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vAbstratGeneri Hamiltonian systems have a mixed phase spae, in whih regular and haoti motionoexist. In the haoti sea the lassial transport is limited by partial barriers, whih allowfor a �ux Φ given by the orresponding turnstile area. Quantum mehanially the transport issuppressed if Plank's onstant is large ompared to the lassial �ux, h≫ Φ, while for h≪ Φlassial transport is reovered. For the transition between these limiting ases there are manyopen questions, in partiular onerning the orret saling parameter and the width of thetransition.To investigate this transition in a ontrolled way, we design a kiked system with a partiularlysimple phase-spae struture, onsisting of two haoti regions separated by one dominantpartial barrier. We �nd a universal saling with the single parameter Φ/h and a transitionwidth of almost two orders of magnitude in Φ/h. In order to desribe this transition, weonsider several matrix models. While the numerial data is not well desribed by the randommatrix model proposed by Bohigas, Tomsovi, and Ullmo, a deterministi 2×2-model, a hanneloupling model, and a unitary model are presented, whih desribe the transitional behavior ofthe designed kiked system. This is also on�rmed for the generi standard map, suggesting auniversal saling behavior for the quantum transition of a partial barrier.ZusammenfassungGenerishe Hamilton'she Systeme besitzen einen gemishten Phasenraum, in dem sowohl reg-uläre als auh haotishe Dynamik vorkommen. Der klassishe Transport in der haotishenSee wird durh partielle Barrieren begrenzt, die nur einen Fluss Φ hindurh lassen. Der quan-tenmehanishe Transport ist stark unterdrükt, wenn die Plank'she Konstante groÿ gegenden klassishen Fluss ist, h ≫ Φ. Ist hingegen h ≪ Φ folgt die Quantenmehanik der klas-sishen Dynamik. Für den Übergangsbereih zwishen diesen Grenzfällen gibt es noh vieleo�ene Fragen, insbesondere bezüglih des rihtigen Skalierungsparameters und der Breite desÜbergangs.Um gezielt diesen Übergang zu untersuhen, haben wir ein System mit einem besonderseinfahen Phasenraum entworfen. Er besteht aus zwei haotishen Gebieten, die durh einedominante partielle Barriere getrennt sind. Es zeigt sih, dass das universelle Verhalten durhden Parameter Φ/h beshrieben wird und der Übergang sih über zwei Gröÿenordnungen er-strekt. Wir betrahten vershiedene Matrixmodelle um diesen Übergang zu verstehen. Dienumerishen Daten werden niht durh das Zufallsmatrixmodell von Bohigas, Tomsovi undUllmo beshrieben. Ein deterministishes 2 × 2-Modell, eine Kanalkopplung und ein unitäresMatrixmodell beshreiben hingegen den Übergang des entworfenen gekikten Systems. DieTatsahe, dass auh die generishe Standardabbildung diesem Verhalten folgt, spriht für einuniverselles Verhalten des Quantenübergangs einer partiellen Barriere.
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1 IntrodutionIn the 1960s Edward N. Lorenz performed meteorologial simulations at the MassahusettsInstitute of Tehnology and observed that lose-by initial weather onditions yield very di�erent�nal outomes [1,2℄. This phenomenon of sensitive dependene on initial onditions is known asthe butter�y e�et and is harateristi for haoti motion [3℄. Although the dynamis obeysdeterministi di�erential equations, the preditability of the motion is limited. The reasonfor this is the impreise knowledge of the initial state and the exponential growth of smalldeviations under the time evolution. Therefore the resulting dynamis seems random and isoften desribed using statistial measures rather than individual trajetories. The oppositeextreme of a dynamial system, ompared to the haoti situation, is an integrable system. Insuh a system the number of onserved quantities equals the number of degrees of freedom f andthe dynamis is on�ned to f -dimensional tori in the 2f -dimensional phase spae. Variation ofthe initial ondition hanges the �nal outomes only slightly and the motion is alled regular.Typial Hamiltonian systems are neither integrable nor haoti, but have a mixed phase spae,in whih regular and haoti motion oexist [4℄. Figure 1.1(a) shows an illustration of suh ageneri two-dimensional mixed phase spae. Regular orbits are on�ned to one-dimensionallines and the whole set of suh lines is alled regular island. The regular island is surroundedby haoti orbits. They uniformly �ll a two-dimensional region in phase spae, whih is alledhaoti sea. Inside all the holes of the haoti sea further regular islands exist.For an ensemble of orbits started in some phase-spae region almost all of them will eventuallyreturn to the initial region aording to the Poinaré reurrene theorem [3, Se. 7.1.3℄. Thisstatement, however, does not provide any information about the time at whih a ertain orbitreturns. Therefore the distribution of reurrene times R(t) is an interesting quantity. Forfully haoti systems it deays exponentially R(t) ∝ exp(−α · t) [5℄. This behavior hangesompletely if we onsider systems with a mixed phase spae. At large times one typiallyobtains a power law for the return of haoti orbits to some initial region R(t) ∝ t−γ [6℄.Suh an algebrai deay has also been observed in experiments [7,8℄, where ultra-old atomsare plaed inside an open billiard system and the number of remaining atoms is reorded as afuntion of time. For the stadium billiard with hard walls, whih is fully haoti, the fration ofremaining atoms deays exponentially, in aordane with the theoretial predition. However,if the billiard walls are soft an algebrai deay t−γ is observed, whih is attributed to regularislands arising in the haoti sea.



2 Chapter 1. Introdution
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Figure 1.1: (a) Illustration of a system with a mixed phase spae. In the enter three regulartori (violet, green, and orange) in the regular island are shown. They are surrounded by thehaoti sea, whih is indiated by two haoti orbits (blue and red). (b) Illustration of theation of a partial barrier (solid green horizontal line) with �ux Φ rossing it (light greenshaded region). The preimage of the partial barrier is indiated by the dotted green line andtogether with the partial barrier it forms the turnstile. Chaoti orbits, indiated by red dots,entering the turnstile are mapped (arrow) to the opposite region.What is the reason for the drasti hange in the deay behavior? If the regular regions wouldnot a�et the haoti dynamis one would expet an exponential deay also for the mixed phasespae. However, in suh systems with a mixed phase spae haoti orbits typially remain loseto regular islands for long times. This phenomenon has been alled stikiness [9�12℄. It isthe origin of the qualitative hange in the return time distribution R(t) and in the deay oforrelations [6, 12, 13℄.The reason for the stikiness around regular regions are partial barriers [14�20℄, whih arethe main topi of this thesis. Partial barriers are lines in the two-dimensional phase spaewith a non-vanishing �ux Φ rossing them; i.e. a ertain amount of phase-spae volume Φ istransported aross this line per unit time. Due to area preservation in Hamiltonian systemsthe volume transported from one side to the other and vie versa is the same. The mehanismof a partial barrier is illustrated in Fig. 1.1(b). Orbits from above the partial barrier enter theright part of the turnstile and are mapped to below, whereas orbits from below may enter theleft part of the turnstile and are mapped to above the partial barrier. The two haoti orbitsin Fig. 1.1(a) are separated by suh a partial barrier and at large times �ll the whole haotiregion. In general there are in�nitely many partial barriers in the haoti part of phase spae.However, only those partial barriers, whih have the smallest �ux are relevant, as they are mostlimiting for the transport in the haoti sea. These partial barriers allow for a deompositionof the haoti sea into sub-regions, that are eah quikly mixing within the time sale in whihorbits typially leave a region and enter another sub-region. This kind of deomposition givesrise to Markov models for the transport in the haoti sea, whih explain the algebrai deayof reurrene time distributions [17�20℄.A partial barrier an originate from a antorus, the remainder of a torus with quasiperiodi



3motion whih has been destroyed by a perturbation [21, 22℄. Another mehanism giving riseto a partial barrier is the ombination of the stable and the unstable manifold of a hyperboli�xed point [22, 23℄.The impat of partial barriers on the lassial transport was desribed in the 1980s. Anotherquestion of fundamental importane is the impliation of partial barriers to the orrespondingquantum system. MaKay, Meiss, and Perival onjetured that for the orresponding quantumsystem the size of the turnstile Φ needs to be ompared to the size of Plank's onstant h [15℄.Depending on the ratio Φ/h the quantum evolution uses the lassial transport hannel (Φ ≫ h)or quantum transport is suppressed (Φ ≪ h). For Φ ≪ h quantum mehanis is even morerestritive than lassial mehanis. The partial barrier ats as a barrier for the quantumsystem, beause the lassial transport hannel is not resolved by the quantum system, whoseresolution is determined by h. The phenomenon of quantum suppression of transport givesrise to loalization of wave pakets, started in one haoti region, for large times [23�28℄. Forexample it was observed for the multiphoton ionization of exited atoms that the lassial�ux needs to exeed Plank's onstant in order to �nd signi�ant ionization [21℄. In thisase the partial barrier ats like a torus for large h. Also experimentally the role of partialbarriers for the quantum system has been investigated [29℄. Here, the quantum suppression oftransport implies the loalization of eigenstates in regions limited by partial barriers. In theneighborhood of a regular island a hierarhy of partial barriers gives rise to the loalizationof haoti eigenstates lose to the regular region, so-alled `hierarhial states' [30℄. Reentlythe quantum signatures of partial barriers were studied for miroavities [31,32℄, whih an beused e.g. to build mirolasers [33,34℄. Generially these miroavities have a mixed phase spaeand partial barriers exist in the haoti sea. Experimental evidene for the impat of turnstiletransport on the quantum system is presented in Refs. [31, 35℄. In Ref. [36℄ it was speulatedthat osillations in the quality fator of the lasing modes arise due to partial barriers in thehaoti part of phase spae.While the quantum transition of a partial barrier from quantum suppression for Φ ≪ h tolassial transport for Φ ≫ h is qualitatively understood, a quantitative desription is stillmissing. In partiular there are several open questions: Is the ratio Φ/h the orret salingparameter of the transition? Does the transition take plae at Φ = h? How broad is thistransition?The aim of this thesis is to answer these questions and to give a quantitative desription ofthe quantum transition of a partial barrier from quantum suppression to lassial transport.To investigate this transition in a ontrolled way, we design a system with one isolated partialbarrier. This is in ontrast to the generi ase that usually provides in�nitely many partialbarriers arranged in a hierarhial manner. Using this designed system we are able to answerthe open questions and give a quantitative desription of the transition in terms of a suitablemeasure.



4 Chapter 1. IntrodutionFurthermore we disuss matrix models in order to desribe the quantum transition of apartial barrier. On the level of matrix modeling this orresponds to a transition of two unou-pled haoti sub-systems (quantum suppression) to one large system (lassial transport). Theonset of the lassially established transport through the turnstile for inreasing ratio Φ/h or-responds to an enhaned oupling between the formerly independent haoti regions separatedby the partial barrier. This transitional behavior is similar to the �ooding of the regular islandby haoti states, whih arises due to the tunneling oupling between the lassially distintregions [37�39℄. Moreover it is related to symmetry breaking, where two distint sub-systemsare oupled by an additional fore [40℄. Bohigas, Tomsovi, and Ullmo used this analogy topropose a random matrix model to desribe the impat of a partial barrier on the orrespond-ing quantum system [23℄. We �nd that this matrix model does not reprodue the numerialdata for the quantum transition of the partial barrier. Hene, we introdue a hannel ouplingmodel, unitary matrix models, and a deterministi 2 × 2-model, whih are able to desribethe quantum transition of a partial barrier. To understand the di�erent results for the matrixmodels we study the spetral statistis of the system with one partial barrier.In Chap. 2 the onsidered example systems and their properties are disussed. In Chap. 3we investigate the phenomenon of quantum suppression and design a map with a partiularlysimple phase spae, whih allows to study the quantum transition of a partial barrier in detail.Several modeling approahes for the quantum transition are presented in Chap. 4. Spetralsignatures of partial barriers are disussed in Chap. 5. We onlude by a summary and outlook.



2 Kiked systemsIn this hapter we �rst disuss basi properties of lassial Hamiltonian systems (see Se. 2.1).As a prominent example we introdue the standard map in Se. 2.2 to illustrate the phase-spae strutures found in Hamiltonian systems (see Se. 2.3) and disuss the impat of thesestrutures on the transport (see Se. 2.4). In Se. 2.5 we explain time reversal invariane.The quantization of kiked systems and time-independent systems is presented in Se. 2.6 and2.7, respetively. The Husimi distribution as phase-spae representation of a quantum state isintrodued in Se. 2.8.2.1 Hamiltonian systemsThe deterministi mathematial desription for the time evolution of possible states of a (phys-ial) system is alled `dynamial system' [3, Se. 1.3℄. The state of the system is haraterizedby a vetor x inside the spae of all possible states (e.g. G j R
n) alled phase spae. For timeontinuous systems the evolution is desribed by x(t) at times t ∈ R. This funtion x(t) is thesolution of the di�erential equation aording to the dynamial system

ẋ = f(x, t) (2.1)with initial ondition x(0) = x0. The information about the system dynamis is ompletelyontained in the funtion f : G×R → R
n, whih returns a vetor as value. The resulting graph

{x(t, x0) : t ∈ R} is alled trajetory.Hamiltonian systems are a speial lass of dynamial systems. They are ompletely desribedby one salar funtion, namely the Hamiltonian or Hamiltonian funtion H(q, p, t). This fun-tion depends on the anonial oordinates q (position) and p (momentum), whih desribestates as points x = (q, p) in the phase spae. In order to �nd the Hamiltonian for a mehanialsystem one usually starts with the Lagrangian L(q, q̇, t), whih depends on positions q andveloities q̇. Both funtions, H(q, p, t) and L(q, q̇, t), are related by a Legendre transformation
H(q, p, t) = p · q̇ − L(q, q̇, t). (2.2)By use of this transformation the dependene on veloities q̇ is replaed by a dependene on theonjugate momenta p = ∂L

∂q̇
. The equations of motion are derived using Hamilton's priniple.



6 2.1 Hamiltonian systemsIn order to do so we de�ne the ation
S(q, t1, t2) =

t2∫

t1

L(q(t), q̇(t), t) dt (2.3)along a path q(t) between times t1 and t2. The system will take the route between the �xedend points q(t1) and q(t2), whih yields minimal or rather stationary ation: δS = 0. Using thealulus of variations, Euler-Lagrange equations,
d

dt

∂L(q, q̇, t)

∂q̇
− ∂L(q, q̇, t)

∂q
= 0 (2.4)as well as Hamilton's equations of motion,

q̇ =
∂H(q, p, t)

∂p
,

ṗ = −∂H(q, p, t)

∂q
, (2.5)(aording to the above Legendre transformation) an be derived. Both, Euler-Lagrange equa-tions and Hamilton's equations of motion, ompletely desribe the dynamis. The latter set ofequations, Eq. (2.5), are of the type of Eq. (2.1). We identify x = (q, p) and

f(q, p, t) = Ω ·
(

∂H(q,p,t)
∂q

∂H(q,p,t)
∂p

) (2.6)with the sympleti matrix
Ω =

(
0 1

−1 0

)
, (2.7)where 0 and 1 are the zero and identity matrix of dimension aording to q; and therefore p.A mapping F of the kind

x(ti+1) = F (x(ti)) (2.8)de�nes a time disrete dynamial system. In this ase time takes only disrete values ti =

t0 + i ·∆t with i ∈ Z. Suh a mapping may arise from a time ontinuous system, Eq. (2.1), bysampling of the trajetory and observation only at disrete times {ti}. This is espeially usefulfor periodi funtions f : f(x, t) = f(x, t + ∆t) and the resulting map is alled strobosopi.For simpliity we will assume ∆t = 1 in the following, whih means that all times are measuredin multiples of ∆t. The resaled time only takes integer values and Eq. (2.8) an be written as
xt+1 = F (xt) with t ∈ Z. (2.9)



2.1 Hamiltonian systems 7In the following we restrit ourselves to two-dimensional mappings. They arise for instanefrom systems with one degree of freedom, that are periodially driven. In ontrast to time-independent systems with one degree of freedom, whih are always integrable, these systemsmay exhibit haos and a mixed phase spae (see Se. 2.3). Furthermore the dynamis insidetwo-dimensional billiard systems, whih have a four-dimensional phase spae, an be desribedby use of so alled Birkho� oordinates [22℄. These oordinates map the time ontinuousdynamis onto a two-dimensional phase spae with time disrete dynamis.The set of states (points in phase spae) visited by a partile initially loated at x0 is alledorbit. The time evolution is given by Eq. (2.9) and an orbit an therefore be written as
{xt : xt = F tx0, t ∈ N}, (2.10)where we de�ne F 2x := FFx = F (Fx). If the inverse mapping F−1 is also de�ned, we onsiderthe set
{xt : xt = F tx0, t ∈ Z}. (2.11)Based on that, we de�ne an orbit segment as �nite subset of an orbit between time t1 and t2.If we talk about orbits in the following, we have orbit segments in mind, whih re�et typialproperties of an orbit.One lass of mappings, whih result from strobosopi observation of a Hamiltonian system,are kiked systems. Their Hamiltonian is given by

H(q, p, t) = T (p) + V (q)
∑

i∈Z
δ(t− i). (2.12)Thereby T (p) is the kineti energy and the potential V (q) ats instantaneously at integer times

t = i. The resulting Hamilton's equations of motion are
q̇ =

∂H

∂p
= T ′(p),

ṗ =−∂H
∂q

= −V ′(q)
∑

i∈Z
δ(t− i). (2.13)In order to get a strobosopi mapping, we �rst integrate the equations over one period ofthe driving. For the mapping we observe the dynamis just after the kik and onsider

qt := lim
ǫ→0 (ǫ>0)

q(t+ ǫ) and
pt := lim

ǫ→0 (ǫ>0)
p(t + ǫ), (2.14)



8 2.1 Hamiltonian systemsrespetively. The new oordinates after one period qt+1 and pt+1 are given by
qt+1 = qt + T ′(pt),

pt+1 = pt − V ′(qt+1) (2.15)in terms of the old oordinates at time t.Another hoie for the observation time is given by splitting the kik into two parts andonsidering the half kik mapping
p̃ = pt −

1

2
V ′(qt),

qt+1 = qt + T ′(p̃),

pt+1 = p̃− 1

2
V ′(qt+1). (2.16)We will use this kind of mapping in Se. 3.1.6 to de�ne a omposed map, whih obeys timereversal invariane.An important property of Hamiltonian systems is area onservation. If one onsiders the timeevolution of a given phase-spae region, the measure of the time evolved region is onservedaording to Liouville's theorem as the orresponding mapping is sympleti. Loally thissympletiity is desribed by

DF (q, p)† Ω DF (q, p) = Ω, (2.17)where Ω is the sympleti matrix from Eq. (2.7) and DF (q, p) is the Jaobian matrix. Theelements of the latter are the �rst derivatives of the new oordinates with respet to the oldones and the role of DF will be disussed in more detail later in this setion. A generalharaterization of sympleti maps an be found in the review artile [22℄.
Fixed points and periodi orbitsA speial lass of orbits arises from �xed points. A �xed point of a mapping is a point x∗ inphase spae with

x∗ = F (x∗). (2.18)That is, it is invariant under the appliation of the mapping F and all images fall on top of eahother. Therefore the point x∗ and the orbit {x∗} are identi�ed. Fixed points are the speialase of the more general question of periodi orbits. Suh orbits are invariant under the n-fold



2.1 Hamiltonian systems 9iterated mapping
xi = F n(xi), i = 0, . . . , n− 1 (2.19)and onsist of n distint points xi, whih arise from eah other by multiple appliation of themapping. The image of the n-th point, xn−1, under F is just the �rst point x0. The periodiorbit onsists of the set

{xi ∈ G : xi+1 = F (xi) for i = 0, . . . , n− 1 and x0 = xn}. (2.20)Fixed points are ategorized aording to their stability, whih is determined by the behaviorof lose-by orbits. For that purpose we onsider the linearized mapping
F (x) ≈ F (x∗) +DF (x∗) · (x− x∗), (2.21)whih is determined by the monodromy or Jaobian matrix DF at the �xed point x∗

DF (x∗) =

(
∂F(i)

∂x(j)

)

i,j

(x∗) =

( ∂F(1)

∂x(1)

∂F(1)

∂x(2)
∂F(2)

∂x(1)

∂F(2)

∂x(2)

)
(x∗). (2.22)The indexes (i) and (j) in Eq. (2.22) label the omponents of the onsidered vetors x and

F (x). The stability properties an be determined from the eigenvalue equation
DF (x∗) · ξ = λ · ξ (2.23)with the displaement ξ = x− x∗.In the following we will disuss the general ase of a periodi orbit. To analyze its stability,we onsider the linear approximation of the n-fold mappingDF n := D(F n) at the point x = x0:

∆xn = DF n(x0) ∆x0, (2.24)where ∆xi is the displaement from the periodi orbit after i steps in linear approximation and
∆x0 the initial distane from x0. We use x0 for simpliity, however, all statements hold for eahpoint of the periodi orbit. The linearization DF n(x0) follows aording to the hain rule

DF n(x0) = DF (xn−1) ·DF (xn−2) · · · · ·DF (x0). (2.25)We onsider the eigenvalue equation
DF n(x0) · ξ = λ · ξ. (2.26)



10 2.1 Hamiltonian systemsFor two-dimensional maps the orresponding eigenvalues are
λ1,2 =

1

2

(
Tr{DF n} ±

√
(Tr{DF n})2 − 4

)
, (2.27)where we introdued the trae of the matrix DF n as Tr{DF n} and used the sympletiity of

F n (see Ref. [22℄) to replae its determinant by 1. The eigenvalues of DF n(x0) only dependon the trae Tr{DF n(x0)}, whih is independent of the partiular hoie of x0 within the orbitpoints.Depending on the trae Tr{DF n} there are four types of periodi orbits for two-dimensionalmaps [22℄, namely
• hyperboli: Both eigenvalues are real, positive, and form the pair λ, 1/λ for Tr{DF n} > 2.The resulting properties are disussed later.
• ellipti: The eigenvalues have unit modulus and form a omplex onjugate pair for
Tr{DF n} ∈ (−2, 2). This is the only stable �xed point [22℄. Close-by orbits irulate onellipses around the �xed point.

• re�etion hyperboli: Both eigenvalues are real and form the pair λ, 1/λ. In ontrast tothe hyperboli ase both eigenvalues are negative and the trae is Tr{DF n} < −2.
• paraboli: Both eigenvalues are +1 or −1 for Tr{DF n} = ±2.Hyperboli �xed pointsIn the neighborhood of a hyperboli �xed point there are orbits approahing the �xed pointat large time and orbits diverging from it. They are assoiated with the two eigendiretions ofthe DF n(x0) with one eigenvalue λ smaller than 1 and one eigenvalue 1/λ larger than 1. Theolletion of all orbits, whih approah the �xed point x0 of F n at large times is alled stablemanifold

Ws(x0) = {x ∈ G : x0 = lim
j→∞

F j·nx}. (2.28)All orbits that approah the �xed point for iteration with the inverse map F−n are olletedinto the unstable manifold. It is given by
Wu(x0) = {x ∈ G : x0 = lim

j→−∞
F j·nx}. (2.29)The stable and unstable manifold are invariant under the mappings F n and F−n. That is,orbits started on suh a manifold, will remain on it forever. Beause of the uniqueness of themapping and the ontinuous dependene on initial onditions, other orbits annot ross the



2.1 Hamiltonian systems 11stable or unstable manifold. Therefore these manifolds are total transport barriers in phasespae.By use of the stable manifold theorem, approximations of the above de�ned sets Ws(x0) and
Wu(x0) an be numerially determined [22℄. This theorem implies that the eigenvetors of theJaobian matrixDF are tangential to the orresponding manifold at the �xed point. By plainginitial onditions lose to the �xed point along the unstable diretion and iterating these pointsforward in time, an approximation of the unstable manifold is obtained. The stable manifoldan be approximated by orbits starting on the stable diretion and being iterated bakward intime or forward in time with the inverse mapping. In Figure 2.1 these approximations of stableand unstable manifold of the hyperboli �xed point (0, 0) for the standard map are shown.The stable and unstable manifold annot interset with itself beause of the uniqueness ofthe mapping, but the stable and unstable manifold may interset one another as shown inFig. 2.1. Suh intersetions are alled homolini or heterolini points. Homolini points areintersetions between the stable and unstable manifold of one �xed point. All of their imageslie on both stable and unstable manifold, and they approah the �xed point for forward andbakward iteration following the stable and unstable manifold, respetively. Heterolini pointsare intersetions of the stable and the unstable manifold of di�erent �xed points. The strutureof the stable and the unstable manifold � indiated in Fig. 2.1 � is alled homolini tangle.
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Figure 2.1: (a) Part of the stable manifolds (blue) and the unstable manifolds (red) of thehyperboli �xed point (q, p) = (0, 0) (=̂(1, 0)) for the standard map with kiking strength
K = 1 and (b) fration of (a) with longer branhes of the manifolds.



12 2.2 Standard map2.2 Standard mapOne famous example of a Hamiltonian system is the standard map, whih was introdued byChirikov in 1979 [41℄, sometimes alled Chirikov-(Taylor-)map. It desribes essential propertiesof several systems. The standard map is a one-parametri family of maps and provides allgeneri features of Hamiltonian systems [41℄.It is an example of a kiked system and its Hamiltonian funtion in terms of dimensionlessposition q and momentum p is
H(q, p) =

p2

2
+

K

(2π)2
cos(2πq)

∑

i∈Z
δ(t− i), (2.30)where the potential term ats instantaneously at integer times and vanishes otherwise. Theonly parameter is the kiking strength K. The Hamilton's equations of motion, Eq. (2.13), are

q̇ =
∂H

∂p
= p,

ṗ = −∂H
∂q

= −∂V
∂q

=
K

2π
sin(2πq)

∑

i∈Z
δ(t− i). (2.31)If we observe the dynamis one per period of the driving, we get a strobosopi mappingsimilar to Eq. (2.15). Here we hoose for the observation time the moment just after the i-thkik and obtain the standard map as

qi+1 = qi + pi,

pi+1 = pi +
K

2π
sin(2πqi+1) (2.32)or as a mapping F : (q, p) 7→ (q′, p′)

q′ = q + p,

p′ = p+
K

2π
sin(2πq′). (2.33)The hange in momentum p in Eq. (2.33) is periodi with period 1 and therefore the positionvariable q an be restrited to [0, 1) with periodi boundary onditions like it was an angle.Considering this periodi boundary ondition in q for the hange of q in Eq. (2.33) one mayhoose the same period for the momentum p and �nally get the dynamis on a torus. TheJaobian matrix, Eq. (2.22), of the standard map is

DF (q, p) =

(
∂q′

∂q
∂q′

∂p
∂p′

∂q
∂p′

∂p

)
=

(
1 1

K · cos(2πq′) 1 +K · cos(2πq′)

)
. (2.34)



2.3 Phase-spae struture 132.3 Phase-spae strutureIn this setion important aspets of the phase-spae struture and their origin are disussed.In the following, the standard map will be used as a typial example, beause it provides allgeneri features of sympleti maps.
Integrable motionA given Hamiltonian system is alled integrable, if there exists a anonial transformation tonew variables (J,Θ) with the following property: The dynamis of J and Θ is desribed by the
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Figure 2.2: Phase spae of the standard map: (a) integrable motion on horizontal tori withpreserved momenta p for K = 0, (b) dynamis of slightly deformed horizontal tori and orbitsirulating around the elliptial �xed point at (q, p) = (1/2, 0) for K = 0.2, () mixed phasespae omposed of regular regions, whih are enlosed by haoti orbits for K = 1, and (d)there are no regular regions visible and the plotted haoti orbit �lls the whole phase spaeuniformly for K = 10.



14 2.3 Phase-spae strutureHamilton funtion H̃(J), whih is independent of Θ. The Hamilton's equations of motion read
Θ̇ =

∂H̃(J)

∂J
=: ν(J),

J̇ = 0. (2.35)The solution of these di�erential equations has the form
Θ(t) = Θ(0) + ν(J) · t,
J = onst. (2.36)That is, the ation J is preserved and the angle Θ inreases onstantly. It orresponds to themotion on the irle with �xed veloity ν(J), whih is alled winding frequeny. The ationonservation restrits the motion to a one-dimensional line in phase spae, whih is alled torus.In the following we will onsider Θ as an angle between 0 and 1.Figure 2.2(a) shows the phase spae of suh an integrable motion, where the ation-anglevariables are denoted by p and q. For vanishing kiking strengthK the standard map, Eq. (2.32),redues to Eq. (2.36) with the winding frequeny ν(p) = p.Depending on the winding frequeny orbits an be lassi�ed as periodi or quasiperiodi. Forrational winding frequeny ν = m

n
with m ∈ Z, n ∈ N the orbit is periodi on the torus withperiod n. Suh an orbit is alled (m,n)-orbit. For integrable systems the set of (m,n)-orbitsform the torus of winding frequeny ν = m

n
. For irrational winding frequeny the orbit is notperiodi, but densely �lls a one-dimensional line with reurring lose visits of the initial point.Chaoti motionIn addition to the integrable motion the haoti motion is another limiting ase of a dynamialsystem and will be disussed in the following before the mixed phase spae is onsidered, whereboth motions oexist. As disussed in the introdution, haoti dynamis is haraterized bythe sensitive dependene on the initial onditions. Although the dynamis is deterministiit is impossible to predit the exat evolution of an initial ondition neither numerially norexperimentally. This beomes lear by onsidering the time evolution of two lose-by initialonditions. For two suh initial onditions in the phase spae of the standard map with K = 10(see Fig. 2.2(d)), we onsider their distane at time t,

d
(
x
(1)
t , x

(2)
t

)
=
∥∥∥
(
q
(1)
t , p

(1)
t

)
−
(
q
(2)
t , p

(2)
t

)∥∥∥ =

√(
q
(2)
t − q

(1)
t

)2
+
(
p
(2)
t − p

(1)
t

)2
. (2.37)The result is plotted in Fig. 2.3 and shows an exponential growth as a funtion of time,

d
(
x
(1)
t , x

(2)
t

)
∝ exp{L · t} · d

(
x
(1)
0 , x

(2)
0

)
, (2.38)
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tFigure 2.3: Distane of two orbits of the standard map for K = 10 with initial onditions
q
(1,2)
0 = 1/2, p(1)0 = 1/4 and p(2)0 = p(1) + 10−14 in omparison to an exponential growth.whih is harateristi for haoti systems. This growth is desribed by the Lyapunov exponent

L [3, Se. 4.4℄. In general it depends on the diretion of the initial displaement and it isobtained in the limit of vanishing displaement and arbitrary large observation time. Forpratial estimations �nite time Lyapunov exponents are useful. They are based on the largereigenvalue λ1 of the Jaobian matrix along a haoti orbit started in x and given by [3, Se. 9.4℄
L(x, t) =

lnλ1(x, t)

t
≈ Tr{DF t(x)}

t
, (2.39)where λ1 of Eq. (2.27) is approximated by the trae of the Jaobian matrix, whih is valid atlarge times. Due to the area preservation of Hamiltonian systems, additionally to the exponen-tial divergene of nearby orbits, there is a diretion in whih separated orbits approah eahother. The latter is the tangent to the loal stable manifold (see Se. 2.1).Mixed phase spaeBesides the limiting ases of the regular and the haoti system, in general both dynamis oex-ist � the mixed phase spae. Suh a mixed phase spae is illustrated in Fig. 2.2(). Dependingon the initial onditions the resulting orbit is either regular, on�ned to a one-dimensionalline, or haoti and �lls a two-dimensional region in phase spae. The sets of regular tori formregular islands within the haoti sea.Aording to Ref. [4℄ the mixed phase spae is the generi ase of a Hamiltonian system. Itmay arise from an integrable system H0(J) by adding a small perturbation εH1(J,Θ). Thedesription of the e�ets governed by the perturbation is given by Kolmogorov, Arnol'd, andMoser and nowadays known as KAM theory (see Refs. [3, Chap. 7℄ and [22℄).Pursuant to the KAM theorem, almost all tori (exept for sets of measure zero) of theunperturbed problem exist in the limit of vanishing perturbation ε → 0. For non-vanishing



16 2.4 Transport in Hamiltonian systemsperturbation the preserved tori are more or less deformed and are alled KAM tori to distinguishthem from the tori of the unperturbed system. Both kinds of tori form invariant sets in phasespae.The impat of an inreasing perturbation on KAM tori with rational or irrational windingfrequeny is quite di�erent. A torus with rational winding frequeny ν = m
n
is broken by anarbitrary small perturbation [14, 15℄. Aording to the Poinaré-Birkho� theorem (see Ref. [3,Se. 7.2.2℄) this rational torus is replaed by an island hain, whih onsists of n elliptialislands. In between the elliptial islands there are hyperboli �xed points. For the ase of thestandard map the perturbation is given by the kiking potential determined by the kikingstrength K. In the phase spae shown in Fig. 2.2 the horizontal torus with (m,n) = (0, 1) forvanishing kiking strength (Fig. 2.2(a)) has been replaed by one elliptial island in the enteraround (q, p) = (1

