
 region aredes
ribed by one site. In Se
. 4.2 we review the random matrix model, whi
h is proposed byBohigas, Tomsovi
, and Ullmo [23℄, and dis
uss our quantitative measures. As this model doesnot des
ribe the data of the designed maps Fpb and Fpb,rot, we introdu
e a more sophisti
ated
oupling in Se
. 4.3. We mention unitary modeling approa
hes in Se
. 4.4 and summarize our�ndings in Se
. 4.5.4.1 Deterministi
 2× 2 modelIn order to des
ribe the transition from two un
oupled 
haoti
 systems, where the partial barriera
ts as a barrier, to one large system, where the partial barrier is transparent, we propose asimple 2× 2 matrix model. Namely, we 
onsider an avoided 
rossing, whi
h is des
ribed by theHamiltonian
H =

(
E0 +∆/2 v

v E0 −∆/2

) (4.1)with the energy o�set E0, the level spa
ing ∆, and the 
oupling v. The eigenenergies follow as
E± = E0 ±

√(
∆

2

)2

+ v2 (4.2)and are plotted in Fig. 4.1 as a fun
tion of ∆. For vanishing 
oupling, v = 0, the eigenenergies
E± 
ross at ∆ = 0 (dashed lines in Fig. 4.1), whereas nonzero 
oupling yields an enhan
edsplitting, whi
h gives rise to an avoided 
rossing between the two eigenenergies. The impa
tof the 
oupling v is most prominent at ∆ = 0 and determines the minimal splitting 2 · |v|. Faraway from the 
rossing, E± approa
h the values of the un
oupled eigenenergies and thereforethe 
oupling of the two sites is negligible. This limit 
orresponds to the quantum suppression ofa partial barrier, be
ause the two levels behave independently. At the energy 
rossing, however,the two levels are strongly 
oupled, whi
h 
orresponds to the limit of the 
lassi
al transport,be
ause the two levels 
annot be treated independently.
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E+

E−

2 · |v|E0

E

0 ∆Figure 4.1: Eigenenergies E± of the deterministi
 2 × 2 model, de�ned by Eq. (4.1), as afun
tion of the un
oupled mean level spa
ing ∆. The eigenenergies E± are given by Eq. (4.2)and perform an avoided 
rossing. The eigenenergies for vanishing 
oupling, v = 0, areshown as dashed lines and 
ross at ∆ = 0. The minimal splitting of the avoided 
rossing
[E+ − E−](∆ = 0) is determined by the 
oupling v, whi
h is indi
ated by the dotted linesand the arrow.

By measuring energy in multiples of the level spa
ing of the un
oupled system ∆, we obtain
ε± =

E±
∆

= ε0 ±
√

1

4
+ λ2, (4.3)where λ := v/∆ is the s
aling parameter, whi
h measures the 
oupling strength relative to thelevel spa
ing. The ensemble average over λ2 would give the s
aling parameter Λ introdu
ed inSe
. 3.2.2. We set the energy o�set E0 and therefore ε0 to zero, be
ause properties of eigenstatesare independent of this o�set. Using the s
aling parameter λ the problem is equivalent to

H redu
ed =

(
1
2

λ

λ −1
2

)
, (4.4)whi
h 
aptures all universal features of the above model.For vanishing 
oupling strength v = 0, or equivalently λ = 0 for �nite ∆, the eigenenergiesare ε± = ±1

2
and the eigenve
tors are

η+(λ = 0) =

(
1

0

) and η−(λ = 0) =

(
0

1

)
. (4.5)As we in
rease the 
oupling the eigenve
tors η± get admixtures in the other 
omponent. They
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η+ =

1√
2
(
1 + 4λ2 +

√
1 + 4λ2

)

(
1 +

√
1 + 4λ2

2λ

)
,

η− =
1√

2
(
1 + 4λ2 +

√
1 + 4λ2

)

(
−2λ

1 +
√
1 + 4λ2

)
. (4.6)A

ording to Eq. (3.72) the produ
t measure of these eigenstates is determined by

M [η±] =
µup[η±]

µup[Ψuniform] µlo[η±]
µlo[Ψuniform] = 4η2±,1η

2
±,2, (4.7)where the measures of the uniformly distributed state Ψuniform are substituted by 1

2
. InsertingEq. (4.6) for the eigenstates yields

M [η±] = 4
(1 + 2

√
1 + 4λ2 + 1 + 4λ2) · 4λ2

[2(1 + 4λ2 +
√
1 + 4λ2)]2

=
4λ2

1 + 4λ2
(4.8)

≈




4λ2 for λ→ 0

1− (2λ)−2 for λ→ ∞.
(4.9)

In addition to the produ
t measure, we 
onsider the time evolution of the state ψ(t = 0) =

(1, 0), whi
h is given by
ψ(t) =

∑

σ∈{+,−}
ησ exp{−iEσt/~} ηTσ · ψ(t = 0)︸ ︷︷ ︸

ησ,1

. (4.10)The asymptoti
 weight in this setup is the squared lower element of the time evolved ve
tor,
(ψ(t))2 =

∑

σ∈{+,−}
ησ,2 exp{−iEσt/~}ησ,1 (4.11)

= η+,2 exp{−iE+t/~}η+,1 + η−,2 exp{−iE−t/~}η−,1, (4.12)whi
h 
an be expressed using the eigenenergies and eigenve
tors (see Eqs. (4.2), (4.3), and(4.6)) by
(ψ(t))2 =

2λ
[
1 +

√
1 + 4λ2

]

2
(
1 + 4λ2 +

√
1 + 4λ2

)
[
exp

{
−i∆√

1 + 4λ2t

2~

}
− exp

{
+i∆√

1 + 4λ2t

2~

}] (4.13)
=

λ√
1 + 4λ2

2i sin [−∆
√
1 + 4λ2t/(2~)

]
. (4.14)
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 2× 2 modelFor the transmitted weight we obtain
|(ψ(t))2|2 =

4λ2

1 + 4λ2
sin2

[
∆
√
1 + 4λ2t/(2~)

]
=M(λ) sin2

[
∆
√
1 + 4λ2t/(2~)

]
, (4.15)whi
h is the result of the produ
t measure with some additional os
illating time dependen
e.Averaged over one period in time the transmitted weight 
ompared to the 
ase without a barrier(strong 
oupling) is determined by the produ
t measureATW =

|(ψ(t))2|2
1/2

=M(λ) =
4λ2

1 + 4λ2
. (4.16)The os
illations as a fun
tion of time depend on the energy di�eren
e between the two eigen-states and are known as Rabi os
illations [52, Se
. 3.2.2℄. These os
illations also arise in thetime evolution of wave pa
kets in systems with more than two eigenstates. In those 
ases the os-
illatory behavior depends on the energy di�eren
es of all pairs of eigenfun
tions. As dis
ussedin Se
. 3.3.1 the superposition of those os
illations gives rise to a smooth averaged behavior atlarge times. Therefore it is meaningful to 
ompare our �ndings of this simple model, Eq. (4.16),to the results for the quantum map.In Se
. 3.3.7 we dis
ussed that the overall behavior of the map data is well des
ribed by,Eq. (3.112), ATW =

Φ
he�

1 + Φ
he� . (4.17)If we identify 4λ2 with the ratio Φ/he� Eqs. (4.16) and (4.17) are the same. It is plausible toassume that λ2 is proportional to the ratio Φ/he�, be
ause both are proportional to the s
alingparameter Λ. However, the prefa
tor 4 is a �tting parameter.The produ
t measure of Eq. (4.8) as a fun
tion of the parameter λ is shown in Fig. 4.2.In analogy to Se
. 3.3.7 the produ
t measure M has a point symmetry relative to the point

(λ,M) =
(
1
2
, 1
2

). That is,
M (λ)−M

(
λ =

1

2

)
=M

(
λ =

1

2

)
−M

(
1/2

λ

) (4.18)
4λ2

1 + 4λ2
− 1

2
=

1

2
− (2λ)−2

1 + (2λ)−2 (4.19)
1 =

4λ2 + 1

1 + 4λ2
. (4.20)In terms of the parameter λ the total width of the transition region de�ned in Se
. 3.3.7,

M ∈ [0.1, 0.9], is a fa
tor of 9 (see Fig. 4.2).
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Figure 4.2: Produ
t measure M for the deterministi
 2× 2 model, Eq. (4.4), as a fun
tionof the s
aling parameter λ = v/∆. M ful�lls an inversion symmetry with respe
t to (12 , 12).The dotted lines and the arrow indi
ate the transition width if we 
onsider anything between10% and 90% as the transition region.Although the approximation of the quantum map by a two site system is quite 
rude, thisdeterministi
 2 × 2 model, Eq. (4.4), yields an ex
ellent des
ription of the numeri
al datades
ribing the transition from quantum suppression to 
lassi
al transport (see Fig. 3.28 inSe
. 3.3.7).
4.2 BTU matrix modelIn 1993 Bohigas, Tomsovi
, and Ullmo proposed a matrix model to des
ribe the impa
t ofpartial barriers on the quantum system (BTU model) [23, 66℄. The main idea of the modelis to des
ribe the transition from quantum suppression to 
lassi
al transport by modeling two
haoti
 sub-systems, that are 
oupled.In order to set up this matrix model, we need to model a 
haoti
 region in terms of randommatrix theory: In the 1960's it was found that spe
tral statisti
s of nu
lei energies have universalproperties, whi
h 
an be modeled by suitable random matrix ensembles [67℄. These matrixensembles des
ribe the universal properties of fully 
haoti
 systems, whi
h was 
onje
tured byBohigas, Giannoni, and S
hmit in 1984 [68℄. For the 
ase of time reversal invariant systemsthe universal behavior is given by the Gaussian orthogonal ensemble (GOE). As all systems
onsidered in this thesis obey time reversal invarian
e, we restri
t ourselves to dis
uss thisensemble. More details 
an be found in Ref. [67℄.For the matrix elements Hij in the 
ase of the GOE ensemble one uses Gaussian random



96 4.2 BTU matrix modelvariables with vanishing mean value and varian
es given by
〈H2

ii〉 =
1

2A
, (4.21)

〈H2
ij〉 =

1

4A
for i 6= j (4.22)with some free parameter A �xing the energy s
ale. This yields a density of states ρ(E), whosesmooth part is des
ribed by Wigner's semi
ir
le law (see Ref. [67, Se
. 4.2℄ and Fig. 4.3)

ρWig(E) =  2
π

√
N ·A

√√√√1−
(

E√
N/A

)2 for |E| ≤√N
A

0 otherwise. (4.23)
In the BTU matrix model two of these GOE matri
es are used for the des
ription of the two
haoti
 regions above and below the partial barrier. These matrix blo
ks are 
oupled via some
oupling matrix, whi
h depends on the ratio of 
lassi
al �ux Φ and Plan
k's 
onstant he�,

H =


 GOE

GOE

Φ
heff

Φ
heff



. (4.24)
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Figure 4.3: Density of states ρ(E) for an ensemble of 100 GOE matri
es of size N×N (bluehistogram), where we 
hoose N = 100 and the parameter A = N for Eqs. (4.21) and (4.22).The histogram is in agreement with the Wigner semi
ir
le law of Eq. (4.23), whi
h is shownas a red dashed line.



4.2 BTU matrix model 97The limiting 
ases of this BTU model are two un
oupled GOE sub-matri
es and one large GOEmatrix
H =


 GOE

GOE

0

0




and H =




GOE



, (4.25)whi
h 
orrespond to vanishing and large 
lassi
al �ux Φ, respe
tively. For small 
lassi
al �uxthe partial barrier a
ts as a quantum barrier giving rise to quantum suppression and therebyun
oupled sub-systems. In the 
ase of a large 
lassi
al �ux, Φ ≫ he�, the partial barrier hasno e�e
t on the quantum system and is negligible. Hen
e the whole system 
an be treated asone 
haoti
 region.A matrix model similar to Eq. (4.24) was originally introdu
ed by Rosenzweig and Porterin 1960 in order to des
ribe symmetry breaking in atomi
 level spe
tra [40℄. Additional for
es,whi
h do not 
ommute with the symmetry of the system yield a breakdown of the blo
k stru
tureand indu
e 
ouplings between formerly independent levels. Sin
e this time the model hasbeen applied for qualitative and quantitative des
riptions of symmetry breaking in varioussystems [69�76℄. The symmetry operator for the situation with a partial barrier is

S = Pup − Plo (4.26)with the proje
tion operators Pup and Plo on the �
titious upper and lower sub-spa
es. Stateslo
alized in the upper 
haoti
 region are eigenstates of S with eigenvalue +1 be
ause su
h statesare eigenstates of Pup with eigenvalue 1 and Plo with eigenvalue 0. In analogy states lo
alizedin the lower 
haoti
 region are eigenstates of S with eigenvalue −1. This 
lassi�
ation of statesfails in the 
ase of non-vanishing transport between the two regions, be
ause the eigenstates ofthe quantum map will have admixtures in the respe
tive other region.The relevant parameter in the random matrix transition is the s
aling parameter, Ref. [23,Eq. (5.25)℄,
Λjk =

v2jk
D2

, (4.27)where the lo
al mean level spa
ing
D =

1

ρ̄(E)
(4.28)is the inverse of the lo
al mean density of states and the average matrix element vjk of the
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oupling matrix H1 is
v2jk = |〈jα|H1|kβ〉|2. (4.29)Here the right hand side is averaged over all states α in region j and all states β in region k (seeRef. [23, p. 99 �.℄). The matrix elements of H1 for the BTU model are Gaussian distributedrandom variables with zero mean and varian
e v2jk.In 
ase of only two regions we drop the subs
ript of the s
aling parameter and use Λjk = Λto des
ribe the transition in the matrix model. The square root of the s
aling parameter
orresponds to the root-mean-square 
oupling in multiples of the mean level spa
ing