2
, 0) and one hyperboli �xed point at the boundary, (q, p) = (0, 0)=̂(1, 0), inFig. 2.2(b) and ().Even within the tori with irrational winding frequeny the e�et of the perturbation is notuniform. Depending on how well the irrational frequeny an be approximated by rationalnumbers, the torus will persist even strong perturbations or not [11,42,43℄. A well settled tool toapproximate irrational numbers is the ontinued fration expansion (see Ref. [22, p. 814℄). Thegolden ratio is the irrational number, whose ontinued fration expansion onverges most slowly.Therefore tori with a golden winding frequeny or more general a noble winding frequenyshould break up only for very strong perturbations.The breakup of a tori with irrational winding frequeny yields a Cantor set. Due to thequasiperiodi motion there exist in�nitely many holes along the formerly losed torus. Suha set is alled antorus and allows for a non-vanishing �ux rossing it. Their impat on thetransport in phase spae is disussed in Se. 2.4.Starting with an integrable system, we obtain a mixed phase spae by introduing a per-turbation. Depending on the strength of the perturbation tori are deformed or even break upinto island hains. Loally the dynamis in the islands is again regular and if we inrease theperturbation strength further the above proedure repeats for these islands ( [3, Se. 7.2.2℄, [22,p. 810℄). This repetition on smaller and smaller sales give rise to the hierarhial phase-spaestruture observed in systems with a mixed phase spae. Around eah island, there are againsmaller islands and this repeats ad in�nitum yielding as self-similar phase spae.2.4 Transport in Hamiltonian systemsIn this setion we onsider the impat of the strutures disussed in the previous setion on thetransport. For integrable systems the dynamis is equivalent to a rotation with the windingfrequeny ν(J), whih depends on the ation J (see Fig. 2.2(a) with J = p). For quasiperiodimotion (irrational winding frequeny) the orbit visits all points of the torus uniformly. In fully



2.4 Transport in Hamiltonian systems 17haoti systems an orbit again explores the available region uniformly, but in ontrast to theintegrable ase it explores the whole two-dimensional phase spae. Therefore it is appropriate todesribe the main features of the transport in terms of stohasti models although the dynamisis deterministi. For instane the time a haoti orbit spends in some phase-spae region isstatistially proportional to the area of the region [44℄.In the mixed phase spae both kinds of dynamis oexist. Depending on the initial onditionorbits an be lassi�ed into regular or haoti. Orbits started in the haoti sea never enterthe regular islands and vie versa. If the regular islands were only holes in the haoti sea thedesription of the transport in the haoti sea would be the same as for the fully haoti ase.However, as already mentioned in the introdution this is not the ase.Let us onsider the time evolution of two orbits started in the haoti sea with slightlydi�erent initial onditions. Their distane as a funtion of time is shown in Fig. 2.4 (a) andexhibits an exponential growth at times up to t = 18. This is the same as for the fully haotiase shown in Fig. 2.3. However, at t ∈ [19, 26] the distane d(x(1)t , x
(2)
t ) stays almost onstantbefore it again inreases up to the system size. The plateau at times in between is related to theregular islands around (1

4
, 0), beause for these iterations the orbit pair stiks to these islands.That is, the exponential growth slows down and the Lyapunov exponent drops to zero lose tothe island. This impat of the regular islands on the dynamis of haoti orbits is disussed inthe following.
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2.4 Transport in Hamiltonian systems 19Figure 2.5(a) shows the phase spae of the standard map with K = 6.908745, where thevalue of K is hosen beause of the nie self-similar island around island struture [45, 46℄.Figure 2.5(b) and () display two haoti orbits, whih stay for more than 106 iterations loseto the regular region. Chaoti orbits are somehow trapped in the neighborhood of the regularislands. This phenomenon is alled stikiness and is mentioned by several authors [6,11�13,41℄.Comparing the two haoti orbits in Fig. 2.5, we see that they follow the self-similar islandaround island struture for many magni�ations and only in the last magni�ation they stikto di�erent islands. This indiates that there is a huge number of phase-spae regions a haotiorbit may stik to [47, 48℄.The above idea that regular regions are simple holes within the haoti sea is wrong. Closeto the islands there are strutures giving rise to limitation of the haoti transport. In ontrastto total barriers in phase spae, orbits an pass these strutures. However, it may last severaliterations before the orbit does so.Flux in phase spae and partial barriersThe reason for the stikiness of regular islands are partial barriers, whih we disuss here. Firstof all we introdue the term �ux in phase spae. The �ux aross a smooth urve C is themeasure Φ of the phase-spae volume transported aross the urve C per unit time. It is givenby the area between the urve C and its preimage F−1(C) shown in Fig. 2.6. For urves, whihare invariant under the map F like regular tori, the �ux rossing them vanishes. Suh urvesare alled total transport barriers. Partial barriers are de�ned as urves in phase spae, thatallow for a non-vanishing �ux rossing them. They an be onstruted for instane from thestable and the unstable manifold of a hyperboli periodi orbit or from antori [14,15,22℄. Forthe designed map we disuss the onstrution of the partial barrier in Se. 3.1.3.
Φdown

Φup

C
F−1(C)Figure 2.6: Illustration of the �ux Φ aross a urve C (solid line). The �ux is given by thesize of the shaded regions between C and its preimage F−1(C) (dotted). For simpliity weassume that the two urves deviate only in the entral part forming the turnstile and are ontop of eah other outside.



20 2.5 Time reversal invarianeThe netto �ux aross the urve is given by the di�erene of upward and downward �ux
Φnetto = Φup − Φdown (2.40)and for area preserving maps it is zero. That is, volumes of equal size are exhanged betweenthe upper and lower region,
Φ = Φup = Φdown. (2.41)Therefore the entral part of Fig. 2.6, where the urve and its preimage di�er, is alled turnstile.In this way orbits pass the partial barrier by entering the turnstile and being mapped to theother side of the partial barrier.Although there are in�nitely many partial barriers in a mixed phase spae, those with minimal�ux are most restritive for the transport and therefore of speial interest. They allow for adeomposition of the phase spae into regions of strong mixing that are onneted by the slowtransport aross the partial barrier.

2.5 Time reversal invarianeIn this setion the property of time reversal invariane is introdued and the impliations forthe omposition of maps are disussed. This is important for Se. 3.1.6, where we de�ne amapping as omposition of two maps.Time reversal invariane τ is one example of an antianonial symmetry of the lassialsystem desribed by the map F [49℄,
τ ◦ F ◦ τ = F−1 (2.42)with τ 2 = τ ◦ τ = 1. This symmetry indues an antiunitary symmetry K to the orrespondingquantum system desribed by the time evolution operator U ,
KUK−1 = U−1. (2.43)Consider the two time reversal invariant maps Fi,

τ ◦ Fi ◦ τ = F−1
i for i = 1, 2 (2.44)



2.5 Time reversal invariane 21and use them to onstrut two new maps F ′ and F̃ by
F ′ = F2 ◦ F1 (2.45)
F̃ =

√
F2 ◦ F1 ◦

√
F2, (2.46)where we assume that there exists a map denoted by √
F2 with √

F2 ◦
√
F2 = F2 and that √F2ful�lls time reversal invariane, too. The orresponding inverse mappings are (F ′)−1 = F−1

1 ◦F−1
2and F̃−1 =

√
F2

−1 ◦ F−1
1 ◦

√
F2

−1. Now let us hek the time reversal invariane of F̃
τ ◦ F̃ ◦ τ = τ ◦

√
F2 ◦ F1 ◦

√
F2 ◦ τ

= τ ◦
√
F2 ◦ τ 2 ◦ F1 ◦ τ 2 ◦

√
F2 ◦ τ

=
√
F2

−1 ◦ F−1
1 ◦

√
F2

−1
= F̃−1, (2.47)where we inserted τ 2 = 1 and used the time reversal invariane of F1 and √

F2.For the map F ′ the above symmetry τ is not satis�ed
τ ◦ F ′ ◦ τ = τ ◦ F2 ◦ F1 ◦ τ = τ ◦ F2 ◦ τ 2 ◦ F1 ◦ τ

= F−1
2 ◦ F−1

1 = (F1 ◦ F2)
−1 6= F ′−1

. (2.48)Therefore we onsider a symmetry τ ′ := √
F2 ◦ τ ◦

√
F2

−1 with (τ ′)2 = 1, whih is anoniallyonjugated to τ and therefore also antianonial
τ ′ ◦ F ′ ◦ τ ′ =

√
F2 ◦ τ ◦

√
F2

−1 ◦ F2 ◦ F1 ◦
√
F2 ◦ τ ◦

√
F2

−1

=
√
F2 ◦ τ ◦

√
F2 ◦ F1 ◦

√
F2 ◦ τ ◦

√
F2

−1

=
√
F2 ◦

√
F2

−1 ◦ F−1
1 ◦

√
F2

−1 ◦
√
F2

−1

= F−1
1 ◦ F−1

2 = F ′−1
, (2.49)where Eq. (2.47) is used. This generalized time reversal invariane τ ′ gives rise to an antiunitarysymmetry of the quantum system. Therefore the spetral statistis of F ′ is the same as for F̃with time reversal invariane τ [49℄.In preparation for Se. 3.1.6 we here mention that half kik maps, de�ned by Eq. (2.16), obeythe generalized time reversal invarianẽ

τ :

(
q

p

)
7→
(
−q
p

) (2.50)if the derivative of the potential is an odd funtion: V ′(−q) = −V ′(q), whih an be shown byevaluating Eq. (2.42) for this situation.



22 2.6 Quantization of kiked systems2.6 Quantization of kiked systemsHere we derive a quantization rule for kiked systems based on the famous paper of Chang andShi from 1986 [50℄ and the leture notes [51℄. The starting point for the quantization shemeis the Hamilton operator of a kiked system
H(q̂, p̂, t) = T (p̂) + V (q̂)

∑

n∈Z
δ(t− n). (2.51)The disrete time evolution of a state |ψ(t)〉 an be written as

|ψ(t+ 1)〉 = U |ψ(t)〉 (2.52)with some unitary time evolution operator U . In order to �nd an expression for U we use thetime ontinuous evolution and restrit our observation by means of after kiked maps. Thetime evolution operator is expressed in terms of the Hamilton operator as
U = lim

ε→0
T̂ exp



− i

~e� t+1+ε∫

t+ε

dt H(q̂, p̂, t)



 , (2.53)where T̂ indiates the time ordering needed for time-dependent Hamiltonians and ~e� is Plank'sonstant measured in multiples of a typial ation S0 found in the system: ~e� = ~/S0. Beauseof the instantaneous ation of the kik at integer times the time evolution is split into freeevolution and the kik

U = lim
ε→0

T̂ exp



− i

~e� t+1+ε∫

t+1−ε

dt H(q̂, p̂, t)



 T̂ exp



− i

~e� t+1−ε∫

t+ε

dt H(q̂, p̂, t)



 (2.54)

= lim
ε→0

T̂ exp



− i

~e� t+1+ε∫

t+1−ε

dt [T (p̂) + V (q̂)
∑

n∈Z
δ(t− n)

]
 T̂ exp



− i

~e� t+1−ε∫

t+ε

dt T (p̂)(2.55)
= lim

ε→0
exp

{
− i
~e� [2εT (p̂) + V (q̂)]

}
exp

{
− i
~e� [1− 2ε]T (p̂)

} (2.56)
= exp {−iV (q̂)/~e�} exp {−iT (p̂)/~e�} . (2.57)Note that in the speial ase of kiked systems the splitting into free evolution (e−iT (p̂)/~e�) andkik (e−iV (q̂)/~e�) is exat in ontrast to other systems, where the split-operator tehnique is anapproximation (see Ref. [52, Se. 2.3.2℄). The reason for this is the instantaneous ation of thepotential as δ-kik, whih is zero at almost all times (`free evolution') and arbitrary large atinteger times.



2.6 Quantization of kiked systems 23In position representation the time evolution is given as
ψ(q, t+ 1) = 〈q|ψ(t+ 1)〉 = 〈q|e− i

~e� V (q̂) e− i
~e� T (p̂)ψ(t)〉 = e− i

~e� V (q) 〈q|e− i
~e� T (p̂)ψ(t)〉. (2.58)Inserting unity operators in position and momentum spae, 1 =

∫ dq′|q′〉〈q′| and 1 =
∫ dp|p〉〈p|,and using the position-spae representation of a momentum eigenstate

〈q|p〉 = 1√
he� e i

~e� q·p (2.59)we have
ψ(q, t+ 1) =

1

he� e− i
~e� V (q)

∫ dq′ ∫ dp e− i
~e� T (p)e i

~e� (q−q′)·p
ψ(q′, t). (2.60)In order to obtain quantum mehanis on the lassial torus, we have to assume periodiityof e− i

~e� T (p) as a funtion of p with period Mp ∈ R. This implies, that we an replae theintegration over R by an integration over one period and an in�nite sum
∫ dp 7→ pmin+Mp∫

pmin dp
∑

mp∈Z
(2.61)

p 7→ p+mp ·Mp, (2.62)whih yields
ψ(q, t+ 1) =

1

he� e− i
~e� V (q)

∫ dq′pmin+Mp∫

pmindp ∑mp∈Z
e− i

~e� T (p+��
�mp·Mp)e i

~e� (q−q′)·(p+mp·Mp) ψ(q′, t). (2.63)The summation over mp an be performed using Poisson summation formula
∑

mp∈Z
e i

~e� (q−q′)·mp·Mp =
∑

mp∈Z
e2πi·mp

(q−q′)·Mp

he�
=
∑

j∈Z
δ

(
(q − q′) ·Mp

he� − j

)
=
∑

j∈Z

he�
Mp

δ

(
q − q′ − j

he�
Mp

) (2.64)and gives
ψ(q, t+ 1) =

1

Mp
e− i

~e� V (q)
∫ dq′ pmin+Mp∫

pmin dp e− i
~e� T (p)e i

~e� (q−q′)·p∑

j∈Z
δ

(
q − q′ − j

he�
Mp

)
ψ(q′, t).(2.65)



24 2.6 Quantization of kiked systemsNow we onsider the impliations for the position variable q. The distane between two positionsis disretized and we therefore an restrit ourselves to q-values of the following grid
qk = q0 +

he�
Mp

k or qk =
he�
Mp

(k + θp) with k ∈ Z. (2.66)This result and the role of θp an be understood in the following way. The time evolutionoperator desribes all properties of the quantum system and ommutes with the translationoperator in momentum spae (p 7→ p +Mp). Therefore these operators have a ommon set ofeigenstates. One set of eigenstates of the translation operator in momentum spae are periodifuntions of the momentum p with period Mp ∈ R. They an be expressed as a Fourier series
f(p) =

∑

n∈Z
cne2πinp/Mp =

∑

n∈Z
cneiqnp/~e� with qn =

2π~e�
Mp

n. (2.67)In quantum mehanis the last expression is the sum of position eigenstates with eigenvalues
qn in momentum representation. That is, in the desription of a periodi funtion we only needa disrete set of position eigenvalues qn.Let us now extend our onsideration to a funtion, whih is built by the produt of a periodifuntion and a phase fator with θp ∈ [0, 1), whih is the most general ase for an eigenstate ofthe above translation operator

g(p) = e2πiθpp/Mpf(p) =
∑

n∈Z
cneiqnp/~e� with qn =

2π~e�
Mq

(θp + n). (2.68)It is again given by a sum of position eigenstates with eigenvalues qn in momentum represen-tation. However, in ontrast to the above expression, Eq. (2.67), the disrete positions qn areshifted with θp in Eq. (2.68), whih originates from the eigenvalue of the translation operator.With this de�nition, Eq. (2.66), we an replae q and q′ in Eq. (2.65) with grid points qn and
qk, respetively. In the next step the sum over j is replaed by a sum over k by performing theintegration over the δ-funtion and onsidering qn = qk+j. More preisely in the �rst step theintegration over qk is performed and therefore qk is replaed by qn − j · he�

Mp
, where we sum overinteger j from −∞ to +∞. This summation an be replaed by a summation over k from −∞to +∞ using the rede�nition of qn − j · he�

Mp
being qk again.The �nal expression an be written as

ψ(qn, t+ 1) =
∑

k∈Z
〈qn|U |qk〉ψ(qk, t)with 〈qn|U |qk〉 =

1

Mp
e− i

~e� V (qn)

pmin+Mp∫

pmin dp e− i
~e� T (p)e i

~e� (qn−qk)·p. (2.69)



2.6 Quantization of kiked systems 25If we now additionally involve the periodiity of the funtion e− i
~e� V (q) with some period

Mq ∈ R, we an replae the in�nite sum over the position grid points by a sum over one periodand an in�nite sum
∑

k∈Z
7→

∑

k∈Z:
qk∈[qmin,qmin+Mq)

∑

mq∈Z
(2.70)

qk 7→ qk +mq ·Mq. (2.71)Furthermore this periodiity implies, that the possible q-values in Eq. (2.66) have to ful�ll
qk +Mq = qk+N for some natural number N , whih means that the q-grid is ommensurable tothe period Mq. It follows

Mq = N · he�
Mp

or he� =
MqMp

N
. (2.72)With that we an restrit ourselves to qn, qk ∈ [qmin, qmin+Mq) in the onsideration of eigenstatesof U , beause 〈qn|U |qk〉 is periodi in position spae and the whole eigenfuntion an thereforebe reonstruted by an additional Bloh phase θq

ψ(qk +mq ·Mq, t) = ψ(qk, t) ei2πθq·mq . (2.73)
Performing the same steps as above resulting from the periodiity of position variable yieldsa disrete lattie for the momentum variable

pj =
he�
Mq

(θq + j) with j ∈ Z (2.74)and �nally gives
ψ(qn, t+ 1) =

∑

k∈Z:
qk∈[qmin,qmin+Mq)

〈qn|U |qk〉ψ(qk, t)with 〈qn|U |qk〉 =
1

N
e− i

~e� V (qn)
∑

j∈Z:
pj∈[pmin,pmin+Mp)

e− i
~e� T (pj)e i

~e� (qn−qk)·pj . (2.75)The possible p-values in the interval [pmin, pmin +Mp) are obtained by rewriting Eq. (2.74),
pj =

Mp

N
(θq + j + n(0)

p ) for j = 0, . . . , N − 1, (2.76)



26 2.6 Quantization of kiked systemswhere we introdue an o�set n(0)
p , whih an be derived as follows.

p0 ∈ [pmin, pmin +Mp/N) (2.77)
p0 =

Mp

N
(θq + n(0)

p )
!
≥ pmin (2.78)

n(0)
p :=

⌈
N

Mp

pmin − θq

⌉
. (2.79)In the last expression ⌈x⌉ denotes the smallest integer number greater than or equal to x. Asimilar derivation for q gives

qk =
Mq

N
(θp + k + n(0)

q ) for k = 0, . . . , N − 1 and n(0)
q :=

⌈
N

Mq

qmin − θp

⌉
. (2.80)For the ase of a unit ell [0,Mq)× [0,Mp) the integral o�sets n(0)

q and n(0)
p vanish.With an expliit inorporation of the grids the above time evolution reads

ψ(qn, t+ 1) = e− i
~e� V (qn)

︸ ︷︷ ︸mult. in q e 2πi
N

n·(θq+n(0)
p ) 1√

N

N−1∑

j=0

e 2πi
N

n·j

︸ ︷︷ ︸IFTp 7→q

e− i
~e� T (θq+n(0)

p +j)

︸ ︷︷ ︸mult. in p
× 1√

N

N−1∑

k=0

e− 2πi
N

k·j

︸ ︷︷ ︸FTq 7→p

e− 2πi
N

k·(θq+n(0)
p )ψ(qk, t). (2.81)

This equation provides an e�ient way of performing the time evolution using the forward andbakward disrete Fourier transformation as well as multipliations in position and momen-tum spae, beause these transformations have very fast numerial implementations in severallibraries.Note that in the derivation of Eq. (2.75) for the time evolution operator in the �nite disretebasis of position and momentum, we used the periodiitiese−iT (p)/~e� = e−iT (p+Mp)/~e� with some period Mp ∈ R and (2.82)e−iV (q)/~e� = e−iV (q+Mq)/~e� with some period Mq ∈ R. (2.83)If the quantum system under onsideration inorporates these periodiities the above quan-tization proedure holds. If this is not the ase, we have the possibility to hoose a lattie of qor p-values (by hoosing θq or θp), whih leads toe−iT (pn)/~e� = e−iT (pn+Mp)/~e� for n = 0, . . . , N − 1 and (2.84)e−iV (qk)/~e� = e−iV (qk+Mq)/~e� for k = 0, . . . , N − 1. (2.85)



2.7 Diret quantization of time-independent systems 27That is, for the �nite matrix U the periodiities are inherent and therefore numeris annotdistinguish between suh an apparent periodiity and a real periodiity of the system.2.7 Diret quantization of time-independent systemsIn this setion we review a quantization proedure for time-independent systems [53℄, whihwill be used in Se. 3.1.6. The starting point is the time-independent Shrödinger equation
H(q̂, p̂)|ψ〉 = E|ψ〉 (2.86)in position representation

∫ dq′〈q|H(q̂, p̂)|q′〉〈q′|ψ〉 = 〈q|E|ψ〉, (2.87)where the unity operator in position representation 1 =
∫ dq′|q′〉〈q′| was inserted. In order toevaluate this expression further, we insert also the unity operator in momentum representation1 =

∫ dp|p〉〈p|. For the matrix elements we obtain
〈q|H(q̂, p̂)|q′〉 = 1

2

∫ dp {〈q|H(q̂, p̂)|p〉〈p|q′〉+ 〈q|p〉〈p|H(q̂, p̂)|q′〉} (2.88)whih for a Hamiltonian H(q̂, p̂) = T (p̂) + V (q̂) an be evaluated using
〈q|H(q̂, p̂)|p〉 = 〈q|T (p̂) + V (q̂)|p〉 = T (p)〈q|p〉+ V (q)〈q|p〉 = H(q, p)〈q|p〉. (2.89)Therefore we obtain for the matrix elements

〈q|H(q̂, p̂)|q′〉 = 1

2

∫ dp [H(q, p) +H(q′, p)] 〈q|p〉〈p|q′〉 (2.90)
=

1

2

∫ dp [H(q, p) +H(q′, p)]
1

he� exp{ i
~e� (q − q′) · p

}
, (2.91)in whih only the lassial Hamilton funtion H(q, p) enters. If the Hamiltonian is not of theabove type the ordering of q and p needs to be adapted in order to evaluate the expressions.In those ases Eq. (2.91) neglets terms of the order ~2e�.In order to obtain the eigenstates of H on the torus we �rst assume periodiity in momentumspae. That is, the Hamiltonian ful�llsH(q, p) = H(q, p+Mp) suh that the in�nite integrationin momentum spae an be replaed by an integration over one unit ell and an in�nite sum

〈q|H(q̂, p̂)|q′〉 = 1

2he� ∑
mp∈Z

pmin+Mp∫

pmindp [H(q, p) +H(q′, p)] exp

{ i
~e� (q − q′)(p+mp ·Mp)

}
. (2.92)



28 2.8 Husimi representationThe summation over mp an be performed using the Poisson summation formula (see Eq. (2.64)of Se. 2.6). Inserting this result into Eq. (2.87) and performing the integration over q′ gives
∑

j∈Z

1

2Mp

pmin+Mp∫

pmin dp [H(q, p) +H(q′, p)] exp

{ i
~e� (q − q′) p

}
ψ(q′) = Eψ(q), (2.93)where q′ = q − j he�

Mp
. In analogy to Se. 2.6 the periodiity in momentum establishes a disretelattie for the position spae with spaing he�/Mp

qn = q0 + n
he�
Mp

(2.94)and therefore the above equation needs to be evaluated for positions q = qn and q′ = q−jh/Mp =

qn−j =: qk only,
∑

k∈Z

1

2Mp

pmin+Mp∫

pmin dp [H(qn, p) +H(qk, p)] exp

{ i
~e� (qn − qk) p

}
ψ(qk) = Eψ(qn). (2.95)Finally, the position spae is restrited to N values between qmin and qmax = qmin +Mq, where

N =MqMp/h. This yields a matrix equation
N−1∑

k=0

Hnkψ(qk) = Eψ(qn) (2.96)with the Hermitian matrix
Hnk =

1

2Mp

pmin+Mp∫

pmin dp [H(qn, p) +H(qk, p)] exp

{ i
~e� (qn − qk) p

}
. (2.97)The assumption of periodiity in momentum spae is ruial to derive Eq. (2.97) on a disretelattie and the restrition in position spae gives rise to a �nite dimensional matrix. Both fatslimit the appliability of this approah to obtain eigenstates of the time-independent system.However, for the lower exited states loated far from the boundary of the unit ell theseassumptions are well ful�lled and we �nd exellent agreement with analytial expressions forthe eigenstates evaluated on the lattie.2.8 Husimi representationQuantum eigenstates are given in position representation or by use of Fourier transform alsoin momentum representation. In order to ompare properties of the quantum states with las-



2.8 Husimi representation 29sial phase-spae strutures we need a phase-spae representation of a quantum state. Thisis ahieved by the Husimi representation. Starting point for the Husimi representation areoherent states. They are the quantum analogue of lassial points respeting Heisenberg'sunertainty relation. They are a Gaussian funtion in position as well as momentum represen-tation suh that the produt of the standard deviation ful�lls σqσp = ~e�/2. A oherent stateat a phase-spae point (q̃0, p̃0) in position representation is given as
α(qn, q̃0, p̃0) =

(
2h

M2
p

)1/4

exp

{
−(qn − q̃0)

2

2~e� }
exp

{ i
~e� p̃0qn} , (2.98)where we hoose σq = σp =

√
~e�/2 and normalized with respet to the vetor norm, beauseall eigenstates of a quantum map are desribed on disrete lattie points aording to Se. 2.6.With that we an write down the Husimi representation as projetion of an arbitrary stateto a oherent state at point (q̃0, p̃0),

Hφ(q̃0, p̃0) :=
1

he� |〈α(q̃0, p̃0)|φ〉|2 = 1

he� ∣∣∣∣∣∑n α∗(qn, q̃0, p̃0) · φ(qn)
∣∣∣∣∣

2

. (2.99)That is, the Husimi funtion at phase-spae point (q̃0, p̃0) is the overlap of a quantum state φwith a oherent state loated at (q̃0, p̃0). One an show that the integral of the Husimi funtionover the entire phase spae gives one for normalized states. Moreover the integration over allmomenta gives bak the squared modulus of the state in position representation. Therefore,and beause Hφ is non-negative, it is useful to interpret the Husimi funtion as probabilitydensity in phase spae.





3 Quantum signatures of partialbarriers in phase spaeIn this hapter we design a map with one isolated partial barrier (Se. 3.1) for a quantitativestudy of the quantum transition of a partial barrier from quantum suppression to the lassialtransport behavior. This e�et and quantitative measures to desribe the transition urve aredisussed in Se. 3.2. In Se. 3.3 we present results for these quantitative measure using thedesigned maps. Results for the standard map are disussed in Se. 3.4.3.1 Designed map with one partial barrierIn Se. 2.4 it was pointed out that a generi mixed phase spae exhibits in�nitely many partialbarriers. These partial barriers have di�erent �uxes and form a hierarhial deomposition ofthe phase spae. A detailed analysis of the in�nitely many partial barriers is impossible. Inorder to investigate the impat of partial barriers on quantum systems, we therefore restritourselves to the ase of one partial barrier. We design a system with a partiularly simplephase-spae struture, namely two haoti regions separated by one dominant partial barrier,whih signi�antly limits the transport in the haoti region. There still might exist otherpartial barriers, but their �ux is large ompared to the dominant partial barrier.3.1.1 Map with a regular stripeAt this point we review a mapping introdued by Ishikawa, Tanaka, and Shudo in Ref. [54℄,beause it inspired the design of our map with one partial barrier, see Se. 3.1.2. Resaled toa phase spae of size 1, this kiked system is desribed by the �rst derivative of kineti andpotential energy
T ′(p) =

1

2π

(
8πap+

1

2
(d1 − d2) +

1

2
[8πap− ω + d1] tanh [b(8πp− pd)] (3.1)

+
1

2
[−8πap + ω + d2] tanh [b(8πp+ pd)]

)

V ′(q) = −K

8π
sin(2πq) (3.2)



32 3.1 Designed map with one partial barrier
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T ′(p)Figure 3.1: (a) Phase-spae portrait of the map with a regular stripe de�ned by Eqs. (3.1)and (3.2) with the parameters a = 5, b = 100, d1 = −24, d2 = −26, ω = 1, pd = 5, and
K = 2 as in Ref. [54℄. The horizontal regular tori (lines) and the haoti sea (dots) aresharply separated. The funtion T ′(p) of Eq. (3.1) determines the phase spae struture andis shown in (b). The dashed green lines are at p = ±pd/(8π) and indiate the border ofalmost onstant T ′(p) and therewith the border of the regular region in the phase spae (a).with parameters a, b, d1, d2, ω, pd for the kineti part. The potential is idential to the standardmap, Eq. (2.30), exept for the prefator 1

4
of the kiking strength K.Figure 3.1 shows the phase spae and the �rst derivative of the kineti energy of the mapde�ned by Eqs. (3.1) and (3.2). The phase spae is well separated into regular tori and a haotisea surrounding them. This is ahieved by the di�erent slopes of T ′(p) as shown in Fig. 3.1. Foralmost vanishing slope around p = 0 we �nd regular motion and for large slopes the dynamisis haoti. This will be disussed in Se. 3.1.2 in more detail.3.1.2 Design of the map Fpb with one partial barrierWe now design a map with one dominant partial barrier. For this we ompose T ′(p) of linearsegments similar to the map with a regular stripe disussed in Se. 3.1.1. For the potentialenergy we use the one of the standard map (exept for the sign), whih is de�ned as

V (q) = − K ′

(2π)2
cos(2πq),

V ′(q) = +
K ′

2π
sin(2πq), (3.3)



3.1.2 Design of the map Fpb with one partial barrier 33with kiking strength K ′. For the derivative of the kineti energy T ′(p) we use pieewise linearfuntions (see Fig. 3.2)
T ′(p) =





ωreg for p ≤ pd,reg
ωreg + bleft · (p− pd,reg) for pd,reg ≤ p ≤ p�x − pd,lo
ω�x + b · (p− p�x) for p�x − pd,lo ≤ p ≤ p�x + pd,up
ωreg + bright · (p− p�x − pd,up) for p�x + pd,up ≤ p ≤ 1− pd,reg
ωreg for 1− pd,reg ≤ p ≤ 1

(3.4)
with parameters b, p�x, pd,reg, pd,up, pd,lo ∈ R, ωreg ∈ R \ Z, ω�x ∈ Z and the derived slopes

bleft = ω�x − b · pd,lo − ωreg
p�x − pd,lo − pd,reg and

bright = ωreg − ω�x − b · pd,up
1− pd,reg − p�x − pd,up , (3.5)respetively. The resulting funtion T ′(p) is shown in Fig. 3.2(b). This de�nes a kiked systemand we all the orresponding mapping Fpb. For p ≤ pd,reg and p ≥ 1 − pd,reg the winding
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T ′(p), Eq. (3.4), and T (p). At momenta p, where T ′(p) is onstant, regular motion ours,while at p, where T ′(p) behaves linearly, the dynamis is haoti. The dashed green linesindiate the borders in the pieewise de�ned T ′(p) and are at p = pd,reg, p�x − pd,lo, p�x,
p�x + pd,up, and 1− pd,reg.



34 3.1 Designed map with one partial barrierfrequeny is onstant and regular tori an exist. Around p = 1
2
we �nd three di�erent slopes,whih lead to a haoti region.In order to gain a deeper understanding of the map Fpb we disuss the impliations of aregion, where T ′(p) has non-vanishing slope b̃ and winding frequeny ω̃

T ′(p) = ω̃ + b̃ · p, (3.6)whih yields the following mapping
q′ = q + ω̃ + b̃ · p mod 1, (3.7)
p′ = p− K ′

2π
sin(2πq′) mod 1. (3.8)We now ompare this mapping to the famous Chirikov's standard map (see Se. 2.2)

Q′ = Q+ T ′stdmap(P ) = Q+ P mod 1, (3.9)
P ′ = P − V ′stdmap(Q′) = P +

K

2π
sin(2πQ) mod 1, (3.10)where we introdued apital letters for position and momentum.In order to translate the oordinates q, p into the oordinates Q,P of the standard map, weidentify

Q = q, (3.11)
P = b̃ · p, (3.12)
K = −b̃ ·K ′. (3.13)Exept for the additional winding due to ω̃, loally the map Fpb behaves like the standard mapif the momentum and the absolute value of the kiking strength are resaled by the slope of

T ′(p). This needs to be onsidered whenever features of the standard map like haotiity areused to desribe features of the map Fpb. Furthermore, p is periodi with period 1/b̃, beause
q is only de�ned up to modulo 1.After this omparison with the standard map the resulting phase-spae struture of thedesigned map Fpb an be understood: The large slopes in the upper and lower region (seeFig. 3.2) yield a high value for the standard map kiking strength and therefore haoti motion.The entral part has only a small slope and its properties need to be ompared with the standardmap with smaller kiking strength K. This feature is the deisive property of our map Fpb, asit allows for di�erent e�etive kiking strengths in one system. For non-integer ω̃ an additionalwinding is indued, whih is needed for the regular region de�ned by (ωreg, pd,reg) in order toprovide the horizontal tori.