√
Λ =

√
v2

D
. (4.30)It measures the strength of the 
oupling on the s
ale of the mean level spa
ing.A

ording to Ref. [23℄ this s
aling parameter needs to be 
ompared with the 
lassi
al �ux(see Eq. (5.26) in Ref. [23℄ for d = 2)

Λ =
1

4π2f1f2

Φ

2π~e� =
Φ

π2he� , (4.31)where in the last step it was assumed that the upper and the lower region are equal in size
f1 = f2 =

1
2
. Equation (4.31) is the same as the Λ-�ux relation for maps derived in Se
. 3.2.2.In Se
. 4.2.1 the BTU matrix model with GOE blo
ks of equal size is dis
ussed. That is, themodel des
ribes a phase spa
e, where the upper and the lower region have equal size. The 
aseof di�erent blo
k sizes is dis
ussed in Se
. 4.2.2 and very good agreement with the result ofthe matrix model with equal blo
k size is found. The equivalen
e of the ATW and the averageprodu
t measure is explained in Se
. 4.2.3 and �nally the results are 
ompared to the map datain Se
. 4.2.4.4.2.1 GOE blo
ks of equal sizeThe simplest 
ase for a random matrix transition in the ensemble des
ribed above is the 
ase oftwo GOE blo
ks of equal size Nup = Nlo. The upper left and lower right blo
ks of Eq. (4.24) areGOE matri
es, whose elements are Gaussian random variables with zero mean and varian
esgiven by Eqs. (4.21) and (4.22). For the 
oupling blo
ks we 
hoose

v2 = σ2
oupl〈H2
ij〉 =

σ2
oupl
4A

, (4.32)whi
h provides the limit of two un
oupled GOEs for σ
oupl = 0 and the limit of one large GOEfor σ
oupl = 1. The prefa
tor σ
oupl in the 
oupling blo
ks is the only di�eren
e in 
omparison



4.2.1 GOE blo
ks of equal size 99to setting up a large GOE matrix.In the evaluation of the matrix model we restri
t ourselves to states with energies aroundzero in order to ensure a �xed mean level spa
ing for all of them. This is needed in order todete
t universal features independent of variations of the mean level spa
ing as a fun
tion ofthe energy (see Fig. 4.3). A

ording to Eq. (4.23) we obtain for the un
orrelated superpositionof two GOE matri
es of size Nup
ρ(E = 0) = 2 · 2

π

√
Nup · A. (4.33)The s
aling parameter follows as

Λ =
v2

D2
= v2ρ2(E = 0) (4.34)

=
σ2
oupl
4A

16NupA
π2

=
4Nupσ2
oupl

π2
. (4.35)Note that the s
aling parameter Λ does not depend on the 
hoi
e of the energy s
ale A, butonly on the 
hoi
e of the 
oupling strength σ
oupl and the matrix size Nup.For ea
h 
oupling strength we determine the eigenve
tors of the random matrix and 
omputetheir produ
t measure with Eq. (3.72),

M [φ] =
µup[φ]

µup[Ψuniform] µlo[φ]
µlo[Ψuniform] , (4.36)whi
h simpli�es to

M [φ] = 4µup[φ]µlo[φ] = 4µup[φ](1− µup[φ]) (4.37)for the 
ase of two sub-systems of equal size Nup = Nlo, be
ause the uniformly distributed state
Ψuniform has measure 1

2
in ea
h region.In Fig. 4.4 we show the resulting produ
t measure averaged over all eigenstates with energy
lose to zero (we use 10% of the states) as a fun
tion of the s
aling parameter. The results fordi�erent matrix sizes Nup ni
ely fall on top of ea
h other. That is, universal behavior is found.The results for the matrix model are 
ompared to the perturbative expression for the ATWderived in Ref. [23, p. 113�115℄, ATW ≡ ∆j

k

fk
≃

√
2πΛ. (4.38)We �nd very good agreement between the random matrix results and the perturbative expres-sion up to Λ = 10−2 (see Fig. 4.4(b)).Furthermore, the overall behavior of the average produ
t measure for the BTU matrix model
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Figure 4.4: Average produ
t measure 〈M〉 for the BTU model of equal size as a fun
tion ofthe s
aling parameter Λ. The data is determined from 1000 matri
es with Nup = Nlo = 100,200, and 500. For the average 10% of the states around E = 0 are used. The overallbehavior of the data is well des
ribed by a 2× 2-model des
ription derived in the 
ontext of�ooding [39℄: 2v arctan 1
2v (gray dash-dotted line, see also Eq. (4.41)). The e�e
tive 
ouplingstrength is v =

√
2Λ/π. Moreover we 
ompare to the perturbative result √2πΛ [23℄ (greendotted line). Pi
ture (b) magni�es (a) in the perturbative regime.is reasonably well des
ribed by the 2 × 2-model, introdu
ed by Bittri
h in his PhD thesis [39,Se
. 3.3.3℄ in the 
ontext of �ooding of the regular island by 
haoti
 states. It des
ribes thetunneling 
oupling between regular and 
haoti
 states. While 
lassi
ally regular and 
haoti
regions are separated, this 
oupling yields eigenstates with strong admixtures in both of the
lassi
al regions. This is similar to the 
ase of our interest, where due to the 
oupling 
haoti




4.2.1 GOE blo
ks of equal size 101eigenstates get admixtures in the un
oupled region if quantum transport a
ross the partialbarrier is allowed. The 2× 2 random matrix model is given by the Hamiltonian
H =

(
κ v

v −κ

) for κ ∈
[
−1

2
, 1
2

]
, (4.39)whi
h is determined by the mean level spa
ing 2κ and the e�e
tive 
oupling v > 0. Theensemble average is performed by an average over κ.If we use the results derived in Se
. 4.1 for the produ
t measure we have to average Eq. (4.8)with λ = v/(2κ),

M(v, κ) =
(v/κ)2

1 + (v/κ)2
=

1

1 + (κ/v)2
, (4.40)over κ, whi
h yields

〈M(v, κ)〉κ = 2v arctan
1

2v
. (4.41)For small 
ouplings 〈M(v, κ)〉κ is linear in the e�e
tive 
oupling v and for large v it approa
hesone, whi
h 
orresponds to the 
ase without a barrier,

〈M(v, κ)〉κ ≈




2v · π

2
= πv for v ≪ 1

2v ·
(

1
2v

− 1
3(2v)3

)
= 1− 1

3(2v)2
for v ≫ 1.

(4.42)In order to �x the e�e
tive 
oupling strength v, we 
ompare the linear regime in v to theperturbative expression of Ref. [23℄
∆j
k

fk
≃

√
2πΛ

!
= πv, (4.43)whi
h determines the relation of v and Λ

v =

√
2

π

√
Λ ≈ 0.8

√
Λ. (4.44)The predi
tion of Eq. (4.41) using Eq. (4.44) is plotted in Fig. 4.4. It reasonably agrees withthe average produ
t measure of the random matrix model introdu
ed by Bohigas, Tomsovi
,and Ullmo over the full range of Λ. It seems plausible that the 2× 2-model of Bittri
h is validto des
ribe the results here. The only di�eren
e between his approa
h and the random matrixmodel is the 
hara
ter of the two 
oupled sub-spe
tra. Namely here we have two 
haoti
 regionsand in the 
ase of �ooding we have one 
haoti
 and one regular sub-system. For ea
h individualregular state the 
oupling elements with the 
haoti
 states are Gaussian distributed and the
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e is �xed by its regular-to-
haoti
 tunneling rate. Therefore the 
oupling is the same inboth models.By use of this 2×2-model, we approximate the strong 
oupling behavior of the ATW for theBTU model. Using Eqs. (4.42) and (4.44), we derive for strong 
oupling Λ

〈M(Λ, κ)〉κ ≈ 1− 1

24 · Λ/π ≈ 1− 1

7.6 · Λ . (4.45)As an alternative to using full GOE matri
es, one may also diagonalize a GOE matrix anduse its eigenvalues on the diagonal for the upper and the lower blo
k or even diagonalize a COEmatrix and use its eigenphases for the diagonal. Both approa
hes yield the same results as theapproa
h presented above and we restri
t ourselves to this approa
h in the following.As dis
ussed for the designed map (see Se
. 3.3.3), the distribution of the produ
t measure ofall eigenstates is a relevant quantity. At this point we restri
t ourselves to the dis
ussion of themain features of the distribution d(M) for the BTU random matrix model shown in Fig. 4.5 forvarious values of the s
aling parameter Λ = Φ/(π2he�), where the Λ-�ux relation of Eq. (4.31)is used. For small values of the s
aling parameter Λ the distribution d(M) is mainly peakedaround M = 0, but there are already states with M 
lose to one. That is, already for small
ouplings some of the states are 
lose to the state uniformly distributed in both regions. Forin
reasing s
aling parameter the peak of the distribution moves to the valueM = 1 and almostall states are uniformly distributed for large 
oupling strength.
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Figure 4.5: Distribution d(M) of the produ
t measure M for the BTU model with Nup =
Nlo = 500 using 1000 random matri
es and various values of the s
aling parameter. Theverti
al line indi
ates the lo
ation of the average value.



4.2.2 GOE blo
ks of di�erent size 1034.2.2 GOE blo
ks of di�erent sizeIn this se
tion we want to generalize the results of Se
. 4.2.1 to the 
ase of sub-systems, whi
hhave di�erent size. Therefore we 
onsider the 
oupling of two blo
ks of size Nup 6= Nlo.One approa
h is to start again with some large GOE matrix (of size Ntot = Nup +Nlo) andmultiply the upper right and the lower left blo
k � the 
oupling blo
ks � by a fa
tor σ
oupl. Inthis 
ase the mean level spa
ing of the un
orrelated superposition is given by (see Eq. (4.23))
1

D
= ρ(E = 0) =

2

π

[√
Nup +√Nlo] · √A (4.46)and the mean square 
oupling element is the same as in Eq. (4.32). Therefore the s
alingparameter is given by

Λ =
v2

D2
= v2ρ2(E = 0) (4.47)

=
σ2
oupl
4A

4A

π2

[√
Nup +√Nlo]2 = σ2
oupl

π2

[√
Nup +√Nlo]2 . (4.48)The produ
t measure of Eq. (3.72)

M [φ] =
µup[φ]

µup[Ψuniform] µlo[φ]
µlo[Ψuniform] , (4.49)
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Figure 4.6: Average produ
t measure 〈M〉 for the inappropriate implementation of the BTUmodel of di�erent size as fun
tion of the s
aling parameter Λ. All 
urves were averaged over10% of the eigenstates of 100 random matri
es with energy around E = 0. The resultsstrongly depend on Nlo and show non-universal behavior.



104 4.2 BTU matrix modelfor the 
ase of Nup 6= Nlo obeys
M [φ] =

µup[φ]
Nup/Ntot µlo[φ]

Nlo/Ntot . (4.50)The resulting average produ
t measure of this matrix model is shown in Fig. 4.7 and we �nd adependen
e on the ratio Nlo/Nup. The results 
learly deviate from the result of Nup = Nlo. Forthe limit of strong 
oupling (large Λ) the 
urves fall on top of ea
h other, whi
h is in agreementwith the well de�ned limit of one large GOE matrix of the dis
ussed ensemble. The deviationsfor di�erent Nlo/Nup arise due to the fa
t that the spe
tra of the un
oupled blo
k extend overdi�erent energy ranges: |E| ≤
√
Nup/A for the upper levels and |E| ≤

√
Nlo/A for the lowerlevels a

ording to Eq. (4.23).We now 
orre
t the approa
h by 
hoosing the same energy range for the upper and lowerlevels, whi
h is reasonable a

ording to Ref. [70℄. In order to a
hieve that, di�erent s
ales Aupand Alo need to be introdu
ed. Equal energy ranges 
orrespond to

Nup
Aup =

Nlo
Alo . (4.51)That is, we introdu
e di�erent repulsion strengths Aup and Alo in the GOE blo
ks. In this 
aseboth sub-spe
tra 
ontribute with their number of states to the density of states at zero energy

ρ(E = 0) =
2

π

[√
Nup · Aup +√Nlo · Alo] = 2

π

√
Aup
Nup [Nup +Nlo] = 2

π

√
Aup
NupNtot. (4.52)This is in 
ontrast to the density of states in Eq. (4.46), where both sub-spe
tra 
ontributewith the square root of their number of states.For the elements in the matrix model we therefore 
hoose in the upper left blo
k

〈H2
ii〉 =

1

2Aup , (4.53)
〈H2

ij〉 =
1

4Aup for i 6= j (4.54)and in the lower right blo
k
〈H2

ii〉 =
1

2Alo =
Nup

2NloAup , (4.55)
〈H2

ij〉 =
1

4Alo =
Nup

4NloAup for i 6= j, (4.56)where Alo is determined from Aup and the numbers of states Nup and Nlo, respe
tively (see
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ks of di�erent size 105Eq. (4.51)). The 
oupling elements are expressed relative to the upper left blo
k, Eq. (4.54), as
v2 = σ2
oupl〈H2

ij〉 =
σ2
oupl
4Aup . (4.57)The s
aling parameter for this ensemble is

Λ = v2ρ2(E = 0) (4.58)
=
σ2
oupl
4Aup 4

π2

Aup
NupN2tot = σ2
oupl

π2NupN2tot. (4.59)The s
aling parameter is independent of the energy s
ale given by Aup. Note that the asymmetryof Λ in the matrix sizesNup andNlo is due to the de�nition of the 
oupling strength σ2
oupl relativeto the varian
e of the o�-diagonal elements of the upper left blo
k in Eq. (4.57).The resulting produ
t measure of this matrix model is shown in Fig. 4.7 for several pairs
(Nup, Nlo). We �nd that up to Λ ≈ 10 the results for the BTU model with Nup 6= Nlo (ensuringthe same energy range) ni
ely agree with the previous results for sub-matri
es of equal size.The disagreement for larger Λ is not relevant. For in
reasing matrix size Ntot this di�eren
e ismoved further to the right, whi
h indi
ates that for arbitrary large matrix size Ntot the resultfor Nup = Nlo is fully re
overed. Similar e�e
ts are also mentioned in Ref. [39, Se
. 3.3.2℄.
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Figure 4.7: Average produ
t measure 〈M〉 for the BTU model of di�erent size (Nup 6= Nlo)as a fun
tion of the s
aling parameter Λ. All 
urves were averaged over 100 realization ofthe random matri
es. The results for di�erent Nlo ni
ely fall on top of ea
h other. That is,universal behavior is found.



106 4.2 BTU matrix model4.2.3 Equivalen
e of ATW and average produ
t measureNow we dis
uss the asymptoti
 transmitted weight, whi
h is given by (see Eq. (3.52))ATW ≡ µ̃∞[ψ(t = 0)] = lim
T→∞

1

T

T−1∑

t=0

µ[ψ(t)]

µ[Ψuniform] = lim
T→∞

1

T

T−1∑

t=0

µ[ψ(t)]

Nµ/Ntot . (4.60)The initial state ψ(t = 0) might be 
on
entrated on any site i0 in one of the regions, ψ(t =
0)i = δi,i0, and the measure µ is extended over the whole opposite region (either upper orlower). Therefore Nµ is either equal to Nup or to Nlo. Following the derivation from Eq. (3.55)to Eq. (3.72) we obtain

〈µ̃∞[ψ(t = 0)]〉ψ(t=0) =
1

Ntot · Ntot−1∑

j=0

µup[φj ]
Nup/Ntot µlo[φj]

Nlo/Ntot = 1

Ntot · Ntot−1∑

j=0

M [φj ], (4.61)whi
h is an average over the produ
t measure de�ned by Eq. (4.49). This is in 
ontrast tothe average produ
t measure de�ned in Se
. 4.2.1, whi
h in
ludes only states 
lose to E = 0.However, averaging over all states in the matrix model yields a meaningless quantity, be
ausethe s
aling parameter strongly depends on the 
onsidered state if the mean level spa
ing is not�xed anymore. The average over all states would e�e
tively in
lude several Λ leading to anadditional average over Λ. Universal behavior 
an be found only as long as the averaged quan-tities are related to one value of the s
aling parameter Λ. Hen
e the average in Eq. (4.61) needsto be restri
ted to states with �xed mean level spa
ing as in the previous se
tions (Se
. 4.2.1and 4.2.2). This needs to be taken into a

ount for the time evolution, too. In order to observeuniversal behavior the initial wave pa
ket has to ex
ite only states with �xed mean level spa
-ing. We restri
t ourselves in the following to averaging over the produ
t measure, Eq. (4.61),to derive a transition 
urve for the ATW, whi
h is 
ompared to the map data.4.2.4 Comparison to map dataIn this se
tion we 
ompare the result of the BTU matrix model to the map data dis
ussed inSe
. 3.3.3. As pointed out in Se
. 3.2.1 the mixing in phase spa
e needs to be qui
k in orderto 
ompare the results with random matrix predi
tions. That is, the Ehrenfest time has to besmall 
ompared to the dwell time and the Heisenberg time in the quantum system. For theexamples of map Fpb and Fpb,rot we determined the average �nite time Lyapunov exponent,introdu
ed in Se
. 2.3, and 
omputed the Ehrenfest time a

ording to Eq. (3.42) of Se
. 3.2.1.For the Lyapunov exponent we obtain values around two for all examples de�ned in Se
s. 3.1.4and 3.1.7. This yields an Ehrenfest time tE,i ≈ 1, ..., 2 for N = 1/he� = 100, ..., 50000, whi
hhas to be 
ompared with the dwell time tdwell,i = 79, 346, 1284, 4100 for example 1, 2, 3, and4, respe
tively, and the Heisenberg time of the upper and lower region tH,i = Nup = Nlo =
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A
h,loN ≈ 0.4N .Figure 4.8 shows the average produ
t measure of the map Fpb,rot of the Fig. 3.19 and ad-ditionally the resulting 
urve of the BTU matrix model. For large ratios Φ/he� and thereforestrong 
oupling, we �nd reasonable agreement between the matrix model and the map data.Both 
urves have a similar transition width. However, for small values of Φ/he� there are 
leardeviations between the BTU matrix model and the map data. The BTU result overestimatesthe values of the quantum map.The reason for this mismat
h of the map data and the BTU matrix model 
ould be the Λ-�uxrelation, Eq. (4.31). The assumption that the 
lassi
al and the quantum rate are equal (seeSe
. 3.2.2) is very well settled in the semi
lassi
al regime of the partial barrier, Φ/he� ≫ 1, butmay fail in the quantum regime, where he� is of the same order or even larger than the 
lassi
al�ux Φ. In Se
. 3.3.1 the transmitted weight as a fun
tion of time is dis
ussed, but no relationof the quantum rate with the 
lassi
al �ux, whi
h 
ould repla
e the Λ-�ux relation, is found.Therefore we will use this Λ-�ux relation in the following.Another possible reason for the mismat
h of the map data and the BTU matrix model mightbe the overall Gaussian 
oupling assumed in the random matrix model. We will fo
us on thispoint in the following se
tions.
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Figure 4.8: Average produ
t measure 〈M〉 using the momentum measures for the examples1, 2, and 3 of the map Fpb,rot (same as Fig. 3.19) in 
omparison to the result of the BTUmatrix model with Φ/he� = π2Λ (gray dashed line).
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oupled via one elementAs pointed out in Se
. 4.2.4 the overall Gaussian 
oupling in the random matrix model proposedby Bohigas, Tomsovi
, and Ullmo might be inappropriate to 
over the features of a partialbarrier. Hen
e we 
onsider a redu
tion of the overall 
oupling to a 
oupling via one non-vanishing element in the 
oupling blo
k only. We 
onsider the matrix model introdu
ed inSe
. 4.2.1 with A = Ntot and Nup = Nlo, whi
h yields a mean level spa
ing of
D(E ≈ 0) =

π

4
√
NupA =

π

4
√
2Nup (4.62)around zero energy. However, this time there is only one non-vanishing 
oupling element in the
oupling blo
k (as well as its transposed partner to obtain a Hermitian matrix). It is 
hosen asa Gaussian random variable with zero mean and varian
e σ2
oupl. For the s
aling parameter Λwe �nd

Λ =
〈v2〉
D2

=
σ2
oupl
N2upD2

=
32σ2
oupl
π2

. (4.63)Note that the average 
oupling element 〈v2〉 is determined by averaging over all N2up elementsof the 
oupling blo
k.
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Figure 4.9: Average produ
t measure 〈M〉 using the momentum measures for the examples1, 2, and 3 of the map Fpb,rot (same as Fig. 3.19) in 
omparison to the result for the ran-dom matrix model, where two GOE matri
es are 
oupled via only one matrix element with
Φ/he� = π2Λ (line with 
rosses). For the matrix model with one 
oupling element we used10% of the eigenstates with energy around E = 0 of 1000 matri
es with Nup = Nlo = 500.Moreover we 
ompare to the BTU matrix model (gray dashed line) dis
ussed in Se
. 4.2 andthe result of the deterministi
 2× 2 model of Se
. 4.1 (bla
k solid line).
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oupling 109The average produ
t measure 〈M〉 of this matrix model is shown in Fig. 4.9. For largevalues of the s
aling parameter Λ the ATW de
reases with in
reasing Λ. At this point a strongperturbation limit is rea
hed and the modeling of the 
oupling of two separated regions fails.We �nd a 
lear redu
tion of the average produ
t measure 
ompared to the BTU matrix model.However, it is not appropriate to resolve the mismat
h of the map data and the matrix modelingapproa
hes dis
ussed up to now.4.3 Channel 
ouplingThe random matrix model dis
ussed in Se
. 4.2 uses a Gaussian 
oupling between all the upperand all the lower states of the un
oupled system to des
ribe the impa
t of the partial barrier.From the 
lassi
al point of view this seems quite unintuitive, be
ause there is a deterministi
transport from one site to the other if an orbit enters the turnstile. The 
oupling betweenthe upper and the lower states happens at the bottle ne
k 
alled turnstile. In analogy to thissituation we 
onsider two billiard systems, whi
h are 
onne
ted by a small 
hannel, in whi
ha �nite number of modes n 
an propagate. This idea is illustrated in Fig. 4.10. A

ording toStö
kmann this situation is des
ribed by a random matrix model of the kind [77℄
H =


 GOE

GOE

σV UT

σUV T



, (4.64)

where the matri
es U and V des
ribe the 
oupling from the upper and the lower region to the
hannel (see Fig. 4.10) and are of size Nup×n and Nlo×n, respe
tively. The model, Eq. (4.64),
UT

V

U

V T

Nup

n

Nlo

Figure 4.10: Illustration of the 
hannel 
oupling for billiards. The matri
es V and U expressthe 
oupling from the upper and lower billiard (with Nup and Nlo states) into the 
hannel,in whi
h n modes 
an propagate.
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ouplingis su

essfully applied in Ref. [75℄, in whi
h the symmetry breaking in a system 
omposed of twobilliards is 
onsidered. Here the 
oupling between the two billiards o

urs via one transverseele
tromagneti
 mode. It is found that properties of the wave fun
tions are di�erent from thematrix model dis
ussed in Se
. 4.2.The 
oupling strength between the upper and the lower states is determined by the parameter
σ and we 
hoose the matrix elements of U and V with zero mean 〈Uij〉 = 0 and unit varian
e
〈U2

ij〉 = 1. In general σ 
ould be a diagonal matrix, whi
h takes 
are of the individual 
ouplingstrengths (σi ∈ R) for ea
h mode
σUV T → Udiag (σ1, . . . , σn) V T , (4.65)
σV UT → V diag (σ1, . . . , σn)UT . (4.66)This implies knowledge about the distribution of the 
oupling strength to individual propagatingmodes. We will negle
t this possibility here, but use it in Se
. 4.3.4.The 
oupling blo
ks in Eq. (4.64), σUV T and σV UT , are determined by n · Nup + n · Nlorandom numbers in 
ontrast to Nup · Nlo random numbers in the matrix model of Se
. 4.2.During one time step all `upper' elements of the wave fun
tion (Nup 
omplex numbers) aremultiplied by UT and thereby give n (
omplex) numbers. These n numbers are a superpositionof the former Nup values and are redistributed onto Nlo numbers using V .To 
al
ulate the s
aling parameter, we need the varian
e of the o�-diagonal 
oupling

σ2
〈(
UV T

)2
ij

〉
= σ2

〈(
n∑

l=1

uilvjl

)2〉
= σ2

〈
n∑

l=1

uilvjl

n∑

l′=1

uil′vjl′

〉 (4.67)
= σ2

〈
n∑

l=1

u2ilv
2
jl +

n∑

l 6=l′
uilvjluil′vjl′

〉
. (4.68)The matrix elements vjl and uil are independent Gaussian random variables. Therefore theyare un
orrelated and the expe
tation value of the produ
t is the produ
t of the expe
tationvalues. The same is true for the pair (vjl, vjl′) and the pair (uil, uil′) for l 6= l′. Be
ause themean values of all these random variables vanish, 〈vij〉 = 〈uij〉 = 0, the whole non-diagonal
ontribution vanishes. Hen
e, the o�-diagonal 
oupling is

σ2
〈(
UV T

)2
ij

〉
= σ2

n∑

l=1

〈
u2il
〉
·
〈
v2jl
〉
= nσ2, (4.69)where in the last step it was used that vjl and uil have unit varian
e. Finally the s
alingparameter is

Λ =
n · σ2

D2
(4.70)
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oupling 111with the mean level spa
ing D of the un
orrelated superposition of the levels of the two GOEblo
ks. A

ording to Eq. (4.52) the mean level spa
ing for Nup 6= Nlo for small energies is
D(E ≈ 0) =

π

2Ntot√Nup
Aup =

π

2Ntot , (4.71)where in the last step Aup := Nup was 
hosen to �x the varian
e in the upper left blo
k andtherefore the varian
e in the lower left blo
k (Alo follows from Eq. (4.51)).We now dis
uss the results for di�erent σ in order to look for universal s
aling behavior inthis 
hannel 
oupling model. Again we 
onsider the produ
t measure as de�ned by Eq. (3.72)
M [φ] =

µup[φ]
µup[Ψuniform] µlo[φ]