3.1.2 Design of the map Fpb with one partial barrier 35Up to now only an inhomogeneous haoti region has been introdued and we need to disussthe existene of a partial barrier in the entral part of the phase spae. By onstrution we�nd a �xed point of the mapping at (1
2
, p�x)

Fpb(
1
2
, p�x) = (1

2
+ ω�x + b · 0, p�x − K ′

2π
sin(2π[1

2
+ ω�x]))mod 1 =

(
1
2
, p�x) , (3.14)and at (0, p�x)

Fpb(0, p�x) = (0 + ω�x + b · 0, p�x − K ′

2π
sin(2π[0 + ω�x]))mod 1 = (0, p�x) , (3.15)as long as ω�x is hosen as an integer value.The stability of the �xed point is haraterized by the Jaobian matrix of the mapping (seeSe. 2.1), whih for map Fpb is

DFpb(q, p) =

(
∂q′

∂q
∂q′

∂p
∂p′

∂q
∂p′

∂p

)
(q, p) =

(
1 b

−K ′ cos(2πq′) 1−K ′ cos(2πq′)b

)
(q, p) (3.16)and at the �xed point (q�x, p�x) reads

DFpb(q�x, p�x) = ( 1 b

−K ′ cos(2πq�x) 1−K ′ cos(2πq�x)b ) . (3.17)The trae of the Jaobian matrix is
TrDFpb(q�x, p�x) = 2−K ′ cos(2πq�x)b = 2− bK ′ for q�x = 0

2 + bK ′ for q�x = 1
2
.

(3.18)For bK ′ ∈ (−4, 4) we have one stable (ellipti) �xed point at (0, p�x) and one unstable (hyper-boli) �xed point at (1
2
, p�x). A similar disussion of possible �xed points applies for the regionabove p�x + pd,up and below p�x − pd,lo, too. In ontrast to the entral region the periodiityin p determined by 1/bleft and 1/bright is muh smaller and their instabilities determined byEq. (3.18) are muh larger for the parameters used in this thesis.Quantum mehanially, we onsider the map Fpb on the torus as disussed in Se. 2.6. Thisrequires the periodiity of the potential energy, whih is indeed ful�lled by V (q) in Eq. (3.3),and of

exp{−iT (p)/~e�} = exp{−2πi ·N · T (p)/(MpMq)}
Mq=Mp=1

= exp{−2πi ·N · T (p)} (3.19)as a funtion of p, whih in general is not ful�lled. We introdue ∆T := [T (1) − T (0)] as anabbreviation for the di�erene of the kineti energy between the lower and upper boundary of



36 3.1 Designed map with one partial barrierthe phase spae. In order to ahieve periodiity of the quantity in Eq. (3.19) the produt N ·∆Tneeds to be an integer. To permit this onstraint at least for some N = 1/he�, we slightly varythe value of pd,reg: We rede�ne pd,reg → pd,reg + δpd,reg suh that N0 ·∆T ∈ Z for some N0 ∈ Nand ahieve the periodiity of Eq. (3.19) for all N , whih are multiples of N0. The hange of
pd,reg an be alulated expliitly as

δpd,reg := ⌊N0 ·∆Told⌋/N0 −∆Told
ωreg − ω�x + b/2(pd,lo − pd,up) , (3.20)where ⌊x⌋ is the largest integer value smaller or equal to x and ∆Told denotes the di�erene ofthe kineti energy without introduing δpd,reg. An upper bound for δpd,reg is given by

|δpd,reg| ≤ 0.5/N0

ωreg − ω�x + b/2(pd,lo − pd,up) , (3.21)whih has to be ompared to pd,reg in order to evaluate the hange aused by δpd,reg on themapping.3.1.3 Constrution of a partial barrierThe starting point for the onstrution of a partial barrier in the designed map Fpb is the stableand the unstable manifold of the hyperboli �xed point at (1
2
, p�x). We will hoose the upperextension of the entral region given by pd,up to be almost zero suh that the upper branhesof the stable and the unstable manifold have almost no support on the plateau with slope b(see Fig. 3.2). Their dynamis is mainly governed by the upper region, whih is muh morehaoti, beause the e�etive kiking strength brightK ′ is muh larger than in the entral regionas bright ≫ b in all examples onsidered in the following. Therefore the transport limitation dueto these branhes is negligible and we an restrit ourselves to the lower branh of the stableand the unstable manifold, whih are loated on the entral part of T ′(p) (see Fig. 3.2).These branhes are shown in Fig. 3.3 and an be used to quantify the �ux transported throughthis region. In order to onstrut almost invariant subsets of the phase spae, the invariantstable and unstable manifold need to be ombined. Starting with the hyperboli �xed pointwe hoose the stable manifold and at some arbitrary intersetion point swith to the unstablemanifold following it until we reah the �xed point again. The intersetion point of swithing isarbitrary and all partial barriers onstruted in that way will have the same �ux Φ. Eah imageand preimage of one of the partial barriers again gives rise to a partial barrier with the same�ux and the same size of area below and above the partial barrier due to area preservation (seeFig. 3.3() for omparison of a partial barrier and its preimage). For the lassial dynamisthere is no distinguished partial barrier and we therefore hoose a simple looking one for ourinvestigation. This is supported by the Husimi representation of eigenstates, whih respets
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Figure 3.3: Illustration of a partial barrier built from stable and unstable manifolds of ahyperboli �xed point for the map Fpb. In (a) the lower branh of the stable manifold (blue)and the unstable manifold (red) are shown. (b) Shorter versions of them are used to de�nethe partial barrier and onstrut their preimage in (). The �ux Φ towards the upper regionas well as the �ux towards the lower region are olored. The image of the �ux towards thelower region under Fpb is illustrated by the arrow.this partial barrier. Nonetheless the partial barrier is not uniquely de�ned in the quantumsystem. We observe that the Husimi representation of some eigenstates respets the partialbarrier whereas other eigenstates ignore the partial barrier.



38 3.1 Designed map with one partial barrier3.1.4 De�nition of examples for the map FpbIn the following, we will onsider several parameter sets for the map Fpb introdued in Se. 3.1.2.In this setion we provide the parameter values and introdue four di�erent examples.For all onsidered examples we hoose
ω�x = 20, (3.22)
ωreg = 0.411, (3.23)
pd,reg = 0.125, (3.24)
K ′ = 0.5, (3.25)
N0 = 10. (3.26)In order to vary the �ux of the partial barrier disussed in Se. 3.1.3, we hoose di�erent slopes

b for the examples (see Tab. 3.1). Larger slope b yields a larger e�etive kiking strength bK ′and therefore stronger haos suh that the �ux Φ inreases with b. The lower limit of theentral region determined by pd,lo is adjusted suh that the lower branhes of the stable andthe unstable manifold are not a�eted up the �rst intersetions. If pd,lo is hosen too small thepartial barrier onstruted from the lower branhes will have a muh larger �ux (see disussionof upper branhes of Se. 3.1.3), beause none of the loops is loated in the entral region andExample 1 2 3 4
p�x 0.553 0.578 0.599 0.613
pd,lo 0.15 0.15 0.1725 0.195
pd,up 0.015 0.015 0.025 0.025
b 6.0 3.0 2.0 1.5
bleft 67.16 62.93 64.44 66.22
bright -64.05 -69.34 -77.89 -83.88
∆Told 9.19486 9.27773 9.61681 9.8451
δpd,reg -0.00027 -0.00115 0.000865 0.00232
∆T 9.2 9.3 9.6 9.8
Ah,up 0.422 0.422 0.419 0.424
Ah,lo 0.421 0.423 0.419 0.424
Areg 0.157 0.1511 0.162 0.152
Φ 0.0053 0.0012 0.0003 0.00011/Φ 187.9 823.8 3065.7 9675.41/Φ′ 327 1814 7357 38722Table 3.1: Parameter values of the examples of map Fpb. The �rst 4 rows provide additionalparameters for the individual example to the ommon given parameters of Eq. (3.22). The5 entral rows are quantities, whih are alulated from these parameters (see Eq. (3.5) andEq. (3.20)). The last rows are determined from the orresponding phase spae exept for Φ′,whih will be de�ned in Se. 3.1.5.



3.1.4 De�nition of examples for the map Fpb 39they are strethed into the lower haoti region. The upper limit pd,up is hosen suh that theupper branhes of the stable and the unstable manifold have almost no support on the entralregion and therefore yield no additional transport limitation as disussed in Se. 3.1.3. Fromthese parameters the slopes bleft and bright for the straight lines in T ′(p) given in Eq. (3.4) anbe alulated using Eq. (3.5). Furthermore the variation δpd,reg of pd,reg follows aording toEq. (3.20), whih is indeed a small hange in the de�nition of the map. Therewith, also the oldand new di�erene of the kineti energy at upper and lower phase-spae limit ∆Told and ∆Tare �xed. All these values are given in Tab. 3.1 for four di�erent examples.Figure 3.4 shows the entral part of the phase spae for the introdued examples. Thehyperboli �xed point with its lower branh of the stable and of the unstable manifold as wellas the limits p�x − pd,lo and p�x + pd,up are plotted. The surrounding phase spae exhibits onlysmall islands.For eah of the examples de�ned in Tab. 3.1 we onstrut the partial barrier as disussed in
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Figure 3.4: Stable manifold (blue solid line) and unstable manifold (red solid line) of thehyperboli �xed point at (0.5, p�x) for the examples 1 (Φ ≈ 1/200), 2 (Φ ≈ 1/800), 3(Φ ≈ 1/3000), and 4 (Φ ≈ 1/104) of the map Fpb. The blak dashed lines indiate thepositions of p�x − pd,lo and p�x + pd,up. The area of one loop between the stable and theunstable manifold is the �ux Φ aross the partial barrier onstruted from these manifolds.



40 3.1 Designed map with one partial barrierSe. 3.1.3. As seond border of the haoti regions we use the regular torus losest to the haotisea, where the latter is only an approximation, beause it is hard to �nd the last surviving KAMtorus [9,55℄. Therewith the size of the upper haoti region Ah,up and the lower haoti region
Ah,lo is �xed (see Tab. 3.1). Although the size of the regular region is �xed by the hoie of
pd,reg the measured values vary slightly, whih indiates the auray of the measurement ofthe region sizes.Numerially the �ux Φ is determined from the loop area between the stable and the unstablemanifold by use of a polygon approximation. Therefore the auray of the �ux depends on thequality of the manifolds, whih we onstruted by forward and bakward iterations of pointslose to the �xed point.3.1.5 Charaterization of the lassial system FpbWe now haraterize the mapping with one partial barrier Fpb introdued in the last setionto hek the predited lassial property, that the disussed partial barrier is the one withsmallest �ux. The impat of a partial barrier on the lassial system is the limitation of theesape of orbits from the enlosed region for intermediate times. Orbits are trapped for severaliterations until they enter the turnstile and are mapped into the other region. The number ofiterations needed to leave the initial region is alled esape time and a quantitative measure ofthe trapping is given by the distribution of these esape times. In the ase of a haoti regionthis distribution deays exponentially [5℄

p(t) ∝ exp{−αt}. (3.27)It is determined by the esape rate α, i.e. the probability to leave a haoti region through theturnstile. Its inverse is the average esape time, alled dwell time tdwell.The lassial esape rate α is given by the ratio of the �ux aross the partial barrier Φ andthe size of the aessible region Aaess,i
αi =

1

tdwell,i = Φ

Aaess,i . (3.28)There are several ways of de�ning esape time distributions p(t). We �rst apply a de�nitionwhih uses one long orbit. The segments of the orbit are labeled by `upper' and `lower' aordingto the upper and lower haoti region. The esape time is de�ned as the number of onseutiveiterations before the orbit enters the opposite region. The densities p′up(t) and p′lo(t) ontainall esape times for the upper and the lower haoti region, respetively. Figure 3.5 showsthe resulting distributions for example 2 of the map Fpb. The average esape time of upper
〈tup〉 ≈ 345 and lower region 〈tlo〉 ≈ 348 are in good agreement with the expeted value
tdwell,i = Aaess,i/Φ ≈ 346. Also the density of esape times of the upper region p′up(t) is
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Figure 3.5: Esape time distribution for the example 2 of the map Fpb (expeted �ux
Φ ≈ 1/825) of an orbit started at (q, p) = (0.25, 0.75) and iterated 107 times. The numeriallydetermined densities of esapes times from the upper and the lower region, p′up and p′lo,are shown as blue histograms in (a) and (b), respetively. They are ompared with theexpeted exponential deay proportional to exp{−t/tdwell,i} (solid blak line) with the dwelltime tdwell,i = Aaess,i/Φ ≈ 346. The distribution p′up is well desribed by this exponentialdeay. However, the distribution p′lo shows a di�erent exponential deay proportional to
exp{−t/762} (dashed blak line).well desribed by the exponential deay using tdwell,i. However, for the lower haoti regionthe distribution p′lo(t) learly deviates from the expeted behavior. Here the deay is ratherdesribed by exp{−t/762}, whih is onsistent with a smaller �ux Φ′ ≈ 1/1800 (assuming thatthe area Aaess,i is unhanged). This �nding indiates the existene of at least one furtherpartial barrier in the entral region p ∈ [p�x − pd,lo, p�x + pd,up]. For the other examples suhkind of mismath of p′lo(t) is also observed. Note that the average value of the esape times isindependent of this �nding, beause it depends only on the �ux aross the onsidered partialbarrier. In terms of the distributions shown in Fig. 3.5, the orret average esape time isahieved due to many quikly esaping events of the orbit. At these events the orbit entersthe lower region, but returns to the upper haoti region before it passes the additional partialbarrier.In order to examine this �nding in more detail, we introdue the survival probability asanother measure of the trapping. For this, many orbits are started inside one region and areiterated until they leave this region. The survival probability P (t) is the fration of orbits,whih stay in the initial region at least up to time t. The de�nition of the upper and thelower region depends on the de�nition of the border of the regular region. Therefore eventuallyregular or nearly regular orbits might be inluded. Hene, orbits whih are trapped up to themaximal time are assumed to be regular and removed from the statistis. Figure 3.6 showsthe survival probability of the upper and the lower region of the same example as in Fig. 3.5.
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Figure 3.6: Survival probability Pup(t) and Plo(t) for the example 2 of the map Fpb oforbits started equidistantly in the upper haoti region (blue solid histogram) and in thelower haoti region (green dotted histogram). At small times Pup(t) is desribed by anexponential deay with tdwell,i ≈ 346. In ontrast, Plo(t) follows a slower exponential deaywith tdwell,i ≈ 762 indiating the existene of a partial barrier with a smaller �ux in the lowerhaoti region.Again the distribution assoiated with the lower haoti region exhibits a slower exponentialdeay given by the enhaned dwell time tdwell, lo ≈ 762.Finally, we onlude that there is an additional partial barrier below the partial barrieronstruted in Se. 3.1.3 and this additional partial barrier has smaller �ux. The value of this�ux is derived from exponential �ts to the survival probability assuming that the hange ofthe areas is negligible. This �tted �ux for the examples onsidered up to now is given as Φ′ inTab. 3.1. This additional partial barrier might be attributed to a antorus or the stable andthe unstable manifolds of a periodi orbit of any period. As within this thesis, this additionalpartial barrier ould not be onstruted, we remove this one by an approah presented in thefollowing setion and restrit ourselves to the investigation of the partial barrier onstruted inSe. 3.1.3.3.1.6 Extension of the map Fpb � phase-spae drillingWe want to investigate the impat of the partial barrier onstruted in Se. 3.1.3 and getrid of the unknown additional partial barriers disussed in Se. 3.1.5. Therefore the previouslydisussed map Fpb is omposed with a loal rotation de�ned in some irular phase-spae region.We all this approah phase-spae drilling. The rotation is given by
Frot :

(
q

p

)
7→
(
q
p)+

(
cos(ω) − sin(ω)
sin(ω) cos(ω) )(q − q

p− p) (3.29)



3.1.6 Extension of the map Fpb � phase-spae drilling 43for points inside a irle of radius r around (q, p). The points are rotated by an angle of
ω in ounterlokwise diretion and all points outside the irle are unhanged. The resultingmapping is disontinuous on the irle line. While the rotation itself is an integrable motionand the distane to the point (q, p) is unhanged by the mapping, the omposition Fpb,rot of
Fpb and Frot yields stronger haos in the sense of less transport limitations inside the haotiregion.Figure 3.7 illustrates the idea of the destrution of partial barriers using the additionalrotation. If we, for example, assume that the green horizontal line in Fig. 3.7 is a partialbarrier with a very small �ux, then the �ux of the omposed mapping Fpb,rot = Frot ◦ Fpb isdetermined by the fration of the blue rosses loated below the partial barrier. Therefore theomposed mapping has an enhaned �ux aross the green horizontal line.The quantum version of the map introdued above is the omposition of the unitary timeevolution operators of the original map Upb and the rotation Urot. For Urot the quantizationproedure is not straightforward, but an be performed using the eigenstates of the harmoniosillator. We use the set of harmoni osillator eigenstates {ηm} as a basis set inside the irlearound (q, p). We de�ne the projetor onto the orresponding sub-spae and the assoiated
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Figure 3.7: Illustration of the ation of the map Frot. During one appliation of Frot the redtriangles loated above the green horizontal line are mapped to the blue rosses and some ofthem are below the green horizontal line. This transport of points below the green horizontalline gives rise to an enhaned �ux aross this line. The �ux is maximal for ω = π.



44 3.1 Designed map with one partial barriertime evolution operator as
PHO :=

NHO−1∑

m=0

|ηm〉〈ηm|, (3.30)
UHO :=

NHO−1∑

m=0

λm|ηm〉〈ηm|, (3.31)where λm = exp{+i(m + 1
2
)ω} is the eigenvalue for the eigenstate ηm and the number ofonsidered states NHO < N is hosen aording to NHO =

⌊
1
2
+ πr2/he�⌋. Note that theeigenvalue has the opposite sign as expeted for the harmoni osillator, beause ω is theounterlokwise inrease of the angle whereas orbits in the harmoni osillator evolve lokwisein time. An important property of the states {ηm} is that they are well loalized inside theirle and have almost no tails into the region outside of the irle. Therefore they give a sharpprojetion onto the irle, smoothened on the size of Plank's onstant.The quantum time evolution orresponding to the lassial rotation is given by

Urot = (1− PHO) + UHOPHO = (1− PHO) + UHO. (3.32)That is, the projetion of a state onto the irle with {ηm : m = 0, ..., NHO− 1} is time evolvedusing UHO whereas the other omponents, orthogonal to the set {ηm}, are unhanged. Oneheks the unitarity of Urot using the unitarity of UHO and the orthogonality of the states {ηm}.Therefore the total time evolution operator
Upb,rot := UrotUpb (3.33)is unitary, too.An approah to obtain eigenstates orresponding to the lassial rotation numerially is thediret quantization of the time-independent harmoni osillator. This is disussed in Se. 2.7and extends the appliability of this approah to eigenstates of the harmoni osillator, forwhih the analytial expressions, in partiular the Hermite polynomials, annot be evaluatednumerially with su�ient preision.This kind of modi�ation of a given map by superimposing an additional mapping is notrestrited to rotations on harmoni osillator like islands. More generally, one may onsideran arbitrary island and follow the dynamis inside the island, while outside the mapping isthe identity. The quantum version of suh a map an be derived as above by replaing theeigenstates of the harmoni osillator {ηm} by eigenstates of the island and the λm by eigenvaluesof the orresponding quantum map. In order to have properly loalized states one has to restritthe used states to those loated well inside the island with almost no overlap with the haotiregion.



3.1.7 De�nition of examples for the map Fpb,rot 45In order to preserve time reversal invariane of the omposed map, we have to reall thedisussion of Se. 2.5 and investigate the assumptions needed for the omposed map to possesstime reversal invariane. Although the kiked map Fpb and the loal rotation Frot ful�ll timereversal invariane it is not obvious that the omposed map Fpb,rot = Frot ◦ Fpb does. Themap Fpb,rot is of the type of Eq. (2.45), where we identify F1 with Fpb and F2 with Frot. Thede�nition of √F2 is a rotation with a hange of the angle of ω/2.As the �rst step, we show that the map Fpb possesses an antianonial symmetry. In orderto do so, we have to onsider the map in the half kik representation Fpb,hk, whih is anonialonjugated to the map itself. The antianonial symmetry ful�lled by Fpb,hk is (see Se. 2.5)
τ̃ : (q, p) 7→ (1− q, p) (3.34)with τ̃ 2 = 1 and we an show that

τ̃ ◦ Fpb,hk ◦ τ̃ = F−1
pb,hk ⇐⇒ V ′(1− q) = V ′(q), (3.35)whih is ful�lled for the potential hosen in Eq. (3.3).In order to prove the time reversal invariane of Eq. (2.45), it was used that both mapspossess the same antianonial symmetry. Therefore also the rotation Frot needs to ful�ll

τ̃ ◦ Frot ◦ τ̃ = F−1
rot , (3.36)whih is equivalent to 1− q = q and therefore the enter of the irle needs to lie on the line

q = 1
2
. If one onsiders a rotation with a enter not loated on this line, one has to hoose twonon-overlapping irles with p,1 = p,2, q,1 = 1−q,2 and ω,1 = ω,2. It is important that thesetwo irles do not overlap in order to think of the two loal rotations as one mapping.

3.1.7 De�nition of examples for the map Fpb,rotThe mapping Fpb,rot de�ned in the last setion is omposed of the half kik version of map Fpbintrodued in Se. 3.1.2 and a rotation. For map Fpb we use the parameters of Tab. 3.1 andhoose pd,up = 0.005 for all onsidered examples. For the rotation Frot the values determiningthe rotation are given in Tab. 3.2. The rotation frequeny ω is hosen lose to π in order tomaximize the impat of the additional rotation as illustrated in Fig. 3.7. The position andradius of the rotating region are hosen suh that the additional partial barrier are removed,whih is heked in the next setion.



46 3.1 Designed map with one partial barrierExample 1 2 3
q,1 0.5 0.5 0.5
p,1 0.33 0.46 0.48
r,1 0.2 0.1 0.1
ω,1 3.0 3.0 3.0
πr2,1 0.13 0.03 0.03
q,2 0.2
p,2 0.66
r,2 0.15
ω,2 3.0
πr2,2 0.07Table 3.2: Parameter values of the basi examples of map Fpb,rot in addition to values givenin Tab. 3.1. The third drilled region is determined by q,3 = 1 − q,2, p,3 = p,2, r,3 = r,2,and ω,3 = ω,2. The impat of the drilling an be estimated by the size of the drilling region

πr2,i ompared to the size of the phase spae.3.1.8 Charaterization of the lassial system Fpb,rotAfter introduing the map with loal rotation Fpb,rot, we have to verify that now only theexpeted partial barrier signi�antly limits the transport between the upper and the lowerhaoti region. In analogy to Se. 3.1.5 we onsider the survival probability of orbits startedin the upper and the lower haoti region, respetively. Figure 3.8 ompares the resultingdistributions Pup(t) and Plo(t) of example 2 of the map Fpb to example 2 of the new map
Fpb,rot. By use of the phase-spae drilling the additional partial barrier with muh smaller
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Figure 3.8: Survival probability for (a) example 2 of the map Fpb (Φ′ ≈ 1/1800) and (b)example 2 of the map Fpb,rot (Φ ≈ 1/800, right piture): Pup(t) and Plo(t) of orbits startedin the upper (blue solid histogram) and lower (green dotted histogram) haoti region. In(a) the dwell time aording to the �ux Φ′ is shown as dashed line and in (b) an exponentialdeay with a dwell time enhaned by a fator of 1.1 is shown as dashed line.



3.2 Quantum suppression of transport 47�ux is removed and the survival probability in the lower region is in good agreement with theexponential deay determined by the dwell time tdwell,i = Aaess,i/Φ. In Fig. 3.8(a) a slowerdeay is plotted as a dashed line and gives an estimate of the previously found exponentialdeay aused by the additional partial barrier. The dashed line in Fig. 3.8(b) orresponds toa dwell time enhaned by a fator of 1.1 and gives an estimation of the agreement with theexpeted exponential deay.The distributions for the example 2 and also for the other examples of map Fpb,rot are in goodagreement with the expeted deay. Therefore we onlude that using the phase-spae drillingthe additional partial barrier has been destroyed. The partial barrier onstruted in Se. 3.1.3is the only limitation for lassial transport.3.2 Quantum suppression of transportAs desribed in Se. 2.4 a lassial partile started in the upper haoti region (see Fig. 3.9(a))will eventually enter the turnstile and in the next step is mapped to the lower haoti region.Therefore any orbit initially loated in the upper haoti region will at large times �ll the wholehaoti sea quite uniformly. Hene, partial barriers in�uene the lassial dynamis only onintermediate time sales, where a typial orbit is restrited to one part of phase spae. At largetimes suh a haoti orbit will explore the whole haoti sea.In ontrast to the lassial dynamis, the orresponding quantum system an be more re-stritive as illustrated in Fig. 3.9(b). In analogy to a lassial initial ondition (q, p), quantummehanially we use a oherent state with minimal unertainty (see Se. 2.8) entered at (q, p)as initial state. Although under time evolution this initial state spreads, almost no weightis transmitted into the lower haoti region. This observation holds even at arbitrary largetimes, whih will beome lear if properties of eigenstates are onsidered. This is surprisingas typially a quantum system has, due to tunneling, more transport hannels than the orre-sponding lassial system. Here, however, quantum mehanis is more restritive than lassialmehanis.For small Plank's onstant the lassial behavior of a partial barrier is reovered as illustratedin Fig. 3.9(). At large times, the wave paket spreads over the whole haoti region quiteuniformly. As a funtion of Plank's onstant we �nd that a partial barrier behaves in di�erentways: like a barrier for large Plank's onstant and like a partial barrier for small Plank'sonstant.The impat of partial barriers on the orresponding quantum system was �rst mentionedin Ref. [15℄. Here, MaKay, Meiss, and Perival onjetured: `The quantization is limited bythe size of the turnstiles in units of Plank's onstant. Sine the turnstiles vary in a veryompliated way as a funtion of frequeny, this riterion is di�ult to apply in pratie.' Theimpat of a partial barrier on the quantum system is governed by the ratio of the lassial
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heff

heffFigure 3.9: Classial (a) and quantum (b, ) time evolution aross the partial barrier (solidgreen line) of the map Fpb,rot. The lassial �ux Φ equals 1/190 (light green shaded region)and Plank's onstant is 1/40 in (b) and 1/1000 in (). The size of Plank's onstant he� isillustrated by an orange square in the last row. The rows orrespond to times t = 0, 1, 2,
500, and 2000 (top to bottom).
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(a) (b) ()Figure 3.10: Comparison of the size of Plank's onstant (orange square) to the lassial�ux Φ, whih is the size of one part of the turnstile (light green shaded region within the solidline indiating the partial barrier and the dotted line indiating the preimage of the partialbarrier). (a) Plank's onstant exeeds the lassial �ux and the quantum system annotresolve the lassial transport hannel (quantum suppression of transport). () Plank'sonstant is small ompared to the lassial �ux and quantum wave pakets behave lassiallywith respet to the partial barrier. (b) Plank's onstant and the lassial �ux are of the sameorder and we �nd a transition from quantum suppression of transport to lassial behaviorof the partial barrier.�ux divided by Plank's onstant, where both orrespond to areas in phase spae. This idea isillustrated in Fig. 3.10. For Plank's onstant being large ompared to the lassial �ux we �ndquantum suppression of transport. Whereas in the opposite ase of small Plank's onstantlassial transport behavior is reovered. In the Se. 3.2.3 we de�ne suitable measures in orderto investigate the quantum transition of a partial barrier between these two limiting ases.In order to get rid of the ambiguity of the �nal time when the time evolution has settled, wenow onsider properties of eigenstates of the quantum map. Figures 3.11 and 3.12 show Husimiand momentum-spae representations of eigenstates, whih represent the typial behavior ofeigenstates. The states in Fig. 3.11 are loalized and the one in Fig. 3.12 is deloalized withrespet to the partial barrier. These two opposite behaviors orrespond to Plank's onstantbeing large and small ompared to the lassial �ux. In the latter ase haoti eigenstatesextend over the whole haoti region quite uniformly. As disussed in Se. 3.2.3, properties ofeigenstates an be used to give an equivalent desription of the quantum transition of a partialbarrier.
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0.0 0.3|φ(pj)|2Figure 3.11: Husimi and momentum representation of states loalized in one haoti regionfor the map Fpb,rot. The lassial �ux Φ equals 1/190 and Plank's onstant is 1/50. Typialhaoti eigenstates either loalize above or below the partial barrier.
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0.00 0.02|φ(pj)|2Figure 3.12: Husimi and momentum representation of a deloalized state for the map Fpb,rot.The lassial �ux Φ equals 1/190 and Plank's onstant is 1/800. Typial haoti eigenstatesextend over the whole haoti region.



3.2.1 Time sales for quantum transport 513.2.1 Time sales for quantum transportUp to now we disussed the quantum transition of a partial barrier as a funtion of the ratio ofthe lassial �ux Φ and the e�etive Plank's onstant he�. An alternative interpretation of thequantum suppression of transport is provided by the onsideration of the involved time sales.The lassial impat of a partial barrier an be desribed either by its �ux Φ or by the time atypial orbit remains on one side of the partial barrier, whih we refer to as dwell time tdwell.The dwell time in region i is given by (see e.g. Ref. [44℄)
tdwell,i = Aaess,i

Φ
i = 1, 2, (3.37)where Aaess,i is the area an orbit in region i an aess.As a matter of fat the disreteness of quantum levels remains hidden up to a ertain time,the so-alled Heisenberg time tH, whih therefore de�nes a further system spei� time sale.Equivalently, one may obtain this quantity as the time at whih the mean level spaing 〈∆ϕ〉ontributes 2π in the exponent of the time evolution, whih for maps reads exp{i〈∆ϕ〉tH} andwith 〈∆ϕ〉 = 2π/N yields

tH = N =
1

he� . (3.38)Assoiated with region i there are Nh,i haoti states and therefore the Heisenberg time forthis sub-system is
tH,i = Nh,i = Aaess,iN = Aaess,itH. (3.39)By use of these time sales the ratio of the �ux and Plank's onstant an be written as

Φ

he� = NΦ = tHΦ = tHAaess,i
tdwell,i =

tH,1
tdwell,1 =

tH,2
tdwell,2 ; (3.40)namely as the ratio of the Heisenberg time and the dwell time assoiated with regions 1 and2, respetively. This gives rise to the following alternative interpretation of the quantum sup-pression of transport aross the partial barrier. For Heisenberg time being small ompared tothe dwell time we �nd this quantum suppression. In this situation a typial orbit of length

tH will not have visited the region behind the partial barrier. Semilassially, the spetralproperties of a haoti quantum system are determined by periodi orbits up to length tH/2,whih is shown by Berry and Keating by resummation of periodi orbit sums [56�58℄ and re-viewed in Ref. [59, Se. 10.5℄. As long as the properties of the quantum system are desribedby short (ompared to the dwell time) periodi orbits, wave pakets will loalize in the initialregion. This is similar to the phenomenon alled `sarring', introdued by Heller in 1984 [60℄,where quantum states loalize on short unstable periodi orbits and give rise to nonuniformly



52 3.2 Quantum suppression of transportdistributed wave funtions. In the opposite situation, where the Heisenberg time is large om-pared to the dwell time, a typial orbit of length tH will extend over the region behind thepartial barrier and aording to semilassis, also a wave paket of the quantum system willspread over this region.Note that for open systems the ratio of the Heisenberg time and the dwell time an berelated to the number of open hannels (see Ref. [61�63℄ and referenes therein). For haotiopen systems the lassial dwell time an be related to the (quantum) Wigner delay time andtherefore also to the ratio of the Heisenberg time and the size of the sattering matrix (numberof open hannels). A system with a partial barrier may be onsidered as being omposedof two open systems, whih are onneted at the opening. The onnetion via the openingsorresponds to the turnstile, whih allows for an exhange of phase-spae volume betweenthe two sub-systems. Applying the results of open systems to this situation gives rise to theidenti�ation of Eq. (3.40) with the number of hannels n onneting the two sub-systems. Thisis onsistent with assoiating n states with the phase-spae region Φ. This identi�ation willbe used in Se. 4.3, where we introdue a matrix model to desribe the quantum transition ofa partial barrier.
Ehrenfest timeThe Ehrenfest time tE,i is the time sale on whih a phase-spae area of the size of Plank'sonstant he� is strethed onto the aessible phase-spae area Aaess,i in terms of the lassialdynamis

√
Aaess,i ≈√he� exp{L · tE,i}, (3.41)

tE,i = ln(Aaess,i/he�)
2L

=
ln(Aaess,i)− ln(he�)

2L
, (3.42)where L is the largest Lyapunov exponent in the aessible region Aaess,i (see Se. 2.3). It isthe time sale of mixing in the lassial system and it has to be small ompared to the otherinvolved time sales

tE,i = ln(tH,i)
2L

≪ tH,i , (3.43)
tE,i = ln(tH,i)

2L
=

ln(tdwell,i · Φ/he�)
2L

≪ tdwell,i (3.44)in order to allow for random matrix preditions, beause random matries orrespond to in-stantaneous mixing. We will on�rm the validity of Eqs. (3.43) and (3.44) in Se. 4.2.4, wherewe ompare the results for our designed map to a random matrix model.