µlo[Ψuniform] . (4.72)Figure 4.11 shows the average produ
t measure 〈M〉 for di�erent ratios σ/D as a fun
tion ofthe s
aling parameter Λ. For small ratios σ/D the results are in good agreement with the BTUmodel dis
ussed in Se
. 4.2, whereas for larger ratios σ/D the data does not s
ale with theparameter Λ.A

ording to Ref. [75℄ the varian
e σ2 needs to be determined by system spe
i�
 properties.
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Figure 4.11: Average produ
t measure 〈M〉 for the 
hannel 
oupling model for several valuesof the ratio σ/D (di�erent markers). The data points are averaged over 10% of the stateswith energy around E = 0 and we used 100 matri
es of size Nup = Nlo = 100. The resultsare 
ompared to the BTU model dis
ussed in Se
. 4.2 (dashed gray line) and the 2× 2 resultof Se
. 4.2.1 using 4λ2 = Φ/he� = π2Λ (solid bla
k line). We �nd agreement with the BTUmodel for small 
oupling varian
es σ2. For larger σ/D the the data points 
learly deviatefrom the BTU matrix model.
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ouplingThat is, for a given number of transporting 
hannels one has to dedu
e the s
aling parameter
Λ to 
ompute σ for a given D. In order to �x the value of σ and 
ompare the results with the�ndings in the map system, we have to use the Λ-�ux relation of Eq. (3.50),

Λ =
1

4π2fupflo Φ

he� , (4.73)and assume a relation between the number of propagating modes n and the ratio Φ/he�. Itis natural to asso
iate Φ/he� states to a phase-spa
e area of size Φ, be
ause 1/he� is the totalnumber of states in the phase spa
e of area one. Therefore we assume
n =

Φ

he� (4.74)in the following. This is 
onsistent with the dis
ussion in Se
. 3.2.1, where Φ/he� is asso
iatedwith the number of open 
hannels in an open system. Equations (4.70), (4.73), and (4.74)determine the 
oupling strength σ,
σ =

D

2π
√
fupflo =

1

4Ntot√fupflo =
1

4
√
NupNlo , (4.75)where in the last but one step Eq. (4.71) is used.Fixing the value of σ using fup = flo = 1

2
,
σ =

1

2Ntot , (4.76)and independently varying the size of the blo
k matri
es Nup and Nlo gives the data shown inFig. 4.12. We �nd s
aling with the parameter Λ independent of the size of the upper and lowerblo
k Nup and Nlo, respe
tively. Universal behavior arises for di�erent blo
k sizes and �xed
σ. Fixing the value of σ 
orresponds to asso
iating a �xed 
oupling strength with ea
h of thepropagating modes, whi
h give rise to the 
oupling between the two 
haoti
 sub-systems.The 
hannel 
oupling model is limited to positive integer values of n and therefore onlythe upper half of the transition 
urve 
an be predi
ted. The average produ
t measure of the
hannel 
oupling is 
learly smaller than the result of the BTU matrix model, but follows thesame transitional behavior as the data of the map Fpb,rot and the deterministi
 2 × 2 modeldis
ussed in Se
. 4.1 if we use the �tted prefa
tor 7 instead of π2 (see Fig. 4.12).Figure 4.13 shows the distribution of the produ
t measure d(M) of the individual eigenstates.As for the designed map and the BTU matrix model, the distributions perform a transitionfrom broadly spread for n = 1 to a peak around M = 1 for large values of n = π2Λ.We 
onsider on
e again the 
hannel 
oupling model with Nup 6= Nlo. In 
ontrast to above,Eq. (4.76), we determine the 
oupling strength σ a

ording to Eq. (4.75) and thereby get
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Figure 4.12: Average produ
t measure 〈M〉 for the 
hannel 
oupling model with σ =
1/(2Ntot) (Eq. (4.75) for fup = flo = 1/2) for �xed Nup = 200 and various Nlo. Thedata points are averaged over 10% of the states with energy around E = 0 and we used 1000random matri
es. The data is 
ompared to the BTU model shown as a thi
k dashed grayline. Furthermore we 
ompare to the result of the deterministi
 2 × 2-model dis
ussed inSe
. 4.1 (solid bla
k line and dashed bla
k line with prefa
tor π2 and 7).
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Figure 4.13: Distribution d(M) of the produ
t measure M for the 
hannel 
oupling model
Nup = Nlo = 500 using 1000 random matri
es and various values of the s
aling parameter
Λ = Φ/(π2he�) = n/π2. The verti
al line indi
ates the lo
ation of the average value.
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Figure 4.14: Average produ
t measure for the 
hannel 
oupling model for various pairs
(Nup, Nlo) in 
omparison to the 
ase with Nup = Nlo (bla
k diamonds) and the BTU matrixmodel (thi
k gray dashed line) as well as the 2× 2-model dis
ussed in Se
. 4.1 with prefa
tor7 and π2. The 
oupling strength σ is given by Eq. (4.75).di�erent σ for di�erent ratios Nlo/Nup. The results are shown in Fig. 4.14. Here the resultingaverage produ
t measure 〈M〉 does not s
ale with the parameter Λ. This is in 
ontrast toFig. 4.12, where we �xed σ by Eq. (4.76) and varied Nup and Nlo independently. This missings
aling is the same as dis
ussed for Fig. 4.11, where we used Nup = Nlo and varied the 
ouplingstrength σ over a wide range. Note that for large Λ the data in Fig. 4.14 shows deviationssimilar to those dis
ussed in Se
. 4.2.2 (see also Fig. 4.7), whi
h disappear for large matri
es.A �nal statement about the appropriate 
hannel 
oupling model with fup 6= flo is not madehere and we restri
t ourselves to the 
omparison of the 
hannel 
oupling model with fup = floto our map data in Se
. 4.3.1.4.3.1 Comparison to map dataWe now 
ompare the result of the 
hannel 
oupling model to the data of map Fpb,rot dis
ussedin Se
. 3.3.3. This data of Fig. 3.19 is shown again in Fig. 4.15, where the results for the BTUmodel and of the 
hannel 
oupling model are in
luded. For large ratios Φ/he� the 
hannel
oupling result and the BTU result are in good agreement. For Φ/he� around one, where thedi�eren
e between BTU and 
hannel 
oupling is most prominent, the 
hannel 
oupling result is
lose to the map data and follows the same transition behavior. Therefore we 
onje
ture thatthe redu
ed 
oupling in the 
hannel 
oupling model 
ompared to the overall 
oupling of theBTU model des
ribes the situation of the quantum map more a

urately.



4.3.2 Diagonal 
oupling 115

0.0

0.2

0.4

0.6

0.8

1.0

0.001 0.01 0.1 1 10 100 1000

Φ/heff

x
1+x

with x = Φ
heff

BTU

channel coupling

Ex. 1

Ex. 2

Ex. 3

〈M〉

Figure 4.15: Average produ
t measure 〈M〉 using the momentum measures for the examples1, 2, and 3 of the map Fpb,rot (same as Fig. 3.19) in 
omparison to the result of the BTUmatrix model (gray dashed line) and of the 
hannel 
oupling model (bla
k diamonds) with
Φ/he� = π2Λ.The drawba
ks of the presented 
hannel 
oupling model is that the number of open 
hannels

n has to be an integer number su
h that 〈M〉 
an be obtained at dis
rete values of Φ/he� only.Su
h a step fun
tion for the ATW or the average produ
t measure is not observed in the dataof the maps Fpb and Fpb,rot. To over
ome this dis
reteness, one 
ould introdu
e a fun
tionfor the onset of the next propagating mode and therewith allow for non-integer values for thenumber of propagating modes. The question is, how to perform this onset and whi
h 
lassi
alparameters 
omplete the des
ription given in terms of the ratio �ux over Plan
k's 
onstant.Some 
andidates are the mixing time or the Ehrenfest time, whi
h is related to the Lyapunovexponent (see Se
. 3.2.1). An extension of the 
hannel 
oupling model based on this idea isdis
ussed in Se
. 4.3.4.4.3.2 Diagonal 
ouplingThe 
hannel 
oupling model is equivalent to a matrix model, where the inter-blo
k 
oupling isdiagonal with n non-vanishing elements as depi
ted in
H =


 GOE

GOE {
n



, (4.77)
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ouplingwhere the nonzero elements vi in the 
oupling blo
ks have the �xed value σ. The mean 
ouplingelement squared is given by
〈v2〉 = n · σ2

Nup ·Nlo (4.78)and therefore the universal s
aling parameter is (using Eq. (4.52) and 
hoosing Aup = Nup)
Λ =

〈v2〉
D2

=
n · σ2

Nup ·Nlo 4N2tot
π2

=
4 · σ2 · n
π2fupflo . (4.79)Relating this s
aling parameter to the �ux in the map system (see Eq. (4.73)) and assuming

n = Φ/he� the value of σ is �xed and given by
σ =

1

4
. (4.80)This model yields the same average produ
t measure as the 
hannel 
oupling model, whi
his shown in Fig. 4.16. This is plausible, be
ause for the original 
hannel model the 
ouplingstrength σ asso
iated with a propagating mode is independent of the mode. Therefore allmodes 
ontribute equally. The additional Gaussian random 
oupling in the matri
es U and V ,whi
h 
ouple the sub-systems to the 
hannel, seems to have no relevant impa
t on the resulting
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Figure 4.16: Average produ
t measure for the matrix model, where two GOE matri
es are
oupled as in Eq. (4.77) with n non-vanishing elements on the diagonal of the 
oupling blo
ks.The result for �xed 
oupling strength vi = σ (violet pluses) follows the 
hannel 
oupling result(bla
k diamonds) and the result of the Gaussian distributed 
oupling elements vi with zeromean and varian
e σ2 (bla
k 
rosses) yields smaller values. The results are 
ompared to theBTU matrix model (thi
k gray dashed line) and the 2 × 2-model dis
ussed in Se
. 4.1 withdi�erent prefa
tors.
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hannel rising 117average produ
t measure 〈M〉. This additional randomness is already 
aptured in the GOEnature of the upper and the lower blo
k. However, if we 
hoose the values on the diagonal
vi as Gaussian random numbers with zero mean and varian
e σ2 we �nd a di�erent behavior.Namely, the resulting average produ
t measure for a Gaussian distributed 
oupling strength issmaller than for �xed elements vi = σ as shown in Fig. 4.16. Therefore it matters whether theindividual 
oupling strength is �xed as vi = σ or only its varian
e is �xed, 〈v2i 〉 = σ2.4.3.3 One 
hannel risingAs dis
ussed in the �rst part of Se
. 4.3 the drawba
k of the 
hannel 
oupling model is thedis
reteness of the number of propagating modes n. It is not possible to model less than onepropagating mode. In this se
tion we 
onsider the onset of the �rst 
oupling element. That is,we �x n = 1 and vary the 
oupling strength σ over a wide range.Figure 4.17 shows the resulting average produ
t measure. The result is similar to the oneshown in Fig. 4.9 in Se
. 4.2.5, where the two GOE matri
es are 
oupled via one Gaussiandistributed element (varian
e σ2) whereas here the value of the 
oupling element is �xed to σfor all realizations. Therefore the di�eren
e between the results of Fig. 4.17 and Fig. 4.9 inSe
. 4.2.5 has the same origin as the di�eren
e between the 
hannel 
oupling model with �xed
ouplings and with Gaussian distributed 
oupling elements dis
ussed in Se
. 4.3.2. The result
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Figure 4.17: Average produ
t measure 〈M〉 using the momentum measures for the examples1, 2, and 3 of the map Fpb,rot (same as Fig. 3.19) in 
omparison to the result for the randommatrix model, where two GOE matri
es are 
oupled via one propagating mode (pluses;varying 
oupling strength σ, Nup = Nlo = 500 and using 1000 random matri
es). Moreoverwe 
ompare to the BTU matrix model (gray dashed line) dis
ussed in Se
. 4.2.1 and the
2× 2-model dis
ussed in Se
. 4.1 (bla
k solid line) using 4λ2 = Φ/he� = π2Λ.
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ouplingfor the 
hannel 
oupling model with �xed 
oupling elements is rea
hed during the onset of the�rst 
oupling element dis
ussed here and the 
urve of Se
. 4.2.5 approa
hes the result for the
hannel 
oupling model with Gaussian distributed 
oupling strength. For large values of thes
aling parameter and thereby strong 
ouplings the average produ
t measure de
reases.As long as the universal s
aling is des
ribed by Λ = 〈v2〉/D2, the presented method is theonly way of performing an onset of the �rst propagating mode. Any fun
tion relating the valueof σ to the ratio Φ/he� or to other map parameters like the mixing time or the Lyapunovexponent, �nally gives the same 
urve be
ause only the value of σ enters.4.3.4 Extension of the 
hannel 
oupling modelAt this point we want to over
ome the dis
reteness of the number of propagating modes.Therefore we introdu
e the following modi�
ations to the model, Eq. (4.77). Instead of a �nitenumber of non-vanishing elements on the anti-diagonal, we use all elements on the anti-diagonaland their values follow a Fermi fun
tion. More pre
isely the squares of the matrix elementsfollow the Fermi fun
tion as
v2k =

σ2

1 + exp{−β(Φ/he� − k − 1/2)} for k = 0, 1, 2, . . . , Nup − 1 (4.81)with one free parameter β, whi
h is the inverse temperature in thermodynami
s. Figure 4.18shows the square matrix elements for di�erent values of β. For β = ∞ (`low temperature'limit) the step fun
tion of the original model is re
overed and Φ/he� determines the number of
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Figure 4.18: Square of the non-vanishing 
oupling elements a

ording to Eq. (4.81) for
Φ/he� = 2 and di�erent β. For β = ∞ the previously dis
ussed step fun
tion is re
overedand for Φ/he� = 2 we �nd 2 non-vanishing elements. For �nite β this sharp transition issmoothed and for β = 0 all sites 
ontribute equally.
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hannel 
oupling model 119propagating modes. For �nite β the 
oupling as a fun
tion of the mode index k is smoothenedand all modes 
ontribute equally for vanishing β. The ratio Φ/he� determines the lo
ation ofthe symmetry point of the Fermi fun
tion and for de
reasing ratio Φ/he� the distribution issmoothly shifted to the left. The s
aling parameter Λ in this situation reads
Λ =