3.2.2 Transition parameter-�ux relation 533.2.2 Transition parameter-�ux relationIn order to desribe universal features of the quantum transition for a partial barrier fromquantum suppression to lassial transport, we introdue a saling parameter Λ in terms ofsystem properties like the lassial �ux Φ and Plank's onstant he�. This Λ-�ux relation isneeded to ompare the results for random matrix models with the results for the quantum map.The following derivation is similar to Se. 5.2 of Ref. [23℄, but here we onsider maps basedon kiked systems instead of ontinuous �ows. In order to relate the lassial �ux to a ouplingin the quantum system we have to make the assumption that the quantum rate of transportaross the partial barrier equals the orresponding lassial rate. The lassial rate (for systemswith period 1) is given by
Φ

Ah,1 =
Φ

f1Ah , (3.45)where Ah,1 is the haoti region, in whih we start, and f1 denotes its fration of the totalhaoti region. For the quantum system Fermi's golden rule gives a rate [64, p. 1299 �.℄
2π

~e� v2f2ρh (3.46)where v2 is the average squared matrix element between the upper and lower haoti states and
f2ρh is the density of haoti states in the transmission region. The equality of the lassialand the quantum rate reads

2π

~e� v2f2ρh = Φ

f1Ah . (3.47)By replaing Ah using the density of states
ρh = Nh

~e�ω ω=2π
=

Nh
he� =

Ah
h2e� (3.48)we have

2π

~e�v2f2ρh = Φ

f1h2e�ρh (3.49)and de�ne the saling or transition parameter as the ratio of the mean oupling and the meanlevel spaing of the unoupled system [23℄
Λ =

v2

D2h = v2ρ2h = 1

4π2f1f2

Φ

he� . (3.50)The universal saling behavior depends not only on the ratio of �ux Φ and Plank's onstant
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he� as pointed out in the setions before, but also on the relative size of the haoti regioninvolved f1 and f2 as given in the Λ-�ux relation Eq. (3.50). The main assumption in theabove derivation is the equality of lassial and quantum rate, whih is expeted to be truein the semilassial limit. The latter is ahieved for large numbers of states in eah region(Nh,i = Ah,i/he� ≫ 1) and for not too small ratio Φ/he�.3.2.3 Quantitative measures for quantum suppressionIn this setion we de�ne quantitative measures to desribe the quantum transition of a partialbarrier from quantum suppression to lassial transport. Figure 3.9 (see beginning of Se. 3.2)shows the time evolution of a oherent state for di�erent values of Plank's onstant he�. Thequantum suppression ours for large he� and is re�eted in the fat that almost no weight istransmitted into the lower haoti region even for very long times. Therefore we introdue thenotion of `asymptoti transmitted weight' (ATW) as a quantitative measure. It is the weightof the wave paket transmitted aross the partial barrier as time goes to in�nity. Alternativelyone an use the projetion onto the transmission region averaged over time (see Eq. (6.4) onpage 114 of Ref. [23℄).For a wave paket ψ(t) started above the partial barrier we reord the transmitted weightin some measuring box in the lower haoti region (either the whole region or some part ofit). The resulting value for t → ∞ is ompared to the ase without a barrier. If there was nopartial barrier a wave paket would uniformly extend over the whole haoti sea and thereforeits weight inside a measuring box is given by

µ[Ψuniform] = Aµ
Ah , (3.51)where we introdue Ψuniform for a �titious state uniformly distributed in the haoti sea of area

Ah and Aµ orresponding to the phase-spae region of the measuring box. If the measure µinludes the whole lower haoti region, Eq. (3.51) redues to the relative fration of the region
flo = Ah,lo/Ah as used in Ref. [23℄. In this thesis, however, we also onsider measuring regions,that do not extend over the whole lower haoti region, so that they exlude the region loseto the partial barrier. With this remarks the asymptoti transmitted weight is given byATW ≡ µ̃∞[ψ(t = 0)] := lim

T→∞

1

T

T−1∑

t=0

µ[ψ(t)]

µ[Ψuniform] (3.52)
=:

µ∞[ψ(t = 0)]

µ[Ψuniform] . (3.53)



3.2.3 Quantitative measures for quantum suppression 55Before we disuss de�nitions of suitable measures µ, we introdue another way of quantifyingthe level of suppression; namely by use of properties of eigenstates. As Figs. 3.11 and 3.12suggest there is also a transition from loalized to deloalized behavior in the eigenstates. Asstarting point we hoose a momentum resolved version of the above quantity Eq. (3.52) followingRefs. [26, 27℄. For simpliity, we take a momentum eigenstate as initial state
ψ(t = 0) = |p0〉 (3.54)and onsider the asymptoti distribution in momentum representation,

P (p, p0) = lim
T→∞

1

T

T−1∑

t=0

|〈p|U t|p0〉|2. (3.55)Using the eigenvalue equation
U |φj〉 = exp{iϕj}|φj〉 j = 0, . . . , N − 1, (3.56)we an express the time evolution operator in terms of its eigenstates {φj}

P (p, p0) = lim
T→∞

1

T

T−1∑

t=0

∣∣∣∣∣
∑

j

〈p|φj〉 exp{iϕjt}〈φj|p0〉∣∣∣∣∣2 (3.57)
= lim

T→∞

1

T

T−1∑

t=0

∑

j,j′

〈p|φj〉〈φj|p0〉〈φj′|p〉〈p0|φj′〉 exp{i[ϕj − ϕj′] · t} (3.58)
= lim

T→∞

1

T

T−1∑

t=0

[
∑

j

|〈p|φj〉|2 · |〈φj|p0〉|2 + (3.59)
∑

j 6=j′
〈p|φj〉〈φj|p0〉〈φj′|p〉〈p0|φj′〉 exp{i[ϕj − ϕj′] · t}

]
. (3.60)That is, P (p, p0) an be written as a sum of a time-independent term and a term, whih is�nite and rapidly osillates with time. This term is proportional to

lim
T→∞

1

T

T−1∑

t=0

exp{i[ϕj − ϕj′] · t} (3.61)and therefore vanishes for j 6= j′, beause the eigenphases are unorrelated. The remainingpart is
P (p, p0) =

N−1∑

j=0

|〈p0|φj〉|2 · |〈p|φj〉|2. (3.62)



56 3.2 Quantum suppression of transportThe summands in Eq. (3.62) measure the overlap of an eigenstate of the quantum system φjwith the �nal state p and initial state p0 of the time evolution. In this way we related the timeevolution result to properties of the eigenstates of the quantum system.In the following we are interested in the total transmitted weight rather than in the mo-mentum resolved quantity of Eq. (3.62). Hene, we evaluate Eq. (3.62) in measuring boxes inmomentum spae. They are de�ned as follows (see Fig. 3.13)
µup := ∑

p̃up,1<pn<p̃up,2 |ψ(pn)|2, (3.63)
µlo := ∑

p̃lo,1<pn<p̃lo,2 |ψ(pn)|2, (3.64)using the parameters p̃i and the points of the momentum lattie pn of the quantum system.We will denote the area of the measuring boxes by Aµi , whih is given by the di�erene of theorresponding p̃i.Colleting all ontributions in the lower measuring box yields
µlo,∞[|p0〉] =

∑

p̃lo,1<p<p̃lo,2P (p, p0) = ∑

p̃lo,1<p<p̃lo,2 N−1∑

j=0

|〈p0|φj〉|2 · |〈p|φj〉|2 =
N−1∑

j=0

|〈p0|φj〉|2 · µlo[φj] (3.65)
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Figure 3.13: Illustration of the momentum measures µup and µlo de�ned by Eqs. (3.63) and(3.64), respetively. Eah of the measures is determined by its two bounds, p̃up,i for the upperweight and p̃lo,i for the lower weight. On the left hand side the phase spae with the partialbarrier (solid green line) and its preimage (green dotted line) is shown. The set of vertiallines on the right hand side indiates the momentum lattie pn of the quantum system, whihonsists of N = 1/he� sites. Those sites within the two bounds of the upper and lower weight(olored sites) are onsidered in the alulation of the orresponding measures. The numberof sites for the upper and lower weight are denoted by Nµup and Nµlo , respetively.



3.2.3 Quantitative measures for quantum suppression 57and therefore the relative asymptoti transmitted weight reads
µ̃lo,∞[|p0〉] =

µlo,∞[|p0〉]
µlo[Ψuniform] = 1

µlo[Ψuniform] N−1∑

j=0

|〈p0|φj〉|2 · µlo[φj]. (3.66)Now we perform an average over all p0 in the upper measuring box. In order to have a quantity,whih is symmetri with respet to upper and lower measuring box, we use the same spaing
∝ 1

N
for the initial onditions as for the p-values in the lower measuring box

〈µ̃lo,∞[|p0〉]〉p0 =
1

Nµup ∑

p̃up,1<p0<p̃up,2µ̃lo,∞[|p0〉] (3.67)
=

1

Nµup 1

µlo[Ψuniform] N−1∑

j=0

µup[φj ]µlo[φj ]. (3.68)On average, N ·Aµup points p0 are inside the upper measuring region and we therefore write
〈µ̃lo,∞[|p0〉]〉p0 =

1

N · Aµup 1

µlo[Ψuniform] N−1∑

j=0

µup[φj] µlo[φj] (3.69)
=

1

N · Ah · µup[Ψuniform] 1

µlo[Ψuniform] N−1∑

j=0

µup[φj ] µlo[φj] (3.70)
=

1

Nh Nh−1∑

j=0

µup[φj]
µup[Ψuniform] µlo[φj]

µlo[Ψuniform] . (3.71)In the last step we inserted Nh = NAh and dropped the regular states from the sum. Thisis possible, beause the measures are de�ned inside the haoti region and regular states haveonly exponential tails into this region. Therefore the produt µup[φj]µlo[φj] for a regular stateis small ompared to a state uniformly distributed in the haoti sea. Equation (3.71) is anaverage over all haoti eigenstates of the quantity
M [φ] :=

µup[φ]
µup[Ψuniform] µlo[φ]

µlo[Ψuniform] = µ̃up[φ]µ̃lo[φ] (3.72)with the relative measures
µ̃up[φ] := µup[φ]

µup[Ψuniform] , (3.73)
µ̃lo[φ] := µlo[φ]

µlo[Ψuniform] (3.74)



58 3.2 Quantum suppression of transportwhih we all `produt measure' for obvious reason. Before we disuss properties of this produtmeasure and ompare it to the asymptoti transmitted weight, we have to add one remark here.The hoie of the momentum states as a basis for the initial and �nal states is not essential andwe an replae the {|p0〉} and {|p〉} by an arbitrary basis set. In partiular for the asymptotitransmitted weight one an hoose an arbitrary initial state and some �nal measure.The produt measure de�ned by Eq. (3.72) gives the ontribution of an eigenstate to theATW. For an eigenstate φj whih is loalized in only one or even none of the measuring boxesthe ontribution M [φj ] vanishes. For a state uniformly distributed in the haoti sea theontribution is one by de�nition. However, this is not the only state with ontribution equalto one. A state φ with
µup[φ] = µlo[Ψuniform], (3.75)
µlo[φ] = µup[Ψuniform] (3.76)gives M = 1, too, although it is not uniformly distributed. Furthermore, the individual on-tribution M [φj ] is not bounded in general. Therefore one might de�ne a normalized version ofthe produt measure as

M̃ [φ] := 4 · µ̃up[φ]µ̃lo[φ]
(µ̃up[φ] + µ̃lo[φ])2 ∈ [0, 1], (3.77)whose values are limited by zero and one and the M̃ = 1 orresponds to the uniformly dis-tributed state. For the ase of measuring boxes of equal size, we have µup[Ψuniform] = µlo[Ψuniform]and Eq. (3.77) redues to

M̃ [φ] := 4
µup[φ]µlo[φ]

(µup[φ] + µlo[φ])2 . (3.78)Equation (3.78) is related to an inverse partiipation ratio IPR de�ned asIPR[φ] := µup[φ]2 + µlo[φ]2
(µup[φ] + µlo[φ])2 (3.79)by the following equation

1 =
(µup[φ] + µlo[φ])2
(µup[φ] + µlo[φ])2 = IPR[φ] + 1

2
M̃ [φ]. (3.80)Equation (3.79) is the inverse partiipation ratio of a state, if we onsider the two measuringboxes as the only two sites of a system. The normalized weight in the upper and in the lower



3.2.3 Quantitative measures for quantum suppression 59region is
µup[φ]

µup[φ] + µlo[φ] and µlo[φ]
µup[φ] + µlo[φ] . (3.81)Their squared sum is the IPR as de�ned by Eq. (3.79) and it lies between 1, i.e. the state isloalized on one site and the other measure vanishes, and 1

2
for a state φ with µup[φ] = µlo[φ],i.e. a state uniformly distributed with respet to the two measuring boxes.For measures whih extend over the entire aessible region, i.e. µup[φ] + µlo[φ] = 1, thedenominator in Eq. (3.78) drops and we have

M̃ [φ] := 4µup[φ]µlo[φ], (3.82)whih is the same as Eq. (3.72) for µup[Ψuniform] = µlo[Ψuniform] = 1
2
. Therefore M and M̃ arethe same on the level of a 2× 2 model and their values are limited by one.Figure 3.14 shows ontour lines of the produt measure M de�ned by Eq. (3.72) and M̃de�ned by Eq. (3.77) for the ase of µup[φ] +µlo[φ] = 1 and relative haoti regions fup and flo,whih are the measures of the uniformly distributed state in this situation: fup = µup[Ψuniform]
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Figure 3.14: Contour lines of (a) M [φ], Eq. (3.83), and (b) M̃ [φ], Eq. (3.77), for the ase
µup[φ] + µlo[φ] = 1. That is, the two measuring regions together apture the total spaeavailable for eigenstates φ. A horizontal slie with �xed fup orresponds to one system andshows all possible values as funtion of µup[φ] = 1−µlo[φ]. At the fup = flo = 1

2 (blak dashedline) the ontour lines of (a) and (b) fall on top of eah other and are given by Eq. (3.82).Note that M̃ [φ] is limited by 1 for all fup whereas M [φ] is limited by 1 only for the ase
fup = flo = 1

2 .



60 3.3 Results for the designed maps with one partial barrierand flo = µlo[Ψuniform]. Equation (3.72) redues to
M [φ] =

µup[φ]
fup µlo[φ]

flo =
µup[φ]
fup 1− µup[φ]

1− fup ≡ µ̃up[φ]µ̃lo[φ] (3.83)and its upper bound depends on the relative phase-spae area fup = 1−flo and tends to in�nityfor vanishing fup or flo
M [φ] ≤ 1/4

fup[1− fup] fup→0−→ ∞. (3.84)On the line fup = flo = 1
2
(dashed blak horizontal line in Fig. 3.14) Eqs. (3.72) and (3.77)are the same (see Eq. (3.82)). In both pitures the diagonal line fup = µup orresponds to theuniformly distributed state. The additional diagonal line fup = 1 − µup = µlo in Fig. 3.14(a)orresponds to the state of Eq. (3.75), whih is not uniformly distributed. For M̃ all states,that are not uniformly distributed with respet to the measure, have M̃ [φ] smaller than oneand states with the same value of M̃ are arranged symmetrially around the diagonal M̃ [φ] = 1(see Fig. 3.14(b)).The interpretation of the individual value M̃ [φ] is muh simpler than the interpretation of

M [φ], beause M̃ [φ] lies between zero and one, whih are the limiting ases of a state loalized inone region and of a state deloalized (uniformly distributed) with respet to the two measuringregions. However, we will use M [φ], de�ned by Eq. (3.72), in the following, beause it is theontribution of an eigenstate to the ATW and therewith its average 〈M〉 has a well settledmeaning as ATW.3.3 Results for the designed maps with one partial barrierIn this setion results for the designed maps Fpb and Fpb,rot are presented. Based on the trans-mitted weight as funtion of time (Se. 3.3.1) we determine the ATW introdued in Se. 3.2.3using momentum measures in Se. 3.3.2. The properties of eigenfuntions are desribed by theprodut measure M in Se. 3.3.3. The results using Husimi measures for ATW and produtmeasure are disussed in Se. 3.3.4. With these de�nitions of the measures we quantify thequantum transition of a partial barrier from quantum suppression to lassial transport be-havior. We hek the in�uene of the width of the regular region in Se. 3.3.5 and onsiderexamples with Ah,up 6= Ah,lo in Se. 3.3.6. The results are summarized in Se. 3.3.7.3.3.1 Transmitted weight as a funtion of timeBefore disussing the asymptotis of the transmitted weight, we investigate the initial inreaseof the transmitted weight. The transmitted weight of a wave paket ψ(t) initially loated in



3.3.1 Transmitted weight as a funtion of time 61the upper region is
µ̃trans[ψ(t)] = µ̃lo[ψ(t)] = µlo[ψ(t)]

µlo[Ψuniform] . (3.85)In order to interpret the resulting urves µ̃trans[ψ(t)] for quantum wave pakets, we need toompare them to their lassial expetation. The lassial ounterpart of the time evolutionof wave pakets is the time evolution of an orbit density in phase spae ̺(q, p, t), whih isnormalized to one if integrated over the entire phase spae. Based on this density we introduethe weight of orbits in the upper and lower haoti region as
µup, lass(t) = ∫

Ah,up dq dp ̺(q, p, t), (3.86)
µlo, lass(t) = ∫

Ah,lo dq dp ̺(q, p, t). (3.87)These weights give the probability to �nd an orbit in the upper and lower region at time t.Assuming instantaneous mixing in the individual regions and a Markovian desription of thedynamis, we set up a Master equation desribing the hange in the orbit weights [65℄
∂

∂t

(
µup, lass(t)
µlo, lass(t)) =

(
− Φ
Ah,up Φ

Ah,lo
Φ

Ah,up − Φ
Ah,lo)(µup, lass(t)µlo, lass(t)) =: B

(
µup, lass(t)
µlo, lass(t)) . (3.88)The Markov matrix B inludes the rates of transitions between the two regions. These ratesare the inverse of the orresponding dwell times 1/tdwell,i = Φ/Aaess,i. The elements in eaholumn of the matrix B add up to zero, whih aounts for the onservation of the total weightand yields one vanishing eigenvalue of B. The eigenvalue equation for B reads

Bζi = biζi (3.89)and has the solutions
b1 = 0 with ζ1 =

(
1

1

)
, (3.90)

b2 = −
(

Φ

Ah,up +
Φ

Ah,lo) =: −Γ with ζ2 =

(
1

−1

)
. (3.91)The �rst solution orresponds to the onservation of the total weight and the seond desribesthe relaxation to an equilibrium distribution, for whih we introdue a rate Γ = −b2 followingRef. [65℄. Now we onsider the time evolution of a density ̺(q, p, t) initially loated in the upper



62 3.3 Results for the designed maps with one partial barrierregion. The resulting weights are
(
µup, lass(t)
µlo, lass(t)) =

1

2

(
1 + exp{−Γt}
1− exp{−Γt}

)
. (3.92)In this situation the transmitted weight is given by

µtrans, lass(t) = µlo, lass(t) = 1

2
[1− exp {−Γt}] =





Γ
2
t for Γt≪ 1

1
2

for Γt≫ 1.
(3.93)The deay of the density initially loated in the upper region is determined by the rate

Γ

2
=

1

2

(
Φ

Ah,up +
Φ

Ah,lo) =
1

2

(
1

tdwell, up +
1

tdwell, lo) , (3.94)whih gives the inverse dwell time 1/tdwell, up if both regions are of equal size. In the followingwe restrit ourselves to the ase that both regions have the same size. In analogy to Eq. (3.85),we onsider the ratio µ̃trans, lass(t) of the transmitted weight µtrans, lass(t), Eq. (3.93), to theweight of a uniformly distributed state, whih is given by 1
2
in eah region,

µ̃trans, lass(t) = µtrans, lass(t)
1/2

= 1− exp {−Γt} =




Γt for Γt≪ 1

1 for Γt≫ 1.
(3.95)At small times the relative transmitted weight µ̃trans, lass(t) inreases linearly with slope Γ andfor large times it approahes one, whih is the limit of no barrier.Now let us turn to the time evolution of a wave paket. As transmitted weight we onsiderthe momentum measures in the upper and lower region de�ned by Eqs. (3.63) and (3.64),respetively. The momentum limits are hosen as

p̃lo,1 = 0.175, (3.96)
p̃lo,2 = 0.325, (3.97)
p̃up,1 = 0.675, (3.98)
p̃up,2 = 0.825. (3.99)In Fig. 3.15 the inrease of the transmitted weight in time, Eq. (3.85), is illustrated. Forone �xed initial ondition and �xed Bloh phase θq (see Fig. 3.15(a)) the transmitted weightstrongly �utuates and shows Rabi-like osillations, whih is due to the osillatory term inEq. (3.61). Averaging over di�erent values of the Bloh phase θq (system average) and di�erentinitial wave pakets ψ(0) yields a smooth urve as a funtion of time (see Fig. 3.15(b)). Fordereasing he� = 1/N the urves approah the lassial result of Eq. (3.95) apart from a smallshift in the time (see below).
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Figure 3.15: Transmitted momentum weight µ̃trans[ψ(t)] for the example 1 of the map Fpb,rot(Φ ≈ 1/200) with time up to the dwell time of the upper (and lower) region in omparison tothe lassial expetation Eq. (3.95) (dashed) and its linear approximation (dotted). (a) Thetransmitted weight of a state ψ(t) with ψ(0) = |p0〉 = |0.3〉 exhibits strong �utuations. (b)Averaging µ̃trans over 20 values of θq and four initial onditions (two momentum eigenstateswith p0 = 0.3, 0.7 and two oherent states initially loated at (q, p) = (0.5, 0.3) and (0.5, 0.7))yields smooth urves, whih approah the lassial expetation with inreasing size of N , i.e.dereasing he� = 1/N .Larger values for Plank's onstant he� = 1/N yield smaller values for the transmittedweight. For instane the urve with 1/he� = N = 100 in Fig. 3.15(b) is below the urvewith 1/he� = N = 3200, whih is most prominent at large times. That is, at large timesthe transmitted weight is redued if Plank's onstant inreases. This �nding indiates thepreviously disussed suppression of quantum transport in the limit of Plank's onstant beinglarge ompared to the lassial �ux.



64 3.3 Results for the designed maps with one partial barrierNote that the shift in time ours due to the non-vanishing mixing time, whih is not inludedin the above Master-equation approah. This mixing time has two origins: The mixing in thequantum system is semilassially determined by the Lyapunov exponent, whih yields theEhrenfest time (see Se. 3.2.1). Moreover the wave paket needs some time to reah the boxde�ning the momentum measure after it has rossed the partial barrier.Figure 3.16(a) extends the data of Fig. 3.15 to larger times and thus illustrates the idea of theasymptoti transmitted weight (ATW). After the initial inrease of the transmitted weight withsome kind of overshooting its value saturates at the ATW. Similar overshootings are observedin the temporal �ooding of regular states [39, Se. 3.4℄. The olored dashed and dotted linesindiate the average over times up to T = 104 and for times within [T, T ′] = [220, 220 + 100],respetively. We �nd agreement between averaging over di�erent ranges of time. For pratialinvestigations it is possible to average over times up to time T , see Eq. (3.52), or over somerange [T, T ′], whih we do in the following. In any ase the time T needs to be large ompared
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Figure 3.16: Transmitted weight µ̃trans[ψ(t)] for the example 1 of the map Fpb,rot (Φ ≈
1/200) in omparison to the lassial expetation, Eq. (3.95), (dashed) and its linear approx-imation (dotted). (a) Same quantity as in Fig. 3.15 (b), but as a funtion of time t ∈ [1, 104]and t ∈ [220, 220+100]. The olored dashed and dotted lines between the two graphs indiatethe height of the average performed over the �rst and seond time range, respetively. In (b)we show the �rst part of (a) with a logarithmially saled ordinate, whih reveals the initialbehavior of µ̃trans[ψ(t)]. Using the Husimi weight, the whole transmission region ontributes.The resulting data is shown in (), whih has enhaned values at small t ompared to (b),but approahes the result of the momentum weight at large times.



3.3.2 ATW using momentum measures 65to the involved time sales given by the dwell time and the Heisenberg time.For he� going to zero, the ATW reahes larger values and the range, where the transmittedweight µ̃trans follows the linear inrease given by the lassial rate Γ, extends to larger t. Inthis limit he� → 0, or more preisely Φ/he� → ∞, the lassial behavior of a partial barrier isreovered and at large times the normalized transmitted weight µ̃trans(t) reahes the value one.In this limit the assumption of the quantum rate being equal to the lassial rate, used in thederivation of the Λ-�ux relation of Se. 3.2.2, is well founded.Figure 3.16() shows the result of the same time evolution as Figure 3.16(a) and (b), but inontrast to the other pitures the Husimi measure, whih we will introdue in Se. 3.3.4, in thewhole transmission region is used as transmitted weight. At large times the resulting values arelose to those of the momentum measure and therefore it is meaningful to onsider a universalurve for the ATW.Note that we �nd some deviations at small t. The reason for the additional delay in themomentum measure (Figure 3.16(b)) ompared to the Husimi measure (Figure 3.16()) is thefat that the time evolved state has to reah the box used for the momentum measure asmentioned above. For the Husimi weight we �nd larger values of µ̃trans(t) and for the examples2 (Φ ≈ 1/800) and 3 (Φ ≈ 1/3000), where the ratio of Φ/he� is smaller than for example 1the Husimi weight gives values larger than the lassial expetation. This �nding might beattributed to the transition region around the partial barrier, whih is inluded in the Husimimeasure (see disussion in Se. 3.3.4). However, in the de�nition of the ATW large times t areneeded, where the momentum and Husimi weight agree.3.3.2 ATW using momentum measuresIn the following our fous is on the ATW rather than the full time dependene of the transmittedweight. In this setion the transmitted weight is determined by the momentum measure de�nedin the transmission region. The initial state an be any state su�iently well loalized in one ofthe two haoti regions. Here we hoose momentum eigenstates as initial states, while oherentstates would give the same ATW. The deisive property of the initial states is their loalizationaway from the partial barrier, suh that at t = 0 no weight is already transmitted and universalfeatures of the quantum transport aross the partial barrier are observed.In the ase of the map Fpb,rot the time evolution is performed by onseutive appliationsof the unitary time evolution operator Upb,rot, Eq. (3.33). Numerially the time evolution upto the lower limit of the time range is performed by an auxiliary matrix Ũ (n) de�ned by thefollowing reursion relation
Ũ (0) = Upb,rot, (3.100)

Ũ (k+1) = Ũ (k)Ũ (k). (3.101)Therewith only n matrix-matrix multipliations are needed to reah time T = 2n.



66 3.3 Results for the designed maps with one partial barrier

0.0

0.2

0.4

0.6

0.8

1.0

0.001 0.01 0.1 1 10 100 1000

Φ/heff

x
1+x

with x = Φ
heff

Ex. 1, p0 = 0.3

Ex. 1, p0 = 0.7

Ex. 2, p0 = 0.3

Ex. 2, p0 = 0.7

Ex. 3, p0 = 0.3

Ex. 3, p0 = 0.7

ATW

Figure 3.17: ATW using the momentum measures for the examples 1, 2, and 3 of the map
Fpb,rot. The initial state is ψ(t = 0) = |p0〉 with p0 = 0.3 below and p0 = 0.7 above the partialbarrier. The data is averaged over 20 values of θq and 100 steps after time T = 220 ≈ 106.Figure 3.17 shows the resulting ATW for examples 1, 2, and 3 of the map Fpb,rot for twodi�erent momentum eigenvalues as initial onditions. The ATW is shown as a funtion of theratio Φ/he�. In order to observe universal features, the lassial phase-spae strutures need tobe reasonably resolved. That is, eah of the two haoti regions itself should be semilassiallytreatable. We restrit ourselves to 1/he� = N ≥ 100. This yields about 40 states in the upperand lower region if we assoiate Nup = NAh,up and Nlo = NAh,lo states with the upper andlower region (see Tab. 3.1 for values of Ah,up and Ah,lo). All data sets in Fig. 3.17 fall on top ofeah other under the saling with Φ/he�. We therefore onlude that Φ/he� is the right salingparameter.The quantum transition of a partial barrier between the two limiting ases of full quantumsuppression and lassial behavior takes plae on a logarithmi sale. That is, the ratio Φ/he�needs to be varied over a large range in order to determine the whole transition urve. Theoverall behavior of the data is reasonably well desribed byATW =

Φ
he�

1 + Φ
he� . (3.102)Note that we varied the bounds of the momentum measures de�ned by Eqs. (3.63) and (3.64)and �nd almost no dependene on the hoie of the bounds as long as the entral part supportingthe partial barrier and the regular regions are exluded.For the map Fpb,rot the parameter N = 1/he� is limited numerially, beause the full time
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Figure 3.18: ATW using the momentum measures for the examples 1, 2, 3, and 4 of themap Fpb. The �ux Φ used for the absissa is the �ux Φ′ disussed in Se. 3.1.5. The initialstate is ψ(t = 0) = |p0〉 with p0 = 0.3 below and p0 = 0.7 above the partial barrier. Theshown data is averaged over 20 values of θq and 100 steps after time T = 106. The totalnumber of states are N = 1/he� = 100, 200, ..., 51200.evolution operator Upb,rot has to be used for the time evolution. In the ase of the map Fpb,where no projetor is used, the fast Fourier transform an be used for the time evolution.Therefore N an be hosen muh larger. It is limited by the size of a vetor representing thequantum wave paket rather than a N × N matrix needed for the time evolution of the map
Fpb,rot. Therefore the overed range of Φ/he� for eah of the examples of the map Fpb is almostdoubled. Furthermore, the example 4 is inluded, whih extends the data to smaller values ofthe ratio Φ/he�, respetively (see Fig. 3.18 in ontrast to Fig. 3.17). The ATW for the map
Fpb is shown in Fig. 3.18. Again we �nd saling with the ratio Φ/he�, if we onsider the �ux Φ′disussed in Se. 3.1.5. We therefore onjeture that the additional partial barriers with larger�ux, present in the phase spae of map Fpb, have only minor impat. As long as the regionbetween neighboring partial barriers is small (only some or even less than one he�), it is notresolved by quantum mehanis and the quantum suppression is governed by the partial barrierwith smallest �ux.3.3.3 Produt measure using momentum measuresIn Se. 3.2.3 we derived a representation of the ATW in terms of the eigenstates. Finally, itan be omputed by an average over all haoti eigenstates of the produt measure, Eq. (3.72),

M [φ] = µ̃up[φ]µ̃lo[φ] (3.103)



68 3.3 Results for the designed maps with one partial barrierwith the relative measures
µ̃up[φ] := µup[φ]

µup[Ψuniform] , (3.104)
µ̃lo[φ] := µlo[φ]

µlo[Ψuniform] . (3.105)In the derivation we dropped the regular states, beause their ontribution is negligible.Moreover the produt measure of a regular state will be in�uened by its position with respet tothe measuring boxes inside the haoti regions, beause they are muh more loalized. Thereforethe resulting produt measure does not over the quantum suppression of transport for regularstates properly. Furthermore, we assumed that all other eigenstates are haoti. That is, theHusimi representation of these eigenstates looks uniformly distributed with respet to the upperand with respet to the lower haoti region. This assumption is violated by states loalizinglose to the partial barrier � e.g. a sarred state on the hyperboli �xed point at (1
2
, p�x). Theasymmetry of the upper and the lower weight of those states does not represent the impat ofthe partial barrier, but learly depends on the relative loation of the loalized state and themeasuring regions. Therefore we drop regular states and states loalized lose to the partialbarrier in order to observe the impat of the partial barrier on the haoti states only. Thisis ahieved by introduing a minimal measure for the sum of the upper and the lower weight.Again we ompare to the resulting µup[φ] + µlo[φ] to that of a state uniformly distributed inthe haoti region and onsider only states φ with

µup[φ] + µlo[φ] ≥ χ ·
(
µup[Ψuniform] + µlo[Ψuniform]) = χ ·

(
Aµup
Ah +

Aµlo
Ah ) (3.106)for the average produt measure. For nonzero χ all of the above mentioned states are exludedin the semilassial limit (he� → 0). As long as he� is not yet small, some of these states willhave small ontributions in the measuring regions and we used χ = 20% in the following.Figure 3.19 shows the average produt measure for the examples 1, 2, and 3 of the map

Fpb,rot. The average produt measure is in good agreement with the ATW of Fig. 3.17. Notethat exluding the regular states and those loalized lose to the partial barrier is equivalentto plaing initial wave pakets inside one of the haoti regions, beause the initial state hasa small overlap with the loalized states. Averaging over many initial onditions �nally givesthe same averaging mehanism as averaging over all haoti states. For the produt measurethe upper limit of N = 1/he� is determined by the size of a full matrix, whih an still bediagonalized on a omputer.Aording to Eq. (3.72) the produt measure is the ontribution of an eigenstate to the ATW.Therefore we an also study the distribution of the state dependentM-values as an extension ofthe above onsideration of the mean value 〈M〉. Although the ATW and therefore the average
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Figure 3.19: Average produt measure M using the momentum measures for the examples1, 2, and 3 of the map Fpb,rot. The data is averaged over all states φ ful�lling Eq. (3.106)with χ = 20% and 100 values of the Bloh phase θq.produt measure takes values between zero and one, the ontribution of an eigenstates is notlimited by one. The individual produt measure, Eq. (3.103), is limited by
M [φ] =

µup[φ]
µup[Ψuniform] µlo[φ]

µlo[Ψuniform] = µup[φ]µlo[φ]
(p̃up,2 − p̃up,1) · (p̃lo,2 − p̃lo,1)/A2h (3.107)

≤ µup[φ](1− µup[φ])
(p̃up,2 − p̃up,1) · (p̃lo,2 − p̃lo,1)/A2h , (3.108)where the inequality µup[φ] + µlo[φ] ≤ 1 was used. In fat the inequality Eq. (3.108) is onlya very rough estimate, beause the total measure in the two momentum measure boxes istypially muh smaller than one. Inserting the limits p̃i for the used momentum measures ofEqs. (3.96)�(3.99) and the size of the haoti sea Ah of Tab. 3.1 gives

M [φ] ≤ 32µup[φ](1− µup[φ]) ≤ 8, (3.109)where in the last step the produt of the measures is estimated from above by 1
4
.Figure 3.20 shows the distribution of the produt measure d(M) for the examples 1�3 ofthe map Fpb,rot. The pitures suggest that the distributions for a �xed ratio Φ/he� oinide.Note that Φ/he� is only approximately the same for the shown data, beause Φ and N varyindependently. As seen in Fig. 3.20(a) almost all eigenstates have a vanishing produt measurefor a small ratio Φ/he�. In the limit of vanishing ratio Φ/he� all eigenstates either loalize inthe upper or in the lower region. In pratie this limiting ase is not reahed, due to the non-



70 3.3 Results for the designed maps with one partial barrier

(a)
0

5

10

15

0.0 0.5 1.0 1.5

N = 200 (Φ/heff ≈ 1
16 )

N = 800 (Φ/heff ≈ 1
4 )

N = 3200 (Φ/heff ≈ 1)

M

d(M)

(b)
0

5

10

15

0.0 0.5 1.0 1.5

N = 200 (Φ/heff ≈ 1
4 )

N = 800 (Φ/heff ≈ 1)

N = 3200 (Φ/heff ≈ 4)

M

d(M)

()
0

5

10

15

0.0 0.5 1.0 1.5

N = 200 (Φ/heff ≈ 1)

N = 800 (Φ/heff ≈ 4)

N = 3200 (Φ/heff ≈ 16)

M

d(M)

(d) 100

102

104

106

10−8 10−6 10−4 10−2 100

N = 200 (Φ/heff ≈ 1
16 )

N = 800 (Φ/heff ≈ 1
4 )

N = 3200 (Φ/heff ≈ 1)

M

d(M)

Figure 3.20: Distribution d(M) of the produt measure M using the momentum measuresfor example 3 (Φ ≈ 1/3000) in (a), 2 (Φ ≈ 1/800) in (b), and 1 (Φ ≈ 1/200) in () for themap Fpb,rot and N = 200, 800, 3200. (d) Same distribution as (a), but with a logarithmiabsissa and ordinate. The seletion of states is the same as in Fig. 3.19. The average ofeah distribution is shown as vertial line. The solid red line orresponds to the result with
Φ/he� ≈ 1. In total the data overs a range of Φ/he� ≈ 1/16 for the smallest N in (a) to
Φ/he� ≈ 16 for the largest N in ().vanishing tunneling oupling between the two haoti regions. The data of Fig. 3.20(a) is shownagain in (d), where the distribution d(M) is shown on a logarithmi sale inM . For dereasing

Φ/he� the distribution seems to approah a power law behavior. This behavior indiates thestrong spreading of M for small ratios Φ/he� and might be attributed to tunneling. If theratio Φ/he� reahes one, shown by the solid red line in all pitures, the distribution extendsover a large range in M . Although the average value is around 1
2
, some of the states are muhmore loalized in one of the regions, whereas other states are already uniformly distributedin both regions. The above estimation of the upper bound for M is learly muh too large



3.3.4 ATW and produt measure using Husimi measures 71for the onsidered distribution and less than two perent of the states exeeds the value 3
2
.For large ratios Φ/he� the peak of the distribution starts to approah one and its width isdereasing. That is, in the semilassial limit, Φ/he� → ∞, all states are uniformly distributedand therewith the lassial behavior of a partial barrier is reovered.3.3.4 ATW and produt measure using Husimi measuresIn generi systems the introdution of a momentum measure or similar basis sets is not obviousand therefore the Husimi funtion, introdued in Se. 2.8, integrated over the upper or lowerregion is a good hoie. Thus Eqs. (3.52) and (3.72) are evaluated by use of these upper andlower Husimi weights.Figure 3.21 shows the resulting ATW for several examples of the map Fpb. Again we �ndsaling with the ratio Φ/he�. This data need to be ompared to the data of Fig. 3.18, where themomentum measures rather than Husimi measures are used. We see that the overall behavioris almost unhanged and therefore universal behavior is found.For Φ/he� ≤ 0.1 a saturation ours as for Fig. 3.18, whih an be attributed to the non-vanishing tunneling oupling between the two regions. However, the plateau is enhaned om-pared to Fig. 3.18. That is, the transmitted Husimi weight is larger than the momentummeasure. This is understandable, beause on the one hand the Husimi funtion smears out
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Figure 3.21: ATW using the Husimi weight in transmission region for the examples 1, 2, 3and 4 of the map Fpb. The initial state is ψ(t = 0) = |p0〉 with p0 = 0.3 below and p0 = 0.7above the partial barrier. The data is averaged over 20 values of θq and 100 steps after time
106. The total number of states are N = 1/he� = 100, 200, ..., 51200. The universal behaviorof the data is desribed by x/(1 + x) with x = Φ/he�.



72 3.3 Results for the designed maps with one partial barrierinformation on the size of Plank's onstant and on the other hand the support of the Husimiweight extends up to the partial barrier. Therefore a transmitted weight is reognized by theHusimi weight while muh less weight reahes the support of the momentum measure.Note that the Husimi measure strongly depends on the de�nition of the partial barrier. Aspointed out in Se. 3.1.3 for the lassial system at least all images and preimages of the partialbarrier form again partial barriers with the same �ux and the same area above and below them.Quantum mehanially there is a transition region between the upper and the lower region. We�xed the onsidered partial barrier and therewith made a deision what we all upper and lower.Therefore the Husimi weight of the upper or the lower region inludes parts of this transitionregion and yields larger values than the momentum measure.The results for map Fpb,rot are shown in Fig. 3.22(a) and need to be ompared with themomentum measure results in Fig. 3.17. Again the overall behavior is unhanged and we �nduniversal behavior by saling the data with Φ/he�.As an alternative to the time evolution, we onsider the produt measure averaged over theeigenstates of the quantum map. Similar to Se. 3.3.3 we selet the haoti states by use of aminimal measure. That is, we onsider all states φ with
µup[φ] + µlo[φ] ≥ χ (3.110)for some χ > 0. The omparison with a state uniformly distributed in the haoti sea is notneeded here, beause its Husimi funtion integrated over the haoti sea yields one. Therefore

χ is the minimal value for the Husimi weight in the full haoti region. This onstraint withnon-vanishing χ exludes again the regular states from the average. In ontrast to Se. 3.3.3states loalized lose to the partial barrier and nearby the regular region are still inluded.Figure 3.22(b) shows the resulting average produt measure. The minimal measure is hosenas χ = 10% and we do not �nd a signi�ant dependene on its value as long as it is non-vanishing. The average produt measure is in good agreement with the ATW obtained by timeevolution. For small ratios Φ/he� the average produt measure 〈M〉 is larger and for largeratios Φ/he� smaller than the result using the momentum measures shown in Fig. 3.19. Thisdi�erene is even more pronouned than for the ATW. Therefore also the agreement betweenATW and the average produt measure is not as good as for the momentum measures. Thereason for this di�erene might be attributed to the onsidered eigenstates. Namely statesloalized on the partial barrier or lose to the regular region have a produt measure, whihis not dominated by the partial barrier, but rather aidentally gives larger or smaller values.For small ratios Φ/he� the states loalized on the partial barrier have already a large produtmeasure. Whereas for Φ/he� being large loalized states have small M , beause the assoiatedtransport is suppressed due to the loalization.Figure 3.23 shows a seletion of distributions of the produt measure d(M) onsidered forFig. 3.22(b). The distributions for di�erent examples for similar Φ/he� are in reasonable agree-
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Figure 3.22: (a) ATW and (b) average produt measure using Husimi weights for theexamples 1, 2, and 3 of the map Fpb,rot. The ATW of (a) is averaged over 20 values of theBloh phase θq and over 4 initial states: ψ(t = 0) = |p0〉 with p0 = 0.3 and 0.7 and oherentstates at (q0, p0) = (0.5, 0.3) and (0.5, 0.7). The minimal measure χ aording to Eq. (3.110)used in (b) is 10% and the data is averaged over 100 values of the Bloh phase θq.ment. Therefore again universal saling with Φ/he� is found. As disussed in Se. 3.2.3 (aroundEq. (3.82)) the produt measure using Husimi weights is bounded from above by one. Thisis in ontrast to the disussion of the momentum measures. Similar to Fig. 3.20(a), for small
Φ/he� the individualM are small (see Fig. 3.23(a)) and therefore the orresponding eigenstatesloalize either in the upper or in the lower region. As illustrated in Fig. 3.23(d) the behaviorfor small M follows a power law similar to Fig. 3.20(d).The distributions d(M) for the ratio Φ/he� ≈ 1 are shown as solid red lines in Fig. 3.23.
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Figure 3.23: Distribution d(M) of produt measure M using Husimi weights for example3 (Φ ≈ 1/3000) in (a), 2 (Φ ≈ 1/800) in (b), and 1 (Φ ≈ 1/200) in () for the map Fpb,rotand N = 200, 800, 3200. (d) Same distribution as (a), but on logarithmi sale and withlogarithmi ordinate. The seletion of states is the same as in Fig. 3.22(b) and we onsider100 values of the Bloh phase θq to obtain the data. The average of the distribution is shownas vertial line. The solid red line orresponds to the result with Φ/he� ≈ 1. In total thedata over a range of Φ/he� ≈ 1/15 (smallest N of example 3) to Φ/he� ≈ 16 (largest N ofexample 1).They are quite symmetri with respet to the average value around M = 1
2
and extend overthe whole range [0, 1] of M . That is, there are as many states with large M , being alreadydeloalized, as with M smaller than 1

2
, being still loalized in one region. For large values of

Φ/he� the peak of the distributions approahes one, whih is the lassial expetation.Although we �nd di�erenes in the details of the transition urve onsidering Husimi weightrather than momentum measures, the overall behavior is the same and we believe that theuniversal behavior is desribed by the ratio Φ/he�.



3.3.5 Variation of the width of the regular region 753.3.5 Variation of the width of the regular regionFor the designed maps Fpb and Fpb,rot, quantum mehanially, the oupling between the upperand the lower haoti region might depend on the width of the regular region rather than on theturnstile transport only. More preisely we expet an additional ontribution to the quantumtransport due to tunneling aross the regular region if Plank's onstant is large and the regularregion is thin. Therefore we vary the width of the regular region and look for signatures ofthis additional transport hannel. We onsider the ATW using the Husimi weight in orderto remove any ambiguity in the de�nition of the measuring boxes for thin and thik regularregions, whih give rise to large and small haoti regions above and below the partial barrier.For the map Fpb and Fpb,rot the width of the regular region an be adjusted using theparameter pd,reg. Here we used pd,reg = 0.045, 0.125, and 0.25 yielding a regular region ofsize Areg ≈ 0, Areg ≈ 0.16, and Areg ≈ 0.4. Note that the given numbers are also the width in p-diretion beause the width in q is one. These three versions of examples 1 and 3 are onsideredand the resulting ATW is shown in Fig. 3.24. Exept for small �utuations the data does notdepend on the width of the regular region down to the smallest ratio Φ/he� onsidered here.For smaller ratios Φ/he�, we expet an in�uene of the width of the regular region, beause atthis point the oupling due to the lassial turnstile transport is signi�antly suppressed andtunneling aross the partial barrier and over the regular region might be of the same magnitudefor vanishing width of the regular region.
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Figure 3.24: ATW using the Husimi weight for the examples 1 and 3 of the map Fpb,rot(same as Fig. 3.22(a)) and modi�ed versions of them pd,reg = 0.125 → 0.045 and pd,reg =
0.125 → 0.25. The overall behavior is the same independently of pd,reg and only tiny hangesare observed.



76 3.3 Results for the designed maps with one partial barrier3.3.6 Asymmetri haoti regionsIn this setion we extend the disussion of the previous setions to situations, where the upperand the lower region have di�erent size, Ah,up 6= Ah,lo. Aording to the Λ-�ux relation [23℄,given in Eq. (3.50),
Λ =

1

4π2fupflo Φ

he� , (3.111)derived in Se. 3.2.2, we expet that the saling depends on the relative size of the two haotiregions, fup and flo, in addition to the ratio of lassial �ux and Plank's onstant. However,a reliable veri�ation of this dependene on fup and flo is not found in this setion and furtherinvestigations are needed.For the maps Fpb and Fpb,rot the relative size of the haoti regions fup and flo an be adjustedby variation of the position of the �xed point (1
2
, p�x). Changing the parameter p�x from thevalue given in Tab. 3.1 moves the partial barrier in momentum diretion. In the following werestrit ourselves to example 3. Note that the parameter p�x annot be varied arbitrarily. Itsvalue is limited by the onstraint that eah of the haoti regions should be strongly mixing.In order to ensure this property, there has to be some spae between pd,reg and p�x − pd,lo aswell as between p�x + pd,up and 1 − pd,reg, whih determine the regions of large slope bleft and

bright in T ′ (see Eq. (3.4)). These slopes yield a large value for the e�etive kiking strength
bleftK ′ and brightK ′, whih indues this strong mixing behavior of the map. If these regionsaount only for a small fration of the upper (lower) region, the behavior of haoti states inthe respetive region is dominated by the slower mixing parts lose to the regular region andthe partial barrier. Furthermore we hoose the value of p�x suh that the additional rotationsintrodued in Se. 3.1.6 are shifted aording to the hange of pd,reg, but preserve their size inphase spae without destroying the regular regions and the onsidered partial barrier. In thisway we ensure that the results do not depend on the modi�ation of the rotation, but ratheron the asymmetri size of the upper and lower region.As �rst quantitative measure we onsider the average produt measure using the momentummeasures as disussed in Se. 3.3.3. The resulting data for various asymmetri versions ofexample 3 are shown in Fig. 3.25. The results are plotted as a funtion of the ratio Φ/he�as well as of the parameter Λ in order to �nd the universal saling parameter. As a funtionof the ratio Φ/he� the resulting produt measure slightly inreases with inreasing asymmetry
Ah,up/Ah,lo. However, this hange is almost negligible. If we sale the data with the parameter
Λ, the data for di�erent pairs (Ah,up, Ah,lo) show deviations. Therefore we onlude that forthe onsidered example the data sales with the ratio Φ/he� rather than with the parameter
Λ. Note that the relevant di�erene between the saling with Φ/he� and with Λ is the fator
4fupflo, whih is one for the symmetri examples and reahes 4fupflo = 4 ·6/49 ≈ 1

2
for the mostasymmetri ase Ah,up/Ah,lo = 6/1 onsidered here. Therefore the di�erent saling behavior



3.3.6 Asymmetri haoti regions 77reahes at most a fator of two, whih is quite small. In order to test this saling in more detail,systems with stronger asymmetries Ah,up/Ah,lo need to be onsidered.The observed saling with Φ/he� is quite unexpeted, beause Λ should be the appropri-ate saling parameter as disussed in Se. 3.2.2. To verify our result we additionally on-sidered the Husimi measures introdued in Se. 3.3.4 to determine the average produt mea-sure as well as the ATW. The results are shown in Fig. 3.26 and Fig. 3.27, respetively. For
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Figure 3.25: Average produt measure M using the momentum measure for the example 3of the map Fpb,rot for various ratios Ah,up/Ah,lo as a funtion of the ratio Φ/he� in (a) andthe parameter Λ in (b). The data is averaged over 100 values of the Bloh phase θq. It saleswith the ratio Φ/he� rather than the parameter Λ. The total number of states in phase spaeis N = 1/he� = 100, 200, . . . , 3200 from the left to the right for the shown data.



78 3.3 Results for the designed maps with one partial barrierthe average produt measure using Husimi weights, we �nd deviations from the saling with
Φ/he� (Fig. 3.26(a)). As a funtion of Φ/he� the data inreases with inreasing asymmetry
Ah,up/Ah,lo. In Fig. 3.26(b) the same data is shown as a funtion of Λ and for the �rstdata points (N = 1/he� = 100, 200, 400) the same enhanement with inreasing asymmetry
Ah,up/Ah,lo is found whereas for larger values of N = 1/he� the data for di�erent asymmetriesare lose to eah other. The enhanement for small N might be due to the fat that the num-
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Figure 3.26: Average produt measure M using the Husimi measure for the example 3of the map Fpb,rot for various ratios Ah,up/Ah,lo as a funtion of the ratio Φ/he� in (a)and the parameter Λ in (b). The total number of states in phase spae is N = 1/he� =
100, 200, . . . , 3200 from the left to the right for the shown data. The data is averaged over100 values of the Bloh phase θq.



3.3.6 Asymmetri haoti regions 79ber of states assoiated with the smaller region is too small to observe universal features of thepartial barrier. Here one may onjeture that the parameter Λ is the more appropriate hoiefor the saling of the average produt measure using Husimi weights than the ratio Φ/he�.Considering the ATW using the Husimi weight gives the results shown in Fig. 3.27. Theenhanement in 〈M〉 found for small N = 1/he� in Fig. 3.26 is muh smaller in the ATW

(a)
0.0

0.2

0.4

0.6

0.8

1.0

0.001 0.01 0.1 1 10 100 1000

Φ/heff

x
1+x

with x = Φ
heff

Ex. 3

Ach,up/Ach,lo = 1/3

Ach,up/Ach,lo = 3/1

Ach,up/Ach,lo = 4/1

Ach,up/Ach,lo = 5/1

Ach,up/Ach,lo = 6/1

ATW

(b)
0.0

0.2

0.4

0.6

0.8

1.0

10−4 10−3 10−2 10−1 100 101 102

Λ = Φ/(4π2fupfloheff)

x
1+x

: x = π2Λ

Ex. 3

Ach,up/Ach,lo = 1/3

Ach,up/Ach,lo = 3/1

Ach,up/Ach,lo = 4/1

Ach,up/Ach,lo = 5/1

Ach,up/Ach,lo = 6/1

ATW

Figure 3.27: ATW using the Husimi weight for the example 3 of the map Fpb,rot for variousratios Ah,up/Ah,lo as a funtion of the ratio Φ/he� in (a) and the parameter Λ in (b). Thedata is averaged over 10 initial states plaed in the haoti regions away from the partialbarrier and the regular region. We use 20 values of the Bloh phase θq. The total numberof states in phase spae is N = 1/he� = 100, 200, . . . , 3200 from the left to the right for theshown data.



80 3.3 Results for the designed maps with one partial barrierdetermined by time evolution. The reason for this di�erene are states loalized lose to thepartial barrier or lose to the regular region, whih are not exited by wave pakets, that areinitially plaed inside the upper and the lower haoti region away from theses strutures. Forthe ATW shown in Fig. 3.27 neither saling with the ratio Φ/he� nor saling with the parameter
Λ yields urves on top of eah other. Both salings agree fairly well.As a result of this setion we �nd di�erent saling behaviors for di�erent measures onsideredfor the desription of the quantum transition of a partial barrier. Up to now we do not knowthe reason for these di�erent behaviors. Therefore further investigations are needed in order to�nd out whether the saling is desribed by the ratio Φ/he� or the parameter Λ.3.3.7 Summary of the results for the designed mapIn the last setions we have quanti�ed the quantum transition of a partial barrier betweenquantum suppression and lassial transport for the designed maps Fpb and Fpb,rot. We desribethis transition in terms of time evolution and eigenstate properties. Moreover we onsidermomentum and Husimi measures. As long as the two haoti regions are equal in size, i.e.
Ah,up = Ah,lo, we always �nd saling of the transition with the ratio Φ/he� of the lassial �uxand Plank's onstant. The overall behavior is well desribed by, Eq. (3.102),ATW(

Φ

he�) =
Φ
he�

1 + Φ
he� , (3.112)whih we motivate by a 2 × 2 model in Se. 4.1. The transition urve given by Eq. (3.112) isshown in Fig. 3.28. The transition point of the urve is at the point, where �ux Φ and Plank'sonstant he� are equal in size, beause at this point ATW(Φ/he�) = 1

2
. That is, it is half waybetween quantum suppression ATW = 0 and lassial behavior ATW = 1. As we use Φ/he�on a logarithmi sale, it is meaningful to all this point the symmetry point of the transition,beause the ATW has the following point symmetry,ATW(

Φ

he�)− ATW(
Φ

he� = 1

)
= ATW(

Φ

he� = 1

)
− ATW([

Φ

he�]−1
)
, (3.113)

Φ
he�

1 + Φ
he� − 1

2
=

1

2
− 1

1 + Φ
he� . (3.114)Having this symmetry in mind the transition width should be desribed by a fator in the ratio

Φ/he�. We onsider ATW ∈ [0.1, 0.9] as the transition region between quantum suppression andlassial transport, whih orresponds to 10% up to 90% of the lassial value. This transitionregion is illustrated in Fig. 3.28 using the average produt measure 〈M〉. It has a width of afator of 81. That is, the transition is broad and almost two orders of magnitude in the ratio
Φ/he� are needed to investigate the quantum transition of a partial barrier.
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Figure 3.28: Average produt measure 〈M〉 using the momentum measures for the examples1, 2, and 3 of the map Fpb,rot (same as Fig. 3.19). The width of the transition betweenquantum suppression and lassial transport is shown by the arrow. The dotted lines indiatethe limits of the transition region given by 〈M〉 ∈ [0.1, 0.9].3.4 Results for the standard mapIn this setion we investigate the impat of a partial barrier on the orresponding quantumsystem for the ase of the generi standard map. We show that the results obtained for thedesigned maps Fpb and Fpb,rot in Se. 3.3 also hold for this more general example system.3.4.1 Considered examples and haraterization of the lassialsystemFor the generi standard map it is not possible to �nd suh a simple phase-spae struture asobtained for the map Fpb,rot in Se. 3.1. Nevertheless we onsider two examples of the standardmap with kiking strength K = 2.7 and K = 2.9, suh that there is a dominant partial barrierand the regular regions on eah side of the partial barrier are small.The phase spae of the hosen examples is illustrated in Fig. 3.29(a) and (b) and the sizesof relevant phase-spae areas are given in Tab. 3.3. In both ases the phase spae onsistsof a large entral island, whih is surrounded by a hain of four islands. In between theseislands there exists a hyperboli periodi orbit and its stable and unstable manifolds are alsodisplayed. As mentioned in Se. 2.4 these stable and unstable manifolds give rise to a partialbarrier. At eah point of the hyperboli orbit there are two branhes of the stable and of theunstable manifold. Only the outer pair of the manifolds gives rise to a partial barrier, beausethe inner pair of the manifolds is very lose to the entral island and almost no haoti region
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Figure 3.29: Phase-spae portrait of the standard map with (a) K = 2.7 and (b) K = 2.9.For both examples there is a large island in the enter, whih is surrounded by a hain offour islands. Moreover the stable manifolds (blue) and the unstable manifolds (red) of thehyperboli periodi orbit in between this island hain are shown.
K 2.7 2.9
Φ 0.0054 0.0126
1/Φ 185.2 79.3
Ah 0.8902 0.8818

Alarge island 0.093 0.11
Asmall island 0.0042 0.002Table 3.3: The �ux Φ, the total size of the haoti region Ah and the size of the regularislands for the standard map with K = 2.7 and K = 2.9, whose phase spae is illustrated inFig. 3.29.is in between the manifolds and the regular island. As pointed out in Se. 3.1.3 the de�nitionof the partial barrier aording to the stable and unstable manifolds of a hyperboli periodiorbit is not unique. That is, all images and preimages of a onstruted partial barrier formagain a partial barrier with the same �ux and the same area of phase spae on eah side of thepartial barrier. Therefore we hoose some partial barrier, whih seems to be relevant for thequantum system. We restrit ourselves to partial barriers, whih satisfy the parity symmetryof the standard map, (q, p) 7→ (1 − q,−p). Four di�erent versions of suh partial barriers forthe standard map at K = 2.7 are shown in Fig. 3.30. All these partial barriers have the same�ux Φ (see Tab. 3.3), whih is twie the area of one loop between the stable and the unstablemanifolds. They enlose di�erent phase-spae regions Ah,in and Ah,out, whih are given inTab. 3.4 for K = 2.7 and in Tab. 3.5 for K = 2.9.As the next step we investigate the impat of the onstruted partial barriers on the lassialdynamis. As in Ses. 3.1.5 and 3.1.8 we onsider orbits uniformly distributed in the haoti sea
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Figure 3.30: (a)�(d) Four di�erent versions of partial barriers respeting the parity symme-try of the standard map with K = 2.7 (solid lines) as well as their preimages (dotted lines)onstruted from the stable and unstable manifolds shown in Fig. 3.29(a).(a) (b) () (d) av.
Ah,in 0.1805 0.1751 0.1859 0.1643 0.1764
Ah,out 0.7097 0.7151 0.7043 0.7259 0.7138
fh,in 0.2027 0.1967 0.2088 0.1845 0.2
fh,out 0.7973 0.8033 0.7912 0.8155 0.8Table 3.4: Areas and relative areas of haoti regions inside and outside the partial barrierfor the standard map at K = 2.7. The olumns orrespond to the four versions of symmetripartial barriers as shown in Fig. 3.30(a)-(d) and the last olumn displays the average values.The ratio of the region inside the partial barrier to the region outside is approximately 1/4.and measure the fration of orbits, whih remain on one side of the partial barrier up to time t.This survival probability P (t) resulting from orbits started in the inner haoti region and inthe outer haoti are shown in Fig. 3.31(a) and (b) for the example with K = 2.7 and K = 2.9,



84 3.4 Results for the standard map(a) (b) () (d) av.
Ah,in 0.2402 0.2276 0.2528 0.2027 0.2308
Ah,out 0.6416 0.6542 0.6289 0.6791 0.6509
fh,in 0.2724 0.2581 0.2867 0.2299 0.26
fh,out 0.7276 0.7419 0.7133 0.7701 0.74Table 3.5: Areas and relative areas of haoti regions inside and outside the partial barrierfor the standard map at K = 2.9. The olumns orrespond to the four versions of symmetripartial barriers similar to those in Fig. 3.30 for K = 2.7 and the last olumn displays theaverage values. The ratio of the region inside the partial barrier to the region outside isapproximately 1/3.respetively. For both examples we onsider the partial barrier illustrated in Fig. 3.30(a). Asdisussed in Se. 3.1.5 we expet an exponential deay for the survival probability P (t) ∝

exp{−αit} with the lassial esape rate αi = 1/tdwell,i = Φ/Aaess,i. For both examples thesurvival probability of orbits started outside the partial barrier Pout(t) is in good agreementwith this exponential deay as shown in Fig. 3.31. The survival probability of orbits startedinside the partial barrier Pin(t) follows the exponential deay, too, but only for some time. Atlarge times Pin(t) deays muh slower. This indiates that at large times further partial barrierswith smaller �ux are important, whih additionally limit the transport. The onsidered partialbarrier is dominant for Pout(t) and for the short time behavior of Pin(t). However, lose to the
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Figure 3.31: Survival probability P (t) for the standard map at (a) K = 2.7 and (b) K =
2.9 of orbits uniformly started outside (histogram, blue solid line) and inside (histogram,green dotted line) of the partial barrier. For omparison the expeted exponential deay
exp{−t/tdwell,i} with tdwell,i = Aaess,i/Φ is plotted (dashed lines). For K = 2.7 the dwelltime is 132.4 for the region outside the partial barrier and 32.4 for inside whereas for K = 2.9it is 51.9 and 18.0 for outside and inside.



3.4.2 ATW and produt measure using Husimi measures 85period four island hain further partial barriers limit the transport. The question is whetherthese strutures are resolved in the orresponding quantum system and thereby ontribute tothe loalization of wave pakets. In the following we will restrit ourselves to quantify theimpat of the onstruted partial barrier.3.4.2 ATW and produt measure using Husimi measuresIn order to investigate the quantum transition of the onstruted partial barrier, we onsiderthe quantitative measures introdued in Se. 3.2.3 for the two examples of the standard mapde�ned in the last setion. In analogy to Se. 3.3.4 we evaluate Eqs. (3.52) and (3.72) using theHusimi funtion integrated over the haoti regions inside and outside of the partial barrier.First we onsider the ATW of a wave paket initially loated outside of the partial barrier.To overome the ambiguity of the de�nition of the partial barrier, we onsider the four di�erentpartial barriers of Fig. 3.30(a)�(d) for the transmitted weight. In Fig. 3.32 the obtained ATWis shown as a funtion of Φ/he� and of the parameter disussed in Se. 3.2.2, Eq. (3.50),
Λ =

1

4π2fh,infh,out Φ

he� . (3.115)The ATW depends only slightly on the hoie of the partial barriers shown in Fig. 3.30. There-fore we �nd a universal transitional behavior. Similar to Se. 3.3.6 it is hard to deide whihsaling yields the best agreement within the onsidered examples with di�erent �ux. The rele-vant di�erene of the saling with Λ to the saling with Φ/he� is the fator 4fh,infh,out, whihis one for fh,in = fh,out = 1
2
, 4fh,infh,out ≈ 0.64 for the K = 2.7, and 4fh,infh,out ≈ 0.77 for

K = 2.9. That is, the saling di�erene is at most a fator of 1.5, whih is too small to observesigni�ant di�erenes. Therefore we onlude that both data sets are quite lose to eah otherin both salings. The numerial data is well desribed byATW(
Φ

he�) =

Φ
he�

1 + Φ
he� , (3.116)whih is used as desription for the map Fpb,rot in Se. 3.3.7.Complementary to the ATW we now disuss the average produt measure 〈M〉. In analogyto Se. 3.3.4 we onsider only those states φ with

µup[φ] + µlo[φ] ≥ χ (3.117)for some χ > 0. That is, we inlude all eigenstates whose Husimi weight in the haoti region islarger than χ and nonzero χ selets states with at least some omponent in the haoti sea. Theresulting 〈M〉 for several χ is shown in Fig. 3.33 in omparison to the ATW of Fig. 3.32. Fornon-vanishing χ the average produt measure is lose to the ATW. However, 〈M〉 is enhaned



86 3.4 Results for the standard map

(a)
0.0

0.2

0.4

0.6

0.8

1.0

0.1 1 10 100 1000

Φ/heff

x
1+x

with x = Φ
heff

K = 2.7

K = 2.9

ATW

(b)
0.0

0.2

0.4

0.6

0.8

1.0

0.01 0.1 1 10 100

Λ = Φ/(4π2fch,infch,outheff)

x
1+x

with x = π2Λ

K = 2.7

K = 2.9

ATW

Figure 3.32: ATW using the Husimi weight in the transmission region for the standard mapwith K = 2.7 and K = 2.9 as a funtion of the ratio Φ/he� in (a) and the parameter Λ in(b). The data is averaged over 15 initial onditions plaed outside the partial barrier, 10values of the Bloh phase θp, and 100 steps after time 106. The total number of states are
N = 1/he� = 100, 200, ..., 51200.for small N = 1/he� ompared to the ATW. Similar results have been obtained for the map

Fpb,rot, see Fig. 3.22 in Se. 3.3.4. We attribute this di�erene to states loalized lose to oreven on the stable and unstable manifold forming the partial barrier or to sars loalized on thehyperboli orbit [60℄. Their ontribution to the average produt measure is determined by thehoie of the measuring region and does not originate from the oupling indued by the partialbarrier. Figure 3.34 shows the distribution of the produt measure d(M) for the standard map
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Figure 3.33: Average produt measure for the standard map at (a)K = 2.7 and (b)K = 2.9.We onsider partial barrier (a) of Fig. 3.30 for the determination of the Husimi weights. Theminimal measure χ aording to Eq. (3.117) is varied and thereby di�erent seletions ofeigenstates ontributing to 〈M〉 are obtained. The data is averaged over 100 values of theBloh phase θp. The ATW of Fig. 3.32 is shown for omparison.with K = 2.7 and K = 2.9. For large ratios Φ/he� the peak of the distribution approahes
M = 1, whih orresponds to states uniformly distributed in the whole haoti region.Note that for the standard map, similar to Se. 3.1.7 for the map Fpb, we introdued phase-spae drilling in order to destroy the hain of regular islands inside the partial barrier. We plaeone irle of the rotation on top of eah island of the period four island hain suh that orbitsstarted inside these islands are mapped into the haoti region. The parameters of the rotation
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Figure 3.34: Distribution d(M) of the produt measure M for the standard map with(a) K = 2.7 and (b) K = 2.9. The data is the same as for Fig. 3.33 for χ = 0.1. Theorresponding ratios Φ/he� are approximately 1, 4, 16 for (a) and 2, 8, 32 for (b).an be hosen suh that there remain no regular tori. Quantum mehanially, however, theresulting transitional behavior of the partial barrier is almost unhanged.Finally, we ompare the results for the standard map to the results for the designed map
Fpb,rot of Se. 3.3.4 using the Husimi weight for the symmetri ase (fup = flo = 1

2
) in Fig. 3.35.
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Figure 3.35: ATW using the Husimi weight for the examples 1, 2, and 3 of the map Fpb,rotwith fup = flo = 1
2 (same as Fig. 3.22) in omparison to the result of the two examples of thestandard map. The standard map data is the same as in Fig. 3.32 using the partial barrier(a) of Fig. 3.30.