∑
k v

2
k

D2NupNlo . (4.82)Here there is in general no simple relation of Λ to the ratio Φ/he�, as found for the previouslydis
ussed matrix models.Su
h transmission probabilities des
ribed by a Fermi fun
tion arise often in the �eld oftransition state theory (see for instan
e Ref. [78℄). As an example we use the transmission overa harmoni
 saddle, whi
h 
an be used to model the transition a
ross a partial barrier [79℄. Itis des
ribed by the following Hamiltonian,
H(x, y, px, py) =

p2x + p2y
2m

+
mω2

y

2
y2 − mω2

x

2
x2. (4.83)As propagation dire
tion we 
hoose the x-dire
tion and parti
les have to over
ome the invertedharmoni
 os
illator in order to pass the saddle. In the perpendi
ular dire
tion the parti
les are
on�ned by a harmoni
 potential. The problem for the y-dire
tion is solved by the quantizationof the harmoni
 os
illator and the propagating modes have the energies

E
(y)
k = ~e�ωy (k + 1

2

) for k = 0, 1, 2, . . . . (4.84)The 
lassi
al �ux over the saddle at energy E per time is given by an integration of thevelo
ity vx = px/m over all possible positions y, all possible momenta py, and all forwardpropagating momenta px > 0

Φ =
ddE ymax∫

ymin dy ∫

p2x+p
2
y≤2m[E−V (0,y)],px>0

dpxdpy · px
m

(4.85)
=

ddE ymax∫

ymin dy π/2∫

−π/2

dϕ √
2m[E−V (0,y)]∫

0

dp · p · p cosϕ
m

(4.86)
=

ddE ymax∫

ymin dy 2

3m
[2m[E − V (0, y)]]3/2 . (4.87)The limits of the y-integration are the 
lassi
al turning points for parti
les with energy E at
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x = 0

ymax = −ymin =√ 2E

mω2
y

. (4.88)Substituting u := y/ymax = y
√
mω2

y/
√
2E and performing the u-integration yields

Φ =
ddE +1∫

−1

du [1− u2
]3/2 8E2

3
√
ω2
y

=
2πE

ωy
. (4.89)That is, the 
lassi
al �ux Φ in multiples of Plan
k's 
onstant is determined by the number ofpropagating modes found below energy E,

Φ

he� =
E

~e�ωy . (4.90)The transmission 
oe�
ient of this setup 
an be 
al
ulated and we use the results of Ref. [80℄for vanishing magneti
 �eld B = 0. The 
hara
teristi
 energies are
E1 =

~e�
2

√
2Ux
m

=
~e�
2
ωx, (4.91)

E2 = ~e�√2Uy
m

= ~e�ωy (4.92)and the transmission probability is
Tk =

1

1 + exp{−πǫk}
with ǫk =

2ωy
ωx

[
Φ

he� −
(
k +

1

2

)] for k = 0, 1, 2, . . . (4.93)The width of the inverted harmoni
 os
illator ωx determines how fast parti
les pass thisbottlene
k. It is given by the Lyapunov exponent of the unstable �xed point at the top of thesaddle, be
ause the motion in x-dire
tion of parti
les nearby the saddle is governed by ẍ = ω2
xxand follows x(t) = x0 exp{±ωxt}. That is, ωx takes the role of the Lyapunov exponent L ofthe �xed point at the saddle. We use this to relate ωx to properties of our designed maps. Forthe maps Fpb and Fpb,rot the Lyapunov exponent of the hyperboli
 �xed point at (1

2
, p�x) 
anbe 
al
ulated using the larger eigenvalue of the Ja
obian matrix, Eq. (3.16), and we get

L = log


1 +

bK ′

2
+

√(
1 +

bK ′

2

)2

− 1


 =





1.566 for example 1
1.159 for example 2
0.963 for example 3. (4.94)See Tab. 3.1 for the values of the parameters b and K ′.



4.3.4 Extension of the 
hannel 
oupling model 121Up to now we 
ould not �nd a relation for the se
ond frequen
y ωy to parameters of themap. It might be related to the period of the hyperboli
 �xed point similar to the des
riptionof s
arring by Heller [60℄, where the produ
t of the Lyapunov exponent and the period of thehyperboli
 periodi
 orbit gives a 
riterion for an orbit to support s
arred eigenstates. However,here we use ωy as a �tting parameter. The fa
tor β = 2πωy

L
governs the transmission probabilitiesand therewith the square of the non-vanishing matrix elements of Eq. (4.81). Using Eq. (4.93)we 
an relate the 1

2
in the exponent of Eq. (4.81) to the ground state energy of the harmoni
os
illator in Eq. (4.84).The transmission probabilities of Eq. (4.93) determine the modulation of the squared matrixelement vk with respe
t to σ2: v2k = Tk · σ2. This is plausible, be
ause a

ording to Fermi'sgolden rule the transition rates are 
ompared with the square of the 
oupling matrix elements.
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Figure 4.19: Transmission for the matrix model using Eq. (4.81). (a) Individual transmissionprobability of ea
h site k for Φ/he� = 1/2. (b) Total transmission summed over all sites
k = 1, . . . as a fun
tion of Φ/he�. For ωy → ∞ we �nd steps in the total transmission whereasin the opposite limit, ωy → 0, all sites have transmission 1/2 and the total transmissiondiverges.
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ouplingFigure 4.19(a) shows the transmission probability of ea
h site k for various values of the ratio
ωy/L and �xed ratio Φ/he� = 1

2
. Figure 4.19(b) shows the total transmission summed over all
oupling sites. This total transmission has 
lear steps for ωy/L→ ∞ and they are smoothenedfor de
reasing ratio ωy/L. For ωy/L = 0 all sites 
ontribute equally and the total transmissiondiverges, independent of Φ/he�, with the total number of 
oupling elements.Note that if we renormalize the 
ouplings of Eq. (4.81) in order to have the same sum ofsquared elements as in the 
hannel 
oupling model of Se
. 4.3.2,

Nup−1∑

k=0

v2k =
Φ

he�σ2, (4.95)we re
over the BTU result for small values of β (β . 1
2
). For in
reasing β the average produ
tmeasure approa
hes the result of the 
hannel 
oupling model. The range n ∈ (0, 1), whi
h isex
luded in the original 
hannel 
oupling model, is in a

ordan
e with the results dis
ussed inSe
. 4.3.3 about the onset of one propagating mode. In this way, the above model allows for a
ontinuous transition between the BTU and the 
hannel 
oupling result. However, this modelwith renormalization is not appropriate to des
ribe our map data. Hen
e in the following wewill use Eq. (4.81) without any renormalization.Figure 4.20 shows the map data dis
ussed in Se
. 3.3.3 in 
omparison to the result of thematrix model, where the 
oupling elements follow the Fermi fun
tion. The value β = 2πωy/L =

8 is 
hosen su
h that the overall behavior of the map data is well des
ribed by the matrix model.

0.0

0.2

0.4

0.6

0.8

1.0

0.001 0.01 0.1 1 10 100 1000

Φ/heff

x
1+x

with x = Φ
heff

BTU

channel coupling

Fermi fct with β = 8

Ex. 1

Ex. 2

Ex. 3

〈M〉

Figure 4.20: Average produ
t measure 〈M〉 using the momentum measures for the examples1, 2, and 3 of the map Fpb,rot (same as Fig. 3.19) in 
omparison to the result of the BTUmatrix model (gray dashed line), the 
hannel 
oupling with �xed elements (bla
k diamonds)and the matrix model with elements following the Fermi fun
tion (orange pluses).



4.4 Unitary random matrix models 1234.4 Unitary random matrix modelsIn 
ontrast to the previous se
tions, where Hamiltonian matri
es are modeled, we now 
onsiderunitary matri
es in order to des
ribe the impa
t of the partial barrier on the 
orrespondingquantum system. The unitary equivalent of the Gaussian orthogonal ensemble is the 
ir
ularorthogonal ensemble (COE) [67, Se
. 10.1℄. Su
h COE matri
es 
an be diagonalized by orthog-onal transformations and their spe
tral statisti
s des
ribe 
haoti
 systems with time reversalinvarian
e. One 
an build a random matrix a

ording to the COE by generating a matrix of the
ir
ular unitary ensemble following Ref. [81℄, UCUE, and using UCOE = UTCUE UCUE [67, Se
. 10.1℄,where the supers
ript T denotes the transposition of the matrix.The unitary matrix model of the time evolution operator for two un
oupled 
haoti
 sub-systems with time reversal invarian
e is
U0 =


 COE

COE

0

0



, (4.96)whi
h is blo
k diagonal and 
ontains one COE matrix for ea
h sub-system. One approa
h tointrodu
e a 
oupling between the sub-systems while preserving unitarity is the following. We
ompose the time evolution operator in Eq. (4.96) with a unitary matrix

U
 =  0

0



, (4.97)whi
h introdu
es 
ouplings (blue square) between the former independent blo
ks (dashed lines).It 
onsists of unity matri
es (solid lines) and a 
oupling blo
k Um of size 2m× 2m indi
ated inthe 
enter. One 
hoi
e for Um is a matrix Um,1 with ones on the anti-diagonal. The resultingrandom matrix model is determined by the unitary matrix U1 
omposed of U0 and U
,1,

U1 = U0U
,1 =  COE

COE

0

0





 0

0




=


 0

0



, (4.98)in whi
h the bla
k lines indi
ate the ones on the diagonal and the anti-diagonal of Um,1. Undertime evolution with this matrix, a state initially lo
ated in the upper region is transmitted tothe lower region via the lower left blo
k of U1. A state initially lo
ated in the lower region is



124 4.4 Unitary random matrix modelstransmitted to the upper region via the upper right blo
k. Ex
ept for the size of the blo
k ma-tri
es this model has only one parameter; namely m, whi
h determines the size of the matrix
Um,1. There are m sites, whi
h transfer weight from above to below and vi
e versa like theturnstile in the 
lassi
al pi
ture. This model is the �rst to a

ount for dire
ted transport be-tween the two sub-systems. Su
h a dire
ted transport is not possible in terms of a Hamiltonianmatrix, as for those dis
ussed in the previous se
tions, be
ause this 
ontradi
ts Hermiti
ity ofthe matrix.For 
ompleteness we mention another possible 
hoi
e for the matrix Um. Namely we 
hoosea COE matrix for the 
oupling blo
k Um and 
onsider the matrix model

U2 = U0U
,2 =  COE

COE

0

0





 0

0




=


 0

0



. (4.99)In this model the weight entering the m transmitting sites of the upper region is distributedover all sites of the total system in 
ontrast to the matrix model of Eq. (4.98), in whi
h theweight is distributed over the lower sites only. Therefore the transmission to the lower regionis redu
ed by a fa
tor of two in 
omparison to the matrix model Eq. (4.98).The aim of these models, Eqs. (4.98) and (4.99), is to relate the impa
t of the 
lassi
altransport rate a
ross the partial barrier to the 
orresponding quantum system in terms of aunitary matrix model. The 
lassi
al es
ape rate from the upper 
haoti
 region is given by theratio of the 
lassi
al �ux Φ and the a

essible area, Eq. (3.37) of Se
. 3.2.1,

Φ

A
h,up =
Φ

Nuphe� , (4.100)where we introdu
ed the number of states Nup asso
iated with the upper region. This rate hasto be 
ompared with the transition rate of the two random matrix models 
orresponding tothe part of a given ve
tor, whi
h is transported to the lower region. It is m/Nup for Eq. (4.98)and m/(2Nup) for Eq. (4.99), where for the latter only half of the weight entering the m sitesis transported to the opposite region. We introdu
e the number of transporting sites n asthe number of sites times their transition probability. With this de�nition we get n/Nup astransition rate for both matrix models. Therewith the rates of Eq. (4.100) and of the matrixmodels are the same if we assume that the ratio Φ/he� is the number of transporting sites n inthe COE model, whi
h is reasonable a

ording to Se
. 3.2.1, where this ratio is asso
iated withthe number of open 
hannels in an open system.