3.4.2 ATW and produt measure using Husimi measures 89Although for the standard map the inner haoti region exhibits a hierarhial struture theonstruted partial barrier is dominant and we a �nd transitional behavior similar to the map
Fpb,rot with one partial barrier. This implies a universal behavior of the quantum transition ofa partial barrier independent of the onsidered example system.





4 Modeling approahesAfter we quanti�ed the quantum transition of a partial barrier between quantum suppressionand lassial transport behavior, we now desribe this transition in terms of matrix models inorder to get a deeper insight into the impat of the partial barrier on the quantum system.The �rst model is a two-site model (Se. 4.1), where the upper and the lower haoti region aredesribed by one site. In Se. 4.2 we review the random matrix model, whih is proposed byBohigas, Tomsovi, and Ullmo [23℄, and disuss our quantitative measures. As this model doesnot desribe the data of the designed maps Fpb and Fpb,rot, we introdue a more sophistiatedoupling in Se. 4.3. We mention unitary modeling approahes in Se. 4.4 and summarize our�ndings in Se. 4.5.4.1 Deterministi 2× 2 modelIn order to desribe the transition from two unoupled haoti systems, where the partial barrierats as a barrier, to one large system, where the partial barrier is transparent, we propose asimple 2× 2 matrix model. Namely, we onsider an avoided rossing, whih is desribed by theHamiltonian
H =

(
E0 +∆/2 v

v E0 −∆/2

) (4.1)with the energy o�set E0, the level spaing ∆, and the oupling v. The eigenenergies follow as
E± = E0 ±

√(
∆

2

)2

+ v2 (4.2)and are plotted in Fig. 4.1 as a funtion of ∆. For vanishing oupling, v = 0, the eigenenergies
E± ross at ∆ = 0 (dashed lines in Fig. 4.1), whereas nonzero oupling yields an enhanedsplitting, whih gives rise to an avoided rossing between the two eigenenergies. The impatof the oupling v is most prominent at ∆ = 0 and determines the minimal splitting 2 · |v|. Faraway from the rossing, E± approah the values of the unoupled eigenenergies and thereforethe oupling of the two sites is negligible. This limit orresponds to the quantum suppression ofa partial barrier, beause the two levels behave independently. At the energy rossing, however,the two levels are strongly oupled, whih orresponds to the limit of the lassial transport,beause the two levels annot be treated independently.
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E+

E−

2 · |v|E0

E

0 ∆Figure 4.1: Eigenenergies E± of the deterministi 2 × 2 model, de�ned by Eq. (4.1), as afuntion of the unoupled mean level spaing ∆. The eigenenergies E± are given by Eq. (4.2)and perform an avoided rossing. The eigenenergies for vanishing oupling, v = 0, areshown as dashed lines and ross at ∆ = 0. The minimal splitting of the avoided rossing
[E+ − E−](∆ = 0) is determined by the oupling v, whih is indiated by the dotted linesand the arrow.

By measuring energy in multiples of the level spaing of the unoupled system ∆, we obtain
ε± =

E±
∆

= ε0 ±
√

1

4
+ λ2, (4.3)where λ := v/∆ is the saling parameter, whih measures the oupling strength relative to thelevel spaing. The ensemble average over λ2 would give the saling parameter Λ introdued inSe. 3.2.2. We set the energy o�set E0 and therefore ε0 to zero, beause properties of eigenstatesare independent of this o�set. Using the saling parameter λ the problem is equivalent to

H redued =

(
1
2

λ

λ −1
2

)
, (4.4)whih aptures all universal features of the above model.For vanishing oupling strength v = 0, or equivalently λ = 0 for �nite ∆, the eigenenergiesare ε± = ±1

2
and the eigenvetors are

η+(λ = 0) =

(
1

0

) and η−(λ = 0) =

(
0

1

)
. (4.5)As we inrease the oupling the eigenvetors η± get admixtures in the other omponent. They
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η+ =

1√
2
(
1 + 4λ2 +

√
1 + 4λ2

)

(
1 +

√
1 + 4λ2

2λ

)
,

η− =
1√

2
(
1 + 4λ2 +

√
1 + 4λ2

)

(
−2λ

1 +
√
1 + 4λ2

)
. (4.6)Aording to Eq. (3.72) the produt measure of these eigenstates is determined by

M [η±] =
µup[η±]

µup[Ψuniform] µlo[η±]
µlo[Ψuniform] = 4η2±,1η

2
±,2, (4.7)where the measures of the uniformly distributed state Ψuniform are substituted by 1

2
. InsertingEq. (4.6) for the eigenstates yields

M [η±] = 4
(1 + 2

√
1 + 4λ2 + 1 + 4λ2) · 4λ2

[2(1 + 4λ2 +
√
1 + 4λ2)]2

=
4λ2

1 + 4λ2
(4.8)

≈




4λ2 for λ→ 0

1− (2λ)−2 for λ→ ∞.
(4.9)

In addition to the produt measure, we onsider the time evolution of the state ψ(t = 0) =

(1, 0), whih is given by
ψ(t) =

∑

σ∈{+,−}
ησ exp{−iEσt/~} ηTσ · ψ(t = 0)︸ ︷︷ ︸

ησ,1

. (4.10)The asymptoti weight in this setup is the squared lower element of the time evolved vetor,
(ψ(t))2 =

∑

σ∈{+,−}
ησ,2 exp{−iEσt/~}ησ,1 (4.11)

= η+,2 exp{−iE+t/~}η+,1 + η−,2 exp{−iE−t/~}η−,1, (4.12)whih an be expressed using the eigenenergies and eigenvetors (see Eqs. (4.2), (4.3), and(4.6)) by
(ψ(t))2 =

2λ
[
1 +

√
1 + 4λ2

]

2
(
1 + 4λ2 +

√
1 + 4λ2

)
[
exp

{
−i∆√

1 + 4λ2t

2~

}
− exp

{
+i∆√

1 + 4λ2t

2~

}] (4.13)
=

λ√
1 + 4λ2

2i sin [−∆
√
1 + 4λ2t/(2~)

]
. (4.14)



94 4.1 Deterministi 2× 2 modelFor the transmitted weight we obtain
|(ψ(t))2|2 =

4λ2

1 + 4λ2
sin2

[
∆
√
1 + 4λ2t/(2~)

]
=M(λ) sin2

[
∆
√
1 + 4λ2t/(2~)

]
, (4.15)whih is the result of the produt measure with some additional osillating time dependene.Averaged over one period in time the transmitted weight ompared to the ase without a barrier(strong oupling) is determined by the produt measureATW =

|(ψ(t))2|2
1/2

=M(λ) =
4λ2

1 + 4λ2
. (4.16)The osillations as a funtion of time depend on the energy di�erene between the two eigen-states and are known as Rabi osillations [52, Se. 3.2.2℄. These osillations also arise in thetime evolution of wave pakets in systems with more than two eigenstates. In those ases the os-illatory behavior depends on the energy di�erenes of all pairs of eigenfuntions. As disussedin Se. 3.3.1 the superposition of those osillations gives rise to a smooth averaged behavior atlarge times. Therefore it is meaningful to ompare our �ndings of this simple model, Eq. (4.16),to the results for the quantum map.In Se. 3.3.7 we disussed that the overall behavior of the map data is well desribed by,Eq. (3.112), ATW =

Φ
he�

1 + Φ
he� . (4.17)If we identify 4λ2 with the ratio Φ/he� Eqs. (4.16) and (4.17) are the same. It is plausible toassume that λ2 is proportional to the ratio Φ/he�, beause both are proportional to the salingparameter Λ. However, the prefator 4 is a �tting parameter.The produt measure of Eq. (4.8) as a funtion of the parameter λ is shown in Fig. 4.2.In analogy to Se. 3.3.7 the produt measure M has a point symmetry relative to the point

(λ,M) =
(
1
2
, 1
2

). That is,
M (λ)−M

(
λ =

1

2

)
=M

(
λ =

1

2

)
−M

(
1/2

λ

) (4.18)
4λ2

1 + 4λ2
− 1

2
=

1

2
− (2λ)−2

1 + (2λ)−2 (4.19)
1 =

4λ2 + 1

1 + 4λ2
. (4.20)In terms of the parameter λ the total width of the transition region de�ned in Se. 3.3.7,

M ∈ [0.1, 0.9], is a fator of 9 (see Fig. 4.2).
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Figure 4.2: Produt measure M for the deterministi 2× 2 model, Eq. (4.4), as a funtionof the saling parameter λ = v/∆. M ful�lls an inversion symmetry with respet to (12 , 12).The dotted lines and the arrow indiate the transition width if we onsider anything between10% and 90% as the transition region.Although the approximation of the quantum map by a two site system is quite rude, thisdeterministi 2 × 2 model, Eq. (4.4), yields an exellent desription of the numerial datadesribing the transition from quantum suppression to lassial transport (see Fig. 3.28 inSe. 3.3.7).
4.2 BTU matrix modelIn 1993 Bohigas, Tomsovi, and Ullmo proposed a matrix model to desribe the impat ofpartial barriers on the quantum system (BTU model) [23, 66℄. The main idea of the modelis to desribe the transition from quantum suppression to lassial transport by modeling twohaoti sub-systems, that are oupled.In order to set up this matrix model, we need to model a haoti region in terms of randommatrix theory: In the 1960's it was found that spetral statistis of nulei energies have universalproperties, whih an be modeled by suitable random matrix ensembles [67℄. These matrixensembles desribe the universal properties of fully haoti systems, whih was onjetured byBohigas, Giannoni, and Shmit in 1984 [68℄. For the ase of time reversal invariant systemsthe universal behavior is given by the Gaussian orthogonal ensemble (GOE). As all systemsonsidered in this thesis obey time reversal invariane, we restrit ourselves to disuss thisensemble. More details an be found in Ref. [67℄.For the matrix elements Hij in the ase of the GOE ensemble one uses Gaussian random



96 4.2 BTU matrix modelvariables with vanishing mean value and varianes given by
〈H2

ii〉 =
1

2A
, (4.21)

〈H2
ij〉 =

1

4A
for i 6= j (4.22)with some free parameter A �xing the energy sale. This yields a density of states ρ(E), whosesmooth part is desribed by Wigner's semiirle law (see Ref. [67, Se. 4.2℄ and Fig. 4.3)

ρWig(E) =  2
π

√
N ·A

√√√√1−
(

E√
N/A

)2 for |E| ≤√N
A

0 otherwise. (4.23)
In the BTU matrix model two of these GOE matries are used for the desription of the twohaoti regions above and below the partial barrier. These matrix bloks are oupled via someoupling matrix, whih depends on the ratio of lassial �ux Φ and Plank's onstant he�,

H =


 GOE

GOE

Φ
heff

Φ
heff



. (4.24)
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Figure 4.3: Density of states ρ(E) for an ensemble of 100 GOE matries of size N×N (bluehistogram), where we hoose N = 100 and the parameter A = N for Eqs. (4.21) and (4.22).The histogram is in agreement with the Wigner semiirle law of Eq. (4.23), whih is shownas a red dashed line.



4.2 BTU matrix model 97The limiting ases of this BTU model are two unoupled GOE sub-matries and one large GOEmatrix
H =


 GOE

GOE

0

0




and H =




GOE



, (4.25)whih orrespond to vanishing and large lassial �ux Φ, respetively. For small lassial �uxthe partial barrier ats as a quantum barrier giving rise to quantum suppression and therebyunoupled sub-systems. In the ase of a large lassial �ux, Φ ≫ he�, the partial barrier hasno e�et on the quantum system and is negligible. Hene the whole system an be treated asone haoti region.A matrix model similar to Eq. (4.24) was originally introdued by Rosenzweig and Porterin 1960 in order to desribe symmetry breaking in atomi level spetra [40℄. Additional fores,whih do not ommute with the symmetry of the system yield a breakdown of the blok strutureand indue ouplings between formerly independent levels. Sine this time the model hasbeen applied for qualitative and quantitative desriptions of symmetry breaking in varioussystems [69�76℄. The symmetry operator for the situation with a partial barrier is

S = Pup − Plo (4.26)with the projetion operators Pup and Plo on the �titious upper and lower sub-spaes. Statesloalized in the upper haoti region are eigenstates of S with eigenvalue +1 beause suh statesare eigenstates of Pup with eigenvalue 1 and Plo with eigenvalue 0. In analogy states loalizedin the lower haoti region are eigenstates of S with eigenvalue −1. This lassi�ation of statesfails in the ase of non-vanishing transport between the two regions, beause the eigenstates ofthe quantum map will have admixtures in the respetive other region.The relevant parameter in the random matrix transition is the saling parameter, Ref. [23,Eq. (5.25)℄,
Λjk =

v2jk
D2

, (4.27)where the loal mean level spaing
D =

1

ρ̄(E)
(4.28)is the inverse of the loal mean density of states and the average matrix element vjk of the



98 4.2 BTU matrix modeloupling matrix H1 is
v2jk = |〈jα|H1|kβ〉|2. (4.29)Here the right hand side is averaged over all states α in region j and all states β in region k (seeRef. [23, p. 99 �.℄). The matrix elements of H1 for the BTU model are Gaussian distributedrandom variables with zero mean and variane v2jk.In ase of only two regions we drop the subsript of the saling parameter and use Λjk = Λto desribe the transition in the matrix model. The square root of the saling parameterorresponds to the root-mean-square oupling in multiples of the mean level spaing

√
Λ =

√
v2

D
. (4.30)It measures the strength of the oupling on the sale of the mean level spaing.Aording to Ref. [23℄ this saling parameter needs to be ompared with the lassial �ux(see Eq. (5.26) in Ref. [23℄ for d = 2)

Λ =
1

4π2f1f2

Φ

2π~e� =
Φ

π2he� , (4.31)where in the last step it was assumed that the upper and the lower region are equal in size
f1 = f2 =

1
2
. Equation (4.31) is the same as the Λ-�ux relation for maps derived in Se. 3.2.2.In Se. 4.2.1 the BTU matrix model with GOE bloks of equal size is disussed. That is, themodel desribes a phase spae, where the upper and the lower region have equal size. The aseof di�erent blok sizes is disussed in Se. 4.2.2 and very good agreement with the result ofthe matrix model with equal blok size is found. The equivalene of the ATW and the averageprodut measure is explained in Se. 4.2.3 and �nally the results are ompared to the map datain Se. 4.2.4.4.2.1 GOE bloks of equal sizeThe simplest ase for a random matrix transition in the ensemble desribed above is the ase oftwo GOE bloks of equal size Nup = Nlo. The upper left and lower right bloks of Eq. (4.24) areGOE matries, whose elements are Gaussian random variables with zero mean and varianesgiven by Eqs. (4.21) and (4.22). For the oupling bloks we hoose

v2 = σ2oupl〈H2
ij〉 =

σ2oupl
4A

, (4.32)whih provides the limit of two unoupled GOEs for σoupl = 0 and the limit of one large GOEfor σoupl = 1. The prefator σoupl in the oupling bloks is the only di�erene in omparison



4.2.1 GOE bloks of equal size 99to setting up a large GOE matrix.In the evaluation of the matrix model we restrit ourselves to states with energies aroundzero in order to ensure a �xed mean level spaing for all of them. This is needed in order todetet universal features independent of variations of the mean level spaing as a funtion ofthe energy (see Fig. 4.3). Aording to Eq. (4.23) we obtain for the unorrelated superpositionof two GOE matries of size Nup
ρ(E = 0) = 2 · 2

π

√
Nup · A. (4.33)The saling parameter follows as

Λ =
v2

D2
= v2ρ2(E = 0) (4.34)

=
σ2oupl
4A

16NupA
π2

=
4Nupσ2oupl

π2
. (4.35)Note that the saling parameter Λ does not depend on the hoie of the energy sale A, butonly on the hoie of the oupling strength σoupl and the matrix size Nup.For eah oupling strength we determine the eigenvetors of the random matrix and omputetheir produt measure with Eq. (3.72),

M [φ] =
µup[φ]

µup[Ψuniform] µlo[φ]
µlo[Ψuniform] , (4.36)whih simpli�es to

M [φ] = 4µup[φ]µlo[φ] = 4µup[φ](1− µup[φ]) (4.37)for the ase of two sub-systems of equal size Nup = Nlo, beause the uniformly distributed state
Ψuniform has measure 1

2
in eah region.In Fig. 4.4 we show the resulting produt measure averaged over all eigenstates with energylose to zero (we use 10% of the states) as a funtion of the saling parameter. The results fordi�erent matrix sizes Nup niely fall on top of eah other. That is, universal behavior is found.The results for the matrix model are ompared to the perturbative expression for the ATWderived in Ref. [23, p. 113�115℄, ATW ≡ ∆j

k

fk
≃

√
2πΛ. (4.38)We �nd very good agreement between the random matrix results and the perturbative expres-sion up to Λ = 10−2 (see Fig. 4.4(b)).Furthermore, the overall behavior of the average produt measure for the BTU matrix model
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Figure 4.4: Average produt measure 〈M〉 for the BTU model of equal size as a funtion ofthe saling parameter Λ. The data is determined from 1000 matries with Nup = Nlo = 100,200, and 500. For the average 10% of the states around E = 0 are used. The overallbehavior of the data is well desribed by a 2× 2-model desription derived in the ontext of�ooding [39℄: 2v arctan 1
2v (gray dash-dotted line, see also Eq. (4.41)). The e�etive ouplingstrength is v =

√
2Λ/π. Moreover we ompare to the perturbative result √2πΛ [23℄ (greendotted line). Piture (b) magni�es (a) in the perturbative regime.is reasonably well desribed by the 2 × 2-model, introdued by Bittrih in his PhD thesis [39,Se. 3.3.3℄ in the ontext of �ooding of the regular island by haoti states. It desribes thetunneling oupling between regular and haoti states. While lassially regular and haotiregions are separated, this oupling yields eigenstates with strong admixtures in both of thelassial regions. This is similar to the ase of our interest, where due to the oupling haoti



4.2.1 GOE bloks of equal size 101eigenstates get admixtures in the unoupled region if quantum transport aross the partialbarrier is allowed. The 2× 2 random matrix model is given by the Hamiltonian
H =

(
κ v

v −κ

) for κ ∈
[
−1

2
, 1
2

]
, (4.39)whih is determined by the mean level spaing 2κ and the e�etive oupling v > 0. Theensemble average is performed by an average over κ.If we use the results derived in Se. 4.1 for the produt measure we have to average Eq. (4.8)with λ = v/(2κ),

M(v, κ) =
(v/κ)2

1 + (v/κ)2
=

1

1 + (κ/v)2
, (4.40)over κ, whih yields

〈M(v, κ)〉κ = 2v arctan
1

2v
. (4.41)For small ouplings 〈M(v, κ)〉κ is linear in the e�etive oupling v and for large v it approahesone, whih orresponds to the ase without a barrier,

〈M(v, κ)〉κ ≈




2v · π

2
= πv for v ≪ 1

2v ·
(

1
2v

− 1
3(2v)3

)
= 1− 1

3(2v)2
for v ≫ 1.

(4.42)In order to �x the e�etive oupling strength v, we ompare the linear regime in v to theperturbative expression of Ref. [23℄
∆j
k

fk
≃

√
2πΛ

!
= πv, (4.43)whih determines the relation of v and Λ

v =

√
2

π

√
Λ ≈ 0.8

√
Λ. (4.44)The predition of Eq. (4.41) using Eq. (4.44) is plotted in Fig. 4.4. It reasonably agrees withthe average produt measure of the random matrix model introdued by Bohigas, Tomsovi,and Ullmo over the full range of Λ. It seems plausible that the 2× 2-model of Bittrih is validto desribe the results here. The only di�erene between his approah and the random matrixmodel is the harater of the two oupled sub-spetra. Namely here we have two haoti regionsand in the ase of �ooding we have one haoti and one regular sub-system. For eah individualregular state the oupling elements with the haoti states are Gaussian distributed and the



102 4.2 BTU matrix modelvariane is �xed by its regular-to-haoti tunneling rate. Therefore the oupling is the same inboth models.By use of this 2×2-model, we approximate the strong oupling behavior of the ATW for theBTU model. Using Eqs. (4.42) and (4.44), we derive for strong oupling Λ

〈M(Λ, κ)〉κ ≈ 1− 1

24 · Λ/π ≈ 1− 1

7.6 · Λ . (4.45)As an alternative to using full GOE matries, one may also diagonalize a GOE matrix anduse its eigenvalues on the diagonal for the upper and the lower blok or even diagonalize a COEmatrix and use its eigenphases for the diagonal. Both approahes yield the same results as theapproah presented above and we restrit ourselves to this approah in the following.As disussed for the designed map (see Se. 3.3.3), the distribution of the produt measure ofall eigenstates is a relevant quantity. At this point we restrit ourselves to the disussion of themain features of the distribution d(M) for the BTU random matrix model shown in Fig. 4.5 forvarious values of the saling parameter Λ = Φ/(π2he�), where the Λ-�ux relation of Eq. (4.31)is used. For small values of the saling parameter Λ the distribution d(M) is mainly peakedaround M = 0, but there are already states with M lose to one. That is, already for smallouplings some of the states are lose to the state uniformly distributed in both regions. Forinreasing saling parameter the peak of the distribution moves to the valueM = 1 and almostall states are uniformly distributed for large oupling strength.

0

5

10

15

0.00 0.25 0.50 0.75 1.00

Λ = 7.8e− 03 (Φ/heff ≈ 1
16 )

Λ = 2.8e− 02 (Φ/heff ≈ 1
4 )

Λ = 9.9e− 02 (Φ/heff ≈ 1)

Λ = 3.5e− 01 (Φ/heff ≈ 4)

Λ = 1.3e+ 00 (Φ/heff ≈ 16)

M

d(M)

Figure 4.5: Distribution d(M) of the produt measure M for the BTU model with Nup =
Nlo = 500 using 1000 random matries and various values of the saling parameter. Thevertial line indiates the loation of the average value.



4.2.2 GOE bloks of di�erent size 1034.2.2 GOE bloks of di�erent sizeIn this setion we want to generalize the results of Se. 4.2.1 to the ase of sub-systems, whihhave di�erent size. Therefore we onsider the oupling of two bloks of size Nup 6= Nlo.One approah is to start again with some large GOE matrix (of size Ntot = Nup +Nlo) andmultiply the upper right and the lower left blok � the oupling bloks � by a fator σoupl. Inthis ase the mean level spaing of the unorrelated superposition is given by (see Eq. (4.23))
1

D
= ρ(E = 0) =

2

π

[√
Nup +√Nlo] · √A (4.46)and the mean square oupling element is the same as in Eq. (4.32). Therefore the salingparameter is given by

Λ =
v2

D2
= v2ρ2(E = 0) (4.47)

=
σ2oupl
4A

4A

π2

[√
Nup +√Nlo]2 = σ2oupl

π2

[√
Nup +√Nlo]2 . (4.48)The produt measure of Eq. (3.72)

M [φ] =
µup[φ]

µup[Ψuniform] µlo[φ]
µlo[Ψuniform] , (4.49)
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Figure 4.6: Average produt measure 〈M〉 for the inappropriate implementation of the BTUmodel of di�erent size as funtion of the saling parameter Λ. All urves were averaged over10% of the eigenstates of 100 random matries with energy around E = 0. The resultsstrongly depend on Nlo and show non-universal behavior.



104 4.2 BTU matrix modelfor the ase of Nup 6= Nlo obeys
M [φ] =

µup[φ]
Nup/Ntot µlo[φ]

Nlo/Ntot . (4.50)The resulting average produt measure of this matrix model is shown in Fig. 4.7 and we �nd adependene on the ratio Nlo/Nup. The results learly deviate from the result of Nup = Nlo. Forthe limit of strong oupling (large Λ) the urves fall on top of eah other, whih is in agreementwith the well de�ned limit of one large GOE matrix of the disussed ensemble. The deviationsfor di�erent Nlo/Nup arise due to the fat that the spetra of the unoupled blok extend overdi�erent energy ranges: |E| ≤
√
Nup/A for the upper levels and |E| ≤

√
Nlo/A for the lowerlevels aording to Eq. (4.23).We now orret the approah by hoosing the same energy range for the upper and lowerlevels, whih is reasonable aording to Ref. [70℄. In order to ahieve that, di�erent sales Aupand Alo need to be introdued. Equal energy ranges orrespond to

Nup
Aup =

Nlo
Alo . (4.51)That is, we introdue di�erent repulsion strengths Aup and Alo in the GOE bloks. In this aseboth sub-spetra ontribute with their number of states to the density of states at zero energy

ρ(E = 0) =
2

π

[√
Nup · Aup +√Nlo · Alo] = 2

π

√
Aup
Nup [Nup +Nlo] = 2

π

√
Aup
NupNtot. (4.52)This is in ontrast to the density of states in Eq. (4.46), where both sub-spetra ontributewith the square root of their number of states.For the elements in the matrix model we therefore hoose in the upper left blok

〈H2
ii〉 =

1

2Aup , (4.53)
〈H2

ij〉 =
1

4Aup for i 6= j (4.54)and in the lower right blok
〈H2

ii〉 =
1

2Alo =
Nup

2NloAup , (4.55)
〈H2

ij〉 =
1

4Alo =
Nup

4NloAup for i 6= j, (4.56)where Alo is determined from Aup and the numbers of states Nup and Nlo, respetively (see



4.2.2 GOE bloks of di�erent size 105Eq. (4.51)). The oupling elements are expressed relative to the upper left blok, Eq. (4.54), as
v2 = σ2oupl〈H2

ij〉 =
σ2oupl
4Aup . (4.57)The saling parameter for this ensemble is

Λ = v2ρ2(E = 0) (4.58)
=
σ2oupl
4Aup 4

π2

Aup
NupN2tot = σ2oupl

π2NupN2tot. (4.59)The saling parameter is independent of the energy sale given by Aup. Note that the asymmetryof Λ in the matrix sizesNup andNlo is due to the de�nition of the oupling strength σ2oupl relativeto the variane of the o�-diagonal elements of the upper left blok in Eq. (4.57).The resulting produt measure of this matrix model is shown in Fig. 4.7 for several pairs
(Nup, Nlo). We �nd that up to Λ ≈ 10 the results for the BTU model with Nup 6= Nlo (ensuringthe same energy range) niely agree with the previous results for sub-matries of equal size.The disagreement for larger Λ is not relevant. For inreasing matrix size Ntot this di�erene ismoved further to the right, whih indiates that for arbitrary large matrix size Ntot the resultfor Nup = Nlo is fully reovered. Similar e�ets are also mentioned in Ref. [39, Se. 3.3.2℄.
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Figure 4.7: Average produt measure 〈M〉 for the BTU model of di�erent size (Nup 6= Nlo)as a funtion of the saling parameter Λ. All urves were averaged over 100 realization ofthe random matries. The results for di�erent Nlo niely fall on top of eah other. That is,universal behavior is found.



106 4.2 BTU matrix model4.2.3 Equivalene of ATW and average produt measureNow we disuss the asymptoti transmitted weight, whih is given by (see Eq. (3.52))ATW ≡ µ̃∞[ψ(t = 0)] = lim
T→∞

1

T

T−1∑

t=0

µ[ψ(t)]

µ[Ψuniform] = lim
T→∞

1

T

T−1∑

t=0

µ[ψ(t)]

Nµ/Ntot . (4.60)The initial state ψ(t = 0) might be onentrated on any site i0 in one of the regions, ψ(t =
0)i = δi,i0, and the measure µ is extended over the whole opposite region (either upper orlower). Therefore Nµ is either equal to Nup or to Nlo. Following the derivation from Eq. (3.55)to Eq. (3.72) we obtain

〈µ̃∞[ψ(t = 0)]〉ψ(t=0) =
1

Ntot · Ntot−1∑

j=0

µup[φj ]
Nup/Ntot µlo[φj]

Nlo/Ntot = 1

Ntot · Ntot−1∑

j=0

M [φj ], (4.61)whih is an average over the produt measure de�ned by Eq. (4.49). This is in ontrast tothe average produt measure de�ned in Se. 4.2.1, whih inludes only states lose to E = 0.However, averaging over all states in the matrix model yields a meaningless quantity, beausethe saling parameter strongly depends on the onsidered state if the mean level spaing is not�xed anymore. The average over all states would e�etively inlude several Λ leading to anadditional average over Λ. Universal behavior an be found only as long as the averaged quan-tities are related to one value of the saling parameter Λ. Hene the average in Eq. (4.61) needsto be restrited to states with �xed mean level spaing as in the previous setions (Se. 4.2.1and 4.2.2). This needs to be taken into aount for the time evolution, too. In order to observeuniversal behavior the initial wave paket has to exite only states with �xed mean level spa-ing. We restrit ourselves in the following to averaging over the produt measure, Eq. (4.61),to derive a transition urve for the ATW, whih is ompared to the map data.4.2.4 Comparison to map dataIn this setion we ompare the result of the BTU matrix model to the map data disussed inSe. 3.3.3. As pointed out in Se. 3.2.1 the mixing in phase spae needs to be quik in orderto ompare the results with random matrix preditions. That is, the Ehrenfest time has to besmall ompared to the dwell time and the Heisenberg time in the quantum system. For theexamples of map Fpb and Fpb,rot we determined the average �nite time Lyapunov exponent,introdued in Se. 2.3, and omputed the Ehrenfest time aording to Eq. (3.42) of Se. 3.2.1.For the Lyapunov exponent we obtain values around two for all examples de�ned in Ses. 3.1.4and 3.1.7. This yields an Ehrenfest time tE,i ≈ 1, ..., 2 for N = 1/he� = 100, ..., 50000, whihhas to be ompared with the dwell time tdwell,i = 79, 346, 1284, 4100 for example 1, 2, 3, and4, respetively, and the Heisenberg time of the upper and lower region tH,i = Nup = Nlo =



4.2.4 Comparison to map data 107
Ah,loN ≈ 0.4N .Figure 4.8 shows the average produt measure of the map Fpb,rot of the Fig. 3.19 and ad-ditionally the resulting urve of the BTU matrix model. For large ratios Φ/he� and thereforestrong oupling, we �nd reasonable agreement between the matrix model and the map data.Both urves have a similar transition width. However, for small values of Φ/he� there are leardeviations between the BTU matrix model and the map data. The BTU result overestimatesthe values of the quantum map.The reason for this mismath of the map data and the BTU matrix model ould be the Λ-�uxrelation, Eq. (4.31). The assumption that the lassial and the quantum rate are equal (seeSe. 3.2.2) is very well settled in the semilassial regime of the partial barrier, Φ/he� ≫ 1, butmay fail in the quantum regime, where he� is of the same order or even larger than the lassial�ux Φ. In Se. 3.3.1 the transmitted weight as a funtion of time is disussed, but no relationof the quantum rate with the lassial �ux, whih ould replae the Λ-�ux relation, is found.Therefore we will use this Λ-�ux relation in the following.Another possible reason for the mismath of the map data and the BTU matrix model mightbe the overall Gaussian oupling assumed in the random matrix model. We will fous on thispoint in the following setions.
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Figure 4.8: Average produt measure 〈M〉 using the momentum measures for the examples1, 2, and 3 of the map Fpb,rot (same as Fig. 3.19) in omparison to the result of the BTUmatrix model with Φ/he� = π2Λ (gray dashed line).



108 4.2 BTU matrix model4.2.5 Two GOE oupled via one elementAs pointed out in Se. 4.2.4 the overall Gaussian oupling in the random matrix model proposedby Bohigas, Tomsovi, and Ullmo might be inappropriate to over the features of a partialbarrier. Hene we onsider a redution of the overall oupling to a oupling via one non-vanishing element in the oupling blok only. We onsider the matrix model introdued inSe. 4.2.1 with A = Ntot and Nup = Nlo, whih yields a mean level spaing of
D(E ≈ 0) =

π

4
√
NupA =

π

4
√
2Nup (4.62)around zero energy. However, this time there is only one non-vanishing oupling element in theoupling blok (as well as its transposed partner to obtain a Hermitian matrix). It is hosen asa Gaussian random variable with zero mean and variane σ2oupl. For the saling parameter Λwe �nd

Λ =
〈v2〉
D2

=
σ2oupl
N2upD2

=
32σ2oupl
π2

. (4.63)Note that the average oupling element 〈v2〉 is determined by averaging over all N2up elementsof the oupling blok.
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Figure 4.9: Average produt measure 〈M〉 using the momentum measures for the examples1, 2, and 3 of the map Fpb,rot (same as Fig. 3.19) in omparison to the result for the ran-dom matrix model, where two GOE matries are oupled via only one matrix element with
Φ/he� = π2Λ (line with rosses). For the matrix model with one oupling element we used10% of the eigenstates with energy around E = 0 of 1000 matries with Nup = Nlo = 500.Moreover we ompare to the BTU matrix model (gray dashed line) disussed in Se. 4.2 andthe result of the deterministi 2× 2 model of Se. 4.1 (blak solid line).



4.3 Channel oupling 109The average produt measure 〈M〉 of this matrix model is shown in Fig. 4.9. For largevalues of the saling parameter Λ the ATW dereases with inreasing Λ. At this point a strongperturbation limit is reahed and the modeling of the oupling of two separated regions fails.We �nd a lear redution of the average produt measure ompared to the BTU matrix model.However, it is not appropriate to resolve the mismath of the map data and the matrix modelingapproahes disussed up to now.4.3 Channel ouplingThe random matrix model disussed in Se. 4.2 uses a Gaussian oupling between all the upperand all the lower states of the unoupled system to desribe the impat of the partial barrier.From the lassial point of view this seems quite unintuitive, beause there is a deterministitransport from one site to the other if an orbit enters the turnstile. The oupling betweenthe upper and the lower states happens at the bottle nek alled turnstile. In analogy to thissituation we onsider two billiard systems, whih are onneted by a small hannel, in whiha �nite number of modes n an propagate. This idea is illustrated in Fig. 4.10. Aording toStökmann this situation is desribed by a random matrix model of the kind [77℄
H =


 GOE

GOE

σV UT

σUV T



, (4.64)

where the matries U and V desribe the oupling from the upper and the lower region to thehannel (see Fig. 4.10) and are of size Nup×n and Nlo×n, respetively. The model, Eq. (4.64),
UT

V
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V T

Nup

n

Nlo

Figure 4.10: Illustration of the hannel oupling for billiards. The matries V and U expressthe oupling from the upper and lower billiard (with Nup and Nlo states) into the hannel,in whih n modes an propagate.



110 4.3 Channel ouplingis suessfully applied in Ref. [75℄, in whih the symmetry breaking in a system omposed of twobilliards is onsidered. Here the oupling between the two billiards ours via one transverseeletromagneti mode. It is found that properties of the wave funtions are di�erent from thematrix model disussed in Se. 4.2.The oupling strength between the upper and the lower states is determined by the parameter
σ and we hoose the matrix elements of U and V with zero mean 〈Uij〉 = 0 and unit variane
〈U2

ij〉 = 1. In general σ ould be a diagonal matrix, whih takes are of the individual ouplingstrengths (σi ∈ R) for eah mode
σUV T → Udiag (σ1, . . . , σn) V T , (4.65)
σV UT → V diag (σ1, . . . , σn)UT . (4.66)This implies knowledge about the distribution of the oupling strength to individual propagatingmodes. We will neglet this possibility here, but use it in Se. 4.3.4.The oupling bloks in Eq. (4.64), σUV T and σV UT , are determined by n · Nup + n · Nlorandom numbers in ontrast to Nup · Nlo random numbers in the matrix model of Se. 4.2.During one time step all `upper' elements of the wave funtion (Nup omplex numbers) aremultiplied by UT and thereby give n (omplex) numbers. These n numbers are a superpositionof the former Nup values and are redistributed onto Nlo numbers using V .To alulate the saling parameter, we need the variane of the o�-diagonal oupling

σ2
〈(
UV T

)2
ij

〉
= σ2

〈(
n∑

l=1

uilvjl

)2〉
= σ2

〈
n∑

l=1

uilvjl

n∑

l′=1

uil′vjl′

〉 (4.67)
= σ2

〈
n∑

l=1

u2ilv
2
jl +

n∑

l 6=l′
uilvjluil′vjl′

〉
. (4.68)The matrix elements vjl and uil are independent Gaussian random variables. Therefore theyare unorrelated and the expetation value of the produt is the produt of the expetationvalues. The same is true for the pair (vjl, vjl′) and the pair (uil, uil′) for l 6= l′. Beause themean values of all these random variables vanish, 〈vij〉 = 〈uij〉 = 0, the whole non-diagonalontribution vanishes. Hene, the o�-diagonal oupling is

σ2
〈(
UV T

)2
ij

〉
= σ2

n∑

l=1

〈
u2il
〉
·
〈
v2jl
〉
= nσ2, (4.69)where in the last step it was used that vjl and uil have unit variane. Finally the salingparameter is

Λ =
n · σ2

D2
(4.70)



4.3 Channel oupling 111with the mean level spaing D of the unorrelated superposition of the levels of the two GOEbloks. Aording to Eq. (4.52) the mean level spaing for Nup 6= Nlo for small energies is
D(E ≈ 0) =

π

2Ntot√Nup
Aup =

π

2Ntot , (4.71)where in the last step Aup := Nup was hosen to �x the variane in the upper left blok andtherefore the variane in the lower left blok (Alo follows from Eq. (4.51)).We now disuss the results for di�erent σ in order to look for universal saling behavior inthis hannel oupling model. Again we onsider the produt measure as de�ned by Eq. (3.72)
M [φ] =

µup[φ]
µup[Ψuniform] µlo[φ]

µlo[Ψuniform] . (4.72)Figure 4.11 shows the average produt measure 〈M〉 for di�erent ratios σ/D as a funtion ofthe saling parameter Λ. For small ratios σ/D the results are in good agreement with the BTUmodel disussed in Se. 4.2, whereas for larger ratios σ/D the data does not sale with theparameter Λ.Aording to Ref. [75℄ the variane σ2 needs to be determined by system spei� properties.
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Figure 4.11: Average produt measure 〈M〉 for the hannel oupling model for several valuesof the ratio σ/D (di�erent markers). The data points are averaged over 10% of the stateswith energy around E = 0 and we used 100 matries of size Nup = Nlo = 100. The resultsare ompared to the BTU model disussed in Se. 4.2 (dashed gray line) and the 2× 2 resultof Se. 4.2.1 using 4λ2 = Φ/he� = π2Λ (solid blak line). We �nd agreement with the BTUmodel for small oupling varianes σ2. For larger σ/D the the data points learly deviatefrom the BTU matrix model.



112 4.3 Channel ouplingThat is, for a given number of transporting hannels one has to dedue the saling parameter
Λ to ompute σ for a given D. In order to �x the value of σ and ompare the results with the�ndings in the map system, we have to use the Λ-�ux relation of Eq. (3.50),

Λ =
1

4π2fupflo Φ

he� , (4.73)and assume a relation between the number of propagating modes n and the ratio Φ/he�. Itis natural to assoiate Φ/he� states to a phase-spae area of size Φ, beause 1/he� is the totalnumber of states in the phase spae of area one. Therefore we assume
n =

Φ

he� (4.74)in the following. This is onsistent with the disussion in Se. 3.2.1, where Φ/he� is assoiatedwith the number of open hannels in an open system. Equations (4.70), (4.73), and (4.74)determine the oupling strength σ,
σ =

D

2π
√
fupflo =

1

4Ntot√fupflo =
1

4
√
NupNlo , (4.75)where in the last but one step Eq. (4.71) is used.Fixing the value of σ using fup = flo = 1

2
,
σ =

1

2Ntot , (4.76)and independently varying the size of the blok matries Nup and Nlo gives the data shown inFig. 4.12. We �nd saling with the parameter Λ independent of the size of the upper and lowerblok Nup and Nlo, respetively. Universal behavior arises for di�erent blok sizes and �xed
σ. Fixing the value of σ orresponds to assoiating a �xed oupling strength with eah of thepropagating modes, whih give rise to the oupling between the two haoti sub-systems.The hannel oupling model is limited to positive integer values of n and therefore onlythe upper half of the transition urve an be predited. The average produt measure of thehannel oupling is learly smaller than the result of the BTU matrix model, but follows thesame transitional behavior as the data of the map Fpb,rot and the deterministi 2 × 2 modeldisussed in Se. 4.1 if we use the �tted prefator 7 instead of π2 (see Fig. 4.12).Figure 4.13 shows the distribution of the produt measure d(M) of the individual eigenstates.As for the designed map and the BTU matrix model, the distributions perform a transitionfrom broadly spread for n = 1 to a peak around M = 1 for large values of n = π2Λ.We onsider one again the hannel oupling model with Nup 6= Nlo. In ontrast to above,Eq. (4.76), we determine the oupling strength σ aording to Eq. (4.75) and thereby get
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Figure 4.12: Average produt measure 〈M〉 for the hannel oupling model with σ =
1/(2Ntot) (Eq. (4.75) for fup = flo = 1/2) for �xed Nup = 200 and various Nlo. Thedata points are averaged over 10% of the states with energy around E = 0 and we used 1000random matries. The data is ompared to the BTU model shown as a thik dashed grayline. Furthermore we ompare to the result of the deterministi 2 × 2-model disussed inSe. 4.1 (solid blak line and dashed blak line with prefator π2 and 7).
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Figure 4.14: Average produt measure for the hannel oupling model for various pairs
(Nup, Nlo) in omparison to the ase with Nup = Nlo (blak diamonds) and the BTU matrixmodel (thik gray dashed line) as well as the 2× 2-model disussed in Se. 4.1 with prefator7 and π2. The oupling strength σ is given by Eq. (4.75).di�erent σ for di�erent ratios Nlo/Nup. The results are shown in Fig. 4.14. Here the resultingaverage produt measure 〈M〉 does not sale with the parameter Λ. This is in ontrast toFig. 4.12, where we �xed σ by Eq. (4.76) and varied Nup and Nlo independently. This missingsaling is the same as disussed for Fig. 4.11, where we used Nup = Nlo and varied the ouplingstrength σ over a wide range. Note that for large Λ the data in Fig. 4.14 shows deviationssimilar to those disussed in Se. 4.2.2 (see also Fig. 4.7), whih disappear for large matries.A �nal statement about the appropriate hannel oupling model with fup 6= flo is not madehere and we restrit ourselves to the omparison of the hannel oupling model with fup = floto our map data in Se. 4.3.1.4.3.1 Comparison to map dataWe now ompare the result of the hannel oupling model to the data of map Fpb,rot disussedin Se. 3.3.3. This data of Fig. 3.19 is shown again in Fig. 4.15, where the results for the BTUmodel and of the hannel oupling model are inluded. For large ratios Φ/he� the hanneloupling result and the BTU result are in good agreement. For Φ/he� around one, where thedi�erene between BTU and hannel oupling is most prominent, the hannel oupling result islose to the map data and follows the same transition behavior. Therefore we onjeture thatthe redued oupling in the hannel oupling model ompared to the overall oupling of theBTU model desribes the situation of the quantum map more aurately.
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Figure 4.15: Average produt measure 〈M〉 using the momentum measures for the examples1, 2, and 3 of the map Fpb,rot (same as Fig. 3.19) in omparison to the result of the BTUmatrix model (gray dashed line) and of the hannel oupling model (blak diamonds) with
Φ/he� = π2Λ.The drawbaks of the presented hannel oupling model is that the number of open hannels

n has to be an integer number suh that 〈M〉 an be obtained at disrete values of Φ/he� only.Suh a step funtion for the ATW or the average produt measure is not observed in the dataof the maps Fpb and Fpb,rot. To overome this disreteness, one ould introdue a funtionfor the onset of the next propagating mode and therewith allow for non-integer values for thenumber of propagating modes. The question is, how to perform this onset and whih lassialparameters omplete the desription given in terms of the ratio �ux over Plank's onstant.Some andidates are the mixing time or the Ehrenfest time, whih is related to the Lyapunovexponent (see Se. 3.2.1). An extension of the hannel oupling model based on this idea isdisussed in Se. 4.3.4.4.3.2 Diagonal ouplingThe hannel oupling model is equivalent to a matrix model, where the inter-blok oupling isdiagonal with n non-vanishing elements as depited in
H =


 GOE

GOE {
n



, (4.77)



116 4.3 Channel ouplingwhere the nonzero elements vi in the oupling bloks have the �xed value σ. The mean ouplingelement squared is given by
〈v2〉 = n · σ2

Nup ·Nlo (4.78)and therefore the universal saling parameter is (using Eq. (4.52) and hoosing Aup = Nup)
Λ =

〈v2〉
D2

=
n · σ2

Nup ·Nlo 4N2tot
π2

=
4 · σ2 · n
π2fupflo . (4.79)Relating this saling parameter to the �ux in the map system (see Eq. (4.73)) and assuming

n = Φ/he� the value of σ is �xed and given by
σ =

1

4
. (4.80)This model yields the same average produt measure as the hannel oupling model, whihis shown in Fig. 4.16. This is plausible, beause for the original hannel model the ouplingstrength σ assoiated with a propagating mode is independent of the mode. Therefore allmodes ontribute equally. The additional Gaussian random oupling in the matries U and V ,whih ouple the sub-systems to the hannel, seems to have no relevant impat on the resulting
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Figure 4.16: Average produt measure for the matrix model, where two GOE matries areoupled as in Eq. (4.77) with n non-vanishing elements on the diagonal of the oupling bloks.The result for �xed oupling strength vi = σ (violet pluses) follows the hannel oupling result(blak diamonds) and the result of the Gaussian distributed oupling elements vi with zeromean and variane σ2 (blak rosses) yields smaller values. The results are ompared to theBTU matrix model (thik gray dashed line) and the 2 × 2-model disussed in Se. 4.1 withdi�erent prefators.



4.3.3 One hannel rising 117average produt measure 〈M〉. This additional randomness is already aptured in the GOEnature of the upper and the lower blok. However, if we hoose the values on the diagonal
vi as Gaussian random numbers with zero mean and variane σ2 we �nd a di�erent behavior.Namely, the resulting average produt measure for a Gaussian distributed oupling strength issmaller than for �xed elements vi = σ as shown in Fig. 4.16. Therefore it matters whether theindividual oupling strength is �xed as vi = σ or only its variane is �xed, 〈v2i 〉 = σ2.4.3.3 One hannel risingAs disussed in the �rst part of Se. 4.3 the drawbak of the hannel oupling model is thedisreteness of the number of propagating modes n. It is not possible to model less than onepropagating mode. In this setion we onsider the onset of the �rst oupling element. That is,we �x n = 1 and vary the oupling strength σ over a wide range.Figure 4.17 shows the resulting average produt measure. The result is similar to the oneshown in Fig. 4.9 in Se. 4.2.5, where the two GOE matries are oupled via one Gaussiandistributed element (variane σ2) whereas here the value of the oupling element is �xed to σfor all realizations. Therefore the di�erene between the results of Fig. 4.17 and Fig. 4.9 inSe. 4.2.5 has the same origin as the di�erene between the hannel oupling model with �xedouplings and with Gaussian distributed oupling elements disussed in Se. 4.3.2. The result
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Figure 4.17: Average produt measure 〈M〉 using the momentum measures for the examples1, 2, and 3 of the map Fpb,rot (same as Fig. 3.19) in omparison to the result for the randommatrix model, where two GOE matries are oupled via one propagating mode (pluses;varying oupling strength σ, Nup = Nlo = 500 and using 1000 random matries). Moreoverwe ompare to the BTU matrix model (gray dashed line) disussed in Se. 4.2.1 and the
2× 2-model disussed in Se. 4.1 (blak solid line) using 4λ2 = Φ/he� = π2Λ.



118 4.3 Channel ouplingfor the hannel oupling model with �xed oupling elements is reahed during the onset of the�rst oupling element disussed here and the urve of Se. 4.2.5 approahes the result for thehannel oupling model with Gaussian distributed oupling strength. For large values of thesaling parameter and thereby strong ouplings the average produt measure dereases.As long as the universal saling is desribed by Λ = 〈v2〉/D2, the presented method is theonly way of performing an onset of the �rst propagating mode. Any funtion relating the valueof σ to the ratio Φ/he� or to other map parameters like the mixing time or the Lyapunovexponent, �nally gives the same urve beause only the value of σ enters.4.3.4 Extension of the hannel oupling modelAt this point we want to overome the disreteness of the number of propagating modes.Therefore we introdue the following modi�ations to the model, Eq. (4.77). Instead of a �nitenumber of non-vanishing elements on the anti-diagonal, we use all elements on the anti-diagonaland their values follow a Fermi funtion. More preisely the squares of the matrix elementsfollow the Fermi funtion as
v2k =

σ2

1 + exp{−β(Φ/he� − k − 1/2)} for k = 0, 1, 2, . . . , Nup − 1 (4.81)with one free parameter β, whih is the inverse temperature in thermodynamis. Figure 4.18shows the square matrix elements for di�erent values of β. For β = ∞ (`low temperature'limit) the step funtion of the original model is reovered and Φ/he� determines the number of
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Figure 4.18: Square of the non-vanishing oupling elements aording to Eq. (4.81) for
Φ/he� = 2 and di�erent β. For β = ∞ the previously disussed step funtion is reoveredand for Φ/he� = 2 we �nd 2 non-vanishing elements. For �nite β this sharp transition issmoothed and for β = 0 all sites ontribute equally.



4.3.4 Extension of the hannel oupling model 119propagating modes. For �nite β the oupling as a funtion of the mode index k is smoothenedand all modes ontribute equally for vanishing β. The ratio Φ/he� determines the loation ofthe symmetry point of the Fermi funtion and for dereasing ratio Φ/he� the distribution issmoothly shifted to the left. The saling parameter Λ in this situation reads
Λ =

∑
k v

2
k

D2NupNlo . (4.82)Here there is in general no simple relation of Λ to the ratio Φ/he�, as found for the previouslydisussed matrix models.Suh transmission probabilities desribed by a Fermi funtion arise often in the �eld oftransition state theory (see for instane Ref. [78℄). As an example we use the transmission overa harmoni saddle, whih an be used to model the transition aross a partial barrier [79℄. Itis desribed by the following Hamiltonian,
H(x, y, px, py) =

p2x + p2y
2m

+
mω2

y

2
y2 − mω2

x

2
x2. (4.83)As propagation diretion we hoose the x-diretion and partiles have to overome the invertedharmoni osillator in order to pass the saddle. In the perpendiular diretion the partiles areon�ned by a harmoni potential. The problem for the y-diretion is solved by the quantizationof the harmoni osillator and the propagating modes have the energies

E
(y)
k = ~e�ωy (k + 1

2

) for k = 0, 1, 2, . . . . (4.84)The lassial �ux over the saddle at energy E per time is given by an integration of theveloity vx = px/m over all possible positions y, all possible momenta py, and all forwardpropagating momenta px > 0

Φ =
ddE ymax∫

ymin dy ∫

p2x+p
2
y≤2m[E−V (0,y)],px>0

dpxdpy · px
m

(4.85)
=

ddE ymax∫

ymin dy π/2∫

−π/2

dϕ √
2m[E−V (0,y)]∫

0

dp · p · p cosϕ
m

(4.86)
=

ddE ymax∫

ymin dy 2

3m
[2m[E − V (0, y)]]3/2 . (4.87)The limits of the y-integration are the lassial turning points for partiles with energy E at
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x = 0

ymax = −ymin =√ 2E

mω2
y

. (4.88)Substituting u := y/ymax = y
√
mω2

y/
√
2E and performing the u-integration yields

Φ =
ddE +1∫

−1

du [1− u2
]3/2 8E2

3
√
ω2
y

=
2πE

ωy
. (4.89)That is, the lassial �ux Φ in multiples of Plank's onstant is determined by the number ofpropagating modes found below energy E,

Φ

he� =
E

~e�ωy . (4.90)The transmission oe�ient of this setup an be alulated and we use the results of Ref. [80℄for vanishing magneti �eld B = 0. The harateristi energies are
E1 =

~e�
2

√
2Ux
m

=
~e�
2
ωx, (4.91)

E2 = ~e�√2Uy
m

= ~e�ωy (4.92)and the transmission probability is
Tk =

1

1 + exp{−πǫk}
with ǫk =

2ωy
ωx

[
Φ

he� −
(
k +

1

2

)] for k = 0, 1, 2, . . . (4.93)The width of the inverted harmoni osillator ωx determines how fast partiles pass thisbottlenek. It is given by the Lyapunov exponent of the unstable �xed point at the top of thesaddle, beause the motion in x-diretion of partiles nearby the saddle is governed by ẍ = ω2
xxand follows x(t) = x0 exp{±ωxt}. That is, ωx takes the role of the Lyapunov exponent L ofthe �xed point at the saddle. We use this to relate ωx to properties of our designed maps. Forthe maps Fpb and Fpb,rot the Lyapunov exponent of the hyperboli �xed point at (1

2
, p�x) anbe alulated using the larger eigenvalue of the Jaobian matrix, Eq. (3.16), and we get

L = log


1 +

bK ′

2
+

√(
1 +

bK ′

2

)2

− 1


 =





1.566 for example 1
1.159 for example 2
0.963 for example 3. (4.94)See Tab. 3.1 for the values of the parameters b and K ′.



4.3.4 Extension of the hannel oupling model 121Up to now we ould not �nd a relation for the seond frequeny ωy to parameters of themap. It might be related to the period of the hyperboli �xed point similar to the desriptionof sarring by Heller [60℄, where the produt of the Lyapunov exponent and the period of thehyperboli periodi orbit gives a riterion for an orbit to support sarred eigenstates. However,here we use ωy as a �tting parameter. The fator β = 2πωy

L
governs the transmission probabilitiesand therewith the square of the non-vanishing matrix elements of Eq. (4.81). Using Eq. (4.93)we an relate the 1

2
in the exponent of Eq. (4.81) to the ground state energy of the harmoniosillator in Eq. (4.84).The transmission probabilities of Eq. (4.93) determine the modulation of the squared matrixelement vk with respet to σ2: v2k = Tk · σ2. This is plausible, beause aording to Fermi'sgolden rule the transition rates are ompared with the square of the oupling matrix elements.
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Figure 4.19: Transmission for the matrix model using Eq. (4.81). (a) Individual transmissionprobability of eah site k for Φ/he� = 1/2. (b) Total transmission summed over all sites
k = 1, . . . as a funtion of Φ/he�. For ωy → ∞ we �nd steps in the total transmission whereasin the opposite limit, ωy → 0, all sites have transmission 1/2 and the total transmissiondiverges.



122 4.3 Channel ouplingFigure 4.19(a) shows the transmission probability of eah site k for various values of the ratio
ωy/L and �xed ratio Φ/he� = 1

2
. Figure 4.19(b) shows the total transmission summed over alloupling sites. This total transmission has lear steps for ωy/L→ ∞ and they are smoothenedfor dereasing ratio ωy/L. For ωy/L = 0 all sites ontribute equally and the total transmissiondiverges, independent of Φ/he�, with the total number of oupling elements.Note that if we renormalize the ouplings of Eq. (4.81) in order to have the same sum ofsquared elements as in the hannel oupling model of Se. 4.3.2,

Nup−1∑

k=0

v2k =
Φ

he�σ2, (4.95)we reover the BTU result for small values of β (β . 1
2
). For inreasing β the average produtmeasure approahes the result of the hannel oupling model. The range n ∈ (0, 1), whih isexluded in the original hannel oupling model, is in aordane with the results disussed inSe. 4.3.3 about the onset of one propagating mode. In this way, the above model allows for aontinuous transition between the BTU and the hannel oupling result. However, this modelwith renormalization is not appropriate to desribe our map data. Hene in the following wewill use Eq. (4.81) without any renormalization.Figure 4.20 shows the map data disussed in Se. 3.3.3 in omparison to the result of thematrix model, where the oupling elements follow the Fermi funtion. The value β = 2πωy/L =

8 is hosen suh that the overall behavior of the map data is well desribed by the matrix model.
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Figure 4.20: Average produt measure 〈M〉 using the momentum measures for the examples1, 2, and 3 of the map Fpb,rot (same as Fig. 3.19) in omparison to the result of the BTUmatrix model (gray dashed line), the hannel oupling with �xed elements (blak diamonds)and the matrix model with elements following the Fermi funtion (orange pluses).



4.4 Unitary random matrix models 1234.4 Unitary random matrix modelsIn ontrast to the previous setions, where Hamiltonian matries are modeled, we now onsiderunitary matries in order to desribe the impat of the partial barrier on the orrespondingquantum system. The unitary equivalent of the Gaussian orthogonal ensemble is the irularorthogonal ensemble (COE) [67, Se. 10.1℄. Suh COE matries an be diagonalized by orthog-onal transformations and their spetral statistis desribe haoti systems with time reversalinvariane. One an build a random matrix aording to the COE by generating a matrix of theirular unitary ensemble following Ref. [81℄, UCUE, and using UCOE = UTCUE UCUE [67, Se. 10.1℄,where the supersript T denotes the transposition of the matrix.The unitary matrix model of the time evolution operator for two unoupled haoti sub-systems with time reversal invariane is
U0 =


 COE

COE

0

0



, (4.96)whih is blok diagonal and ontains one COE matrix for eah sub-system. One approah tointrodue a oupling between the sub-systems while preserving unitarity is the following. Weompose the time evolution operator in Eq. (4.96) with a unitary matrix

U =  0

0



, (4.97)whih introdues ouplings (blue square) between the former independent bloks (dashed lines).It onsists of unity matries (solid lines) and a oupling blok Um of size 2m× 2m indiated inthe enter. One hoie for Um is a matrix Um,1 with ones on the anti-diagonal. The resultingrandom matrix model is determined by the unitary matrix U1 omposed of U0 and U,1,

U1 = U0U,1 =  COE

COE

0

0





 0

0




=


 0

0



, (4.98)in whih the blak lines indiate the ones on the diagonal and the anti-diagonal of Um,1. Undertime evolution with this matrix, a state initially loated in the upper region is transmitted tothe lower region via the lower left blok of U1. A state initially loated in the lower region is



124 4.4 Unitary random matrix modelstransmitted to the upper region via the upper right blok. Exept for the size of the blok ma-tries this model has only one parameter; namely m, whih determines the size of the matrix
Um,1. There are m sites, whih transfer weight from above to below and vie versa like theturnstile in the lassial piture. This model is the �rst to aount for direted transport be-tween the two sub-systems. Suh a direted transport is not possible in terms of a Hamiltonianmatrix, as for those disussed in the previous setions, beause this ontradits Hermitiity ofthe matrix.For ompleteness we mention another possible hoie for the matrix Um. Namely we hoosea COE matrix for the oupling blok Um and onsider the matrix model

U2 = U0U,2 =  COE

COE

0

0





 0

0




=


 0

0



. (4.99)In this model the weight entering the m transmitting sites of the upper region is distributedover all sites of the total system in ontrast to the matrix model of Eq. (4.98), in whih theweight is distributed over the lower sites only. Therefore the transmission to the lower regionis redued by a fator of two in omparison to the matrix model Eq. (4.98).The aim of these models, Eqs. (4.98) and (4.99), is to relate the impat of the lassialtransport rate aross the partial barrier to the orresponding quantum system in terms of aunitary matrix model. The lassial esape rate from the upper haoti region is given by theratio of the lassial �ux Φ and the aessible area, Eq. (3.37) of Se. 3.2.1,

Φ

Ah,up =
Φ

Nuphe� , (4.100)where we introdued the number of states Nup assoiated with the upper region. This rate hasto be ompared with the transition rate of the two random matrix models orresponding tothe part of a given vetor, whih is transported to the lower region. It is m/Nup for Eq. (4.98)and m/(2Nup) for Eq. (4.99), where for the latter only half of the weight entering the m sitesis transported to the opposite region. We introdue the number of transporting sites n asthe number of sites times their transition probability. With this de�nition we get n/Nup astransition rate for both matrix models. Therewith the rates of Eq. (4.100) and of the matrixmodels are the same if we assume that the ratio Φ/he� is the number of transporting sites n inthe COE model, whih is reasonable aording to Se. 3.2.1, where this ratio is assoiated withthe number of open hannels in an open system.
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Figure 4.21: Average produt measure 〈M〉 for the COE matrix models, U1 of Eq. (4.98)and U2 of Eq. (4.99), using Nup = Nlo = 200 and 1000 random matries. The results for thetwo di�erent matrix models follow the transitional behavior desribed by n/(1 + n).The produt measure is de�ned analogously to Eq. (3.72)
M [φ] =

µup[φ]
µup[Ψuniform] µlo[φ]

µlo[Ψuniform] (4.101)with the measures µup[Ψuniform] = fup = Nup/(Nup +Nlo) and µlo[Ψuniform] = flo = Nlo/(Nup +
Nlo) of the state Ψuniform, whih is uniformly distributed in both regions. For the two modelsintrodued above the produt measure averaged over the eigenstates is independent of Ntot =
Nup +Nlo and shown in Fig. 4.21 for Nlo = Nup = 200. The results for both matrix models arein agreement with the urve

M(n) =
n

1 + n
, (4.102)whih desribes the same transition behavior as the deterministi 2×2-model of Se. 4.1, where

M(λ) =
4λ2

1 + 4λ2
(4.103)is found. For n = 4λ2 the two Eqs. (4.102) and (4.103) are idential. Note that for the randommatrix model of Eq. (4.98) the number of transporting sites n an take only positive integervalues whereas n takes half-integer values for the model of Eq. (4.99). Hene only the upperhalf of the transition urve an be investigated. By an appropriate hoie of Um, one mayextend the data to ontinuous values of n and even values smaller than one half.
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Figure 4.22: Average produt measure 〈M〉 for the COE model of Eq. (4.98) as a funtionof n and n/(4flofup). Here we onsidered Nup 6= Nlo and 100 random matries for eah pair
(Nup, Nlo).Variation of the relative blok sizes yields the data shown in Fig. 4.22 and we �nd salingwith n/(4flofup) rather than n only. This is the same kind of saling found in the Λ-�ux relationof Se. 3.2.2.In Fig. 4.23 the average produt measure of the unitary matrix model given by Eq. (4.98) isompared to 〈M〉 for the map Fpb,rot disussed in Se. 3.3.3. In the �gure we ompare the mapdata as a funtion of Φ/he� to the data of the matrix model as a funtion of n. The two datasets are in very good agreement and exhibit a ommon transition behavior.
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Figure 4.23: Average produt measure 〈M〉 using the momentum measures for the examples1, 2, and 3 of the map Fpb,rot as a funtion of Φ/he� (same as Fig. 3.19) in omparison tothe result of the COE matrix model Eq. (4.98) (rosses), where we use n for the absissa.4.5 Summary of the modeling approahesIn the previous setions we disuss several matrix models to desribe the quantum transitionof a partial barrier from quantum suppression to lassial transport, where the two limitingases orrespond to unoupled haoti sub-systems and strongly oupled haoti sub-systems,respetively. We introdue a deterministi 2 × 2-model, one site for eah haoti region of thesystem with one partial barrier, whih desribes the same transition behavior found numeriallyfor the designed map. The random matrix model proposed by Bohigas, Tomsovi, and Ullmoshows a transition behavior, whih is di�erent from the map data. We attribute this di�ereneto the overall Gaussian oupling between all upper and all lower states. Therefore we introduethe hannel oupling model with a more sophistiated oupling. It allows for a �nite numberof propagating modes between the two sub-systems. This number of propagating modes ngives rise to n non-vanishing oupling elements of �xed size σ and equals the ratio Φ/he�. Theresults for the hannel oupling model are in good agreement with the map data. We extendthis matrix model with disrete oupling sites to a smooth version using Fermi-funtion liketransition probabilities for eah oupling site. Therewith we smoothen the transition urve ofthe hannel oupling model and extend it to Φ/he� smaller than one. In the last setion wedisuss unitary matrix models, whih � in ontrast to the Hermitian matrix models � allow fora direted transport between the upper and the lower region as it is the ase for the lassialpartial barrier. These models follow the same transition behavior as the map data if we identify
Φ/he� with the number of transporting sites.