4.4 Unitary random matrix models 125

0.0

0.2

0.4

0.6

0.8

1.0

0.1 1 10 100

n
1+n

U1

U2

n

〈M〉

Figure 4.21: Average produ
t measure 〈M〉 for the COE matrix models, U1 of Eq. (4.98)and U2 of Eq. (4.99), using Nup = Nlo = 200 and 1000 random matri
es. The results for thetwo di�erent matrix models follow the transitional behavior des
ribed by n/(1 + n).The produ
t measure is de�ned analogously to Eq. (3.72)
M [φ] =

µup[φ]
µup[Ψuniform] µlo[φ]

µlo[Ψuniform] (4.101)with the measures µup[Ψuniform] = fup = Nup/(Nup +Nlo) and µlo[Ψuniform] = flo = Nlo/(Nup +
Nlo) of the state Ψuniform, whi
h is uniformly distributed in both regions. For the two modelsintrodu
ed above the produ
t measure averaged over the eigenstates is independent of Ntot =
Nup +Nlo and shown in Fig. 4.21 for Nlo = Nup = 200. The results for both matrix models arein agreement with the 
urve

M(n) =
n

1 + n
, (4.102)whi
h des
ribes the same transition behavior as the deterministi
 2×2-model of Se
. 4.1, where

M(λ) =
4λ2

1 + 4λ2
(4.103)is found. For n = 4λ2 the two Eqs. (4.102) and (4.103) are identi
al. Note that for the randommatrix model of Eq. (4.98) the number of transporting sites n 
an take only positive integervalues whereas n takes half-integer values for the model of Eq. (4.99). Hen
e only the upperhalf of the transition 
urve 
an be investigated. By an appropriate 
hoi
e of Um, one mayextend the data to 
ontinuous values of n and even values smaller than one half.
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Figure 4.22: Average produ
t measure 〈M〉 for the COE model of Eq. (4.98) as a fun
tionof n and n/(4flofup). Here we 
onsidered Nup 6= Nlo and 100 random matri
es for ea
h pair
(Nup, Nlo).Variation of the relative blo
k sizes yields the data shown in Fig. 4.22 and we �nd s
alingwith n/(4flofup) rather than n only. This is the same kind of s
aling found in the Λ-�ux relationof Se
. 3.2.2.In Fig. 4.23 the average produ
t measure of the unitary matrix model given by Eq. (4.98) is
ompared to 〈M〉 for the map Fpb,rot dis
ussed in Se
. 3.3.3. In the �gure we 
ompare the mapdata as a fun
tion of Φ/he� to the data of the matrix model as a fun
tion of n. The two datasets are in very good agreement and exhibit a 
ommon transition behavior.
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Figure 4.23: Average produ
t measure 〈M〉 using the momentum measures for the examples1, 2, and 3 of the map Fpb,rot as a fun
tion of Φ/he� (same as Fig. 3.19) in 
omparison tothe result of the COE matrix model Eq. (4.98) (
rosses), where we use n for the abs
issa.4.5 Summary of the modeling approa
hesIn the previous se
tions we dis
uss several matrix models to des
ribe the quantum transitionof a partial barrier from quantum suppression to 
lassi
al transport, where the two limiting
ases 
orrespond to un
oupled 
haoti
 sub-systems and strongly 
oupled 
haoti
 sub-systems,respe
tively. We introdu
e a deterministi
 2 × 2-model, one site for ea
h 
haoti
 region of thesystem with one partial barrier, whi
h des
ribes the same transition behavior found numeri
allyfor the designed map. The random matrix model proposed by Bohigas, Tomsovi
, and Ullmoshows a transition behavior, whi
h is di�erent from the map data. We attribute this di�eren
eto the overall Gaussian 
oupling between all upper and all lower states. Therefore we introdu
ethe 
hannel 
oupling model with a more sophisti
ated 
oupling. It allows for a �nite numberof propagating modes between the two sub-systems. This number of propagating modes ngives rise to n non-vanishing 
oupling elements of �xed size σ and equals the ratio Φ/he�. Theresults for the 
hannel 
oupling model are in good agreement with the map data. We extendthis matrix model with dis
rete 
oupling sites to a smooth version using Fermi-fun
tion liketransition probabilities for ea
h 
oupling site. Therewith we smoothen the transition 
urve ofthe 
hannel 
oupling model and extend it to Φ/he� smaller than one. In the last se
tion wedis
uss unitary matrix models, whi
h � in 
ontrast to the Hermitian matrix models � allow fora dire
ted transport between the upper and the lower region as it is the 
ase for the 
lassi
alpartial barrier. These models follow the same transition behavior as the map data if we identify
Φ/he� with the number of transporting sites.





5 Spe
tral signatures of partial barriersin phase spa
eThis 
hapter is dedi
ated to the spe
tral properties of the system with one isolated partialbarrier Fpb,rot. There are numerous possibilities to quantify system properties by means ofspe
tral statisti
s. In order to observe universal behavior and to 
ompare features of di�erentsystems, one has to unfold the spe
trum of energy levels [82℄. That is, one has to remove thesmooth part of the density of states and thereby variations in the mean level spa
ing, whi
htake pla
e on larger s
ales. The universal behavior is found in the remaining os
illatory partof the density of states. From the huge number of available quantities of spe
tral statisti
swe restri
t ourselves to the spe
tral form fa
tor K(τ), whi
h is dis
ussed in Se
. 5.1, and thedistribution of level spa
ings P (s), whi
h is presented in Se
. 5.2. We 
ompare our �ndingsto the random matrix model proposed by Bohigas, Tomsovi
, and Ullmo and to the 
hannel
oupling model, whose ATW is in good agreement with the map data.
5.1 Spe
tral from fa
tor K(τ )The spe
tral form fa
tor is the Fourier transform of the two-point 
orrelations fun
tion R2(E1−
E2) [83, Se
. 3.2.5℄ and has been studied extensively [65,84,85℄. Its short time behavior trans-lates into long-term 
orrelations in the energy domain. It is appropriate to quantify spe
tralproperties of a system with one partial barrier, be
ause it in
orporates the involved time s
ales,namely the Heisenberg time and the dwell time [65℄.5.1.1 De�nition of the spe
tral form fa
torConsider a quantum system des
ribed by a unitary time evolution operator U with the followingeigenvalue equation,

U |k〉 = eiϕk |k〉 for k = 1, . . . , N. (5.1)



130 5.1 Spe
tral from fa
tor K(τ)The spe
tral form fa
tor as a fun
tion of time m (m ∈ Z) is given by [59, Se
. 4.14℄
K(m) =

1

N

N∑

j=1

N∑

k=1

exp{i(ϕj − ϕk) ·m} (5.2)
=

1

N

∣∣∣∣∣

N∑

k=1

exp{iϕk ·m}
∣∣∣∣∣

2

=
1

N
|Tr Um|2 . (5.3)It measures 
orrelations between the levels, whi
h are the eigenphases {ϕk} in the 
ase of aquantum map.To 
ompare the spe
tral form fa
tor of di�erent systems, we have to unfold the spe
trum inorder to obtain the same mean level spa
ing for all levels. Furthermore we have to introdu
e atypi
al time for a temporal res
aling. As dis
ussed in Se
. 3.2.1 the time asso
iated with themean level spa
ing is the Heisenberg time

tH =
2π

〈∆ϕ〉 = N. (5.4)That is, for quantum maps the Heisenberg time is given by the number of states N of the system
onsidered. Analogously the Heisenberg time 
orresponding to a sub-system is the number ofstates asso
iated with this sub-system as mentioned in Se
. 3.2.1. The res
aled time τ is thetime in multiples of the Heisenberg time,
τ =

t

tH =
m

N
. (5.5)As pointed out in Se
. 4.2 the spe
tral properties of 
haoti
 systems 
an be modeled byrandom matri
es. For a 
haoti
 system obeying time reversal invarian
e the universality 
lassis the Gaussian orthogonal ensemble (GOE). The GOE predi
tion for the so 
alled two-levelform fa
tor b(τ), whi
h is related to the spe
tral form fa
tor by

b(τ) = 1−K(τ), (5.6)is given by (see Eq. C.9 of Ref. [86℄ on page 191)
bGOE(τ) = 1− 2τ + τ log(2τ + 1) for τ < 1

−1 + τ log 2τ+1
2τ−1

otherwise. (5.7)This yields for the spe
tral form fa
tor of one GOE spe
trum
KGOE(τ) = 2τ − τ log(2τ + 1) for τ < 1

2− τ log 2τ+1
2τ−1

otherwise (5.8)



5.1.2 Time s
ales 131and its Taylor expansion reads
KGOE(τ) = 2τ − 2τ 2 + 2τ 3 ∓ . . . for τ ≪ 1. (5.9)If we 
onsider a spe
trum 
omposed of two independent spe
tra, with fi being the fra
-tion of levels belonging to the i-th 
omponent, the two-level form fa
tor resulting from thesuperposition is the weighted sum of the individual form fa
tors b(i), [86, Eq. D.3℄,

btotal(τ) =∑
i

fi b(i)(τ/fi). (5.10)Ea
h form fa
tor gets as argument the time measured in multiples of the 
orresponding Heisen-berg time of region i
τ

fi
=

t

fitH
=

t

tH,i . (5.11)For the 
ase of two independent spe
tra of equal size, i.e. f1 = f2 =
1
2
, we have

btotal(τ) = 1

2
b(1)(2τ) +

1

2
b(2)(2τ) = bpartial(2τ) , (5.12)where in the last step it was assumed that both spe
tra belong to the same universality 
lass.For the spe
tral form fa
tor this means

Ktotal(τ) = 1− btotal(τ) = 1− bpartial(2τ) = Kpartial(2τ) (5.13)For the un
orrelated superposition of two GOE spe
tra we have
K2GOE(τ) = KGOE(2τ) = 4τ − 2τ log(4τ + 1) for 2τ < 1

2− 2τ log 4τ+1
4τ−1

otherwise, (5.14)and for small τ
K2GOE(τ) = 4τ − 8τ 2 + 16τ 3 ∓ . . . for τ ≪ 1. (5.15)5.1.2 Time s
alesIn Se
. 3.2.1 the time s
ales o

urring in the designed system Fpb,rot are dis
ussed. Besides theHeisenberg time of the total system tH = N and the Heisenberg time tH,i = N
h,i = Aa

ess,iN =

Aa

ess,itH asso
iated with some phase-spa
e region Aa

ess,i, the dwell time in region i, Eq. (3.37),
tdwell,i = Aa

ess,i

Φ
i = 1, 2, (5.16)



132 5.1 Spe
tral from fa
tor K(τ)is important to des
ribe the impa
t of the partial barrier 
onne
ting the two 
haoti
 sub-systems. A

ording to Eq. (3.40) the ratio of the �ux and Plan
k's 
onstant 
an be related tothe ratio of the Heisenberg time and the dwell time of the sub-system i

Φ

he� =
tH,i
tdwell,i i = 1, 2. (5.17)For open systems this ratio 
orresponds to the number of 
hannels in the opening and we willuse n as abbreviation of the ratio in Eq. (5.17) for reasons of readability.5.1.3 Results for the designed map Fpb,rotWe 
onsider the map Fpb,rot introdu
ed in Se
. 3.1.6, whose 
lassi
al phase spa
e is 
omposedof two 
haoti
 regions and a turnstile of size Φ 
onne
ting them. To investigate the transitionfrom two un
oupled 
haoti
 spe
tra to one 
haoti
 spe
trum for in
reasing ratio n = Φ/he�,we remove the regular levels from the resulting spe
trum. Identifying regular states is possiblesin
e they are lo
alized in momentum spa
e around p = 0 or 1 by means of periodi
 boundary
onditions. Therefore we 
al
ulate the varian
e around p = 0 for ea
h eigenstate ψ using itsmomentum representation ψ(pi) = 〈pi|ψ〉 as

N/2−1∑

i=0

|ψ(pi)|2(pi − 0)2 +

N∑

i=N/2

|ψ(pi)|2(pi − 1)2. (5.18)Regular states have small varian
e 
ompared to the 
haoti
 states and therefore 
an be ex-tra
ted. We remove Nreg = ⌈AregN⌉ states. The remaining 
haoti
 levels are used to determine
K(τ) a

ording to Eq. (5.3) taking N
h = N − Nreg as total number of states. We averagedthe data over the Blo
h phase θq as system average in order to smoothen the resulting K(τ),be
ause K(τ) is not self-averaging [87℄. In the following we restri
t ourselves to the 
ase ofupper and lower 
haoti
 region being equal in size, whi
h yields the same dwell time for both,
tdwell,1 = tdwell,2.The determined spe
tral form fa
tor K(τ) for the map Fpb,rot is shown in Fig. 5.1 for di�erentratios n = Φ/he�. Our �ndings have to be 
ompared with the two limiting 
ases of one largeGOE, Eq. (5.8), and the un
orrelated superposition of two GOE spe
tra, Eq. (5.14). Forin
reasing ratio n = Φ/he� we �nd a transition from the un
orrelated superposition of two GOEmatri
es to one GOE matrix. Furthermore, ea
h 
urve follows the result of two un
orrelatedGOE spe
tra at times smaller than the dwell time tdwell,i, whi
h is indi
ated by an arrow, andthe result of one GOE spe
trum at times larger than tdwell,i. As dis
ussed in Se
. 3.2.1 at timessmaller than the dwell time a typi
al 
lassi
al orbit will not have visited the se
ond region andtherefore semi
lassi
ally the spe
tral properties of the quantum system are des
ribed by theun
orrelated superposition of two GOE spe
tra. At times large 
ompared to the dwell time,
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Figure 5.1: K(τ) for the map Fpb,rot for di�erent ratios n = Φ/he� = tH,i/tdwell,i. Theshown data are of example 3 (Φ ≈ 1/3000) using 1/he� = 800 and 3200 as well as example 2(Φ ≈ 1/800) using 1/he� = 3200. These data sets illustrate the typi
al behavior and we �nds
aling with Φ/he� (not shown). The data is averaged over 1000 values of the Blo
h phase θq.The lower pi
ture is a magni�
ation of the upper for small τ . The arrows indi
ate the dwelltime in one of the 
haoti
 regions tdwell,i in multiples of the Heisenberg time tH,
h = N
h ofthe 
haoti
 sea. The results for the map Fpb,rot lie in between the 
urves of the un
orrelatedsuperposition of two GOE spe
tra (dashed red line; Eq. (5.14)) and one GOE spe
trum (solidgreen line; Eq. (5.8)).

lassi
al orbits will explore the se
ond region and semi
lassi
ally the spe
tral properties aredes
ribed by one GOE spe
trum. At the dwell time the resulting K(τ) 
urves are half waybetween the two limiting 
ases.