5 Spetral signatures of partial barriersin phase spaeThis hapter is dediated to the spetral properties of the system with one isolated partialbarrier Fpb,rot. There are numerous possibilities to quantify system properties by means ofspetral statistis. In order to observe universal behavior and to ompare features of di�erentsystems, one has to unfold the spetrum of energy levels [82℄. That is, one has to remove thesmooth part of the density of states and thereby variations in the mean level spaing, whihtake plae on larger sales. The universal behavior is found in the remaining osillatory partof the density of states. From the huge number of available quantities of spetral statistiswe restrit ourselves to the spetral form fator K(τ), whih is disussed in Se. 5.1, and thedistribution of level spaings P (s), whih is presented in Se. 5.2. We ompare our �ndingsto the random matrix model proposed by Bohigas, Tomsovi, and Ullmo and to the hanneloupling model, whose ATW is in good agreement with the map data.
5.1 Spetral from fator K(τ )The spetral form fator is the Fourier transform of the two-point orrelations funtion R2(E1−
E2) [83, Se. 3.2.5℄ and has been studied extensively [65,84,85℄. Its short time behavior trans-lates into long-term orrelations in the energy domain. It is appropriate to quantify spetralproperties of a system with one partial barrier, beause it inorporates the involved time sales,namely the Heisenberg time and the dwell time [65℄.5.1.1 De�nition of the spetral form fatorConsider a quantum system desribed by a unitary time evolution operator U with the followingeigenvalue equation,

U |k〉 = eiϕk |k〉 for k = 1, . . . , N. (5.1)



130 5.1 Spetral from fator K(τ)The spetral form fator as a funtion of time m (m ∈ Z) is given by [59, Se. 4.14℄
K(m) =

1

N

N∑

j=1

N∑

k=1

exp{i(ϕj − ϕk) ·m} (5.2)
=

1

N

∣∣∣∣∣

N∑

k=1

exp{iϕk ·m}
∣∣∣∣∣

2

=
1

N
|Tr Um|2 . (5.3)It measures orrelations between the levels, whih are the eigenphases {ϕk} in the ase of aquantum map.To ompare the spetral form fator of di�erent systems, we have to unfold the spetrum inorder to obtain the same mean level spaing for all levels. Furthermore we have to introdue atypial time for a temporal resaling. As disussed in Se. 3.2.1 the time assoiated with themean level spaing is the Heisenberg time

tH =
2π

〈∆ϕ〉 = N. (5.4)That is, for quantum maps the Heisenberg time is given by the number of states N of the systemonsidered. Analogously the Heisenberg time orresponding to a sub-system is the number ofstates assoiated with this sub-system as mentioned in Se. 3.2.1. The resaled time τ is thetime in multiples of the Heisenberg time,
τ =

t

tH =
m

N
. (5.5)As pointed out in Se. 4.2 the spetral properties of haoti systems an be modeled byrandom matries. For a haoti system obeying time reversal invariane the universality lassis the Gaussian orthogonal ensemble (GOE). The GOE predition for the so alled two-levelform fator b(τ), whih is related to the spetral form fator by

b(τ) = 1−K(τ), (5.6)is given by (see Eq. C.9 of Ref. [86℄ on page 191)
bGOE(τ) = 1− 2τ + τ log(2τ + 1) for τ < 1

−1 + τ log 2τ+1
2τ−1

otherwise. (5.7)This yields for the spetral form fator of one GOE spetrum
KGOE(τ) = 2τ − τ log(2τ + 1) for τ < 1

2− τ log 2τ+1
2τ−1

otherwise (5.8)



5.1.2 Time sales 131and its Taylor expansion reads
KGOE(τ) = 2τ − 2τ 2 + 2τ 3 ∓ . . . for τ ≪ 1. (5.9)If we onsider a spetrum omposed of two independent spetra, with fi being the fra-tion of levels belonging to the i-th omponent, the two-level form fator resulting from thesuperposition is the weighted sum of the individual form fators b(i), [86, Eq. D.3℄,

btotal(τ) =∑
i

fi b(i)(τ/fi). (5.10)Eah form fator gets as argument the time measured in multiples of the orresponding Heisen-berg time of region i
τ

fi
=

t

fitH
=

t

tH,i . (5.11)For the ase of two independent spetra of equal size, i.e. f1 = f2 =
1
2
, we have

btotal(τ) = 1

2
b(1)(2τ) +

1

2
b(2)(2τ) = bpartial(2τ) , (5.12)where in the last step it was assumed that both spetra belong to the same universality lass.For the spetral form fator this means

Ktotal(τ) = 1− btotal(τ) = 1− bpartial(2τ) = Kpartial(2τ) (5.13)For the unorrelated superposition of two GOE spetra we have
K2GOE(τ) = KGOE(2τ) = 4τ − 2τ log(4τ + 1) for 2τ < 1

2− 2τ log 4τ+1
4τ−1

otherwise, (5.14)and for small τ
K2GOE(τ) = 4τ − 8τ 2 + 16τ 3 ∓ . . . for τ ≪ 1. (5.15)5.1.2 Time salesIn Se. 3.2.1 the time sales ourring in the designed system Fpb,rot are disussed. Besides theHeisenberg time of the total system tH = N and the Heisenberg time tH,i = Nh,i = Aaess,iN =

Aaess,itH assoiated with some phase-spae region Aaess,i, the dwell time in region i, Eq. (3.37),
tdwell,i = Aaess,i

Φ
i = 1, 2, (5.16)



132 5.1 Spetral from fator K(τ)is important to desribe the impat of the partial barrier onneting the two haoti sub-systems. Aording to Eq. (3.40) the ratio of the �ux and Plank's onstant an be related tothe ratio of the Heisenberg time and the dwell time of the sub-system i

Φ

he� =
tH,i
tdwell,i i = 1, 2. (5.17)For open systems this ratio orresponds to the number of hannels in the opening and we willuse n as abbreviation of the ratio in Eq. (5.17) for reasons of readability.5.1.3 Results for the designed map Fpb,rotWe onsider the map Fpb,rot introdued in Se. 3.1.6, whose lassial phase spae is omposedof two haoti regions and a turnstile of size Φ onneting them. To investigate the transitionfrom two unoupled haoti spetra to one haoti spetrum for inreasing ratio n = Φ/he�,we remove the regular levels from the resulting spetrum. Identifying regular states is possiblesine they are loalized in momentum spae around p = 0 or 1 by means of periodi boundaryonditions. Therefore we alulate the variane around p = 0 for eah eigenstate ψ using itsmomentum representation ψ(pi) = 〈pi|ψ〉 as

N/2−1∑

i=0

|ψ(pi)|2(pi − 0)2 +

N∑

i=N/2

|ψ(pi)|2(pi − 1)2. (5.18)Regular states have small variane ompared to the haoti states and therefore an be ex-trated. We remove Nreg = ⌈AregN⌉ states. The remaining haoti levels are used to determine
K(τ) aording to Eq. (5.3) taking Nh = N − Nreg as total number of states. We averagedthe data over the Bloh phase θq as system average in order to smoothen the resulting K(τ),beause K(τ) is not self-averaging [87℄. In the following we restrit ourselves to the ase ofupper and lower haoti region being equal in size, whih yields the same dwell time for both,
tdwell,1 = tdwell,2.The determined spetral form fator K(τ) for the map Fpb,rot is shown in Fig. 5.1 for di�erentratios n = Φ/he�. Our �ndings have to be ompared with the two limiting ases of one largeGOE, Eq. (5.8), and the unorrelated superposition of two GOE spetra, Eq. (5.14). Forinreasing ratio n = Φ/he� we �nd a transition from the unorrelated superposition of two GOEmatries to one GOE matrix. Furthermore, eah urve follows the result of two unorrelatedGOE spetra at times smaller than the dwell time tdwell,i, whih is indiated by an arrow, andthe result of one GOE spetrum at times larger than tdwell,i. As disussed in Se. 3.2.1 at timessmaller than the dwell time a typial lassial orbit will not have visited the seond region andtherefore semilassially the spetral properties of the quantum system are desribed by theunorrelated superposition of two GOE spetra. At times large ompared to the dwell time,
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Figure 5.1: K(τ) for the map Fpb,rot for di�erent ratios n = Φ/he� = tH,i/tdwell,i. Theshown data are of example 3 (Φ ≈ 1/3000) using 1/he� = 800 and 3200 as well as example 2(Φ ≈ 1/800) using 1/he� = 3200. These data sets illustrate the typial behavior and we �ndsaling with Φ/he� (not shown). The data is averaged over 1000 values of the Bloh phase θq.The lower piture is a magni�ation of the upper for small τ . The arrows indiate the dwelltime in one of the haoti regions tdwell,i in multiples of the Heisenberg time tH,h = Nh ofthe haoti sea. The results for the map Fpb,rot lie in between the urves of the unorrelatedsuperposition of two GOE spetra (dashed red line; Eq. (5.14)) and one GOE spetrum (solidgreen line; Eq. (5.8)).
lassial orbits will explore the seond region and semilassially the spetral properties aredesribed by one GOE spetrum. At the dwell time the resulting K(τ) urves are half waybetween the two limiting ases.



134 5.1 Spetral from fator K(τ)5.1.4 Desription of the resultsThe aim of this setion is to disuss desriptions of the results presented in the previous setion.The �rst paper on the issue of transport limitation due to partial barriers in the ontext of thespetral form fator is Ref. [65℄ of Smilansky, Tomsovi, and Bohigas from 1992. They disussthe impliation of the �nite probability to go from one region to another on the form fator.By expressing the form fator in terms of periodi orbits and performing Berry's diagonalapproximation [88℄ they rewrite the spetral form fator for time reversal invariant systems as
K(τ) = 1− b(τ) ≈ 2τI(τ), (5.19)where I(τ) is an averaged sum over periodi orbits. They point out that I(τ) has a simplelassial interpretation. It is the probability that a given orbit returns to its initial pointafter time τ in multiples of the probability of being found anywhere in the phase spae. Thisinterpretation is valid as long as the mixing time is smaller than all other time sales involved,Heisenberg time and dwell time. Using the Master-equation approah disussed in Se. 3.3.1they are able to determine I(τ) and to give an estimate for K(τ), [65, Eq. (2.19)℄),

KSTB(τ) = 2τ [1 + exp{−Γτ}], (5.20)with the deay rate of a state nonuniformly distributed with respet to the two regions ofvolumes V1 and V2
Γ = ΦH [V −1

1 + V −1
2

]
, (5.21)where ΦH is the �ux between these regions per Heisenberg time. Both terms in Eq. (5.21) anbe rewritten using the �ux per unit time Φ and the Heisenberg time tH,h as

ΦH
Vi

=
Φ · tH,h
Vi

=
tH,h
tdwell,i = tH,i

fitdwell,i (5.22)with the fration of region i relative to the haoti sea fi. The ratio of tH,i and tdwell,i for region
i an be replaed by Φ/he� for the quantum map, aording to Eq. (5.17),

Γ =
Φ

he� [f−1
1 + f−1

2

]
. (5.23)For the ase of two haoti regions of equal size f1 = f2 =

1
2
we obtain for Eq. (5.20)

KSTB(τ) = 2τ

[
1 + exp

{
−4

Φ

he� τ}] = 4τ for Φ
he� → 0

2τ for Φ
he� → ∞.

(5.24)



5.1.4 Desription of the results 135As a funtion of n = Φ/he� the spetral form fator performs a smooth and monotonoustransition between the linear behavior 4τ of two unorrelated GOE spetra, Eq. (5.15), and
2τ of one GOE spetrum, Eq. (5.9), whih an be seen in Fig. 5.2. The Taylor expansion ofEq. (5.24) reads

KSTB(τ) = 4τ − 8
Φ

he� τ 2 + 16

(
Φ

he�)2

τ 3 ∓ . . . for τ ≪ 1 (5.25)For a �nite ratio Φ/he� the linear behavior is 4τ and thus at small times always the result oftwo GOE spetra is reovered. This is in agreement with our previous �ndings that at smalltimes ompared to the dwell time the seond region is not resolved and the spetral propertiesare desribed by two independent spetra.The data of map Fpb,rot strongly �utuates. At small τ it is even larger than the 2-GOEpredition. Therefore the diagonal approximation might not yield good agreement. In orderto ahieve better agreement with our results, Kuipers alulated the spetral form fator fortwo haoti systems onneted with eah other by summing over periodi orbits [89℄. The onlyparameter is the number of hannels n. It determines the strength of the oupling and is givenby the ratio of the Heisenberg and the dwell time in one region,
n =

tH,i
tdwell,i = Φ

he� , (5.26)as disussed earlier. The resulting spetral form fator is [89℄
KJK(τ) = 2τ [1 + exp{−4nτ}] . . .diagonal ontribution

− 2τ 2[1 + exp{−4nτ}]− 4τ 2[1− nτ ] exp{−4nτ} . . .Sieber-Rihter, (5.27)where we expliitly indiated the diagonal ontribution and the ontribution by Sieber-Rihterpairs of periodi orbits. The diagonal ontribution is exatly the same as the result of Ref. [65℄derived using a Master equation rewritten in Eq. (5.24) using Eq. (5.26). This is onsistent, asboth are diagonal approximations of the spetral form fator.Figure 5.3 shows a magni�ation of the map data shown in Fig. 5.1 inluding the preditionof Smilansky et al., Eq. (5.24), and the predition of Kuipers, Eq. (5.27). The data for map
Fpb,rot strongly �utuates for small τ and signi�antly exeeds the 2-GOE result. Therefore�tting the linear regime is not useful and we �nd agreement for the diagonal approximationonly for the largest ratio n = Φ/he� = 4 (lowest urve). Adding the seond order term in
K(τ) seems to underestimate the determined K(τ). Adding more terms might yield betteragreement, but has not been done up to now.Next we ompare the resulting K(τ) for Fpb,rot to those of the matrix model proposed byBohigas, Tomsovi, and Ullmo (see Se. 4.2) and the hannel oupling model (see Se. 4.3).
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Figure 5.2: The estimation of Smilansky et al. of K(τ) in Eq. (5.24) for di�erent n = Φ/he�(dash-dotted lines) in omparison to the result of an unorrelated superposition of two GOEspetra (dashed red line; Eq. (5.14) and linear approximation 2τ) and one GOE spetrum(solid green line; Eq. (5.8) and linear approximation 4τ). The arrows indiate the dwell timein one of the haoti regions tdwell,i in multiples of the Heisenberg time. The lower piture isa magni�ation of the upper for small τ .This is done in Fig. 5.4(a) and (b), respetively. For the BTU model we use Λ = n/π2 (see
Λ-�ux relation in Se. 3.2.2) in order to relate the data with the ratio n = Φ/he�. Using this,one may also de�ne a dwell time of one region in multiples of the total Heisenberg time for theBTU model using

tdwell,i
tH =

tdwell,i
2tH,i =

1

2n
=

1

2π2Λ
. (5.28)
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Figure 5.3:Magni�ation of Fig. 5.1 for small τ . For omparison the diagonal approximationEq. (5.24) of Smilansky et al. (dash-dotted) in (a) and the result inluding Sieber-Rihterpairs Eq. (5.27) of Kuipers (dotted) in (b) are shown. Again the arrows indiate the positionof the dwell time.The results for the BTU model for n ≤ 1 lie below the form fator K(τ) for the map Fpb,rot,Fig. 5.4(a). This means for the same saling parameter the BTU model is ahead of the map
Fpb,rot on the transition towards one GOE, whih is onsistent with the �ndings for the ATWand the average produt measure in Chap. 3. For large n = Φ/he� the BTU and the map dataare quite lose to eah other. For the hannel oupling we �nd reasonable agreement with thespetral form fator of the map Fpb,rot, Fig. 5.4(b), similar to the observations for the ATW.Therefore again we onlude that for n being small there arise di�erenes between the BTUand the hannel oupling model, where the latter seems to desribe the data of the map Fpb,rotbetter.
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Figure 5.4: Data of Fig. 5.1 in omparison to the resulting K(τ) for (a) the BTU matrixdisussed in Se. 4.2 model and (b) the hannel oupling model disussed in Se. 4.3.Note that the overall shape of the BTU model is quite well desribed, by an interpolationbetween KGOE(τ) and K2GOE(τ) based on the diagonal part proposed by Kuipers [89℄,
Kinterpolation(τ) = [1− exp {−4nτ}] ·KGOE(τ) + exp {−4nτ} ·KGOE(2τ). (5.29)5.2 Nearest-neighbor level-spaing distribution P (s)The nearest-neighbor level-spaing distribution is one of the most important tools to determineproperties of level spetra [68, 82, 90, 91℄. It is suitable to measure features of the involvedoupling strengths, whih govern the distribution at small energy spaings [92, 93℄.



5.2.1 De�nition of the nearest-neighbor level-spaing distribution 1395.2.1 De�nition of the nearest-neighbor level-spaing distributionAs we study spaing statistis of quantum maps we unfold the spetrum of eigenphases
ϕk 7→

Nhϕk
2π

for k = 1, ..., Nh. (5.30)Note that the number of onsidered levels ours here, whih equals the number of haotistates Nh in the map system. For monotonially inreasing eigenphases ϕk, we de�ne thenearest-neighbor level-spaing as [82℄
sk :=

Nh
2π

(ϕk+1 − ϕk) (5.31)and onsider its distribution P (s). By onstrution it is normalized and has unit mean levelspaing, i.e.
∞∫

0

ds P (s) = 1, (5.32)
∞∫

0

ds s P (s) = 1. (5.33)For time reversal invariant systems, whih have the same spetral properties as GOE randommatries, the level-spaing distribution P (s) is reasonably well desribed by the Wigner surmise,
Ph(s) = πf 2hs

2
exp

{
−πf

2hs2
4

}
. (5.34)It only depends on the fration of haoti states fh, whih is the density of levels in the unfoldedspetrum (mean level spaing 1/fh). P (s) inreases linearly for small s. That is, neighboringlevels tend to repel eah other. This behavior is typial for haoti systems and is referred toas level repulsion [68℄.In order to derive the level-spaing distribution P (s) for the unorrelated superposition of sub-spetra, one has to introdue the gap probability Z(s) [91℄. We de�ne the following quantities

F (s) =

∞∫

s

ds′P (s′), (5.35)
Z(s) =

∞∫

s

ds′F (s′). (5.36)Here, F (s) is the probability that there is a spaing greater or equal to s and f ·Z(s) haraterizesthe probability that an interval of length s is a gap in the onsidered spetrum. These quantities



140 5.2 Nearest-neighbor level-spaing distribution P (s)an also be de�ned for eah sub-spetrum individually. For a time reversal invariant sub-systemof size fh these quantities are integrated versions of the Wigner surmise in Eq. (5.34)
Fh(s) = exp

{
−πf

2hs2
4

}
, (5.37)

Zh(s) = 2

fh√π ∞∫

√
πfhs/2 dx exp {−x2} . (5.38)For the unorrelated superposition of sub-spetra with densities fh,1 and fh,2 the gap proba-bility of the total spetrum is given by the produt of the individual ontributions [91℄

Z(s) = fh,1Zh,1(s)fh,2Zh,2(s). (5.39)The latter property is plausible, beause of the meaning of Z(s). That is, we will �nd a gap ofsize s in the total spetrum if both spetra have a gap of size s. The orresponding level-spaingdistribution P (s) an be derived by di�erentiating the gap probability Z(s) twie. This gives
P (s) = fh,1Ph,1(s)fh,2Zh,2(s) + fh,1Zh,1(s)fh,2Ph,2(s) + 2fh,1Fh,1(s)fh,2Fh,2(s). (5.40)The �rst term of the sum orresponds to spaings from the �rst sub-spetrum embedded insidea gap of the seond sub-spetrum and the seond term originates from spaings from the seondsub-spetrum embedded inside a gap of the �rst. The last term in Eq. (5.40) ounts spaingsbetween a level of the �rst sub-spetrum and a level of the seond sub-spetrum. For small

s the �rst two terms exhibit level repulsion due to Ph,i(s). However, the last term gives aonstant o�set 2fh,1fh,2 for small spaings, beause Fh,i(s ≈ 0) = 1. Thus, the level repulsionof the individual sub-spetra is destroyed due to lustering of levels from distint sub-spetra.For the unorrelated superposition of two GOE spetra of equal size (fh,1 = fh,2 = 1
2
) thespaing distribution is

P (s) =
1

2
Ph(s, fh = 1

2

)
Zh(s, fh = 1

2

)
+

1

2
F 2h (s, fh = 1

2

) (5.41)with Ph, Fh, and Zh given in Eqs. (5.34), (5.37), and (5.38), respetively. For s = 0 we �nd
P (s = 0) = 1

2
, whih determines the probability P (s ≈ 0)ds to have two levels of di�erentsub-spetra at distane smaller than ds. Levels of di�erent spetra do not repel eah other andtherefore yield nonzero P (s = 0).5.2.2 Results for the designed map Fpb,rotIn order to determine the spaing distribution for the haoti levels of the designed map Fpb,rot,we remove the regular levels from the spetrum as disussed in Se. 5.1.3. The resulting spaing
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Figure 5.5: Level-spaing distribution P (s) of the map Fpb,rot for di�erent ratios Φ/he� =
π2Λ. The parameters for the numerial data of the map Fpb,rot are given in Tab. 5.1.Their displayed histograms lie in between the urve for the unorrelated superposition oftwo GOE spetra (dashed red line; Eq. (5.41)) and the Wigner surmise for one GOE spe-trum (solid green line; Eq. (5.34)). The lower piture shows the same distributions on adouble-logarithmi sale, whih reveals a power-law inrease sβ for small s with exponent βbetween 0 (unorrelated superposition of two GOE) and 1 (one GOE).distributions for several ratios Φ/he� = π2Λ are shown in Fig. 5.5. The shown data sets illustratethe typial behavior and we �nd saling with the ratio Φ/he� as in Chap. 3. Moreover we varythe width of the regular region as desribed in Se. 3.3.5 and �nd no dependene of P (s) on thiswidth. That is, the behavior of P (s) is determined by the properties of the partial barrier only.



142 5.2 Nearest-neighbor level-spaing distribution P (s)For inreasing oupling parameter Φ/he� the results perform a transition from two unoupledGOE spetra, Eq. (5.41), to one GOE spetrum, Eq. (5.34). The lower piture of Fig. 5.5 showsthe distribution on a double-logarithmi sale to emphasize the behavior of small spaings s.The inrease is algebraially sβ with an exponent β inreasing from zero to one for inreasing
Φ/he�.Now we onsider the BTU matrix model, disussed in Se. 4.2. This model inorporates atypial oupling strength, Eq. (4.32), v = D·

√
Λ with the mean level spaing of the unorrelatedsuperposition D (onsidering levels around E = 0 like in Se. 4.2) and the saling parameter Λ.The orresponding nearest-neighbor spaing-distribution is studied in Ref. [40,70,71,76℄ and ananalyti expression is derived in Ref. [92℄. The main idea of the analyti expression is to replaethe seond term of Eq. (5.41), namely the ontribution of levels from distint sub-spetra bya �rst order perturbation expansion. The level spaings of the unorrelated superposition s0are replaed by s =

√
s20 + v̄2, where the unfolded oupling strength v̄ enters, whih is givenby v̄ = v/D =

√
Λ. In Fig. 5.6 the distributions are plotted for various Λ. Beause theyagree exellently with numerial determined histograms, we only show the analyti predition.Again for inreasing oupling strength we �nd a transition from two unoupled GOE spetrato one GOE spetrum, but the transition behavior is quite di�erent from Fig. 5.5. This is mostprominent seen in the lower piture, whih shows the distribution on a double-logarithmi sale.For one typial oupling strength P (s) inreases linearly for s below this oupling strength. Nofrational power-law behavior as shown in Fig. 5.5 for map Fpb,rot is found.Figure 5.7 shows the level-spaing distribution for the hannel oupling model introdued inSe. 4.3. The P (s) distributions for n = 1, 2, and 4 are in good agreement with the P (s) forthe map Fpb,rot in Fig. 5.5 for Φ/he� = 1, 2, and 4. This is onsistent with our �ndings that theATW of the map is well desribed by the hannel oupling model (see Se. 4.3). The shown

P (s) distributions in Fig. 5.7 also indiate the power-law behavior found for the map data inFig. 5.5. For the original hannel oupling model the number of propagating modes n annotbe smaller than one. Therefore further investigations are needed to searh for a power-lawbehavior in the hannel oupling model, e.g. by use of the extension disussed in Se. 4.3.4.Example �ux Φ N = 1/he� Φ/he�3 ≈ 1/3000 200 ≈ 1/163 ≈ 1/3000 800 ≈ 1/43 ≈ 1/3000 1600 ≈ 1/23 ≈ 1/3000 3200 ≈ 12 ≈ 1/800 1600 ≈ 22 ≈ 1/800 3200 ≈ 4Table 5.1: Considered examples and used total number of states N = 1/he� of the datashown in Fig. 5.5. The parameters for the examples are given in Tab. 3.1 and Tab. 3.2. Eahdata set is olleted over 1000 values of the Bloh phase θq.
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Figure 5.6: Analyti level-spaing distribution P (s) for two haoti regions, whih are ou-pled via one typial oupling strength v determined by v/D =
√
Λ. These distributions arein exellent agreement with numerially determined P (s) distributions for the BTU matrixmodel [92℄. For inreasing oupling strength Λ the distributions perform a transition fromtwo unoupled GOE spetra to one GOE spetrum. For spaings smaller than the ouplingstrength √

Λ the distributions inrease linearly similar to the GOE spetrum.Aording to Ref. [93℄ a frational power-law behavior in P (s) indiates that the ouplingbetween the two sub-systems annot be desribed by a single number, rather several di�erentoupling strengths need to be onsidered. That is, the ouplings are distributed aording to apower-law or a sum of Gaussian distributions with di�erent variane. In Ref. [93℄ the oupling
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Figure 5.7: Level-spaing distribution P (s) for the hannel oupling model (Nup = Nlo =
500 and aording to Eq. (4.76) σ = 1/(4Nup)) and number of propagating modes n = 1, 2, 4.The shown distributions inlude levels of 104 random matries, where 10% of levels around
E = 0 are onsidered.of regular and haoti states is investigated. However, on the level of the used 2 × 2-modeldesription this is just the same as two haoti regions being oupled. Therefore we attributethe di�erene of the nearest-neighbor distribution of map Fpb,rot and the BTU matrix model todi�erent distributions of ouplings between states of the upper and the lower haoti region. Forthe BTU matrix model this distribution is Gaussian and we dedue a power-law distributionor at least a sum of Gaussian distributions with di�erent variane from the found P (s).



6 Summary and outlookIn this thesis we study the impat of partial barriers, whih limit the transport between haotiregions in phase spae. Classially these partial barriers lead to a drasti hange in the distri-bution of reurrene times. It hanges from exponential, in the fully haoti ase, to algebraifor the haoti omponent of a mixed phase spae, in whih partial barriers are arranged in ahierarhial manner. They limit the transport for intermediate times. At large times, however,one expets that almost all haoti orbits spread uniformly into the whole haoti region as ifthere was no barrier.Quantum mehanially these partial barriers are even more restritive and quantum sup-pression of transport is found, if the e�etive Plank's onstant he� is larger than the lassial�ux Φ, he� ≫ Φ. That is, time evolved wave pakets annot pass the partial barrier and willtherefore loalize in the initial region. In the opposite regime where he� is muh smaller thanthe lassial �ux, he� ≪ Φ, the wave pakets follow the lassial transport aross the partialbarrier. At large times they extend uniformly over the whole haoti region as if there was nobarrier. In between the limiting ases one �nds a transition.The aim of this thesis is to quantify this quantum transition of a partial barrier betweenquantum suppression and lassial transport. For this we introdue the asymptoti transmittedweight (ATW), whih desribes the weight transmitted aross the partial barrier at large times.Moreover we relate the ATW to the average of an eigenstate measure, alled produt measure,whih aptures the deviation of eigenstates from the uniformly distributed state. If Plank'sonstant is large ompared to the lassial �ux, he� ≫ Φ, the ATW and thereby the individualprodut measure of the eigenstates vanishes. In this limit eigenstates are loalized on one sideof the partial barrier and have no weight on the other side. In the limit of lassial transport,
he� ≪ Φ, all of the haoti eigenstates are uniformly distributed over both regions and ignorethe partial barrier.For a generi system with a mixed phase spae in�nitely many partial barriers exist in thehaoti part of phase spae and might yield relevant transport barriers. Studying their impaton the orresponding quantum system is a hard task. Therefore we introdue a designed systemwith a partiularly simple phase spae, whih onsists of two haoti regions, that are separatedby one isolated partial barrier. For this system, we numerially �nd that the ATW sales withthe ratio Φ/he�. The transition from quantum suppression to lassial transport takes plae at
Φ = he�. It has a width of almost two orders of magnitude in Φ/he�. Moreover we extend our



146 Chapter 6. Summary and outlookonsiderations to the generi standard map and obtain results that are in good agreement withour �ndings for the designed map.In order to quantitatively desribe the quantum transition of a partial barrier we disussseveral matrix models in Chap. 4. The transition behavior of our map data is well desribedby a deterministi 2× 2-model, in whih eah site in the model is assoiated with one haotiregion. Moreover we evaluate the ATW for the random matrix model proposed by Bohigas,Tomsovi, and Ullmo [23℄. We �nd that this matrix model does not desribe the overall behaviorof the ATW found for the designed map. Espeially for Φ/he� . 1 we �nd lear deviations.We attribute this di�erene to the overall Gaussian oupling between all upper and all lowerstates inluded in the BTU matrix model. Therefore we propose a hannel oupling model todesribe the impat of a partial barrier for the quantum system. In this model n = Φ/he�modes an propagate and ouple the upper and lower states. We �nd very good agreementwith the map data and onlude that this model is appropriate to desribe the bottle-nek ofquantum transport aross a partial barrier. In addition we onsider a smoothed version of thehannel oupling model using Fermi-funtion like transition probabilities and also �nd goodagreement. As an alternative approah we examine unitary matrix models, whih allow for adireted transport between the two regions separated by the partial barrier. Also this modeldesribes the transitional behavior of a partial barrier.Complementary to the investigations of time evolution and eigenstate properties in Chap. 3,we examine the spetral signatures of partial barriers in Chap. 5. As relevant quantities weonsider the spetral form fator K(τ) and the nearest-neighbor level-spaing distribution P (s).For the interpretation of the results for the spetral form fator K(τ) it is useful to relate theratio Φ/he� to the Heisenberg time tH,i and the dwell time tdwell,i of region i, Φ/he� = tH,i/tdwell,i.If the Heisenberg time is small ompared to the dwell time, tH,i ≪ tdwell,i, a typial orbit ofthe length of the Heisenberg time will not have visited the other region in phase spae. Inthis ase semilassially the quantum spetrum has the same properties as the unorrelatedsuperposition of two distint spetra. In the opposite limit tH,i ≫ tdwell,i we have lassialtransport and quantum mehanis resolves the other region, whih yields one haoti spetrum.For �xed Φ/he� = tH,i/tdwell,i we �nd a transition of the spetral form fator from the result ofthe unorrelated superposition of two distint spetra at small times to the result of one GOEspetrum at large times t≫ tdwell,i. We �nd saling with the ratio Φ/he� for the spetral formfator K(τ) and the level-spaing distribution P (s) and observe transitions between the resultof the unorrelated superposition of two GOE spetra to one GOE spetrum for inreasing ratio
Φ/he�. The level-spaing distribution P (s) for small spaings reveals the nature of the ouplingbetween the upper and lower states. We �nd a power-law behavior sβ for small spaings swith an exponent β between zero, whih is the limit of quantum suppression, and one, whihorresponds to the level repulsion found in one haoti system. We attribute this power-lawbehavior to a distribution of ouplings, whih learly di�ers from the Gaussian distribution with



147one typial oupling strength used by the BTU matrix model. However, the hannel ouplingmodel is in good agreement with the spetral form fator and the level spaing distribution forour example systems.In the future one may gain further insight into the omplex mehanism behind the quantumsuppression of transport by modeling the full time-dependent transmitted weight rather thanthe ATW only. In order to answer the question whether the transition behavior is governed bythe ratio Φ/he� only, further analysis is needed. Espeially more examples are required, wherethe size of the upper and lower haoti region are di�erent, in order to test the saling behaviorof the transition.In the regime Φ ≪ he� the lassial transport is suppressed. If the ratioΦ/he� is small enough,we expet that the main ontribution to the transport aross the partial barrier originates fromtunneling aross the barrier rather than turnstile transport. Therefore in this regime we expeta saling with Plank's onstant only. The theoretial desription of this tunneling proess isan open problem.Also the introdued designed map allows for further investigations. It an be used to studythe tunneling aross a single regular torus and to onstrut a partial barrier due to a antorus.However, up to now it is not lear how to �nd a good approximation of the antorus. If the �ux
Φ aross the antorus is large enough to investigate quantum signatures, the approximatingorbits are very unstable and therefore numerial approximations fail.The fat that partial barriers are nontransparent for wave pakets with he� ≫ Φ mightbe used for appliations, e.g. to build high-pass �lters, whih disard wave pakets of lowfrequeny. Up to now experimentally the quantum transition of a partial barrier is investigatedonly qualitatively. However, quantitative measurements are required to verify the transitionalbehavior found in this thesis. Promising andidates for these quantitative measurements aremiroavities, in whih the impat of partial barriers on the emission properties is of interest,e.g. to build mirolasers.
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