134 5.1 Spe
tral from fa
tor K(τ)5.1.4 Des
ription of the resultsThe aim of this se
tion is to dis
uss des
riptions of the results presented in the previous se
tion.The �rst paper on the issue of transport limitation due to partial barriers in the 
ontext of thespe
tral form fa
tor is Ref. [65℄ of Smilansky, Tomsovi
, and Bohigas from 1992. They dis
ussthe impli
ation of the �nite probability to go from one region to another on the form fa
tor.By expressing the form fa
tor in terms of periodi
 orbits and performing Berry's diagonalapproximation [88℄ they rewrite the spe
tral form fa
tor for time reversal invariant systems as
K(τ) = 1− b(τ) ≈ 2τI(τ), (5.19)where I(τ) is an averaged sum over periodi
 orbits. They point out that I(τ) has a simple
lassi
al interpretation. It is the probability that a given orbit returns to its initial pointafter time τ in multiples of the probability of being found anywhere in the phase spa
e. Thisinterpretation is valid as long as the mixing time is smaller than all other time s
ales involved,Heisenberg time and dwell time. Using the Master-equation approa
h dis
ussed in Se
. 3.3.1they are able to determine I(τ) and to give an estimate for K(τ), [65, Eq. (2.19)℄),

KSTB(τ) = 2τ [1 + exp{−Γτ}], (5.20)with the de
ay rate of a state nonuniformly distributed with respe
t to the two regions ofvolumes V1 and V2
Γ = ΦH [V −1

1 + V −1
2

]
, (5.21)where ΦH is the �ux between these regions per Heisenberg time. Both terms in Eq. (5.21) 
anbe rewritten using the �ux per unit time Φ and the Heisenberg time tH,
h as

ΦH
Vi

=
Φ · tH,
h
Vi

=
tH,
h
tdwell,i = tH,i

fitdwell,i (5.22)with the fra
tion of region i relative to the 
haoti
 sea fi. The ratio of tH,i and tdwell,i for region
i 
an be repla
ed by Φ/he� for the quantum map, a

ording to Eq. (5.17),

Γ =
Φ

he� [f−1
1 + f−1

2

]
. (5.23)For the 
ase of two 
haoti
 regions of equal size f1 = f2 =

1
2
we obtain for Eq. (5.20)

KSTB(τ) = 2τ

[
1 + exp

{
−4

Φ

he� τ}] = 4τ for Φ
he� → 0

2τ for Φ
he� → ∞.

(5.24)



5.1.4 Des
ription of the results 135As a fun
tion of n = Φ/he� the spe
tral form fa
tor performs a smooth and monotonoustransition between the linear behavior 4τ of two un
orrelated GOE spe
tra, Eq. (5.15), and
2τ of one GOE spe
trum, Eq. (5.9), whi
h 
an be seen in Fig. 5.2. The Taylor expansion ofEq. (5.24) reads

KSTB(τ) = 4τ − 8
Φ

he� τ 2 + 16

(
Φ

he�)2

τ 3 ∓ . . . for τ ≪ 1 (5.25)For a �nite ratio Φ/he� the linear behavior is 4τ and thus at small times always the result oftwo GOE spe
tra is re
overed. This is in agreement with our previous �ndings that at smalltimes 
ompared to the dwell time the se
ond region is not resolved and the spe
tral propertiesare des
ribed by two independent spe
tra.The data of map Fpb,rot strongly �u
tuates. At small τ it is even larger than the 2-GOEpredi
tion. Therefore the diagonal approximation might not yield good agreement. In orderto a
hieve better agreement with our results, Kuipers 
al
ulated the spe
tral form fa
tor fortwo 
haoti
 systems 
onne
ted with ea
h other by summing over periodi
 orbits [89℄. The onlyparameter is the number of 
hannels n. It determines the strength of the 
oupling and is givenby the ratio of the Heisenberg and the dwell time in one region,
n =

tH,i
tdwell,i = Φ

he� , (5.26)as dis
ussed earlier. The resulting spe
tral form fa
tor is [89℄
KJK(τ) = 2τ [1 + exp{−4nτ}] . . .diagonal 
ontribution

− 2τ 2[1 + exp{−4nτ}]− 4τ 2[1− nτ ] exp{−4nτ} . . .Sieber-Ri
hter, (5.27)where we expli
itly indi
ated the diagonal 
ontribution and the 
ontribution by Sieber-Ri
hterpairs of periodi
 orbits. The diagonal 
ontribution is exa
tly the same as the result of Ref. [65℄derived using a Master equation rewritten in Eq. (5.24) using Eq. (5.26). This is 
onsistent, asboth are diagonal approximations of the spe
tral form fa
tor.Figure 5.3 shows a magni�
ation of the map data shown in Fig. 5.1 in
luding the predi
tionof Smilansky et al., Eq. (5.24), and the predi
tion of Kuipers, Eq. (5.27). The data for map
Fpb,rot strongly �u
tuates for small τ and signi�
antly ex
eeds the 2-GOE result. Therefore�tting the linear regime is not useful and we �nd agreement for the diagonal approximationonly for the largest ratio n = Φ/he� = 4 (lowest 
urve). Adding the se
ond order term in
K(τ) seems to underestimate the determined K(τ). Adding more terms might yield betteragreement, but has not been done up to now.Next we 
ompare the resulting K(τ) for Fpb,rot to those of the matrix model proposed byBohigas, Tomsovi
, and Ullmo (see Se
. 4.2) and the 
hannel 
oupling model (see Se
. 4.3).
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Figure 5.2: The estimation of Smilansky et al. of K(τ) in Eq. (5.24) for di�erent n = Φ/he�(dash-dotted lines) in 
omparison to the result of an un
orrelated superposition of two GOEspe
tra (dashed red line; Eq. (5.14) and linear approximation 2τ) and one GOE spe
trum(solid green line; Eq. (5.8) and linear approximation 4τ). The arrows indi
ate the dwell timein one of the 
haoti
 regions tdwell,i in multiples of the Heisenberg time. The lower pi
ture isa magni�
ation of the upper for small τ .This is done in Fig. 5.4(a) and (b), respe
tively. For the BTU model we use Λ = n/π2 (see
Λ-�ux relation in Se
. 3.2.2) in order to relate the data with the ratio n = Φ/he�. Using this,one may also de�ne a dwell time of one region in multiples of the total Heisenberg time for theBTU model using

tdwell,i
tH =

tdwell,i
2tH,i =

1

2n
=

1

2π2Λ
. (5.28)
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Figure 5.3:Magni�
ation of Fig. 5.1 for small τ . For 
omparison the diagonal approximationEq. (5.24) of Smilansky et al. (dash-dotted) in (a) and the result in
luding Sieber-Ri
hterpairs Eq. (5.27) of Kuipers (dotted) in (b) are shown. Again the arrows indi
ate the positionof the dwell time.The results for the BTU model for n ≤ 1 lie below the form fa
tor K(τ) for the map Fpb,rot,Fig. 5.4(a). This means for the same s
aling parameter the BTU model is ahead of the map
Fpb,rot on the transition towards one GOE, whi
h is 
onsistent with the �ndings for the ATWand the average produ
t measure in Chap. 3. For large n = Φ/he� the BTU and the map dataare quite 
lose to ea
h other. For the 
hannel 
oupling we �nd reasonable agreement with thespe
tral form fa
tor of the map Fpb,rot, Fig. 5.4(b), similar to the observations for the ATW.Therefore again we 
on
lude that for n being small there arise di�eren
es between the BTUand the 
hannel 
oupling model, where the latter seems to des
ribe the data of the map Fpb,rotbetter.
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Figure 5.4: Data of Fig. 5.1 in 
omparison to the resulting K(τ) for (a) the BTU matrixdis
ussed in Se
. 4.2 model and (b) the 
hannel 
oupling model dis
ussed in Se
. 4.3.Note that the overall shape of the BTU model is quite well des
ribed, by an interpolationbetween KGOE(τ) and K2GOE(τ) based on the diagonal part proposed by Kuipers [89℄,
Kinterpolation(τ) = [1− exp {−4nτ}] ·KGOE(τ) + exp {−4nτ} ·KGOE(2τ). (5.29)5.2 Nearest-neighbor level-spa
ing distribution P (s)The nearest-neighbor level-spa
ing distribution is one of the most important tools to determineproperties of level spe
tra [68, 82, 90, 91℄. It is suitable to measure features of the involved
oupling strengths, whi
h govern the distribution at small energy spa
ings [92, 93℄.
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ing distribution 1395.2.1 De�nition of the nearest-neighbor level-spa
ing distributionAs we study spa
ing statisti
s of quantum maps we unfold the spe
trum of eigenphases
ϕk 7→

N
hϕk
2π

for k = 1, ..., N
h. (5.30)Note that the number of 
onsidered levels o

urs here, whi
h equals the number of 
haoti
states N
h in the map system. For monotoni
ally in
reasing eigenphases ϕk, we de�ne thenearest-neighbor level-spa
ing as [82℄
sk :=

N
h
2π

(ϕk+1 − ϕk) (5.31)and 
onsider its distribution P (s). By 
onstru
tion it is normalized and has unit mean levelspa
ing, i.e.
∞∫

0

ds P (s) = 1, (5.32)
∞∫

0

ds s P (s) = 1. (5.33)For time reversal invariant systems, whi
h have the same spe
tral properties as GOE randommatri
es, the level-spa
ing distribution P (s) is reasonably well des
ribed by the Wigner surmise,
P
h(s) = πf 2
hs

2
exp

{
−πf

2
hs2
4

}
. (5.34)It only depends on the fra
tion of 
haoti
 states f
h, whi
h is the density of levels in the unfoldedspe
trum (mean level spa
ing 1/f
h). P (s) in
reases linearly for small s. That is, neighboringlevels tend to repel ea
h other. This behavior is typi
al for 
haoti
 systems and is referred toas level repulsion [68℄.In order to derive the level-spa
ing distribution P (s) for the un
orrelated superposition of sub-spe
tra, one has to introdu
e the gap probability Z(s) [91℄. We de�ne the following quantities

F (s) =

∞∫

s

ds′P (s′), (5.35)
Z(s) =

∞∫

s

ds′F (s′). (5.36)Here, F (s) is the probability that there is a spa
ing greater or equal to s and f ·Z(s) 
hara
terizesthe probability that an interval of length s is a gap in the 
onsidered spe
trum. These quantities
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an also be de�ned for ea
h sub-spe
trum individually. For a time reversal invariant sub-systemof size f
h these quantities are integrated versions of the Wigner surmise in Eq. (5.34)
F
h(s) = exp

{
−πf

2
hs2
4

}
, (5.37)

Z
h(s) = 2

f
h√π ∞∫

√
πf
hs/2 dx exp {−x2} . (5.38)For the un
orrelated superposition of sub-spe
tra with densities f
h,1 and f
h,2 the gap proba-bility of the total spe
trum is given by the produ
t of the individual 
ontributions [91℄

Z(s) = f
h,1Z
h,1(s)f
h,2Z
h,2(s). (5.39)The latter property is plausible, be
ause of the meaning of Z(s). That is, we will �nd a gap ofsize s in the total spe
trum if both spe
tra have a gap of size s. The 
orresponding level-spa
ingdistribution P (s) 
an be derived by di�erentiating the gap probability Z(s) twi
e. This gives
P (s) = f
h,1P
h,1(s)f
h,2Z
h,2(s) + f
h,1Z
h,1(s)f
h,2P
h,2(s) + 2f
h,1F
h,1(s)f
h,2F
h,2(s). (5.40)The �rst term of the sum 
orresponds to spa
ings from the �rst sub-spe
trum embedded insidea gap of the se
ond sub-spe
trum and the se
ond term originates from spa
ings from the se
ondsub-spe
trum embedded inside a gap of the �rst. The last term in Eq. (5.40) 
ounts spa
ingsbetween a level of the �rst sub-spe
trum and a level of the se
ond sub-spe
trum. For small

s the �rst two terms exhibit level repulsion due to P
h,i(s). However, the last term gives a
onstant o�set 2f
h,1f
h,2 for small spa
ings, be
ause F
h,i(s ≈ 0) = 1. Thus, the level repulsionof the individual sub-spe
tra is destroyed due to 
lustering of levels from distin
t sub-spe
tra.For the un
orrelated superposition of two GOE spe
tra of equal size (f
h,1 = f
h,2 = 1
2
) thespa
ing distribution is

P (s) =
1

2
P
h(s, f
h = 1

2

)
Z
h(s, f
h = 1

2

)
+

1

2
F 2
h (s, f
h = 1

2

) (5.41)with P
h, F
h, and Z
h given in Eqs. (5.34), (5.37), and (5.38), respe
tively. For s = 0 we �nd
P (s = 0) = 1

2
, whi
h determines the probability P (s ≈ 0)ds to have two levels of di�erentsub-spe
tra at distan
e smaller than ds. Levels of di�erent spe
tra do not repel ea
h other andtherefore yield nonzero P (s = 0).5.2.2 Results for the designed map Fpb,rotIn order to determine the spa
ing distribution for the 
haoti
 levels of the designed map Fpb,rot,we remove the regular levels from the spe
trum as dis
ussed in Se
. 5.1.3. The resulting spa
ing
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Figure 5.5: Level-spa
ing distribution P (s) of the map Fpb,rot for di�erent ratios Φ/he� =
π2Λ. The parameters for the numeri
al data of the map Fpb,rot are given in Tab. 5.1.Their displayed histograms lie in between the 
urve for the un
orrelated superposition oftwo GOE spe
tra (dashed red line; Eq. (5.41)) and the Wigner surmise for one GOE spe
-trum (solid green line; Eq. (5.34)). The lower pi
ture shows the same distributions on adouble-logarithmi
 s
ale, whi
h reveals a power-law in
rease sβ for small s with exponent βbetween 0 (un
orrelated superposition of two GOE) and 1 (one GOE).distributions for several ratios Φ/he� = π2Λ are shown in Fig. 5.5. The shown data sets illustratethe typi
al behavior and we �nd s
aling with the ratio Φ/he� as in Chap. 3. Moreover we varythe width of the regular region as des
ribed in Se
. 3.3.5 and �nd no dependen
e of P (s) on thiswidth. That is, the behavior of P (s) is determined by the properties of the partial barrier only.
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ing distribution P (s)For in
reasing 
oupling parameter Φ/he� the results perform a transition from two un
oupledGOE spe
tra, Eq. (5.41), to one GOE spe
trum, Eq. (5.34). The lower pi
ture of Fig. 5.5 showsthe distribution on a double-logarithmi
 s
ale to emphasize the behavior of small spa
ings s.The in
rease is algebrai
ally sβ with an exponent β in
reasing from zero to one for in
reasing
Φ/he�.Now we 
onsider the BTU matrix model, dis
ussed in Se
. 4.2. This model in
orporates atypi
al 
oupling strength, Eq. (4.32), v = D·

√
Λ with the mean level spa
ing of the un
orrelatedsuperposition D (
onsidering levels around E = 0 like in Se
. 4.2) and the s
aling parameter Λ.The 
orresponding nearest-neighbor spa
ing-distribution is studied in Ref. [40,70,71,76℄ and ananalyti
 expression is derived in Ref. [92℄. The main idea of the analyti
 expression is to repla
ethe se
ond term of Eq. (5.41), namely the 
ontribution of levels from distin
t sub-spe
tra bya �rst order perturbation expansion. The level spa
ings of the un
orrelated superposition s0are repla
ed by s =

√
s20 + v̄2, where the unfolded 
oupling strength v̄ enters, whi
h is givenby v̄ = v/D =

√
Λ. In Fig. 5.6 the distributions are plotted for various Λ. Be
ause theyagree ex
ellently with numeri
al determined histograms, we only show the analyti
 predi
tion.Again for in
reasing 
oupling strength we �nd a transition from two un
oupled GOE spe
trato one GOE spe
trum, but the transition behavior is quite di�erent from Fig. 5.5. This is mostprominent seen in the lower pi
ture, whi
h shows the distribution on a double-logarithmi
 s
ale.For one typi
al 
oupling strength P (s) in
reases linearly for s below this 
oupling strength. Nofra
tional power-law behavior as shown in Fig. 5.5 for map Fpb,rot is found.Figure 5.7 shows the level-spa
ing distribution for the 
hannel 
oupling model introdu
ed inSe
. 4.3. The P (s) distributions for n = 1, 2, and 4 are in good agreement with the P (s) forthe map Fpb,rot in Fig. 5.5 for Φ/he� = 1, 2, and 4. This is 
onsistent with our �ndings that theATW of the map is well des
ribed by the 
hannel 
oupling model (see Se
. 4.3). The shown

P (s) distributions in Fig. 5.7 also indi
ate the power-law behavior found for the map data inFig. 5.5. For the original 
hannel 
oupling model the number of propagating modes n 
annotbe smaller than one. Therefore further investigations are needed to sear
h for a power-lawbehavior in the 
hannel 
oupling model, e.g. by use of the extension dis
ussed in Se
. 4.3.4.Example �ux Φ N = 1/he� Φ/he�3 ≈ 1/3000 200 ≈ 1/163 ≈ 1/3000 800 ≈ 1/43 ≈ 1/3000 1600 ≈ 1/23 ≈ 1/3000 3200 ≈ 12 ≈ 1/800 1600 ≈ 22 ≈ 1/800 3200 ≈ 4Table 5.1: Considered examples and used total number of states N = 1/he� of the datashown in Fig. 5.5. The parameters for the examples are given in Tab. 3.1 and Tab. 3.2. Ea
hdata set is 
olle
ted over 1000 values of the Blo
h phase θq.
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Figure 5.6: Analyti
 level-spa
ing distribution P (s) for two 
haoti
 regions, whi
h are 
ou-pled via one typi
al 
oupling strength v determined by v/D =
√
Λ. These distributions arein ex
ellent agreement with numeri
ally determined P (s) distributions for the BTU matrixmodel [92℄. For in
reasing 
oupling strength Λ the distributions perform a transition fromtwo un
oupled GOE spe
tra to one GOE spe
trum. For spa
ings smaller than the 
ouplingstrength √

Λ the distributions in
rease linearly similar to the GOE spe
trum.A

ording to Ref. [93℄ a fra
tional power-law behavior in P (s) indi
ates that the 
ouplingbetween the two sub-systems 
annot be des
ribed by a single number, rather several di�erent
oupling strengths need to be 
onsidered. That is, the 
ouplings are distributed a

ording to apower-law or a sum of Gaussian distributions with di�erent varian
e. In Ref. [93℄ the 
oupling
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Figure 5.7: Level-spa
ing distribution P (s) for the 
hannel 
oupling model (Nup = Nlo =
500 and a

ording to Eq. (4.76) σ = 1/(4Nup)) and number of propagating modes n = 1, 2, 4.The shown distributions in
lude levels of 104 random matri
es, where 10% of levels around
E = 0 are 
onsidered.of regular and 
haoti
 states is investigated. However, on the level of the used 2 × 2-modeldes
ription this is just the same as two 
haoti
 regions being 
oupled. Therefore we attributethe di�eren
e of the nearest-neighbor distribution of map Fpb,rot and the BTU matrix model todi�erent distributions of 
ouplings between states of the upper and the lower 
haoti
 region. Forthe BTU matrix model this distribution is Gaussian and we dedu
e a power-law distributionor at least a sum of Gaussian distributions with di�erent varian
e from the found P (s).



6 Summary and outlookIn this thesis we study the impa
t of partial barriers, whi
h limit the transport between 
haoti
regions in phase spa
e. Classi
ally these partial barriers lead to a drasti
 
hange in the distri-bution of re
urren
e times. It 
hanges from exponential, in the fully 
haoti
 
ase, to algebrai
for the 
haoti
 
omponent of a mixed phase spa
e, in whi
h partial barriers are arranged in ahierar
hi
al manner. They limit the transport for intermediate times. At large times, however,one expe
ts that almost all 
haoti
 orbits spread uniformly into the whole 
haoti
 region as ifthere was no barrier.Quantum me
hani
ally these partial barriers are even more restri
tive and quantum sup-pression of transport is found, if the e�e
tive Plan
k's 
onstant he� is larger than the 
lassi
al�ux Φ, he� ≫ Φ. That is, time evolved wave pa
kets 
annot pass the partial barrier and willtherefore lo
alize in the initial region. In the opposite regime where he� is mu
h smaller thanthe 
lassi
al �ux, he� ≪ Φ, the wave pa
kets follow the 
lassi
al transport a
ross the partialbarrier. At large times they extend uniformly over the whole 
haoti
 region as if there was nobarrier. In between the limiting 
ases one �nds a transition.The aim of this thesis is to quantify this quantum transition of a partial barrier betweenquantum suppression and 
lassi
al transport. For this we introdu
e the asymptoti
 transmittedweight (ATW), whi
h des
ribes the weight transmitted a
ross the partial barrier at large times.Moreover we relate the ATW to the average of an eigenstate measure, 
alled produ
t measure,whi
h 
aptures the deviation of eigenstates from the uniformly distributed state. If Plan
k's
onstant is large 
ompared to the 
lassi
al �ux, he� ≫ Φ, the ATW and thereby the individualprodu
t measure of the eigenstates vanishes. In this limit eigenstates are lo
alized on one sideof the partial barrier and have no weight on the other side. In the limit of 
lassi
al transport,
he� ≪ Φ, all of the 
haoti
 eigenstates are uniformly distributed over both regions and ignorethe partial barrier.For a generi
 system with a mixed phase spa
e in�nitely many partial barriers exist in the
haoti
 part of phase spa
e and might yield relevant transport barriers. Studying their impa
ton the 
orresponding quantum system is a hard task. Therefore we introdu
e a designed systemwith a parti
ularly simple phase spa
e, whi
h 
onsists of two 
haoti
 regions, that are separatedby one isolated partial barrier. For this system, we numeri
ally �nd that the ATW s
ales withthe ratio Φ/he�. The transition from quantum suppression to 
lassi
al transport takes pla
e at
Φ = he�. It has a width of almost two orders of magnitude in Φ/he�. Moreover we extend our
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onsiderations to the generi
 standard map and obtain results that are in good agreement withour �ndings for the designed map.In order to quantitatively des
ribe the quantum transition of a partial barrier we dis
ussseveral matrix models in Chap. 4. The transition behavior of our map data is well des
ribedby a deterministi
 2× 2-model, in whi
h ea
h site in the model is asso
iated with one 
haoti
region. Moreover we evaluate the ATW for the random matrix model proposed by Bohigas,Tomsovi
, and Ullmo [23℄. We �nd that this matrix model does not des
ribe the overall behaviorof the ATW found for the designed map. Espe
ially for Φ/he� . 1 we �nd 
lear deviations.We attribute this di�eren
e to the overall Gaussian 
oupling between all upper and all lowerstates in
luded in the BTU matrix model. Therefore we propose a 
hannel 
oupling model todes
ribe the impa
t of a partial barrier for the quantum system. In this model n = Φ/he�modes 
an propagate and 
ouple the upper and lower states. We �nd very good agreementwith the map data and 
on
lude that this model is appropriate to des
ribe the bottle-ne
k ofquantum transport a
ross a partial barrier. In addition we 
onsider a smoothed version of the
hannel 
oupling model using Fermi-fun
tion like transition probabilities and also �nd goodagreement. As an alternative approa
h we examine unitary matrix models, whi
h allow for adire
ted transport between the two regions separated by the partial barrier. Also this modeldes
ribes the transitional behavior of a partial barrier.Complementary to the investigations of time evolution and eigenstate properties in Chap. 3,we examine the spe
tral signatures of partial barriers in Chap. 5. As relevant quantities we
onsider the spe
tral form fa
tor K(τ) and the nearest-neighbor level-spa
ing distribution P (s).For the interpretation of the results for the spe
tral form fa
tor K(τ) it is useful to relate theratio Φ/he� to the Heisenberg time tH,i and the dwell time tdwell,i of region i, Φ/he� = tH,i/tdwell,i.If the Heisenberg time is small 
ompared to the dwell time, tH,i ≪ tdwell,i, a typi
al orbit ofthe length of the Heisenberg time will not have visited the other region in phase spa
e. Inthis 
ase semi
lassi
ally the quantum spe
trum has the same properties as the un
orrelatedsuperposition of two distin
t spe
tra. In the opposite limit tH,i ≫ tdwell,i we have 
lassi
altransport and quantum me
hani
s resolves the other region, whi
h yields one 
haoti
 spe
trum.For �xed Φ/he� = tH,i/tdwell,i we �nd a transition of the spe
tral form fa
tor from the result ofthe un
orrelated superposition of two distin
t spe
tra at small times to the result of one GOEspe
trum at large times t≫ tdwell,i. We �nd s
aling with the ratio Φ/he� for the spe
tral formfa
tor K(τ) and the level-spa
ing distribution P (s) and observe transitions between the resultof the un
orrelated superposition of two GOE spe
tra to one GOE spe
trum for in
reasing ratio
Φ/he�. The level-spa
ing distribution P (s) for small spa
ings reveals the nature of the 
ouplingbetween the upper and lower states. We �nd a power-law behavior sβ for small spa
ings swith an exponent β between zero, whi
h is the limit of quantum suppression, and one, whi
h
orresponds to the level repulsion found in one 
haoti
 system. We attribute this power-lawbehavior to a distribution of 
ouplings, whi
h 
learly di�ers from the Gaussian distribution with



147one typi
al 
oupling strength used by the BTU matrix model. However, the 
hannel 
ouplingmodel is in good agreement with the spe
tral form fa
tor and the level spa
ing distribution forour example systems.In the future one may gain further insight into the 
omplex me
hanism behind the quantumsuppression of transport by modeling the full time-dependent transmitted weight rather thanthe ATW only. In order to answer the question whether the transition behavior is governed bythe ratio Φ/he� only, further analysis is needed. Espe
ially more examples are required, wherethe size of the upper and lower 
haoti
 region are di�erent, in order to test the s
aling behaviorof the transition.In the regime Φ ≪ he� the 
lassi
al transport is suppressed. If the ratioΦ/he� is small enough,we expe
t that the main 
ontribution to the transport a
ross the partial barrier originates fromtunneling a
ross the barrier rather than turnstile transport. Therefore in this regime we expe
ta s
aling with Plan
k's 
onstant only. The theoreti
al des
ription of this tunneling pro
ess isan open problem.Also the introdu
ed designed map allows for further investigations. It 
an be used to studythe tunneling a
ross a single regular torus and to 
onstru
t a partial barrier due to a 
antorus.However, up to now it is not 
lear how to �nd a good approximation of the 
antorus. If the �ux
Φ a
ross the 
antorus is large enough to investigate quantum signatures, the approximatingorbits are very unstable and therefore numeri
al approximations fail.The fa
t that partial barriers are nontransparent for wave pa
kets with he� ≫ Φ mightbe used for appli
ations, e.g. to build high-pass �lters, whi
h dis
ard wave pa
kets of lowfrequen
y. Up to now experimentally the quantum transition of a partial barrier is investigatedonly qualitatively. However, quantitative measurements are required to verify the transitionalbehavior found in this thesis. Promising 
andidates for these quantitative measurements aremi
ro
avities, in whi
h the impa
t of partial barriers on the emission properties is of interest,e.g. to build mi
rolasers.
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